
1

1

2

Disclaimer: These slides
are based on the 2nd edition
of “Applying UML and
Patterns; An introduction to
OOAD and the Unified
process” by Craig Larman
(2002). I take responsibility
for any errors.

Constantinos Constantinides
Computer Science and Software

Engineering
Concordia University
Montreal, Canada
cc@cs.concordia.ca

2

3

The Need for Software Blueprints

Knowing an object-oriented language and having
access to a library is necessary but not sufficient in
order to create object software.
In between a nice idea and a working software,
there is much more than programming.
Analysis and design provide software “blueprints”,
illustrated by a modeling language, like the Unified
Modeling Language (UML).
Blueprints serve as a tool for thought and as a form
of communication with others.

4

Object-Oriented Analysis

An investigation of the problem (rather than
how a solution is defined)
During OO analysis, there is an emphasis on
finding and describing the objects (or
concepts) in the problem domain.

For example, concepts in a Library Information
System include Book, and Library.

3

5

Object-Oriented Design

Emphasizes a conceptual solution that fulfils
he requirements.
Need to define software objects and how they
collaborate to fulfil the requirements.

For example, in the Library Information System, a
Book software object may have a title attribute
and a getChapter method.

Designs are implemented in a programming
language.

In the example, we will have a Book class in Java.

6

From Design to Implementation

Book
title
print()

public class Book {
public void print();
private String title;

}

Book
(concept)

Analysis
investigation

of the problem

Design
logical solution

Construction
code

Domain concept Representation in
analysis of concepts

Representation in an
object- oriented
programming language.

4

7

Iterative Development and the
Unified Process

8

The Unified Process (UP)

A process is a set of partially ordered steps
intended to reach a goal.
In Software Engineering, the goal is to efficiently
and predictably deliver a software product that
meets the needs of your business.
A software development process is an approach
to building, deploying and maintaining software.
The Unified Process (UP) is a process for
building object-oriented systems.
The goal of the UP is to enable the production of
high quality software that meets users needs
within predictable schedules and budgets.

5

9

The Unified Process (UP)

For simple systems, it might be feasible to
sequentially define the whole problem, design
the entire solution, build the software, and
then test the product.
For complex and sophisticated systems, this
linear approach is not realistic.
The UP promotes iterative
development:The life of a system stretches
over a series of cycles, each resulting in a
product release.

10

Iterative Development

Development is organized into a series of
short fixed-length mini-projects called
iterations.
The outcome of each iteration is a tested,
integrated and executable system.
An iteration represents a complete
development cycle: it includes its own
treatment of requirements, analysis, design,
implementation and testing activities.

6

11

Iterative Development

The iterative lifecycle is based on the
successive enlargement and refinement of a
system though multiple iterations with
feedback and adaptation.
The system grows incrementally over time,
iteration by iteration.
The system may not be eligible for production
deployment until after many iterations.

12

Iterative Development

[iteration N]
Requirements – Analysis - Design- Implementation - Testing

[iteration N+1]
Requirements – Analysis - Design- Implementation - Testing

Feedback from iteration N leads to
refinement and adaptation of the
requirements and design in iteration
N+1.

The system grows
incrementally.

7

13

Iterative Development

The output of an iteration is not an
experimental prototype but a production
subset of the final system.
Each iteration tackles new requirements and
incrementally extends the system.
An iteration may occasionally revisit existing
software and improve it.

14

Embracing Change

Stakeholders usually have changing
requirements.
Each iteration involves choosing a small
subset of the requirements and quickly
design, implement and testing them.
This leads to rapid feedback, and an
opportunity to modify or adapt understanding
of the requirements or design.

8

15

Iteration Length and Timeboxing

The UP recommends short iteration lengths
to allow for rapid feedback and adaptation.
Long iterations increase project risk.
Iterations are fixed in length (timeboxed).If
meeting deadline seems to be difficult, then
remove tasks or requirements from the
iteration and include them in a future
iteration.
The UP recommends that an iteration should
be between two and six weeks in duration.

