
R eal-time software is rapidly gaining influ-
ence in the contemporary world; cars,
phones, mobile phones, transport systems,
air-conditioning systems, banking, super-
markets, and medical devices are prime ex-
amples. In most of these cases, the software

is not visible; even the computers are not always visible.
Nevertheless, in increasing numbers, the
functionality of a service is, to a large extent,
determined by real-time software.

Unfortunately, real-time software is particu-
larly difficult to design. This is because, in ad-
dition to ever more complex functional requirements,
real-time software has to satisfy a set of stringent nonfunc-
tional requirements, such as maximum permissible response
times, minimum throughputs, and deadlines. All too often,
the inability of real-time software to meet its primary non-
functional requirements becomes apparent only in the later
stages of development. When this happens, the design may
have to be heavily and hurriedly modified, even if all the func-
tional requirements are satisfied, resulting in cost and sched-

ule overruns as well as unreliable and unmaintainable code.
This unhappy situation is primarily due to the common prac-
tice of postponing all consideration of so-called “platform is-
sues” until the application logic of the software has been
satisfactorily designed. Although “platform-independent de-
sign” is a good idea in principle, because it allows separation
of application concerns and portability, it is often carried to

the extreme. In particular, it is dangerous in sit-
uations where the physical characteristics of
the platform can have a fundamental impact on
the application logic itself. For example, a sys-
tem with stringent fault tolerance require-

ments must incorporate control logic to deal with the failures
that stem from the underlying platform. People with experi-
ence in designing high-availability systems know very well
that fault tolerance is not something that can be retrofitted
into an existing design.

Despite popular views to the contrary (see, for instance, [1]
and [2]), software design in general, and real-time design in
particular, is not very different in this regard from traditional
engineering. It involves tradeoffs that balance desired func-
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tionality against various other nonfunctional concerns, such
as the construction materials available (e.g., the processing
and communication hardware), the anticipated workload, the
type and capabilities of available tools, and so on. Both quali-
tative (functional) and quantitative (nonfunctional) issues and
their interrelationships need to be considered.

The use of models as an effective means of understand-
ing such tangled relationships is as old as engineering. A

model helps because it removes or hides irrelevant details,
allowing designers to focus more easily on the essentials.
Good models not only facilitate the understanding of both
problems and solutions, but they also serve to communi-
cate design intent in an effective way. We often use them to
predict the interesting properties of different design alter-
natives—and thereby minimize risk—before we go to the ex-
pense and trouble of building the actual system.

Although the use of models in software design is not new,
it is still relatively uncommon and its effectiveness is often
disputed. Indeed, experience has shown that models of soft-
ware are typically difficult to construct and often unreliable.
As our systems grow in complexity, however, traditional
code-centric development methods are becoming intracta-
ble, and we have to resort to the kind of abstraction tech-
niques that models provide. The semantic gap between the
complex problem-domain abstractions of modern-day appli-
cations and the detail-level constructs of current implemen-
tation languages, such as C++ and Java, is just too great to be
overcome by unaided human reasoning. For instance, a de-
scription of event-driven behavior expressed as a finite-state
machine is far easier to define, understand, and explain than
the equivalent C++ program. A key feature of models, there-
fore, is that they are specified using problem-domain con-
cepts rather than computing-technology constructs.

In contrast to models in most other engineering disci-
plines, software models have a unique and quite remarkable
advantage: they can be directly translated into implementa-
tions using computer-based automation [3]. Thus, the er-
ror-prone discontinuities encountered in other forms of
engineering disciplines when switching from a model to ac-
tual construction can be avoided. This means that we are
able to start with simplified models and then gradually
evolve them into the final products. Models that can be

evolved in this way have to be fully formal and,
consequently, have the added major advantage that they
are suitable for formal analysis. The potential behind soft-
ware models and the maturation of automatic model trans-
lation techniques has increased the interest in
model-oriented development methods. One notable exam-
ple of this is the model-driven architecture (MDA) initiative
originated by the Object Management Group (OMG) [4].

In this article, we review some ma-
jor new developments in model-ori-
ented software engineering in the
real-time and embedded domains.
The next section examines the gen-
eral nature of software models and re-
lated techniques. Following that, the
standard real-time Unified Modeling
Language (UML) profile and associ-
ated developments are described.
This is a prominent example of the
model-oriented approach to software
development. Finally, we present a

short example illustrating the application of the profile to the
common problem of determining the schedulability of a
real-time system as well as a discussion on the timing analy-
sis of interactions.

