Conference Program

8th IEEE/ACIS International Conference on Software Engineering Research, Management and Applications (SERA'2010)

Monday, May 24 – Wednesday, May 26, 2010

Montreal, Canada

Sponsored by

International Association for Computer and Information Science (ACIS)

In cooperation with

IEEE Montreal Section and Concordia University, Montreal, Canada

Conference Organization:

Conference Chairs:

Dr. Alain Abran, École de technologie supérieure, Canada Dr. Roger Lee, Central Michigan University, USA

Program Chairs:

Dr. Olga Ormandjieva, Concordia University, Canada Dr. Constantinos Constantinides, Concordia University

Publication Chairs:

Dr. Roger Lee, Central Michigan University, USA Dr. Olga Ormandjieva, Concordia University, Canada

International Program Committee:

Alain Abran, École de technologie supérieure, Canada Gilbert Babin, HEC Montreal, Canada Hubert Baumeister, Technical University of Denmark, Denmark Jamal Bentahar, Concordia University, Canada Anader Benyamin-Seeyar, Concordia University & Benyamin Telecom Systems Inc., Canada Maria Bielikova, Slovak University of Technology in Bratislava, Slovakia Pierre Bourque, École de technologie supérieure, Canada Luigi Buglione, Université du Québec en Outaouais, Canada Costas Busch, Louisiana State University, USA Ricardo Campos, Polytechnic Institute of Tomar, Portugal Patrice Chalin, Concordia University, Canada Jessica Chen, Windsor University, Canada Shu-Ching Chen, Florida International University, USA Qiang Cheng, Southern Illinois University Carbondale, USA André Clouâtre, Université de Montréal, Canada Philippe Collet, Université de Nice Sophia Antipolis, France Andy Connor, Auckland University of Technology, New Zealand Constantinos Constantindes, Concordia University, Canada Juan Cuadrado-Gallego, University of Alcala, Spain Alfredo Cuzzocrea, Italian National Research Council and University of Calabria, Italy Maya Daneva, University of Twente, Netherlands Bipin Desai, Concordia University, Canada George Du, Hainan University, China Avram Eskenazi, University of Sofia, Bulgaria Zongming Fei, University of Kentucky, USA Benjamin Fung, Concordia University, Canada Cigdem Gencel, Blekinge Institute of Technology, Sweden

Abdelwahab Hamou-Lhadj, Concordia University, Canada Stefan Hanenberg, University of Duisburg-Essen, Germany Wei Hao, Northern Kentucky University, USA Petr Hnetynka, Charles University, Czech Republic Dieter Hogrefe, University of Göttingen, Germany Gongzhu Hu, Central Michigan University, USA Wen-Chen Hu, University of North Dakota, USA Chih-Cheng Hung, Southern Polytechnic State University, USA Sylvia Ilieva, University of Sofia, Bulgaria Fuyuki Ishikawa, National Institute of Informatics, Japan Julia Johnson, Laurentian University, Canada Pankaj Kamthan, Concordia University, Canada Sungwon Kang, KAIST, Korea Mohamad Kassab, Concordia University and NOKIA, Canada Bettina Kemme, McGill University, Canada Adel Khelifi, Alhosn University, Abu Dhabi, UAE Dae-Kyoo Kim, Oakland University, USA Ziad Kobti, University of Windsor, Canada Vidyasankar Krishnamurthy, Memorial University of Newfoundland, Canada Cyril Ku, William Paterson University, USA Roger Lee, Central Michigan University, USA Carson Leung, University of Manitoba, Canada Chendong Li, Department of computer science and operations research of University of Montreal, Canada Wei Li, University of Alabama in Huntsville, USA Li Liao, University of Delaware, USA Jay Ligatti, University of South Florida, USA Luigi Logrippo, Université du Québec en Outaouais, Canada Cuauhtémoc Lopez-Martin, CUCEA Guadalajara University, Mexico Yoshifumi Manabe, NTT, Japan Richard McClatchey, University of the West of England, UK Rick McKenzie, Old Dominion University, USA Pascale Minet, INRIA, France Jose Molina, Universidad Carlos III de Madrid, Spain Olga Ormandjieva, Concordia University, Canada Joey Packet, Concordia University, Canada Eric Pardede, La Trobe University, Australia Chang-Shyh Peng, California Lutheran University, USA Shahram Rahimi, Southern Illinois University at Carbondale, USA Sheela Ramanna, University of Winnipeg, Canada Samira Sadaoui, University of Regina, Canada Houari Sahraoui, Department of computer science and operations research of University of Montreal, Canada Beijun Shen, Shanghai Jiaotong University, China Mei-Ling Shyu, University of Miami, USA

Therapon Skotiniotis, Northeastern University, Boston, USA

Stanimir Stoyanov, University of Plovdiv, Bulgaria Sam Supakkul, University of Texas at Dallas, USA Jun Suzuki, University of Massachusetts, Boston, USA Li Tan, Washington State University, USA Jiro Tanaka, University of Tsukuba, Japan Soon Teoh, San Jose State University, USA Mircea Trofin, Microsoft, USA Emil Vassev, UCD School of Computer Science and Informatics, Dublin, Ireland Julita Vassileva, Laurentian University, Canada René Witte, Concordia University, Canada Simon Xu, Algoma University, Canada Yuhong Yan, Concordia University, Canada Dongxiao Zhu, University of New Orleans, USA

Conference Venue:

<u>Montefíore Club</u> <u>Address:</u> 1195 Rue Guy.

Conference Agenda:

May 24, 2010 (Monday)

07:30-16:30 Registration (Lobby at the Club entrance)

- 08:15-08:45 Opening Remarks (Salon B)
- 09:00-10:00 Keynote 1 (Salon B)

Title: Goal-Oriented Requirements Engineering and Software Architecting

Speaker: Prof. Lawrence Chung Department of Computer Science The University of Texas at Dallas

Session chair: Prof. Olga Ormandjieva

10:00-10:30 Coffee Break (Salon C)

10:30-11:30 Keynote 2 (Salon B)

Title: The Maturation of Software Engineering as a Discipline and Recognized Profession

Speaker: Prof. Pierre Bourque École de technologie supérieure Université du Québec, Canada

Session chair: Prof. Paul Albee

12:00 - 13:20 Luncheon (Salon C)

13:20-15:20	13:20-15:20	13:20-15:20
SESSION 1A,	SESSION 1B,	SESSION 1C,
Library	Goldroom	Boardroom
(Artificial Intelligence, Communication Systems and Networks)	(Computer & Software Engineering)	(Requirements Engineering)
Chair: Paul Albee	Chair: Olga Ormandjieva	<u>Chair: Alain Abran</u>
#51 Autonomic View of Query Optimizers in Database Management Systems <i>Basit Raza</i>	#8 Adopting a RIA-based tool for Supporting Assessment, Implementation and Learning in Software Process Improvement under the NMX-I-059/02-NYCE- 2005 Standard in Small Software Enterprises. <i>Ivan Garcia and Dagoberto Cruz</i>	#33 Representing Unique Stakeholder Perspectives in BPM Notations <i>Carlos Monsalve and Alain April</i>
#29 Repairing Service Compositions in a Changing World Yuhong Yan, Pascal Poizat and Ludeng Zhao	#50 An Empirical Study of Fan-in and Fan-out in Java OSS <i>Emal Nasseri, Steve Counsell and</i> <i>Ewan Tempero</i>	#5 Automated Generation of Use Case Descriptions from Problem Frames <i>Ali Fatolahi, Stéphane Somé and Timothy Lethbridge</i>
#54 Cross Engine Database Joining <i>Wesley Leonard and Paul</i> <i>Albee</i>	#53 Toward a Business Model for Software Product Line Architecture <i>Mohammad Tanhaei, Shahrouz</i> <i>Moaven, Jafar Habibi and Hamed</i> <i>Ahmadi</i>	#56 A Survey on the Importance of Some Economic Factors in the Adoption of Open Source Software <i>Vieri Del Bianco, Luigi Lavazza, Sandro Morasca, Davide Taibi and Davide Tosi</i>
#18 Access List based VLAN Map Architecture and Modified 802.1q Frame Scheme for Addressing VTP Issues <i>Hartinder Johal</i>	#75 The Software Modeling and Implementation of Reliable Server Pooling and RSPLIB Xing Zhou, Thomas Dreibholz, Martin Becke, Jobin Pulinthanath, Erwin P. Rathgeb and Wencai Du	#15 Requirements Management Tool with Evolving Traceability for the Entire Project Life Cycle <i>Youngki Hong</i>
15:30-15:40	Coffee Break (outside Boardroom)