16

Phases of the Unified Process
Inception Elaboration Construction Transition

A UP project organizes the work and iterations
across four major phases:
– Inception - Define the scope of project.
– Elaboration - Plan project, specify features,

baseline architecture.
– Construction - Build the product
– Transition - Transition the product into end

user community

time

9

17

Iterations and Milestones

Each phase and iteration has some risk mitigation focus, and
concludes with a well-defined milestone.
The milestone review provides a point in time to assess how
well key goals have been met and whether the project needs
to be restructured in any way to proceed.
The end of each iteration is a minor release, a stable
executable subset of the final product.

PreliminaryPreliminary
IterationIteration

IterIter. #1. #1 IterIter. #2. #2

InceptionInception ElaborationElaboration ConstructionConstruction TransitionTransition

Milestone Release Final production
release

18

The UP Disciplines

Management
Environment

Business Modeling

Implementation
Test

Analysis & Design

Preliminary
Iteration(s)

Iter.
#1

Phases
Process Disciplines

Iterations

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Deployment

Configuration Mgmt

Requirements

Elaboration TransitionInception Construction

Supporting Disciplines

10

19

The UP Disciplines

Management
Environment

Business Modeling

Implementation
Test

Analysis & Design

Preliminary
Iteration(s)

Iter.
#1

Phases
Process Disciplines

Iterations

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Deployment

Configuration Mgmt

Requirements

Elaboration TransitionInception Construction

Supporting Disciplines

In an iteration you
walk through all
disciplines.

20

The UP Disciplines

Management
Environment

Business Modeling

Implementation
Test

Analysis & Design

Preliminary
Iteration(s)

Iter.
#1

Phases
Process Disciplines

Iterations

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Deployment

Configuration Mgmt

Requirements

Elaboration TransitionInception Construction

Supporting Disciplines

Focus of this
course.

11

21

Disciplines and Phases

Although an iteration includes work in most
disciplines, the relative effort and emphasis change
over time.

Early iterations tend to apply greater emphasis to
requirements and design, and later ones less so.
Figure illustrations are suggestive, not literal.

Note that activities and artifacts are optional (except
code!)

Developers select those artifacts that address their
particular needs.

22

Advantages of an Iterative Process

Reduce risks
Risks are identified early, progress is easier to see.

Get a robust architecture
Architecture can be assessed and improve early.

Handle evolving requirements
Users provide feedback to operational systems.
Responding to feedback is an incremental change.

Allow for changes
System can adapt to problems

Attain early learning
Everyone obtains an understanding of the different
workflows early on.

12

23

Inception

24

Inception

A number of questions need to be explored:
What is the vision and business case for this project?
Is it feasible?
Buy and/or build?
Rough estimate of cost.
Should we proceed or stop?

The intent is to establish some initial common vision
for the objectives of the project, determine if it is
feasible and decide if it is worth some serious
investigation in elaboration.

13

25

What artifacts may start in inception?

Vision and business case
Describes high-level goals and constraints.

Use Case model
Describes functional requirements and related non-
functional requirements.

Supplementary specification
Describes other requirements

Glossary
Key domain terminology

Risk list and Risk Management Plan
Describes business, technical, resource and schedule risks
and ideas for their mitigation or response.

26

What artifacts may start in inception?

Prototypes and proof-of-concepts
Iteration plan

Describes what to do in the first elaboration iteration
Phase Plan & Software development Plan

Guess for elaboration phase duration. Tools, people,
education and other resources.

Development Case
Description of the customized UP steps and artifacts for
this project.

Artifacts will be partially completed in this phase and
will be refined in later iterations.

14

27

Understanding Requirements

28

Introduction to Requirements

Requirements are system capabilities and conditions to which
the system must conform.
Functional requirements

Features and capabilities.
Recorded in the Use Case model (see next), and in the systems
features list of the Vision artifact.

Non-functional (or quality requirements)
Usability (Help, documentation, …), Reliability (Frequency of
failure, recoverability, …), Performance (Response times,
availability, …), Supportability (Adaptability, maintainability, …)
Recorded in the Use Case model or in the Supplementary
Specifications artifact.

The nature of UP supports changing requirements.

15

29

Use-Case Model: Writing
Requirements in Context

30

Use cases and adding value

Actor: something with behavior, such as a
person, computer system, or organization,
e.g. a cashier.
Scenario: specific sequence of actions and
interactions between actors and the system
under discussion, e.g. the scenario of
successfully purchasing items with cash.
Use case: a collection of related success and
failure scenarios that describe actors using a
system to support a goal.