The Role of Models
in Software Development
Whereas the elaboration of a software model can proceed
smoothly in the same engineering medium and with the
same tools, there is at least one transformation that may in-
troduce discontinuities or misinterpretations. This trans-
formation is related to capturing the initial information,
constraints, and requirements from the user and the envi-
ronment and compiling the first draft of the model. In the
elaboration process of the draft model, various checks are
applied to demonstrate that the captured information is
consistent. However, the designer and/or user must always
answer the question as to whether or not this information is
sufficient to resolve the given task.

Pragmatically speaking, a software model is worthwhile if
it fosters the efficiency and economic feasibility of the soft-
ware process. Ideally, this can be done by demonstrating that
the existing model contains consistent information and is co-
herent with the modeled object and by predicting properties
of the product as early as possible, minimizing useless labor
expenses for redoing erroneous and undoing unnecessary
things. Assessment of consistency and prediction of proper-
ties is not always a straightforward process; quite often one
has to build rather sophisticated (e.g., strictly formal) mod-
els and develop specific analysis methods.

Models used in software processes are often semiformal.
Semiformal modeling methods smoothly transform the in-
formal knowledge about the controlled object and goals of a
software system into a model of software and thus represent
pragmatic modeling. Semiformal modeling is comparatively
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easy to learn for users and enables efficient manual, empiri-
cal checking of correspondence between the original infor-
mal knowledge of the modeled object and its model.
Unfortunately, manual checking is too subjective for many
dependable applications. Typical contemporary represen-
tatives of the group of pragmatic software models are built
by using UML [3].

Usually, UML produces several interrelated models repre-
senting different views that capture the essential characteris-
tics of the software that is to be developed, so as to provide
good coverage of the complexity of the software and its multi-
faceted nature. Multiple models and views that describe dif-
ferent aspects of the same product have to be checked for
cohesion and consistency. A joint formal analysis of informa-
tion from several models and/or views is desirable to detect
potential inconsistencies, to predict essential features of the
future product, and to demonstrate cohesion between the re-
quired and predicted features. At present, such an analysis,
especially at the early development stages, such as require-
ments specification, is usually done manually due to the
semiformal nature of models and their interactions. Later in
this article, an experimental formal model is described that is
applicable at the early stages of software development.

This article departs from the experience obtained with in-
formal use of UML and focuses on discussing possibilities for
combining attractive features from semiformal and formal
modeling techniques to increase the analyzing power of soft-
ware models, especially for the case of quantitatively analyz-
able properties. For instance, it is important to perform
quantitative timing analysis (not just qualitative ordering)
during the requirements and system specification stages and
scheduling analysis during the implementation stage of soft-
ware development. In the context of real-time software, this
means that, in addition to conventionally considered perfor-
mance-related timing properties (e.g., response times and
deadlines) and scheduling analysis (e.g., rate monotonic
analysis), checks should be made of the cohesion and consis-
tency of validity times for data, variable values, and events,
as well as the time correctness of interactions.

The final goal of software modeling is automatic transfor-
mation from model to computer programs. This goal is a pri-
mary motivation for the MDA technology initiative. The
central idea here is that models, created using modeling lan-
guages such as UML, should be the principal artifacts of soft-
ware development instead of computer programs. Once a
satisfactory model is constructed, automatic mechanistic pro-
cesses can generate the corresponding computer programs.
Thus, MDA and its objectives provide the new setting in which
UML and its supporting OMG standards are evolving.

The generation of a computer program from a model is
based on a series of transformations of the model, from the
model of user requirements to that of a full-scale design, and
then adjusting the design to a particular system software
and hardware platform. To achieve user friendliness and
wide usability of MDA technology, the models are often

semiformal, and not all the transformations are necessarily
formal (i.e., automatically truth preserving). It has been sug-
gested that MDA technology allows separately developed
and maintained formal models to be used for studying spe-
cific properties (typically related to quality of service, or
“nonfunctional” requirements) of the software. For in-
stance, schedulability analysis, performance analysis, and
timing analysis of interactions should be performed on spe-
cific formal models that are based on information obtained
from several UML diagrams [5]. Hence, the key problem is to
ensure that the original UML description of the system in-
cludes all the necessary information for developing those
specific models.

Although schedulability and performance analysis meth-
ods have been carefully studied for a long time, and well-es-
tablished theory together with experience from practical
application exists, timing analysis of interactions has not
yet been widely accepted. The reason is that for a long time,
the major goal of the software process has been to develop a
functionally correct implementation of algorithms, assum-
ing that algorithms capture the required transformation of
input data correctly. Today, a rapidly increasing number of
computer applications rely heavily on data-stream process-
ing and on indefinitely ongoing computations
(nonterminating programs) and are built from commercial
off-the-shelf (COTS) components. An unexpected side effect
of those new applications is “emergent behavior”—dynami-
cally emerging behavior that cannot always be predicted
from the static structure of the system.