15:40 - 17:40	15:40 - 17:40	15:40 - 17:40
SESSION 2A,	SESSION 2B	SESSION 2C,
Library	Goldroom	Boardroom
(Reengineering)	(UML, parallel and distributed computing)	(Requirements Engineering)
Chair: Tokuro Matsuo	<u>Chair: Constantinos</u> <u>Constantinides</u>	Chair: Roger Lee
#70 A New Algorithm based on Incentive Design in E-Commerce Systems <i>Koki Murakata and Tokuro Matsuo</i>	#65 Verification of the Correctness in Composed UML Behavioural Diagrams Samir Ouchani, Otmane Ait Mohamed, Mourad Debbabi and Makan Pourzandi	#71 Investigating the Capability of Agile Processes to Support Life-Science Regulations: The Case of XP and FDA Medical Devices' Software Hossein Mehrfard, Heidar Pirzadeh and Abdelwahab Hamou-Lhadj
#69 An Approach for Detecting Execution Phases of a System for the Purpose of Program Comprehension Akanksha Agarwal, Heidar Pirzadeh and Abdelwahab Hamou-I hadi	#46 L-SYNC: Larger degree clustering based time-synchronization for Wireless Sensor Network <i>Alireza Shameli Sendi, Masoume</i> <i>Jabbarifar, Hosein Pedram, Mahdi</i> <i>Dehghan and Michel Dagenais</i>	#52 Investigation of the Capability of XP to Support the Requirements of ISO 9001 Software Process Certification. <i>Malik Qasaimeh and Alain Abran</i>
#36 Process Patterns for MDA-Based Software Development <i>Mohsen Asadi, Naeem</i> <i>Esfahani and Raman Ramsin</i>	#37 Aspect-Oriented Modeling for Representing and Integrating Security Concerns in UML Djedjiga Mouheb, Chamseddine Talhi, Mariam Nouh, Vitor Lima, Mourad Debbabi, Lingyu Wang and Makan Pourzandi	#24 How Do Real Options Concepts Fit in Agile Requirements Engineering? <i>Zornitza Racheva and Maya</i> <i>Daneva</i>
#11 Psychometric Theory applied to Questionnaire - Based Appraisals on Software Process Assessments: An initial report <i>Ivan Garcia and Gabriel</i> <i>Andrade</i>	#32 A UML based deployment and management modeling for cooperative and distributed applications <i>Mohamed Nadhmi Miladi, Fatma</i> <i>Krichen, Mohamed Jmaiel and Khalil</i> <i>Drira</i>	#28 Modeling and Validating Requirements using Executable Contracts and Scenarios David Arnold, Jean-Pierre Corriveau and Wei Shi

May 25, 2010 (Tuesday)

07:30-16:30 Registration (Lobby at the Club entrance)

08:00-10:00	08:00-10:00
Workshop on Context Aware Systems	Special Session on Cost Estimation, Measurement and Management CEMM(1)
Library	Boardroom
	Chair, Cuaubtemog Lopez-Martin
Chair: Serguei Mokhov	Chail: Cuauncemoc Lopez-Marcin
#61 Using the General Intensional Programming System (GIPSY) for Evaluation of Higher-Order Intensional Logic (HOIL) Expressions <i>Serguei Mokhov and Joey Paquet</i>	#31 Comparing the Estimation Performance of the EPCU Model with the Expert Judgment Estimation Approach using Data from Industry <i>Francisco Valdes and Alain Abran</i>
#4 Towards Autonomic Specification of Distributed MARF with ASSL: Self-Healing <i>Emil Vassev and Serguei Mokhov</i>	#66 Applying a Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects <i>Cuauhtemoc Lopez-Martin and Ivica Kalichanin-Balich</i>
#16 Code Generation for Autonomic Systems with ASSL <i>Emil Vassev</i>	#39 A New Compound Metric for Software Risk Assessment Ahmad Hosseingholizadeh and Abdolreza Abhari
#17 An Operational Semantics for ASSI	#20 Functional requirement improvements through
Emil Vassev	size manufacturement: a case study with inexperienced
	Size measurement. a case study with mexperienced
	measurers
	Sylvie Trudel and Alain Abran
10:00-10:20 Coffee B	reak (Outside Boardroom)

10:20-12:20 SECASA (2)	10:20-12:20 CEMM (2)
Library	Boardroom
Chair: Yucong Duan	Chair: Ivica Kalichanin-Balich
#34 Cryptolysis: A Framework for Verification of Optimization Heuristics for the Automated Cryptanalysis of Classical Ciphers and Natural Language Word Segmentation Serguei Mokhov	#27 A Generic Model for the Specification of Software Interface Requirements and to Measure their Functional Size <i>Khalid Al-Sarayreh and Alain Abran</i>
#41 Towards a Tool Support for Specifying Complex Software Systems by Categorical Modeling Language	#40 Towards a Pattern-Based Framework for Goal-Driven Business Process Modeling
Noorulain Khurshid, Olga Ormandjieva and Stan Klasa	Saeed Ahmadi Behnam, Daniel Amyot and Gunter Mussbacher
#87 Development of Mobile Agent on CBD Haeng-Kon Kim and Sun Myung Hwang	#45 Process Improvement Based on Causal Networks <i>Reiner Dumke, Karsten Richter and Konstantina</i> <i>Georgieva</i>
#25 Managing semantics knowledge for 3D architectural reconstruction of building objects <i>Yucong Duan, Christophe Cruz and Christophe Nicolle</i>	#47 Service-oriented Measurement Infrastructure Reiner Dumke, Robert Neumann, Martin Kunz and A Schmietendorf
12:20 - 13:20 Lunch on you	r own
13:20 - 15:20 SECASA (3)	13:20 - 15:20 CEMM (3)
13:20 - 15:20 SECASA (3) Library	13:20 - 15:20 CEMM (3) <u>Boardroom</u>
13:20 - 15:20 SECASA (3) Library Chair: Joey Paquet	13:20 - 15:20 CEMM (3) <u>Boardroom</u> <u>Chair: Juan Jose Cuadrado-Gallego</u>
13:20 - 15:20 SECASA (3) Library Chair: Joey Paquet #62 Object-Oriented Intensional Programming: Intensional Classes Using Java and Lucid	13:20 - 15:20 CEMM (3) <u>Boardroom</u> <u>Chair: Juan Jose Cuadrado-Gallego</u> #49 Statistical Techniques Applicability during SDLC for Software Quality: Overview and Future Vision
13:20 - 15:20 SECASA (3) Library Chair: Joey Paquet #62 Object-Oriented Intensional Programming: Intensional Classes Using Java and Lucid Aihua Wu, Joey Paquet and Serguei Mokhov	13:20 – 15:20 CEMM (3) <u>Boardroom</u> <u>Chair: Juan Jose Cuadrado-Gallego</u> #49 Statistical Techniques Applicability during SDLC for Software Quality: Overview and Future Vision Manar Abu Talib, Adel Khelifi, Alain Abran and Olga Ormandjieva
13:20 - 15:20 SECASA (3) Library Chair: Joey Paquet #62 Object-Oriented Intensional Programming: Intensional Classes Using Java and Lucid Aihua Wu, Joey Paquet and Serguei Mokhov #63 Advances in the Design and Implementation of a Multi-Tier Architecture in the GIPSY Environment with Java	13:20 - 15:20 CEMM (3) <u>Boardroom</u> <u>Chair: Juan Jose Cuadrado-Gallego</u> #49 Statistical Techniques Applicability during SDLC for Software Quality: Overview and Future Vision <i>Manar Abu Talib, Adel Khelifi, Alain Abran and Olga</i> <i>Ormandjieva</i> #35 Analogies and differences between Machine Learning and Expert based Software Project Effort Estimation
 13:20 - 15:20 SECASA (3) Library Chair: Joey Paquet #62 Object-Oriented Intensional Programming: Intensional Classes Using Java and Lucid Aihua Wu, Joey Paquet and Serguei Mokhov #63 Advances in the Design and Implementation of a Multi-Tier Architecture in the GIPSY Environment with Java Bin Han, Serguei Mokhov and Joey Paquet 	 13:20 - 15:20 CEMM (3) <u>Boardroom</u> <u>Boardroom</u> <u>Chair: Juan Jose Cuadrado-Gallego</u> #49 Statistical Techniques Applicability during SDLC for Software Quality: Overview and Future Vision Manar Abu Talib, Adel Khelifi, Alain Abran and Olga Ormandjieva #35 Analogies and differences between Machine Learning and Expert based Software Project Effort Estimation Pablo Rodriguez-Soria, Borja Martin-Herrera, Juan Jose Cuadrado-Gallego, Miriam Martinez, Jose Javier Martinez and Dácil Castelo
 13:20 - 15:20 SECASA (3) Library Chair: Joey Paquet #62 Object-Oriented Intensional Programming: Intensional Classes Using Java and Lucid Aihua Wu, Joey Paquet and Serguei Mokhov #63 Advances in the Design and Implementation of a Multi-Tier Architecture in the GIPSY Environment with Java Bin Han, Serguei Mokhov and Joey Paquet #64 A Type System for Higher-Order Intensional Logic Support for Variable Bindings in Hybrid Intensional-Imperative Programs in OLDEV 	 13:20 - 15:20 CEMM (3) <u>Boardroom</u> <u>Boardroom</u> <u>Chair: Juan Jose Cuadrado-Gallego</u> #49 Statistical Techniques Applicability during SDLC for Software Quality: Overview and Future Vision Manar Abu Talib, Adel Khelifi, Alain Abran and Olga Ormandjieva #35 Analogies and differences between Machine Learning and Expert based Software Project Effort Estimation Pablo Rodriguez-Soria, Borja Martin-Herrera, Juan Jose Cuadrado-Gallego, Miriam Martinez, Jose Javier Martinez and Dácil Castelo #23 Experimental study using functional size measurement in building estimation model for software project size