16

31

Use cases and adding value

Handle returns
Main success scenario: A customer arrives at a

checkout with items to return. The cashier uses the
POS system to record each returned item…

Alternate scenarios:
If the credit authorization is reject, inform customer

and ask for an alternative payment method.
If item identifier not found in the system, notify the

Cashier and suggest manual entry of the identifier
code.

…

32

Use cases and adding value

A key point is to focus on the question “how
can using the system provide observable
value to the user, or fulfill their goals?”
Use cases mainly constitute functional
requirements.

17

33

Use case types and formats

Black-box use cases describe system
responsibilities, i.e. define what the system must do.
Uses cases may be written in three formality types

Brief: one-paragraph summary, usually of the main success
scenario.
Casual: Informal paragraph format (e.g. Handle returns)
Fully dressed: elaborate. All steps and variations are
written in detail.

34

Fully-dressed example:
Process Sale
Use case UC1: Process Sale
Primary Actor: Cashier
Stakeholders and Interests:

-Cashier: Wants accurate and fast entry, no payment errors, …
-Salesperson: Wants sales commissions updated.
…

Preconditions: Cashier is identified and authenticated.
Success Guarantee (Postconditions):

-Sale is saved. Tax correctly calculated.
…

Main success scenario (or basic flow): [see next slide]
Extensions (or alternative flows): [see next slide]
Special requirements: Touch screen UI, …
Technology and Data Variations List:

-Identifier entered by bar code scanner,…
Open issues: What are the tax law variations? …

18

35

Main success scenario (or basic flow):
The Customer arrives at a POS checkout with items to purchase.
The cashier records the identifier for each item. If there is more than
one of the same item, the Cashier can enter the quantity as well.
The system determines the item price and adds the item information to
the running sales transaction. The description and the price of the current
item are presented.
On completion of item entry, the Cashier indicates to the POS system
that item entry is complete.
The System calculates and presents the sale total.
The Cashier tells the customer the total.
The Customer gives a cash payment (“cash tendered”) possibly greater
than the sale total.

Extensions (or alternative flows):
If invalid identifier entered. Indicate error.
If customer didn’t have enough cash, cancel sales transaction.

Fully dressed example:
Process Sale (cont.)

36

Goals and Scope of a Use Case
At what level and scope should use cases be
expressed?
A: Focus on uses cases at the level of elementary
business process (EBP).
EBP: a task performed by one person in one place
at one time which adds measurable business
value and leaves the data in a consistent state.

Approve credit order - OK.
Negotiate a supplier contract - not OK.

It is usually useful to create separate “sub” use
cases representing subtasks within a base use
case.

e.g. Paying by credit

19

37

Finding primary actors, goals and use
cases

Choose the system boundary.
Identify primary actors.

Those that have user goals fulfilled through using
services of the system

For each actor identify their user goals.
Tabulate findings in the Vision artifact.

Define use cases that satisfy user goals;
name them according to their goal.

38

Essential vs. Concrete style

Essential: Focus is on intend.
Avoid making UI decisions

Concrete: UI decisions are embedded in the
use case text.

e.g. “Admin enters ID and password in the dialog
box (see picture X)”
Concrete style not suitable during early
requirements analysis work.

20

39

Use Case Diagrams

NextGen

Cashier Handle returns
Payment

Authorization
ServiceProcess Rental

<<actor>>
Tax Calculator

Primary actors to
the left: have user goals.

Supporting actors to
the right: they provide
a service.

Alternative notation for
computer system actor

Process Sale

40

From Inception to Elaboration

21

41

Iteration 1 Requirements

Implement a basic key scenario of the
Process Sale use case: entering items and
receiving a cash payment.
No collaboration with external devices (such
as tax calculator or product database)
No complex pricing rules are applied.
Subsequent iterations will grow on this
foundation.

42

Incremental Development for the
Same Use Case Across Iterations

Not all requirements in the Process Sale use
case are being handled in iteration 1.
It is common to work on varying scenarios or
features of the same use case over several
scenarios and gradually extend the system to
ultimately handle all the functionality required.
On the other hand, short, simple use cases
may be completed within one iteration.