Those new applications emphasize the importance of
interalgorithm and intercomponent interactions in deter-
mining the computer system’s behavior. First, theoretically
strict attempts to handle the new type of computer applica-
tions were described in [6] and [7] by introducing an inter-
action-based paradigm of computations to extend the
algorithm-based one. Two decades later it was demon-
strated that UML provides an implementation of an interac-
tion-based paradigm of computations [8].

Conventional engineering models do not normally dem-
onstrate explicit emergent behavior—mostly because all
the interactions between parts of a model are caused either
by causal relations or by the static structure of material
flows; both are persistent and defined by the laws of nature.
In (real-time) software, one often has to deal with phenom-
ena that can only be partly described with causal relations,
either because one has incomplete information about the
essence of such relations or because of insufficient comput-
ing power available for processing the complete knowledge.
Typical cases leading to emergent behavior are illustrated
by examples such as learning, decision making, commit-
ments based on free will, and others that can lead to dy-
namic restructuring of interactions or radically change the
previous functioning pattern.

At the same time, emergent behavior often has to meet
strict predefined requirements and constraints, for in-
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stance, behavior generated in real-time software by excep-
tion-handling subsystems. Conventional algorithm-based
models of computations cannot explicitly study properties
related to interactions and emergent behavior. Renewed at-
tention and wider interest in interactions have come to
light, partly in connection the with the wide practical accep-
tance of UML and the related MDA-based technologies. In-
teraction-centered models can be applied for deeper
understanding of UML models [8]. Some details of the tim-
ing analysis of interactions are discussed in this article.

In the following sections, capabilities for automatic and
semiautomatic analysis of software models are discussed.

Automatic analysis becomes possible by using formal mod-
els that are not part of the UML environment but are derived
directly from UML models based on the conventions de-
fined in the standard real-time UML profile. Real-time soft-
ware requires formal reasoning for many reasons, e.g., for
certification purposes, for assessing fault tolerance, reli-
ability, and other nonfunctional requirements, and, of
course, for the timing analysis of interactions.

Using UML for Modeling
Real-Time Systems
The UML [5] was adopted by the OMG as a standard facility
for constructing models of object-oriented software. Since
its introduction in 1997, UML has been adopted quite rap-
idly and is now widely used by both industry and academia.
However, although it has proven suitable for modeling the
qualitative aspects of many software systems, the original
definition did not provide a standard means for expressing
the quantitative aspects of those systems. For example, in

the real-time domain, it is often necessary to specify tempo-
ral constraints associated with specific elements of a model,
such as the maximum acceptable duration of certain ac-
tions, necessary and available communication throughput
rates, and time-out values. As a result, many different and
mutually inconsistent methods were defined to include this
information in a UML model (e.g., [9]-[15]). This type of di-
versity clearly diminishes some of the principal benefits of
using a standard.

To remedy this, the OMG sought to supplement the
original UML specification by asking for a “profile” that
would define standardized ways for specifying temporal

properties in a UML model [16]. (A
profile is the UML term for a tight-
ened semantic interpretation of the
relatively general concepts in the
standard, intended to meet the re-
quirements of a particular domain.
For example, a profile might spe-
cialize the general UML concept of
a “class” to represent a domain-spe-
cific notion such as a clock.) This

profile goes under the rather unwieldy name of the “UML
Profile for Schedulability, Performance, and Time” [17]
that, for convenience, we shall refer to simply as the
“real-time profile.” Note that, in addition to standardizing
the modeling of time and timing mechanisms, the profile
is intended to support formal analysis of UML models for
certain time-related properties such as schedulability
and various performance measures. Formal timing analy-
sis, especially during the early stages of user require-
ments specification, was left out of the initial version of
the standard, primarily due to the absence of a widely ac-
cepted theoretical basis and insufficient experience. For-
tunately, it can be added later when more experience is
obtained by inserting minimal modifications into the time
model used by OMG [18].

Profile Requirements
A principal requirement for the real-time UML profile was
to allow the construction of predictive UML models; that is,
models that can be formally analyzed to determine key
quantitative characteristics of the proposed system, such
as response times or system throughput. Based on such
predictions, it is possible to consider and evaluate several
alternative design approaches early and at relatively low
cost. This, of course, is precisely how classical engineering
uses models. In software engineering, however, the use of
quantitative analysis methods, except for crude estimates
mostly based on intuition, is still relatively rare. These
methods tend to be quite sophisticated, and it is difficult to
find experts with sufficient training and experience to ap-
ply them successfully.