#86 Study of one dimensional molecular properties using Python <i>Eric Famutimi, Micheal Stinson and Roger Lee</i>		#38 Extending the for crosscutting conce Zohreh Sharafi,	UML metamodel to provide support rns Parisa Mirshams, Abdelwahab	
		Hamou-Lhadj, and Co	nstantinos Constantinides	
15:20-15:40	Coffe	ee Break ((Outside Boardroom)	
15:40 - 17:10	15 : 4	40 - 17:10	15:40 - 17:10	
SESSION 3A,	SES	SSION 3B,	SESSION 3C,	
Library	G	oldroom	Boardroom	
(Economic and Financial Systems, Information Management Systems, Web Based Applications)	(Formal Methods and Tools, Information Systems Engineering)		(Quality)	
<u>Chair: Emil Vassev</u>	Chair:	Naohiro Ishii	<u>Chair: Constantinos</u> <u>Constantinides</u>	
#60 Privacy Protection Mechanisms for the Web Service Technology	#22 Stepwise design of BPEL web services compositions an Event B refinement based approach		#13 Multi-Perspective Software Process Modeling <i>Kerzazi Noureddine and Robillard</i> <i>Pierre-N</i>	
Diego Garcia	Idir Ait-Sadoune and Yamine Ait-Ameur			
#6 Implementation of a Suggested E-commerce Model Based on SET Protocol <i>Xuan Zhang, Qinlong Huang and</i> <i>Peng Peng</i>	#57 On Formal Modeling of TOPPERS Embedded Software Yoshinobu Kawabe, Nobuhiro Ito and Naohiro Ishii		#21 Remote Automated User Testing: First Steps toward a General-Purpose Tool <i>Chandan Sarkar and Candace</i> <i>Soderston</i>	
#73 Development of Location-Based Systems with Components Haeng-Kon Kim, Sun-Myung Hwang	#58 Flexible Flow S Scheduling by Intellig Multi-Agents <i>Wei Weng and Shigeru Fujin</i>		#48 Towards Automated Monitoring and Forecasting of Probabilistic Quality Properties in Open Source Software (OSS): A Striking Hybrid Approach #48 Reza Meimandi Parizi and Abdul Azim Abdul Ghani	
18:30-20:30 Award Presentation and Dinner Banquet				
(Montefiore Lounge)				

10:00 - 5:00 Individually arranged tours

The best option for the sightseeing tours would be: Gray Line Montreal Tours. They provide a wide range of tours options with different schedules to select from.

Their website is:

http://www.grayline.com/grayline/destinations/canada/montreal.go

Their phone number is:

PHONE: (800) 461-1223

FAX: (514) 937-0288

SERA 2011 will be held on August 10-12, 2011 in Qingdao, China. We hope to see you all there!

SERA2010 Program

Appendix: List of Papers

ID #	Title	Authors	Summary
4	Towards Autonomic Specification of Distributed MARF with ASSL: Self-Healing	Emil Vassev and Serguei Mokhov	In this paper, we discuss our work towards self-healing property specification of an autonomic behavior in the Distributed Modular Audio Recognition Framework (DMARF) by using the Autonomic System Specification Language (ASSL). The latter aids in enhancing DMARF with an autonomic middleware that enables it to perform in autonomous systems that theoretically require less-to-none human intervention. Here we add an autonomic middleware layer to DMARF by specifying the core four stages of the DMARF's pattern-recognition pipeline as autonomic elements managed by a distinct autonomic manager. We devise the algorithms corresponding to this specification.
5	Automated Generation of Use Case Descriptions from Problem Frames	Ali Fatolahi, Stéphane Somé and Timothy Lethbridge	In order to reduce the risk of failure in software projects, it is critical to achieve a true understanding of the problem and requirements. Several requirements engineering tools and techniques have been proposed amongst which, problem-oriented approaches are recognized as techniques that start with problem analysis rather than solution analysis. Such approaches are distinguished by their ability of solving a software-related problem based on the category the problem falls into. In this paper, a mapping from problem frames (PF) as one problem-oriented approach to use cases as the most popular requirements engineering technique is provided. Bridging problem frames with use cases is important for benefiting from the popularity of use cases while observing the advantages of problem frames. It can also build up a trust to PF approaches within the software engineering community.
6	Implementation of a Suggested E-commerce Model	Xuan ZHANG, Qinlong HUANG and Peng PENG	SET (Secure Electronic Transaction) was developed by Visa and MasterCard as a method to protect the security of payment card transactions over open
	Based on SET		networks,

	Protocol		but it failed to be widely promoted. Based on our research about SET protocol, we designed and implemented a suite of e-commerce system which was improved from SET protocol. Our main contributions are to firstly apply the proper network technologies of thin client to build the E-commerce model, and develop a method of database encryption to protect the security of transaction information; also we change the transaction flow and normation for the sim of protection
			and atomicity.
8	Adopting a RIA-based tool for Supporting Assessment, Implementation and Learning in Software Process Improvement under the NMX-I-059/02-NYCE - 2005 Standard in Small Software Enterprises.	Ivan Garcia and Dagoberto Cruz	Nowadays there are models and standards which attempt to introduce quality in the enterprises' software development process with the objective to introduce high quality levels in the produced software. The NMX-I-059/02-NYCE-2005 standard (also known as MoProSoft) is focused on small and medium software enterprises, or small groups of software development within a larger organization, with the aim of promoting the standardization of an effective process in the software industry. Mexican enterprises now have a software standard that enables them to achieve a high level of quality in the software that they produce. However, the adoption of any standard is not an easy task. This paper aims to show that the development and implementation of a RIA-based tool that could support improvement initiatives, therefore strengthening the standard adoption.
11	Psychometric Theory applied to Questionnaire-Based Appraisals on Software Process Assessments: An initial report	Ivan Garcia and Gabriel Andrade	Adopting a software process model for organizations requires them to begin with an appraisal of their current processes. However, the current existing automated tools for process assessments cannot verify the authenticity of answers and are therefore limited in their reliability level depending only in the employees responses. This paper presents our research in psychometric theory applied to questionnaire-based appraisals to determine feasibility of combining them together to develop a reliable assessment tool to provide more reliable evidences about organizations' current maturity/capability level. We have found a lot of work can be done to improve appraisals questionnaires with psychometric theory and we show here areas that can be improved and first steps in how it can be done.

13	Multi-Perspective	Kerzazi	This paper presents a new automated approach to
	Software Process	Noureddine and	software process modeling, called DSL4SPM. It
	Modeling	Robillard Pierre-N	implements the Software & Systems Process
			Engineering Meta-model (SPEM 2.0) specification, and
			is characterized by: 1) a conceptual framework for
			designing processes in an abstract way; and 2)
			multi-view-oriented process modeling, which
			acknowledges the relevance of a multitude of issues in
			a process model. The conceptual framework is based
			onnsyntax provided by SPEM 2.0. The multi-view,
			which is defined by new semantics, focuses on the
			relationships among the SPEM elements. The
			usefulness of the approach is demonstrated with a
			maintenance process.
15	Requirements	Youngki Hong	There are significant factors in software project
	Management Tool		management; cost, effort, and quality. Much software
	with Evolving		engineering projects have focused on these. When it
	Traceability for the		comes to software quality, customer requirements are
	Entire Project Life		starting points for assuring quality in software
	Cycle		development projects. Currently, software engineering
			literature still finds effective ways to manage
			requirements within the entire project life cycle, but
			does not have a complete solution for it. Besides, some
			solutions are quite time consuming works for project
			management. At this point, tools for managing
			requirements help keeping specifications consistent,
			up-to-date and efficiently accessible. The purpose of
			this paper is to address the development of a new tool
			for requirements management with support for the
			evolution aspect of the grand challenges of traceability
			as well as making requirement specification and
			establishing traceability links. An approach to support
			the sustained evolution of traceability links is proposed
			and outlined. A fine-grained differencing approach on
			the link endpoints is used to maintain the links in a
			scalable manner. Details of the link model,
			representation and screen are given followed by the
			process used to evolve traceability links.
16	Code Generation for	Emil Vassev	We describe our work on code generation of autonomic
	Autonomic Systems		systems specified with the Autonomic System
	with ASSL		Specification Language (ASSL). First, we present a
			brief overview of ASSL and then we describe the
			process of code generation together with features of the

			generated code in terms of architecture, coding
			standards, base classes, and type mapping. Moreover,
			we demonstrate with samples how the code generated
			with ASSL conforms to the ASSL operational
			semantics. Finally, we present some experimental
			results of code generation with ASSL.
17	An Operational	Emil Vassev	This paper presents an operational semantics for ASSL
	Semantics for ASSL		(Autonomic System Specification Language). ASSL is a
			promising new formal language dedicated to the
			development of systems exploiting the benefits of
			autonomic computing, a highly-regarded technique in
			the development of self-managing complex systems
			which draws inspiration from the mammalian autonomic
			nervous system. With the semantics definitions
			presented here, we attempt to provide an explicit model
			of the ASSL formal language by attaching an explicit
			meaning to every ASSL construct.
18	Access List based	HARTINDER	Cisco's VLAN Trunk Protocol reduces administration in
	VLAN Map	JOHAL	a switched network. Not much research has been
	Architecture and		pursued in addressing in-depth complexities of VTP.
	Modified 802.1q		VTP encounters intricate situations first, when we try to
	Frame Scheme for		insert a VTP client or server with higher config revision
	Addressing VTP		number and second, when we insert a switch with
	Issues		different VTP domain name. Solutions to both of these
			issues involve considerable manual re-configuration
			which transcends from manually changing VTP modes,
			domain names to manually adding missing or deleting
			un-wanted VLANs. Amount of manual configuration
			cited as obvious solution to these VTP problems
			increases exponentially for a mid-size scalable
			switched network and moreover this might also add to
			network downtime and subsequently to network
			management cost. This paper explores the probability
			of eliminating manual configuration by comprehensively
			automating the applicability of proposed innovative
			solutions when VTP encounters above
			specified issues. An access list based VLAN map
			architecture is proposed for addressing the first issue.
			Modification in 802.1q frame is proposed to address the
			second concern of inserting switch with different VTP
			domain. Comprehensive analysis of simulated network
			is pursued to demonstrate the repercussions of VTP
			issues and finally, applicability of proposed
			architectures are introspected as viable way-out.