22

43

Use-Case Model: Drawing System
Sequence Diagrams

44

System Behavior and
UML Sequence Diagrams

It is useful to investigate and define the
behavior of the software as a “black box”.
System behavior is a description of what the
system does (without an explanation of how it
does it).
Use cases describe how external actors
interact with the software system. During this
interaction, an actor generates events.
A request event initiates an operation upon
the system.

23

45

System Behavior and
System Sequence Diagrams (SSDs)

A sequence diagram is a picture that shows,
for a particular scenario of a use case, the
events that external actors generate, their
order, and possible inter-system events.
All systems are treated as a black box; the
diagram places emphasis on events that
cross the system boundary from actors to
systems.

46

SSDs for Process Sale Scenario

change due, receipt

makePayment(amount)

total with taxes

endSale()

description, total

addLineItem(itemID, quantity)

makeNewSale()

*[more items]

:Cashier
:System

Box may enclose an
iteration area.
*[…] is an iteration
marker.

Return value(s) associated
with previous message.
Return line is optional
if nothing is returned.

External actor

24

47

SSD and Use Cases

change due, receipt

makePayment(amount)

total with taxes

endSale()

description, total

addLineItem(itemID, quantity)

makeNewSale()

*[more items]

:Cashier :System

Simple cash-only Process Sale Scenario

1. Customer arrives at a POS checkout
with goods to purchase.

2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. System records sale line item, and

presents item description, price and
running total.
cashier repeats steps 3-4 until
indicates done.

5. System presents total with taxes
calculated.

…

48

Naming System Events and
Operations

The set of all required system operations is
determined by identifying the system events.

makeNewSale()
addLineItem(itemID, quantity)
endSale()
makePayment(amount)

25

49

Domain Model: Visualizing
Concepts

50

Domain Models

A Domain Model illustrates meaningful concepts in a
problem domain.
It is a representation of real-world things, not
software components.
It is a set of static structure diagrams; no operations
are defined.
It may show:

concepts
associations between concepts
attributes of concepts

26

51

Domain Models

A Domain Model is a
description of things in
the real world.

A Domain Model is not
a description of the
software design.

A concept is an idea,
thing, or object.

Item

Store

*

1

address
name

Stocked-in

52

Conceptual Classes in the Sale Domain

A central distinction
between object-
oriented and structured
analysis: division by
concepts (objects)
rather than division by
functions.

Store POS Sale

Partial Domain Model.

27

53

Strategies to Identify Conceptual
Classes

Use a conceptual class category list.
Make a list of candidate concepts.

Use noun phrase identification.
Identify noun (and noun phrases) in textual
descriptions of the problem domain, and consider
them as concepts or attributes.
Use Cases are excellent description to draw for
this analysis.

54

Use a conceptual class category list
Concept Category Example

Physical or tangible objects POS

Specifications, designs, or
descriptions of things ProductSpecification

Places Store

Transactions Sale, Payment

Transaction line items SalesLineItem

Roles of people Cashier

Containers of other things Store, Bin

(See complete list in Larman 2nd. ed., pp. 134-135)

28

55

Finding Conceptual Classes with
Noun Phrase Identification
1. This use case begins when

a Customer arrives at a
POS checkout with items
to purchase.

2. The Cashier starts a new
sale.

3. Cashier enters item
identifier.

…

The fully addressed Use
Cases are an excellent
description to draw for this
analysis.
Some of these noun
phrases are candidate
concepts; some may be
attributes of concepts.
A mechanical noun-to-
concept mapping is not
possible, as words in a
natural language are
(sometimes) ambiguous.

56

The Need for Specification or
Description Conceptual Classes

What is wrong with this
picture?
Consider the case
where all items are
sold, and thus deleted
from the computer
memory.
How much does an
item cost?

Item

description
price
serial number
itemID

29

57

The Need for Specification or
Description Conceptual Classes

The memory of the
item’s price was
attached to inventoried
instances, which were
deleted.
Notice also that in this
model there is
duplicated data
(description, price,
itemID).

Item

description
price
serial number
itemID

58

The Need for Specification or
Description Conceptual Classes

Add a specification or
description concept when:

Deleting instances of things
they describe results in a
loss of information that
needs to be maintained,
due to the incorrect
association of information
with the deleted thing.
It reduces redundant or
duplicated information.