A practical way around this problem is to automate the
analysis process so that highly specialized computer-based
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tools take on the role of the expert (see Figure 1). Software
developers begin by constructing models of their designs
using UML. Various model processors can then analyze
these models, which capture the application logic as well as
the associated quantitative characteristics. Typically, the
model processor will first transform the model into a form
suitable for analysis (e.g., a queuing network model), per-
form the analysis, and present the results. To be properly
understood by application designers, the results should be
presented in the context of the original model rather than
the specialized analysis model.

This approach also enables an iterative design process
wherein a candidate design is repeatedly refined and ana-
lyzed until the desired system characteristics are attained.

Note that a standardized modeling language is crucial to
this scheme since it provides a common interchange format
between various specialized tools that might be developed
by different vendors.

Structure of the Profile
The main components and general structure of the real-time
profile are depicted in the UML package diagram in Figure 2.
It comprises several specialized profiles (“subprofiles”)
that can be used either together or separately.

The general resource modeling framework package con-
tains several specialized frameworks that cover aspects
common to practically all time- and resource-sensitive sys-
tems. At the core is an abstract conceptual model of re-
sources (the RTresourceModeling subprofile). This
introduces the fundamental notion of
quality of service (QoS), which is the
basis for specifying all the quantitative
information used in quantitative analy-
ses. In addition, there is a general facil-
ity for modeling time and time-related
mechanisms (RTtimeModeling) and a
facility for modeling concurrency
(RTconcurrencyModeling).

This core set of frameworks is
used to define specialized analysis
subprofiles. The latter defines analy-
sis-specific extensions, which are
used to add QoS-related information
to UML models so that they can be
formally analyzed. The current stan-
dard defines three such specialized
subprofiles, but it is open to addi-
tional ones.

• SAprofile supports a variety of es-
tablished schedulability analysis
techniques that determine
whether or not a given system will
meet all of its deadlines.

• RSAprofile is a specialization of
the SAprofile for schedulability

analysis of systems that are based on the OMG Real-
Time CORBA standard [19].

• PAprofile supports various performance analysis tech-
niques based on queuing network theory.

In addition to subprofiles, the standard also provides a
model library that contains a prefabricated model of
real-time CORBA. Models of applications based on this tech-
nology can reuse this library to save time and effort. This li-
brary is also intended as an illustration of the kind of
information that will likely be considered mandatory when
the software parts industry reaches maturity. In a direct
analogy with the hardware components industry, where
vendors provide VHDL models of their components, the in-
tent is that vendors of commodity software (operating sys-
tems, code and class libraries, etc.) will supply UML models
of their software.

The Conceptual Foundations:
Resources and Quality of Service
As noted earlier, at least when it comes to real-time and em-
bedded systems, software engineering is very similar to
other forms of engineering; that is, in addition to functional
correctness, it is also necessary to consider the quantita-
tive correctness of the software. These are all, directly or in-
directly, a function of the underlying hardware. (In a sense,
the hardware represents the construction material out of
which our software is made.)

An inherent property of the physical world (at least from
the pragmatic perspective of engineering) is that it is finite
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and, hence, restrictive in some way. For instance, even at
computer speeds, real programs are not infinitely fast,
bandwidth limitations constrain how much information can
be transferred in a given time interval, the amount of mem-
ory and CPU speed at our disposal is limited, and so on.
Things that are not in infinite supply are called resources in
the standard. The notion of resource is the common basis
for modeling all quantitative aspects of software systems.
Note that resources do not necessarily have to be physical
devices (e.g., message buffers, virtual circuits), but there is
ultimately a physical underpinning in all cases.

In the real-time profile, a resource is modeled as a server
that provides one or more services to its clients. The physi-
cal limitations of a resource are represented through its QoS
attributes. In general, these attributes characterize either
how well a resource service can be performed or how well it
needs to be performed. We distinguish between offered QoS
on the resource side and required QoS on the client side.
Note that most quantitative analyses reduce to a compari-
son of these two sets of values, i.e., determining whether
supply (offered QoS) meets demand (required QoS). Of
course, even though the question is simple, its solution is
not. In software systems there are many complex and dy-

namic interference patterns between clients competing for
the same resources, which greatly complicate analysis.

The UML class diagram in Figure 3, as defined in the
real-time profile, represents the conceptual model behind
these fundamental notions of resources, services, and QoS.
(Note that UML is being used here as a convenient means of
representing abstract concepts, such as resources and ser-
vices, and their relationships. Readers should be careful to dis-
tinguish such conceptual “domain” diagrams from the actual
UML extensions (stereotypes, etc.) defined in the profile.)