20	Functional	Sylvie Trudel and	This paper reports on a research project investigating
	requirement	Alain Abran	the contribution of functional size measurers to finding
	improvements		defects in requirements. It describes an experiment
	through size		where the same requirements document was inspected
	measurement: a case		by a number of inspectors, as well as by a number of
	study with		measurers. All participants had limited experience in
	inexperienced		both inspecting and measuring. The number and types
	measurers		of defects found by the two groups are compared and
			discussed. For this experiment, the measurers used
			COSMIC – ISO 19761 to measure functional size and to
			find defects. Results show an increase in defect
			identification when both inspection and functional size
			measurement are used to find and report defects.
21	Remote Automated	Chandan Sarkar	In this paper we explore options for conducting remote,
	User Testing: First	and Candace	unattended usability tests to enable users to participate
	Steps toward a	Soderston	in these tests in their own environments and time zones.
	General-Purpose		This option also supports multiple users' to participate in
	Tool		these usability tests at the same time. We developed a
			general purpose tool name "Total Cost of
			Administration" (TCA) to catalog and analyze database
			administrators' behavior within software development
			phase, employing this through remote unattended
			usability study. In this paper, we present our findings
			from the data collected over a period of 6 months.
			Through the tool and data provided, we are able to
			analyze users' behavior-interaction with the software,
			including deviations from the best path, in addition to
			collecting traditional measures such as time on task,
			error rate, users' perceptions and satisfaction level.
			Further, we explore how the this type of tool offers a
			promising approach for conducting guided step-by-step
			ideal best-path benchmark studies for best
			performance, assuming error-free, expert user
			behavior.
22	Stepwise design of	Idir AIT-SADOUNE	Several web services compositions languages and
	BPEL web services	and Yamine	standards are used to describe different applications
	compositions an	AIT-AMEUR	available over the web. These languages are
	Event B refinement		essentially syntactic ones, their descriptions remain
	based approach		informal and are based on graphical notations. They do
			not offer any guarantee that the described services
			achieve the goals they have been designed for. The
			objective of this paper is twofold. First, it focuses on the
			formal description, modelling and validation of web
			services compositions using the Event B method.

			Second, it suggest a refinement based method that
			encodes the BPEL models decompositions. Finally, we
			show that relevant properties formalized as Event B
			properties can be proved. A tool encoding this approach
			is also available.
23	Experimental study	Nelly	This paper reports on an experiment that investigates
	using functional size	Condori-Fernandez	the predictability of software project size from software
	measurement in	, Maya Daneva,	product size. The predictability research problem is
	building estimation	Luigi Buglione and	analyzed at the stage of early requirements by
	model for software	Olga Ormandjieva	accounting the size of functional requirements as well
	project size		as the size of non-functional requirements. The
			experiment was carried out with 55 graduate students of
			Computer Science
			from Concordia University in Canada. In the
			experiment, a functional size measure and a project
			size measure were used in building estimation models
			for sets of web application development projects. The
			results show that project size is predictable from
			product size. Further replications of the experiment are,
			however, are planned to obtain more results to confirm
			our claim or disconfirm it.
24	How Do Real Options	Zornitza Racheva	Agile requirements engineering is characterized by
	Concepts Fit in Agile	and Maya Daneva	constant re-prioritization and accommodation of
	Requirements		changes. The requirements process is driven by
	Engineering?		creating business value for the client and it heavily
			involves the client in decision-making under uncertainty.
			Real option thinking seems to be suitable in supporting
			the client's decision making process at inter-iteration
			time. This paper investigates the fit between real option
			thinking and agile requirements engineering. We look
			into previously published experiences in the agile
			software engineering literature to identify (i) experience
			'clusters' suggesting the ways in which real option
			concepts fit into the agile requirements process and (ii)
			experience 'gaps' and under-researched agile
			requirements decision-making topics which require
			further empirical studies. Furthermore, we conducted
			a cross-case study in 8 development organizations and
			interviewed 11 practitioners about their decision-making
			process. The results suggest that options are almost
			always considered. They are not quantified, though, but
			are instead explicitly or implicitly taken into
			consideration during the decision-making process.
25	Managing semantics	Yucong Duan,	this work aims at bound geometrical detection of 3D

	knowledge for 3D	Christophe Cruz	objects from a point cloud using semantic descriptors to
	architectural	and Christophe	improve reusability of architectural building
	reconstruction of	Nicolle	reconstruction and aid automatic reasoning in building
	building objects		information modeling (BIM). Based on exploring
			cognitive origins of spatial semantics representations,
			semantics conceptualization and classification is
			proposed for formal management of 3D architectural
			objects. The knowledge classification composes
			definition, partial knowledge and ambiguous
			knowledge, and is formalized with transformations
			among closed world assumption (CWA) and open world
			assumption (OWA). Systemic case study is conducted
			on a simplified building prototype complying with the
			IFC standard. The organization of empirical knowledge
			rules is revealed, and semantics scopes are addressed
			both in the bottom up manner of geometry topology
			semantics, and a vice versa top down manner. Partial
			experiments are conducted in the form of intermediate
			analysis models during the knowledge modeling
			process, and initial reasoning demonstrations on the
			platform of protégé with semantic web rule language
			(SWRL) rules. This work is promising towards meeting
			optimization requirement which demands the
			integration of what users want, what theorists believe
			possible and what practitioners think practical.
27	A Generic Model for	Khalid Al-Sarayreh	The European ECSS-E-40 series of standards for the
	the Specification of	and Alain Abran	aerospace industry includes interfaces as one of 16
	Software Interface		types of non functional requirement (NFR) for
	Requirements and to		embedded and real-time software. An interface is
	Measure their		typically described at the system level as a non
	Functional Size		functional requirement, and a number of concepts and
			terms are provided in that series to describe various
			types of candidate interfaces. This paper collects and
			organizes these interface-related descriptions into a
			generic model for the specification of software
			interfaces and requirements, and to measure their
			functional size for estimation purposes using the
			COSMIC ISO 19761 standard.
28	Modeling and	David Arnold,	A quality-driven approach to software development and
	Validating	Jean-Pierre	testing demands that, ultimately, the requirements of
	Requirements using	Corriveau and Wei	stakeholders be validated against the actual behavior of
	Executable Contracts	Shi	an implementation under test (IUT). In Model-Based
	and Scenarios		Testing, much work has been done on the generation of
			functional test cases. But few approaches tackle the

			executability of such test cases. And those that do,
			offer a solution in which tests and test cases are not
			directly traceable back to the actual behavior of an IUT.
			Furthermore, very few approaches tackle
			non-functional requirements. Consequently, we have
			implemented a validation framework that does support
			the modeling and automated validation of a set of
			functional and non-functional requirements against
			several candidates IUTs. We report here on the key
			characteristics of this prototype and briefly discuss
			lessons learnt from its use in the context of a graduate
			course.
29	Repairing Service	Yuhong Yan,	One of the most important benefits of Service-Oriented
	Compositions in a	Pascal Poizat and	Computing is to foster the satisfaction of end-user
	Changing World	Ludeng Zhao	needs through the automatic generation of composite
			services out of simpler services existing in the user
			environment. Different approaches have been
			proposed in the last years to address this issue, e.g.,
			based on model-checking or AI planning. Still, these
			approaches do not cope with the inherent dynamicity of
			the service pervasive world, where not only available
			services, but also user needs, may evolve over time.
			Setting up service composition in an AI planning
			framework, we propose in this paper repair techniques
			enabling service compositions to adapt at run-time, both
			to service and requirement changes, paving the way for
			on-demand and sustainable end-user service
			composition.
31	Comparing the	FRANCISCO	Software project estimates are more useful when made
	Estimation	VALDES and	early in the project life cycle: this implies that these
	Performance of the	ALAIN ABRAN	estimates are to be made in a highly uncertain
	EPCU Model with the		environment with information that is vague and
	Expert Judgment		incomplete. To tackle these challenges in practice, the
	Estimation Approach		estimation method most used at this early stage is the
	using Data from		Expert Judgment Estimation approach, However, there
	Industrv		are a number of problems with it. such as the fact that
	,		the expertise is specific to the people and not to the
			organization, and the fact that this intuitive estimation
			expertise is neither well described nor well understood:
			in addition, the expertise is difficult to assess and
			cannot be replicated systematically. Estimation of
			Projects in Contexts of Uncertainty (EPCU) is an
			estimation method based on fuzzy logic that mimics the
			way experts make estimates. This paper describes the
	1	1	may experte make estimates. This paper describes the

			experiment designed and carried out to compare the
			performance of the EPCU model against the Expert
			Judgment Estimation approach using data from industry
			projects.
32	A UML based	Mohamed Nadhmi	Thanks to the major evolutions in the communication
	deployment and	Miladi, Fatma	technologies and in order to deal with a continuous
	management	Krichen, Mohamed	increase in systems complexity, current applications
	modeling for	Jmaiel and Khalil	have to cooperate to achieve a common goal. Modeling
	cooperative and	Drira	such cooperatives applications should stress regular
	distributed		context evolutions and increasingly users requirements.
	applications		Therefore, we look for a model based solution suitable
			to cooperative application that can react in response to
			several unpredictable changes. Driven by the
			cooperative application structure, we propose, in this
			paper, an UML extension named "DM profile" ensuring
			a high-level description for modeling the deployment
			and its management in distributed application. The
			proposed contribution is validated through a Follow Me
			case study and implemented through an Eclipse
			plug-in.
33	Representing Unique	Carlos Monsalve	Evidence shows that proposals for new modeling
	Stakeholder	and Alain April	notations emerge and evolution of current ones are
	Perspectives in BPM		becoming more complex, often in an attempt to satisfy
	Notations		the many different modeling perspectives required by
			each stakeholder. This paper presents a method to
			identify the specific notation construct requirements, at
			multiple levels of abstraction, which satisfy the needs of
			a stakeholder when performing a specific task. Initially
			the focus is on two different stakeholders: software
			engineers (SE) and business analysts (BA), and one
			specific software engineering activity: requirements
			eliciting and analysis. The specific body of knowledge of
			the two stakeholders (Software Engineering Book of
			Knowledge (SWEBOK) for the SE, and Business
			Analysis Body of Knowledge (BABOK) for the BA) are
			used to identify each stakeholder specific notation
			construct requirements, at multiple levels of abstraction,
			in order to propose a simplification of their notation and
			constructs set. This paper presents solution avenues to
			simplify business process modeling notations by
			identifying the specific constructs preferred by different
			stakeholders.
			Keywords- business process modeling, software