Item

serial number

Describes

ProductSpecification

description
price
itemID

1

*

30

59

The NextGen POS (partial) Domain
Model

POS Item Store Sale

Sales
LineItem Cashier Customer Manager

Payment Product
Catalog

Product
Specification

60

Adding Associations

POS Sale
Records-current

11

An association is a relationship
between concepts that indicates
some meaningful and interesting
connection.

“Direction reading arrow” has no meaning
other than to indicate direction of reading
the association label.
Optional (often excluded)

Association name

31

61

Finding Associations –Common
Associations List

Category Examples
A is a physical part of B* Drawer - POS
A is a logical part of B SalesLineItem - Sale
A is physically contained in/on B POS - Store
A is logically contained in B ItemDescription - Catalog
A is a description of B ItemDescription - Item
A is a line item of a transaction
or report B SalesLineItem - Sale
A is known/logged/recorded/
captured in B Sale - POS
A is a member of B Cashier - Store
...

* High-priority associations
(See complete list in Larman 2nd. ed.,
pp. 156-157)

62

Multiplicity

Multiplicity defines how
many instances of a
type A can be
associated with one
instance of a type B, at
a particular moment in
time.
For example, a single
instance of a Store can
be associated with
“many” (zero or more)
Item instances.

Store Item
1 *

Stocks

Multiplicity

32

63

Multiplicity

T

T

T

T

T

Zero or more;
“many”

One or more

One to forty

Exactly five

Exactly three, five
or eight.

*

1..*

1..40

5

3, 5, 8

64

Naming Associations

Name an association based
on a TypeName-VerbPhrase-
TypeName format.
Association names should
start with a capital letter.
A verb phrase should be
constructed with hyphens.
The default direction to read
an association name is left
to right, or top to bottom.

Store

POS

Sale Payment

Contains

Captures

Paid-by

1

1..*

1 1

1..*

1

33

65

Multiple Associations Between Two
Types

It is not uncommon to
have multiple
associations between
two types.
In the example, not
every flight is
guaranteed to land at
an airport.

Flies-to

Flies-from
* 1

* 0..1

Flight Airport

66

Adding Attributes

An attribute is a logical data
value of an object.
Include the following
attributes: those for which
the requirements suggest or
imply a need to remember
information.
For example, a Sales
receipt normally includes a
date and time.
The Sale concept would
need a date and time
attribute.

Sale

date
startTime: Time

Attributes

34

67

Valid Attribute Types

Keep attributes simple.
The type of an attribute
should not normally be a
complex domain concept,
such as Sale or Airport.
Attributes in a Domain
Model should preferably be

Pure data values: Boolean,
Date, Number, String, …
Simple attributes: color,
phone number, zip code,
universal product code
(UPC), ...

Cashier

name
currentRegister

Cashier

name

Register

numberuses
1 1

Not a simple
attribute

68

Domain Model Conclusion

Payment Customer

POS

Cashier

Manager

Store

Product
Specification

Product
Catalog

Paid-by Initiated-by

1

1

1

1

amount

Captured-on

1 1

1

1

Records-sales-on

Started-by
1 1

Houses1

1..*

address
name

Stocks
1 *

Item

Contains
1 1..*

Describes

*

0..1
Records-sale-of

1..*

* Described-by
1

1..*

1
Contained-in

*

1
Logs-completed

1
*

Used-by

description
price
itemID

Sales
LineItem

quantity

Sale

date
time

35

69

Use-Case Model: Adding Detail
with Operation Contracts

70

Contracts

Contracts are documents that describe
system behavior.
Contracts may be defined for system
operations.

Operations that the system (as a black box) offers
in its public interface to handle incoming system
events.

The entire set of system operations across all
use cases, defines the public system
interface.

36

71

System Operations and the System
Interface

In the UML the system
as a whole can be
represented as a class.
Contracts are written
for each system
operation to describe
its behavior.

System

makeNewSale()
addLineItem(itemID, quantity)
endSale()
makePayment()

72

Example Contract: addLineItem

Contract CO2: addLineItem

Operation: addLineItem (itemID: ItemID, quantity: integer)
Cross References: Use Cases: Process Sale.
Pre-conditions: There is a sale underway.
Post-conditions:

A SalesLineItem instance sli was created. (instance creation)
sli was associated with the Sale. (association formed)
sli.quantity was set to quantity. (attribute modification)
sli was associated with a ProductSpecification, based on itemID
match (association formed)

37

73

Pre- and Postconditions

Preconditions are assumptions about the state of
the system before execution of the operation.
A postcondition is an assumption that refers to the
state of the system after completion of the
operation.