Note that this model makes a fundamental distinction be-
tween descriptors, which are specifications of things that may
exist at runtime, and instances, which are the actual runtime
things. The relationship between these general concepts is ex-
emplified by the relationship between a blueprint for a build-
ing (a descriptor) and an actual building constructed from that
blueprint (an instance). Although this distinction is elemen-
tary and well understood, people often confuse the two con-
cepts in practical situations. In general, UML concepts can be
classified according to this distinction. For example, the con-
cepts of Class, Association, and Action are all descriptor con-
cepts in UML, whereas Object, Link, and ActionExecution are
their corresponding instance concepts. In Figure 3, each of the

elements on the right-hand side of the diagram is a
kind of descriptor (to reduce visual clutter, the gener-
alization relationship is only shown for Resource, al-
though each right-hand element in the figure is a
subclass of Descriptor). To the left of each of these is
its corresponding instance type.

Understanding this descriptor-instance dichot-
omy is crucial, since most useful analysis methods
are instance based; that is, they operate on models
that describe situations involving instances rather
than descriptors. For example, in performance anal-
ysis, it is necessary to know precisely how many in-
stances are involved, what their individual service
rates are, the precise interconnection topology be-
tween them, and similar detail. Note that two in-
stances of the same class may perform very
differently due to differences in their underlying
processors, relative scheduling priorities, etc. Since
UML class diagrams abstract out this type of infor-

mation, they are generally inadequate
as a basis for such analyses.

A specific situation in which a collec-
tion of resource instances is used in a
particular way at a given intensity level
is referred to as an analysis context.
This represents a generic formulation
of the standard problem that is ad-
dressed by the analysis techniques
covered by the profile. The conceptual
model of an analysis context is shown
in Figure 4. Note that each specific anal-
ysis subprofile refines this abstract
model to suit its needs.
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Each resource instance participating in an analysis con-
text offers one or more resource service instances. As indi-
cated in Figure 3, these may be characterized by their
offered QoS values (e.g., response time). The clients of these
resources and the details of how they use
the resources are captured in the concept
of a resource usage. This can be expressed
in a number of different ways depending on
the type of analysis desired. The simplest
usage models are static, typically consist-
ing of a list of clients matched against the
resources they use. More sophisticated us-
age models may describe the dynamics of
resource usage, such as the order in which
the clients use resources, the type of access, and the hold-
ing time. The final element of this generic model is the con-
cept of usage demand, which specifies the intensity with
which a usage is applied to the set of resources (e.g., arrival
frequency). The task of analysis is to determine if a given
concrete model (involving specific resource instances, us-
ages, demands, and explicit required and offered QoS val-
ues) is internally consistent or not. If not, this is an
indication that demand exceeds supply and that a different
model is required.

More details of the general model of dynamic resource
usage are shown in Figure 5. A dynamic usage comprises
one or more concrete scenarios—sequences of actions that
involve accessing the resources and their services. These
accesses will include specifications of the required QoS val-
ues (e.g., timing deadlines, maximum delays, throughput
rates), which can be matched against the offered QoS values
of the resources.

Note that an action execution is modeled as a kind of sce-
nario. This allows an action at one level of abstraction to be
refined into a full-fledged scenario in its own right, consist-
ing of an ordered set of finer-grained action executions. The
choice of abstraction level and level of decomposition is de-
termined by users based on the level of accuracy desired
from the analysis.

The real-time profile allows the modeling of many differ-
ent kinds of resources in a variety of ways. The general tax-
onomy of resources supported is shown in Figure 6.

Resources are classified in different ways. Based on their
primary functionality, they may be
processors (devices capable of execut-
ing code), communication resources
(for transfer of information), or gen-
eral devices (e.g., specialized sensors,
actuators). Depending on whether or
not they require controlled access,
they may be either protected or unpro-
tected resources. Finally, depending
on whether or not they are capable of
initiating activity, they may be active
or passive. The different categoriza-

tions can be combined for the same model element. For ex-
ample, an element representing a physical CPU might be
designated simultaneously as a processor resource that is
both active and protected.

Modeling Time
The general UML standard does not impose any restrictions
on the modeling of time. It neither assumes that time is dis-
crete or continuous nor that there is a single source of time
values in a system. This semantic flexibility allows different
representations of time. This flexibility is retained in the
real-time profile, although certain key concepts related to
time are defined more precisely. The time model supported
in the profile is shown in Figure 7.