			analysis, levels of abstraction.
34	Cryptolysis: A	Serguei Mokhov	An earlier work on automated optimization heuristics for
	Framework for		cryptanalysis of classical ciphers proposed a few
	Verification of		algorithms for that task (e.g. genetic, simulated
	Optimization		annealing, tabu search). A Java-language open-source
	Heuristics for the		Cryptolysis project has implemented these algorithms
	Automated		for verification and comparison purposes in a consistent
	Cryptanalysis of		frameworked environment allowing for additional
	Classical Ciphers and		algorithms. Another Java-language open-source
	Natural Language		project, MARF, has collected a number of frameworked
	Word Segmentation		classification algorithms (e.g. distance, neural network,
			similarity measure, etc.). We extend Cryptolysis with the
			wrappers for the algorithms implemented in MARF to
			add to the heuristics collection new results and compare
			them with the previously implemented algorithms.
			Additionally, we improve the system with the natural
			language word segmentation for the deciphered text
			corpora that lacks spacing and punctuation.
35	Analogies and	Pablo	This paper presents a review and comparison of the
	differences between	Rodriguez-Soria,	software project cost estimation methods that have
	Machine Learning	Borja	emerged with more impact in recent years; Expertise
	and Expert based	Martin-Herrera,	and Machine Learning methods. These methods and
	Software Project	Juan Jose	models have been selected according to an own criteria
	Effort Estimation	Cuadrado-Gallego,	focusing onto Analogy estimation models and Case
		Miriam Martinez,	Based Reasoning approaches, assuming that they are
		Jose Javier	widely utilized by researchers and with good accurate
		Martinez and Dácil	results. Finally we show a comparative analysis of the
		Castelo	seven models proposed inside the Machine Learning
			methods with advantages and disadvantages between
			them.
36	Process Patterns for	Mohsen Asadi,	Information systems are expected to satisfy
	MDA-Based Software	Naeem Esfahani	increasingly ambitious requirements, while reducing
	Development	and Raman	time-to-market has become a primary objective. This
		Ramsin	trend has necessitated the advent of development
			approaches that are better equipped and flexible
			enough to cope with modern challenges. Model-Driven
			Architecture (MDA) and Situational Method Engineering
			(SME) are approaches addressing this requirement:
			MDA provides promising means for automating the
			software process, and revitalizes the role of modeling in
			software development; SME focuses on project-specific
			methodology construction, mainly through assembling
			reusable method fragments (process patterns) retrieved
			from a method base. We provide a set of high-level

			process patterns for model-driven development which have been derived from a study of six prominent MDA-based methodologies, and which form the basis for a proposed generic MDA Software Process (MDASP). These process patterns can promote situational method engineering by providing classes of common process components which can be used for assembling, tailoring, and extending MDA-based methodologies.
37	Aspect-Oriented Modeling for Representing and Integrating Security Concerns in UML	Djedjiga Mouheb, Chamseddine Talhi, Mariam Nouh, Vitor Lima, Mourad Debbabi, Lingyu Wang and Makan Pourzandi	Security is a challenging task in software engineering. Enforcing security policies should be taken care of during the early phases of the software development life cycle to more efficiently integrate security into software. Since security is a crosscutting concern that pervades the entire software, integrating security solutions at the software design level may result in the scattering and tangling of security features throughout the entire design. To address this issue, we present in this paper an aspect-oriented modeling approach for specifying and integrating security solutions into UML design models. In the proposed approach, security experts specify high-level and generic security solutions that can be later instantiated by developers, then automatically and transparently woven into UML design. Finally, we describe our prototype implemented as a plug-in in a commercial software development environment.
38	Extending the UML metamodel to provide support for crosscutting concerns	Zohreh Sharafi, Parisa Mirshams, Constantinos Constantinides and Abdelwahab Hamou-Lhadj	Aspect-orientation is an approach to explicitly capture, model and implement crosscutting concerns (aspects). It has received a relatively wide support by new programming languages or by extensions to current languages, the design dimensions of most of which has been influenced by AspectJ through three concepts and consequently by their respective constructs namely join points, pointcuts and advice which can support two principles which are recognized as being the key concepts of aspect-oriented programming: quantification and obliviousness. At the modeling level, the reception of AOP has long been focused on the modeling of AspectJ programs, and there exists no model that is generic enough to capture non-AspectJ aspects either as a target language during reverse engineering or as a source language during a forward engineering activity. In this paper, we present an

			extension to the UML metamodel to explicitly capture
			crosscutting concerns that is independent from any
			programming language and by abstracting away
			platform specific details. An instantiation of the newly
			created metamodel can be represented in standard XMI
			format, which enables current CASE tools to read and
			to visualize the instance models in UML. This
			language-independent aspectual description can
			support model transformations vital to software
			maintenance, such as reverse engineering, forward
			engineering and reengineering.
39	A New Compound	Ahmad	There are many different methods for software risk
	Metric for Software	Hosseingholizadeh	analysis and assessment. These methods can be
	Risk Assessment	and Abdolreza	categorized in 3 groups: some methods are based on
		Abhari	business owners and developers estimation about the
			probability and damage of a risk; some are based on
			software architecture analysis (using design diagrams);
			and some are based on source-code analysis. Each
			one of these approaches has some advantages and
			disadvantages, but none of them cover all risky aspects
			of
			a software development. The reason to this is because
			from one point of view software development is a
			heuristic process, thus analysing the risk factor of a
			software product requires developers' and business
			owners' heuristic analysis and opinions. But from
			another point of view there is a high probability that
			these opinions contain faulty evaluations. In this paper
			we propose a new approach that uses a compound risk
			metric that is produced by combining different metrics
			which are obtained from all three approaches of riskm
			analysis. In our approach, both Risk Probability and
			Risk Damage are calculated using this compound
			technique. We calculate the architectural risk of the
			components based on the cyclomatic complexity of their
			statechart; the source-based risk is obtained by a code
			weight association technique with consideration of
			hierarchy of statements; these values are aggregated
			with the business owners and developers opinions to
			produce the risk model. We provide a case study to
_			present the results of our approach.
40	Towards a	Saeed Ahmadi	In organizations, a gap commonly exists between
	Pattern-Based	Behnam, Daniel	business goals and business processes. While several
	Framework for	Amyot and Gunter	approaches provide modeling solutions in each of these

	Goal-Driven	Mussbacher	two areas, their relationships are often not defined well
	Business Process		enough to be used in the software development
	Modeling		process. This paper aims to better fill this gap through
			the introduction of a pattern-based framework that helps
			construct business processes from organization goals
			while maintaining traceability relationships between the
			two. How to extract patterns, which are composed of
			goal templates, process templates, and their
			elationships, is briefly presented. The framework, which
			includes a collection of patterns for a particular domain,
			is formalized as a profile of the User Requirements
			Notation, a standard modeling language that supports
			goals, scenarios, and links between them. A method for
			the use of such framework is defined and then
			illustrated through a case study involving an adverse
			event management system that targets the
			improvement of patient safety in healthcare
			organizations.
41	Towards a Tool	Noorulain	Formal methods are proven approaches to ensure the
	Support for	Khurshid, Olga	correct operation of complex interacting systems.
	Specifying Complex	Ormandjieva and	However, current formal methods do not address well
	Software Systems by	Stan Klasa	problems of verifying emergent behavior and evolution,
	Categorical Modeling		which are two of the most important characteristics of
	Language		complex software systems. A subset of the Category
			Theory has been proposed as a formal language to
			offer a structure, which is able to model emerging and
			evolving behavior of complex software. Thus, a
			categorical modeling language based on the category
			theory is proposed in this paper to specify complex
			systems. The approach is illustrated with a case study
			of Prospecting Asteroid Mission (PAM) from the NASA.
45	Process	Reiner Dumke,	This paper includes a causal-based modelling of
	Improvement Based	Karsten Richter	software measurement processes in order to clarify the
	on Causal Networks	and Konstantina	real situations in the empirical software engineering
		Georgieva	field. A first overview about existing causal network
			approaches shows the problems and possible benefits
			using these formal techniques in the software
			engineering area. The definition and extension of the
			causal modelling using
			causal networks helps to understand the relationships
			be-tween the different software process artefacts and
			their causalities. The causal network based process
			model (CNPM) concept is based on the causal network
			idea of Pearl. The description of first applications of the