The postconditions are not actions to be performed during
the operation.
Describe changes in the state of the objects in the Domain
Model (instances created, associations are being formed or
broken, and attributes are changed)

74

addLineItem postconditions

Instance Creation and Deletion
After the itemID and quantity of an item have
been entered by the cashier, what new
objects should have been created?

A SalesLineItem instance sli was created.

38

75

addLineItem postconditions

Attribute Modification
After the itemID and quantity of an item have
been entered by the cashier, what attributes
of new or existing objects should have been
modified?
sli.quantity was set to quantity (attribute
modification).

76

addLineItem postconditions

Associations Formed and Broken
After the itemID and quantity of an item have
been entered by the cashier, what
associations between new or existing objects
should have been formed or broken?

sli was associated with the current Sale
(association formed).
sli was associated with a ProductSpecification,
based on itemID match (association formed).

39

77

Writing Contracts leads to Domain
Model Updates

It is also common to discover the need to
record new concepts, attributes or
associations in the Domain Model.

78

Guidelines for Contracts

Operation:
makeNewSale
...

Use Case:
Process Sale

Use Case

System
Sequence
Diagram

System
Operations Contracts

makeNewSale()

addLineItem
(itemID, quantity)
endSale()

makePayment()

System
makeNewSale()
addLineItem(itemID, quantity)
endSale()
makePayment()

Operation:
addLineItem
...

Operation:
endSale
...
Operation:
makePayment
...

40

79

Interaction Diagram Notation

80

Introduction

Interaction diagrams
illustrate how objects
interact via messages.
Collaboration diagrams
illustrate object
interactions in a graph
or network format.

:ClassAInstance

1: message2()
2: message3()

:ClassBInstance

message1()

41

81

Introduction

Sequence diagrams
illustrate interactions in
a kind of fence format.
Set of all operation
contracts defines
system behavior.
We will create an
interaction diagram for
each operation
contract.

message2()

message3()

message1()

:ClassAInstance :ClassBInstance

82

Example Collaboration Diagram:
makePayment

:Register
makePayment(cash Tendered) 1: makePayment(cash Tendered)

1.1: create(cash Tendered)

:Sale

:Payment
first message instance

link line

object creation

first internal messagedirection of message

parameter

42

83

How to Read the makePayment
Collaboration Diagram

1. The message
makePayment is sent to an
instance of Register. The
sender is not identified.

2. The Register instance
sends the makePayment
message to a Sale
instance.

3. The Sale instance creates
an instance of a Payment.

:Register

makePayment(cashTendered)

1: makePayment(cashTendered)

1.1: create(cashTendered)

:Payment

:Sale

84

Example Sequence Diagram:
makePayment

makePayment (cashTendered)

:Register :Sale

:Payment

makePayment (cashTendered)

create (cashTendered)

43

85

Illustrating Classes and Instances

To show an instance of
a class, the regular
class box graphic
symbol is used, but the
name is underlined.
Additionally a class
name should be
preceded by a colon.
An instance name can
be used to uniquely
identify the instance.

Sale Class

:Sale Instance

s1:Sale Named instance

86

Messages to “self” or “this”

A message can be sent
from an object to itself.
This is illustrated by a
link to itself, with
messages flowing
along the link.

1: clear()

msg1()

:Register

44

87

Creation of Instances

The language
independent creation
message is create,
being sent to the
instance being created.
The create message
may include
parameters, indicating
passing of initial values.

:Register

msg1 ()

1: create (cashier)
:Sale

newly created instance

88

Creation of Instances

An object lifeline shows
the extend of the life of
an object in the
diagram.
Note that newly created
objects are placed at
their creation height.

makePayment(…)

:Register :Sale

:Payment

makePayment(…)
create(…)

45

89

Conditional Messages

A conditional message
is shown by following a
sequence number with
a conditional clause in
square brackets, similar
to the iteration clause.
The message is sent
only if the clause
evaluates to true.