In an abstract sense, physical time can be thought of as a
relationship that imposes a partial order on events. Physical
time is viewed as a continuous and unbounded progression
of physical time instants, as perceived by some observer,
such that
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• it is a fully ordered set, which means that, for any two
distinct elements of the set, p and q, either p precedes
q or q precedes p

• it is a dense set, which is to say that there is always at
least one instant between any pair of instants.

A distinction is made between dense time, correspond-
ing to the continuous model of physical time, and discrete
time, which represents time that is broken up into quanta.
Dense time can be represented by the set of real numbers,
whereas discrete time corresponds to the set of integers.

Physical time is assumed to progress monotonically
(with respect to any particular observer) and only in the for-
ward direction. Note that these restrictions apply to our

model of physical time but not necessarily to other models
of time that may be useful in modeling. For example, there
exist “simulated” time models in which time does not neces-
sarily progress monotonically or “virtual time” that may
even regress under certain circumstances.

Since physical time is incorporeal, its progress is typi-
cally measured by counting the number of expired cycles of
some strictly periodic reference clock starting from some
origin. This way of measuring time necessarily results in a
discretization effect in which distinct but temporally close
physical instants are associated with the same count. How-
ever, this granularity is merely a consequence of the mea-
surement method and not an inherent property of physical

time (at least not in our conceptual model). In
other words, any desired time resolution can be
obtained simply by choosing a sufficiently short
cycle time (resolution) for our reference clock.

The count associated with a particular instant
is called its measurement. In the conceptual
model, a time measurement is represented by a
special value called time value. Time values can
be represented by simple integers (discrete time
values) or by real numbers (dense time values), as
well as by more sophisticated structured data
types, such as dates.

Duration is the expired time between two in-
stants. Since this too is represented by time val-
ues, it is useful to be able to distinguish it from a
time value that represents a specific instant.
Hence, the profile introduces the semantic notion

of a time interval.
In addition to the model of

time, the real-time profile per-
mits the modeling of two dif-
ferent kinds of timing
mechanisms: clocks and tim-
ers. A clock is an active re-
source that periodically
generates clock interrupts in
synchrony with the progress
of physical time. A timer is an
active resource that detects
the expiration of a specific du-
ration after which it gener-
ates a time-out signal. The
model of timing mechanisms
is shown in Figure 8.

Note that both clocks and
timers are derived from a more
general concept of an abstract
timing mechanism. This cap-
tures the common characteris-
tics of all timing mechanisms,
such as resolution, origin, and
maximal value.
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Figure 7. The conceptual model for representing time.
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Mapping to UML
So far, we have only discussed the conceptual domain model,
but we have not indicated how this model is mapped to existing
UML modeling concepts such as Class, Association, etc. This is
achieved using the extensibility mechanisms of UML: stereo-
types, tagged values, and constraints. A stereotype is used to
define a specialization of a generic UML modeling concept. For
example, imagine that in our application domain we need to
model objects that represent real-time clocks. In addition to the
standard properties of all objects, these real-time clock objects
have the added feature that their value changes spontaneously
with time. Hence, we need a modeling concept that adds these
semantics to the basic UML Object concept. We can achieve
this in UML by defining a “real-time clock” stereotype of the ba-
sic Object concept and attaching the domain-specific seman-
tics to the stereotype. The stereotype may also include
additional constraints and tagged values. The latter are used for
representing additional attributes of the domain concept, such
as the resolution of a clock.

An example of the use of stereotypes in practice is
shown in Figure 9. Figure 9(a) simply shows an object dia-
gram with two linked objects. Each is an instance of the
general UML Object concept. However, we cannot deter-
mine from this diagram if any of these objects represents a
clock (we cannot rely on class or object names, since users
have the freedom to name and rename their classes as they
see fit). To do that, we need to use the “RTclock” stereotype
as shown in Figure 9(b). Note the use of the tagged value
“RTresolution” to specify the resolution of this particular
clock—this is, in fact, an offered QoS value. It is one of the
additional characteristics of clocks defined for timing
mechanisms in Figure 8.

The real-time profile consists of a collection of such ste-
reotype definitions, each one mapping a domain concept to
appropriate UML modeling concepts.

Model Analysis with
the Real-Time Profile
Three different kinds of analysis subprofiles were mentioned
previously. Due to space limitations, we will focus on just the
schedulability subprofile, although some preliminary work
for another, not yet developed, subprofile (timing analysis of
interactions) is also briefly discussed in the following sec-
tion. However, as noted in the discussion of analysis con-
texts, there is significant semantic similarity between all
three subprofiles.