			CNPM approach for CMMI demonstrates the empirical
			reasoning of the software improvement processes in an
			explicit manner. Keywords: Software process
			improvement, causal network, process analysis and
			evaluation, software quality
46	L-SYNC: Larger	Alireza Shameli	In many existing synchronization protocols within
	degree clustering	Sendi, Masoume	wireless sensor networks, the effect of routing algorithm
	based	Jabbarifar, Hosein	in synchronization precision of two remote nodes is not
	time-synchronization	Pedram, Mahdi	being considered. In several protocols such as SLTP,
	for Wireless Sensor	Dehghan and	this issue is considered for local time estimation of a
	Network	Michel Dagenais	remote node. Cluster creation is according to ID
			technique. This technique incurs an increase in cluster
			overlapping and eventually routing algorithm will be
			affected and requires more hops to move from one
			cluster to another remote cluster. In this article, we
			present L-SYNC method, which creates large degree
			clusters for wireless sensor networks synchronization.
			Using large degree clustering, L-SYNC can reduce path
			hops. Also, L-SYNC uses linear regression method to
			calculate clock offset and skew in each cluster.
			Therefore, it is capable to compute skew and offset
			intervals between each node and its head cluster and,
			in other words, it can estimate the local time of remote
			nodes in future and past. To estimate the local time for
			remote node, routing algorithm is used and conversion
			technique is performed in each time changing hops.
			The fewer L-SYNC hops could increase the precision.
			Simulation results illustrate that monotonous clustering
			formation can increase the precision in synchronization.
			However, more overhead and time period is needed for
			clustering formation.
47	Service-oriented	Reiner Dumke,	The paradigm of service-oriented solutions (e.g. as
	Measurement	Robert Neumann,	SaaS) in the area of quality assurance seems to be a
	Infrastructure	martin.kunz Kunz	flexible innovative solution in order to support different
		and A	high dynamic requirements in software measurement
		Schmietendom	and evaluation. Otherwise many existing solutions are
			infractive and must be migrated to such powerful
			infrastructures. This paper describes a general
			approach as service-onented measurement
			available in the Web, Kouwerde: Software
			available III the Web. Neywords: Soltware
			measurement, Sonware quality, metrics repositories,

			SaaS
48	Towards Automated	Reza Meimandi	In this paper, we propose a hybrid approach based on
	Monitoring and	Parizi and Abdul	the aspect-orientation methodology and time series
	Forecasting of	Azim Abdul Ghani	analysis to the runtime monitoring and quality
	Probabilistic Quality		forecasting of OSS. Specifically, the major objective of
	Properties in Open		this work is to combine the idea of time series analysis
	Source Software		with the area of software quality assurance of OSS in
	(OSS): A Striking		which statistical techniques for analyzing of time series
	Hybrid Approach		is used to facilitate the prediction and forecasting (the
			term 'prediction' and 'forecasting' are interchangeably
			used in the literature) of probabilistic quality properties,
			which are difficult or inapplicable to be evaluated by
			current approaches such as testing, and also help to
			increase the reliability and productivity of working OSS
			system components (towards trustworthy OSSD)
			requiring extreme runtime quality control. Furthermore,
			in order to reduce the human effort and to cope with
			more sophisticated scenarios, this study also aims to
			automate the analysis and modeling process by
			providing appropriate tool.
49	Statistical	Manar Abu Talib,	Lack of a suitable set of controls during the
	Techniques	Adel Khelifi, Alain	development lifecycle of the software will lead to
	Applicability during	Abran and Olga	mistakes in the requirements, the design or code of
	SDLC for Software	Ormandjieva	software and therefore results in a software that does
	Quality: Overview		not meet the quality requirements. Statistical
	and Future Vision		techniques can be a great source of control towards
			software quality. This paper investigates the use of
			statistical techniques for software quality and their
			applicability during the Software Development Life
			Cycle (SDLC). It introduces an overview of statistical
			Statistical Process Control and the Six Sigma It also
			explores how these statistical techniques can be used
			for managing and controlling the quality of software
			during encodification design implementation testing
			and maintonance and they are generally accepted for
			most of the projects most of the time, and with value
			recognized by SWEBOK Guide
			Paper Category: Software Quality
50	An Empirical Study of	Emal Nasseri	Coupling is a well researched topic in the
00	Fan-in and Fan-out in	Steve Counsell and	Object-Oriented (OO) research community and its
	Java OSS	Ewan Tempero	influence on class cohesion is well understood. In this
			paper, we present an empirical study exploring the
			effect of method calling on class cohesion using two
			check of method calling on class conesion using two

			coupling metrics, namely fan-in and fan-out. Three
			Java, open-source systems (OSS) were used as a
			basis of the study. A small number of classes were
			found to account for the vast majority of fan-in and
			fan-out. We also found the impact of fan-out on class
			cohesion to be higher than that of fan-in. Classes
			containing fan-out tended to have lower cohesion than
			those containing fan-in.
51	Autonomic View of	Basit Raza	The growing complexity of applications, huge data
	Query Optimizers in		volume and the data structures to process massive data
	Database		are becoming challenging issue. Query optimizer is a
	Management		major component of a Database Management System
	Systems		(DBMS) that executes queries through different
			strategies and techniques efficiently. These techniques
			select the best optimal execution plan from the
			candidate plans according to the available resources
			and environment. Traditionally, skilled database
			administrators are required to tune DBMS for efficient
			query processing. Recently it has been realized to
			develop DBMSs having autonomic capabilities.
			Autonomic DBMS (ADBMS) are now being developed
			to reduce this dependency on an expensive skilled
			human resource. The paper analyzes the autonomic
			capabilities of query optimizers in three well-known
			DBMSs – DB2, Oracle and SQL Server being used in
			the industry. The research is focused to find and
			earmark those areas in query optimizers where the
			human intervention is required. Query Optimizers are
			compares with their autonomic capabilities; explores
			their strengths and weaknesses; and provides the basis
			for improving the current state of autonomic computing
			in query optimizers. The autonomic behavior of query
			optimizers is observed by designing and executing
			different queries through experiments and some
			recommendations are given
52	Investigation of the	Malik Qasaimeh	For software organizations needing ISO 9001
	Capability of XP to	and Alain Abran	certification, it is important to establish a software
	Support the		process life cycle that can manage the requirements
	Requirements of ISO		imposed by this certification standard. This paper
	9001 Software		presents an analysis of extreme programming (XP)
	Process Certification.		from the ISO 9001 and ISO 90003 perspectives. The
			focus is to extract the requirements related to the ISO
			product realization process and to determine the
			strengths and weaknesses of XP in handling those

			requirements.
53	Toward a Business	Mohammad	Nowadays, software product line is an approach to
	Model for Software	Tanhaei, Shahrouz	reduce costs of software development, decrease time to
	Product Line	Moaven, Jafar	market, and increase capabilities of reuse in designing
	Architecture	Habibi and Hamed	and exploiting software development processes.
		Ahmadi	Moreover, other quality attributes of the project domain
			should be considered to enhance quality of the product.
			Meanwhile, taking advantage of software product line
			makes developers capable of estimating development
			costs and time to market in a more realistic way.
			However, old approaches to estimate cost of
			development and foresee time to market are not
			suitable enough for software product line.In this paper,
			some important business parameters and a way to
			calculate cost and time to market in a product line is
			presented. Changing components among time, portion
			of the change in a specific product and organization
			issues are observed in the estimation function.
			Category: Software Product Line
54	Cross Engine	Wesley Leonard	A standards-based, open-source middleware system
	Database Joining	and Paul Albee	was designed and implemented to facilitate the analysis
			of large and disparate datasets. This system makes it
			possible to access several different types of database
			servers simultaneously, browse remote data, combine
			datasets, and join tables from remote databases
			independent of vendor. The system uses an algorithm
			known as Dynamic Merge Cache to handle data
			caching, query generation, transformations, and joining
			with minimal operational interference to source
			databases. The system is able to combine any subset of
			configured databases and convert the information into
			XML. The resulting XML is made available to analysis
			tools through a web service. After the system connects
			to a remote database, a metadata catalog is created
			from the source database. The user is able to configure
			which tables and fields to export from the remote
			dataset. The user is also able to filter, transform, and
			combine data. The system was tested with a large fish
			contaminant database and a second database
			populated with simulated scientific data.
56	A Survey on the	Vieri Del Bianco,	Economic advantages have long been used as a key
	Importance of Some	Luigi Lavazza,	factor for promoting the adoption of Open Source
	Economic Factors in	Sandro Morasca,	Software. This paper reports on an investigation about
	the Adoption of Open	Davide Taibi and	the impact of economic factors when deciding on the

	Source Software	Davide Tosi	adoption of Open Source Software, in the framework of
			a survey carried out in the QualiPSo project. The results
			seem to indicate that economic issues may have a
			remarkably lower impact than commonly believed,
			though people with roles more directly related to
			economic results and working in private companies
			seem to give economic factors more consideration than
			other Open Source Software stakeholders.
57	On Formal Modeling	Yoshinobu	Today embedded software is widely used. As the
	of TOPPERS	Kawabe, Nobuhiro	complexity of embedded systems grows, the number of
	Embedded Software	Ito and Naohiro	tasks performed by embedded software is increasing.
		Ishii	These tasks must communicate with each other to
			achieve synchronization. And therefore, the growing
			complexity of communications is making it increasingly
			difficult to program and debug these tasks. To confirm
			the correctness of embedded software, this paper
			introduces a formal specification language for
			embedded systems that can deal with their concurrent
			nature. After formalizing the APIs of an embedded
			real-time operating system, we demonstrate how to
			describe and verify embedded software formally.
58	Flexible Flow Shop	Wei Weng and	This paper is an improved version of a previously
	Scheduling by	Shigeru Fujimura	proposed intelligent production system dealing with
	Intelligent		dynamic flexible flow shop scheduling problem under a
	Multi-Agents		multi-stage multi-machine environment. The aim of this
			research is to upgrade the overall system performance
			under a wide range of demand fluctuations, to build the
			system robust against pressuring demand increase,
			and to test the system under machine breakdown
			situations. The objective is to minimize the total
			earliness and tardiness penalties of all jobs during any
			given period of time. The system works on the basis of
			multi-agent feedbacks and feedforwards. The agents
			collect realtime information, make decisions, and work
			interactively to give corresponding solutions to each job
			under the changing system conditions. Comparison
			between the original system and the improved system
			has been conducted, and the experimental results
			demonstrate the robustness of the new system under all
			kinds of situations.
60	Privacy Protection	Diego Garcia	The successful use of the Web service technology in
	Mechanisms for the		areas such as healthcare and government depends on
	Web Service		its privacy preservation support. As there is no privacy
	Technology		standard for Web services currently, several solutions

			have been proposed in the literature to deal with privacy
			in Web services recently. However, there is no solution
			that provides a suitable mechanism to describe privacy
			properties in Web services. When loosely-coupled
			components are involved, such as in Web service
			environments, a rich description of components is
			needed to determine whether they can interact in a
			manner that preserves privacy. The goal of this paper is
			to propose an approach that combines Web Services
			Policy Framework (WS-Policy) policies and a Web
			Ontology Language (OWL) ontology to support Web
			service interactions with suitable privacy levels. The
			main contribution of this paper is an ontology that
			enables rich specification and intersection of privacy
			policies for Web services.
61	Using the General	Serguei Mokhov	The General Intensional Programming System (GIPSY)
	Intensional	and Joey Paquet	has been built around the Lucid family of intensional
	Programming System		programming languages that rely on the higher-order
	(GIPSY) for		intensional logic (HOIL) to provide context-oriented
	Evaluation of		multidimensional reasoning of intensional expressions.
	Higher-Order		HOIL combines functional programming with various
	Intensional Logic		intensional logics to allow explicit context expressions
	(HOIL) Expressions		to be evaluated as first-class values that can be passed
			as parameters to functions and return as results with an
			appropriate set of operators defined on contexts.
			frameworks are implemented in Java as a collection of
			replaceable components for the compilers of various
			Lucid dialects and the demand-driven eductive
			evaluation engine that can run distributively. GIPSY
			provides support for hybrid programming models that
			couple intensional and imperative languages for a
			variety of needs. Explicit context expressions limit the
			scope of evaluation of math expressions (effectively a
			Lucid program is a mathematics or physics expression
			constrained by the context) in tensor physics, regular
			math in multiple dimensions etc. and for cyberforensic
			reasoning as one of the use-cases of interest. Thus
			GIPSY is a support testbed for HOIL-based languages
			some of which enable such reasoning, as in formal
			cyberforensic case analysis with event reconstruction.
			In this paper we discuss the GIPSY architecture, its
			evaluation engine and example use-cases.
62	Object-Oriented	Aihua Wu, Joey	This article introduces Object-Oriented Intensional

	Intensional	Paquet and	Programming (OO-IP), a new hybrid language between
	Programming:	Serguei Mokhov	Object-Oriented and Intensional Programming
	Intensional Classes		Languages in the sense of the latest evolutions of Lucid.
	Using Java and Lucid		This new hybrid language combines the essential
			characteristics of Lucid and Java, and introduces the
			notion of object streams which makes it is possible that
			each element in a Lucid stream to be an object with
			embedded intensional properties. Interestingly, this
			hybrid language also brings to Java objects the power
			to explicitly express and manipulate the notion of
			context, creating the novel concept of intensional
			object, i.e. objects whose evaluation is
			context-dependent, which are here demonstrated to be
			translatable into standard objects. By this new
			approach, we extend the use and meaning of the notion
			of intensional objects and enrich the meaning of object
			streams in Lucid and semantics of intensional objects in
			Java.
63	Advances in the	Bin Han, Serguei	We present advances in the software engineering
	Design and	Mokhov and Joey	design and implementation of the multi-tier run-time
	Implementation of a	Paquet	system for the General Intensional Programming
	Multi-Tier		System (GIPSY) by further unifying the distributed
	Architecture in the		technologies used to implement the Demand Migration
	GIPSY Environment		Framework (DMF) in order to streamline distributed
	with Java		execution of hybrid intensional-imperative programs
_			using Java.
64	A Type System for	Serguei Mokhov	We describe a type system for a platform called the
	Higher-Order	and Joey Paquet	General Intensional Programming System (GIPSY),
	Intensional Logic		designed to support intensional programming
	Support for Variable		languages built upon intensional logic and their
	Bindings in Hybrid		imperative counter-parts for the intensional execution
	Intensional-Imperativ		model. In GIPSY, the type system glues the static and
	e Programs in GIPSY		dynamic typing between intensional and imperative
			languages in its compiler and run-time environments to
			support the intensional evaluation of expressions
			written in various dialects of the intensional
			programming language Lucid. The intensionality makes
			expressions to explicitly take into the account a
			mutidimensional context of evaluation with the context
			being a first-class value that serves a number of
			applications that need the notion of context to proceed.
			we describe and discuss the properties of such a type
			system and the related type theory as well as
			particularities of the semantics, design and

			implementation of the GIPSY type system.
65	Verification of the	Samir Ouchani,	The Unified Modeling Language UML 2.0 plays a
	Correctness in	Otmane Ait	central role in modern software engineering, and it is
	Composed UML	Mohamed, Mourad	considered as the de facto standard for modeling
	Behavioural	Debbabi and	software architectures and designs. Today's systems
	Diagrams	Makan Pourzandi	are becoming more and more complex, and very
			difficult to deal with. The main difficulty arises from the
			different ways in modelling each component and the
			way they interact with each others. At this level of
			software modeling, providing methods and tools that
			allow early detection of errors is mandatory. In this
			paper, a verification methodology of a composition of
			UML behavioural diagrams (State Machine, Activity
			Diagram, and Sequence Diagram) is proposed. Our
			main contribution is the systematic construction of a
			semantic model based on a novel composition operator.
			This operator provides an elegant way to define the
			combination of different kind of UML diagrams. In
			addition, this operator posses a nice property which
			allows to handle the verification of large system
			efficiently. To demonstrate the effectiveness of our
			approach, a case study is presented.
66	Applying a	Cuauhtemoc	The software project effort estimation is an important
00		Oddamonioo	The software project chort estimation is an important
00	Feedforward Neural	Lopez-Martin and	aspect of software engineering practices. The
00	Feedforward Neural Network for	Lopez-Martin and Ivica	aspect of software engineering practices. The improvement in accuracy and precision of estimations is
00	Feedforward Neural Network for Predicting Software	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest
00	Feedforward Neural Network for Predicting Software Development Effort of	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer
00	Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer science in general. In this work, the effort estimation for
00	Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer science in general. In this work, the effort estimation for short-scale software projects, developed in academic
00	Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer science in general. In this work, the effort estimation for short-scale software projects, developed in academic setting, is modeled by two techniques: statistical
	Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer science in general. In this work, the effort estimation for short-scale software projects, developed in academic setting, is modeled by two techniques: statistical regression and neural network. Two groups of
	Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer science in general. In this work, the effort estimation for short-scale software projects, developed in academic setting, is modeled by two techniques: statistical regression and neural network. Two groups of software projects were made. One group of projects
	Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer science in general. In this work, the effort estimation for short-scale software projects, developed in academic setting, is modeled by two techniques: statistical regression and neural network. Two groups of software projects were made. One group of projects was used to calculate linear regression parameters and
	Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer science in general. In this work, the effort estimation for short-scale software projects, developed in academic setting, is modeled by two techniques: statistical regression and neural network. Two groups of software projects were made. One group of projects was used to calculate linear regression parameters and to train a neural network. The two models were then
	Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer science in general. In this work, the effort estimation for short-scale software projects, developed in academic setting, is modeled by two techniques: statistical regression and neural network. Two groups of software projects were made. One group of projects was used to calculate linear regression parameters and to train a neural network. The two models were then compared on both groups, the one used for their
	Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer science in general. In this work, the effort estimation for short-scale software projects, developed in academic setting, is modeled by two techniques: statistical regression and neural network. Two groups of software projects were made. One group of projects was used to calculate linear regression parameters and to train a neural network. The two models were then compared on both groups, the one used for their calculation and the other that was not used before.
	Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer science in general. In this work, the effort estimation for short-scale software projects, developed in academic setting, is modeled by two techniques: statistical regression and neural network. Two groups of software projects were made. One group of projects was used to calculate linear regression parameters and to train a neural network. The two models were then compared on both groups, the one used for their calculation and the other that was not used before. The accuracy of estimates was measured by using the
	Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer science in general. In this work, the effort estimation for short-scale software projects, developed in academic setting, is modeled by two techniques: statistical regression and neural network. Two groups of software projects were made. One group of projects was used to calculate linear regression parameters and to train a neural network. The two models were then compared on both groups, the one used for their calculation and the other that was not used before. The accuracy of estimates was measured by using the magnitude of error relative to the estimate (MER) for
	Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer science in general. In this work, the effort estimation for short-scale software projects, developed in academic setting, is modeled by two techniques: statistical regression and neural network. Two groups of software projects were made. One group of projects was used to calculate linear regression parameters and to train a neural network. The two models were then compared on both groups, the one used for their calculation and the other that was not used before. The accuracy of estimates was measured by using the magnitude of error relative to the estimate (MER) for each project and its mean MMER over each group of
	Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer science in general. In this work, the effort estimation for short-scale software projects, developed in academic setting, is modeled by two techniques: statistical regression and neural network. Two groups of software projects were made. One group of projects was used to calculate linear regression parameters and to train a neural network. The two models were then compared on both groups, the one used for their calculation and the other that was not used before. The accuracy of estimates was measured by using the magnitude of error relative to the estimate (MER) for each project and its mean MMER over each group of projects. The hypothesis accepted in this paper
	Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer science in general. In this work, the effort estimation for short-scale software projects, developed in academic setting, is modeled by two techniques: statistical regression and neural network. Two groups of software projects were made. One group of projects was used to calculate linear regression parameters and to train a neural network. The two models were then compared on both groups, the one used for their calculation and the other that was not used before. The accuracy of estimates was measured by using the magnitude of error relative to the estimate (MER) for each project and its mean MMER over each group of projects. The hypothesis accepted in this paper suggested that a feedforward neural network could be
	Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer science in general. In this work, the effort estimation for short-scale software projects, developed in academic setting, is modeled by two techniques: statistical regression and neural network. Two groups of software projects were made. One group of projects was used to calculate linear regression parameters and to train a neural network. The two models were then compared on both groups, the one used for their calculation and the other that was not used before. The accuracy of estimates was measured by using the magnitude of error relative to the estimate (MER) for each project and its mean MMER over each group of projects. The hypothesis accepted in this paper suggested that a feedforward neural network could be used for predicting short-scale software projects.
69	Feedforward Neural Network for Predicting Software Development Effort of Short-scale Projects	Lopez-Martin and Ivica Kalichanin-Balich	aspect of software engineering practices. The improvement in accuracy and precision of estimations is a topic that still remains as one of the greatest challenges of software engineering and computer science in general. In this work, the effort estimation for short-scale software projects, developed in academic setting, is modeled by two techniques: statistical regression and neural network. Two groups of software projects were made. One group of projects was used to calculate linear regression parameters and to train a neural network. The two models were then compared on both groups, the one used for their calculation and the other that was not used before. The accuracy of estimates was measured by using the magnitude of error relative to the estimate (MER) for each project and its mean MMER over each group of projects. The hypothesis accepted in this paper suggested that a feedforward neural network could be used for predicting short-scale software projects. Understanding the behavioural aspects of a software