Schedulability Analysis
Schedulability analysis refers to the set
of techniques used to determine
whether a given configuration of soft-
ware and hardware is “schedulable”;
that is, whether or not it will meet its
specified deadlines. This field is quite

active, as a number of useful schedulability analysis tech-
niques have been defined to date (see [20]-[23]) and new ones
are constantly emerging (e.g., [24]).

The schedulability analysis subprofile defines a special-
ization of the general analysis context shown in Figure 4,
with refinements of the basic concept. It introduces, among
others, the following key stereotypes:

• «SASituation», a specialization of the “analysis context”
domain concept for the purpose of schedulability anal-
ysis (this is a stereotype of the UML Collaboration and
CollaborationInstanceSet concepts)

• «SASchedulable», a specialization of the “resource in-
stance” domain concept for representing schedulable
entities such as operating system threads (a stereo-
type of the UML Object and ClassifierRole concepts)

• «SAEngine», a specialization of the “resource in-
stance” domain concept that represents either a vir-
tual or physical processor capable of executing
multiple concurrent schedulable entities/threads
(UML Object, ClassifierRole)

• «SAResource», a different specialization of the “re-
source instance” concept for representing passive
protected devices (UML Object, ClassifierRole)

• «SAAction», a specialization of the “action” domain
concept defined in the dynamic usage model in Figure
5 (UML ActionExecution, Message, Stimulus)

• «SATrigger», a further specialization of the “action”
concept that identifies the action that initiates a sce-
nario (UML ActionExecution, Message, Stimulus)

• «SAResponse», a specialization of the “scenario” do-
main concept that identifies the sequence of actions
initiated by a trigger; this stereotype has the tagged
value “isSchedulable,” which will be “true” if the sce-
nario can be scheduled and “false” otherwise (UML
ActionExecution, Message, Stimulus, Interaction).

A given real-time situation typically consists of multiple
types of triggers and responses utilizing a shared set of re-
sources and execution engines. One example of a fully anno-
tated real-time situation is shown in Figure 10.

This example illustrates some of the key capabilities of the
real-time profile. Consider, for instance, the message
C.1:displayData () going from the real-time clock (TGClock) to
the telemetry displayer. This element of the UML model is
stereotyped in two ways: as a trigger («SATrigger») that initi-
ates a complete response and as the response itself
(«SAResponse»). The latter choice may seem unusual, since
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Figure 9. The use of stereotypes to attach domain-specific semantics.



the actual response consists of a sequence (scenario) of sev-
eral messages (C.1, C.1.1, and C.1.1.1). However, since in this
model no single element captures the full response, the trig-
gering element is also used to represent the entire sequence.

The profile provides a sophisticated means for specify-
ing time values. For example, the tag RTat for message C.1
has a value that specifies that the associated event is peri-
odic with a period of 60 ms. It is also possible to define sto-
chastic values that are represented by common probability
distributions. If required, the time value can specify
whether it represents a measured, estimated, or predicted

value. It is even possible to define the value as a formula
involving one or more variables.

Note also that the «SASchedulable» tag value for this
trigger is defined as a variable ($R2). By convention, vari-
ables whose values are not specified represent the outputs
that are to be calculated by the analysis. Hence, the appro-
priate schedulability model processor will insert the appro-
priate values (“true” or “false”) in the results model that it
returns. The model processor recognizes which parts of the
overall UML model it is expected to analyze by looking for
appropriate contexts (in this case, the collaboration stereo-

typed as «SASituation».)
When this situation model

is combined with the model
that shows how the software
elements of the situation are
mapped to the underlying
platform (Figure 11), there is
sufficient information for a
schedulability analysis tool to
do its job. (Note that the map-
ping of software elements to
platform elements is indicated
by special «GRMdeploys» ste-
reotypes of the UML realiza-
tion relationship.)

Timing Analysis
of Interactions
The correct operation of
real-time software assumes, in
addition to correct algorithmic
functioning of programs, the
satisfaction of several QoS-re-
lated requirements. The major-
ity of those QoS requirements
qualify under the common de-
nominator of timing. Timing
analysis can be partitioned
into three separate steps:

• performance analysis
that is already part of

the real-time profile
• scheduling and schedulability

analysis, which was discussed in
the previous section and which is
also part of the real-time profile

• timing analysis of interactions
that focuses on the timeliness
of intercomponent interac-
tions, the timeliness of interac-
tions between the computing
system and its environment, as
well as the appropriate age of
data and events in the system.
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Figure 11. A platform model and deployment specification for the system in Figure 10.

Figure 10. Example of a real-time situation for schedulability analysis.