	Phases of a System	and Abdelwahab	engineering activities including program
	for the Purpose of	Hamou-Lhadj	comprehension and reverse engineering. The
	Program		behaviour of software is typically represented in the
	Comprehension		form of execution traces. Traces, however, tend to be
			considerably large which makes analyzing their content
			a complex task. There is a need for trace simplification
			techniques that can help software engineers make
			sense of the content of a trace despite the trace being
			massive. In this paper, we present a novel algorithm
			that aims to simplify the analysis of a large trace by
			detecting the execution phases that compose it. An
			example of a phase could be an initialization phase, a
			specific computation, etc. Our algorithm processes a
			trace generated from running the program under study
			and divides it into phases that can be later used by
			software engineers to understand where and why a
			particular computation appears. We also show the
			effectiveness of our approach through a case study.
70	A New Algorithm	Koki Murakata and	In recent years, the Internet-based commerce has been
	based on Incentive	Tokuro Matsuo	widely developing with enhancement convenience of
	Design in		trading on the web. On the other hands, a lot of troubles
	E-Commerce		on trading also increase. This paper proposes a new
	Systems		evaluation mechanism to decrease the information
			incompleteness and asymmetry by using multi-attribute
			evaluation. Buyers can evaluate due to the multiple
			criteria chosen by sellers. Based on the number of
			criteria, the system determines the incentive rate of
			synthetic rating for sellers. Thus, they have an incentive
			to disclose evaluated items for buyers. Further, buyers
			can know a lot of information without information
			darkness. Advantages of our proposed model include
			incomplete and asymmetric information decreases on
	Lawse Care Care de s	Lisses's Makeford	the e-commerce site.
/1	Investigating the	Hossein Mentfard,	Recently, there has been a noticeable increase of
	Capability of Aglie	Heidar Pirzaden	attention to regulatory compliance. This increase is due
	Processes to Support		by many factors including the federal corporate scandars
	Life-Science	Hamou-Lhadj	to protect and accura consistive information due to the
	Case of YP and EDA		reliance on Information Technology (IT), the shift
	Medical Dovices'		towards a global market and so on As a result more
	Software		and more organizations are required to comply with the
	Juliwale		and more organizations are required to comply with the
			An important aspect of these regulations is directly
			An important aspect of these regulations is directly
			related to the way by which software systems, used by

			regulated companies, are built, tested, and maintained.
			While some of these regulations require from these
			systems to support a very specific set of requirements.
			others, the focus of this paper, are concerned with the
			process by which the system has been built. The Food
			and Drug Administration (EDA) regulations, for
			example, impose stringent requirements on the process
			by which software systems used in medical devices are
			developed. These requirements translate into various
			software artifacts that must be made available for the
			software to be EDA-compliant. In this paper, we discuss
			these requirements in detail and show how XP lacks the
			necessary practices to support these requirements. To
			address this issue, we propose an extension to XP that
			if adopted, we believe it will allow organizations to profit
			from both worlds of adility and auditability
73	Development of	Haeng-Kon Kim	ABSTRACT. The provy driving service is baying a
13	Location-Based	and Sun-Myung	boom recently, which a proxy driver on behalf of a
	Systems with	Hwang	drunken one has a car to the destination at night. The
	Components	Tiwang	call center selects the nearest proxy driver based on the
	Componenta		distance from the customer and sends customer's
			information to the designated and A provy driver
			usually speaks to the sustemer and moves to the target
			location. But if a sustamor cannot explain his surrent
			location. But if a customer cannot explain his current
			that position a provy driver expect set to the sustance
			quickly and the sustamer tends to be upgeticfied with
			duckly and the customer tends to be disatistied with
			the service. So the need for a system that provides
			and destinction is regidly increasing. This paper shows
			and destination is rapidly increasing. This paper shows
			the design and implementation of proxy driving service
			system using a location-based service. The experiment
			shows that the
			the sustamers and provide the suisting systems
75	The Coffmere	Ving Zhau Thomas	With the grouing complexity of actuary analiesticate
15	Medeling and	Aing Zhou, Thomas	there is an increasing demond for colutions to distribute
			workload into conver peolo. Crid Computing provideo
		Decke, Jobin Dulinthonoth Envir	newerful but else highly complex, machanisms to
		Pullininanain, Erwin	poweriul but also highly complex mechanisms to
			number of downtime critical applications, requiring
			redundent convers to ansure convict such bility in sec.
			of component follows. To consult the demond for
			or component failures. To cope with the demand for
			server redundancy and service availability, the IETF

			has recently standardized the lightweight Poliable
			Sonver Pooling (PSorPool) framowork, which is a
			server Fooling (RSerFool) namework, which is a
			common architecture for server pool and session
			management. In this paper, we first introduce the
			concept of RSerPool and then present the modeling
			thoughts of RSPLIB and the underlying general
			groupware design. Based on RSPLIB, we will
			illustratively show how to easily develop applications on
			top of RSerPool. We will also offer an application
			evaluation example for a proof of concept setup to
			distribute ray-tracing computation workload into a
			compute pool. Keywords: Reliable Server Pooling,
			RSPLIB, Service Availability, Software Modeling,
			Implementation
86	Study of one	Eric Famutimi,	One of the attractions to the study of one dimensional
	dimensional	Micheal Stinson	systems is the technological interest of their possible
	molecular properties	and Roger Lee	effects in nanoelectronics [1]. There are myriads or
	using Python		papers on the solution to the problem of the electronic
			properties of one dimensional systems. Few of these
			papers use python for visualization but none has used
			python as a tool for solving this problem from first
			principle. In this paper, we present several techniques
			of using Python as a tool in computational analysis. We
			report the results of using python to study the electronic
			properties of an infinite linear chain of atoms. We use
			the principles of nearest neighbor and directly
			calculated the eigenvalues of our system. We also
			derived the green function for the system and compared
			the eigenvalues obtained from the green function with
			those directly calculated. Visualization of our results
			was achieved using Matplotlib, a powerful yet, easy to
			use Python plotting library. Our results show an
			agreement between the eigenvalues obtained by direct
			calculation and those obtained using our derived green
			function for the system. The results also show the
			simplicity of Python as an analytical tool in
			computational sciences.
87	Development of	Haeng-Kon Kim	Mobile device has been considered a key technology
	Mobile Agent on CBD	and Sun Myung	for embedded software and biquitous era. Because,
		Hwang	existing web environments is moving to wireless
			internet, the new concepts for wireless internet
			computing environments has gained increasing
			interest. Mobile agent provides a new abstraction for
			deploying functional over the existing infrastructures.

	Mobile application systems requires the flexibility,
	adaptability, extensibility, and autonomous. A main
	nature of ad hoc mobile networks is frequent change on
	their topology that is the source of many problems to be
	solved. AODV is an on-demand routing protocol for
	decreasing maintenance overhead on ad hoc networks.
	But some path breaks can cause significant overhead
	and transmission delays. If the maintenance overhead
	of routing table can be reduced, table-driven routing
	methods could be an efficient substitution. In this paper,
	we propose a knowledge discovery agent for an
	effective routing method that is using the simple bit-map
	topology information. The agent node gathers topology
	knowledge and creates topology bit-map information.
	All paths for source to destination can easily be
	calculated by the bit-map. All the other nodes on the
	network maintain the bit-map distributed from agent and
	uses it for source of routing. Correctness and
	performance of the proposed agent method is verified
	by computer simulations. Keywords: Component Based
	Development, Mobile Agent, Agent Classification,
	knowledge discovery agent, Ad hoc networks