Untimely interaction and/or inappropriate age of data and
events may cause violation of QoS requirements even if
scheduling and performance requirements are satisfied. Just
imagine a set of time-wise inconsistent values of state vari-
ables displayed to a human operator for decision making.

The timing analysis of interactions is essentially based
on the use of interaction-centered models of computation.
Despite the remarkable practical success of interac-
tion-centered paradigms, for instance, the wide accep-
tance of UML, methods for the strict
mathematical analysis of time be-
havior of interactions still need re-
search and testing. Some of the
problems in this area are discussed
in [25]-[28]. A prototype for a UML
model processor (see Figure 1) for
timing analysis of interactions,
based on the Q-methodology, has been developed and
tested [27]. Since the testing was done in an OMT environ-
ment that does not include any timing requirements, the
transformation from class model to Q-model was manual.
The required time parameters, requirements, and con-
straints were inserted manually during the transformation.
The time model in the real-time profile enables specifica-
tion of the time parameters and requirements in UML mod-
els and may lead to straightforward (semi)automatic trans-
formation to and from the Q-model. An interesting by-prod-
uct of the Q-methodology is its ability to automatically gen-
erate a system’s prototype for animation of the system’s
behavior in time with a choice of built-in or manually added
scenarios at the early stages of system development.

Each computing agent in the Q-model is equipped with
an individual system of times comprising a discrete strictly
increasing time, a fully reversible relative time in each gran-
ule of the strictly increasing time, a relative time with mov-
ing origin for each in-agent and interagent interaction, and
(maybe) a single universal time for a neutral observer [28].
It is also assumed that all the parameter and/or constraint
values are given as interval estimates. A set of such individ-
ual time systems is a necessary precondition for reasoning
about interactions and can easily be built based on the time
model adopted by the OMG (and previously discussed in
this article).

Typically, reasoning with interaction-centered models
of computation implies the use of higher-order predicate
calculus, in this case, a weak second-order predicate calcu-
lus [25]. The applicable analysis methods focus on demon-
strating that previously proven theorems regarding
certain universal properties of the application are re-
tained. This minimizes the need to retrain software design-
ers, keeps the user interface simple, and provides good
scaling properties of the tool. Usually, the objective of anal-
ysis is to demonstrate that data and events used in the in-
teraction are of the required age and that the interaction
itself does not violate time constraints imposed on the con-
sumer and the producer.

Some examples of properties that can be handled with
the existing analysis are

• the age of data and delays caused by the interaction
for cases where the producer and consumer agents
are executed synchronously, semi-synchronously, or
asynchronously

• estimation of the maximum potential number of paral-
lel copies of an agent that are to be generated to sat-
isfy time-related QoS requirements

• detection of informational deadlocks caused by the
absence of data with appropriate age

• estimation of the maximum non-transport-related de-
lays of messages due to the interaction of asynch-
ronously executed computing agents.

Conclusion
An idealized but widely held view is that software design
should be an unadulterated exercise in applied mathe-
matical logic [1], [2]. However, although logical correct-
ness is clearly crucial in any system, it is not always
sufficient—a system must also satisfy its nonfunctional
requirements. Furthermore, as many examples of time-
sensitive concurrent and distributed software systems
indicate, there is often a critical interdependency be-
tween system functionality and the quantitative charac-
teristics of the underlying platform. Quantity can indeed
affect quality. For instance, bandwidth and transmission
limitations may mean that status information required
for decision making may be out of date, something that
will have a fundamental impact on the design of control
algorithms. These quantitative aspects are almost in-
variably a reflection of physical phenomena, leading us
to the certain conclusion that the laws of physics must
be understood and respected even in software design.
Logic alone is not sufficient.

Models can play a crucial role in this process; early
semiformal or formal analogs of the desired software prod-
uct can be analyzed to predict the key system characteris-
tics and thereby minimize the risks of software design.
Numerous practical analysis methods are available, such as
the schedulability, performance, and timing analysis meth-
ods discussed in this article.

This benefit of modeling is well known and is the reason
it is the keystone of any true engineering discipline. How-
ever, when it comes to software, models offer an additional
exceptional opportunity: the ability to move directly from
model to end product by growing and elaborating the
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The final goal of software modeling
is automatic transformation from

model to computer programs.



model without error-prone discontinuities in the design
medium, tools, or method. Such model-based methods of
software development are becoming feasible, thanks to
various advances in computing technologies and the emer-
gence of software standards. A salient example is OMG’s
MDA initiative and the UML, along with its standard real-
time profile.

These and similar developments will provide the basis for
a mature and dependable software engineering discipline,
despite several open research and technological issues.
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