:Register

msg1 ()

1: [new sale]
create (cashier) :Sale

90

Conditional Messages

message1()

:A :B

[color=red] calculate()

46

91

Mutually Exclusive Conditional Paths

:ClassA
msg1 ()

:ClassB

:ClassD :ClassC

:ClassE

1a: [test1] msg2()

1b: [not test1] msg4()

1b.1: msg5()

1a.1: msg3()

2: msg6()

unconditional
after either msg2()
or msg4()

1a and 1b are mutually
exclusive conditional paths.

Both are sequence number 1
since either could be the first
internal message.

92

Mutually Exclusive Conditional
Messages

message1()

:A :B :C

[x<10] calculate()

[x>15] calculate()

47

93

Iteration or Looping

Iteration is indicated by
following the sequence
number with a star *
This expresses that the
message is being sent
repeatedly, in a loop, to the
receiver.
It is also possible to include
an iteration clause
indicating the recurrence
values.

:Register

1*: li := nextLineItem():
SalesLineItem

:Sale

msg1()

:Register

1*: [i :=1..10]
li := nextLineItem(): SalesLineItem

:Sale

msg1()

Iteration;
Recurrence values omitted

Iteration clause

94

GRASP*: Designing Objects with
Responsibilities

* Genenal Responsibility Assignment Software Patterns

48

95

Responsibilities and Methods

The focus of object design is to identify classes and objects,
decide what methods belong where and how these objects
should interact.
Responsibilities are related to the obligations of an object in
terms of its behavior.
Two types of responsibilities:

Doing:
Doing something itself (e.g. creating an object, doing a calculation)
Initiating action in other objects.
Controlling and coordinating activities in other objects.

Knowing:
Knowing about private encapsulated data.
Knowing about related objects.
Knowing about things it can derive or calculate.

96

Responsibilities and Methods

Responsibilities are assigned to classes during
object design. For example, we may declare the
following:

“a Sale is responsible for creating SalesLineItems” (doing)
“a Sale is responsible for knowing its total” (knowing)

Responsibilities related to “knowing” are often
inferable from the Domain Model (because of the
attributes and associations it illustrates)

49

97

Responsibilities and Methods

The translation of responsibilities into classes and
methods is influenced by the granularity of
responsibility.

For example, “provide access to relational databases” may
involve dozens of classes and hundreds of methods,
whereas “create a Sale” may involve only one or few
methods.

A responsibility is not the same thing as a method,
but methods are implemented to fulfill
responsibilities.
Methods either act alone, or collaborate with other
methods and objects.

98

Responsibilities and Interaction
Diagrams

Within the UML artifacts, a
common context where
these responsibilities
(implemented as methods)
are considered is during the
creation of interaction
diagrams.
Sale objects have been
given the responsibility to
create Payments, handled
with the makePayment
method.

:Sale

:Payment

makePayment(…)

create(…)

50

99

Patterns

We will emphasize principles (expressed in patterns)
to guide choices in where to assign responsibilities.
A pattern is a named description of a problem and a
solution that can be applied to new contexts; it
provides advice in how to apply it in varying
circumstances. For example,

Pattern name: Information Expert
Problem: What is the most basic principle by which
to assign responsibilities to objects?
Solution: Assign a responsibility to the class that
has the information needed to fulfil it.

100

Information Expert (or Expert)

Problem: what is a general principle of assigning
responsibilities to objects?
Solution: Assign a responsibility to the information
expert - the class that has the information necessary
to fulfill the responsibility.
In the NextGen POS application, who should be
responsible for knowing the grand total of a sale?
By Information Expert we should look for that class
that has the information needed to determine the
total.

51

101

Information Expert (or Expert)

Do we look in the Domain Model or the
Design Model to analyze the classes that
have the information needed?
A: Both. Assume there is no or minimal
Design Model. Look to the Domain Model for
information experts.

102

Information Expert (or Expert)

It is necessary to know
about all the
SalesLineItem
instances of a sale and
the sum of the
subtotals.
A Sale instance
contains these, i.e. it is
an information expert
for this responsibility.

Sale
date
time

1..*

*

Described-by

Contains

Product
Specification

description
price
itemID

1

SalesLineItem

quantity

52

103

Information Expert (or Expert)

This is a partial
interaction diagram.t := getTotal()

:Sale

104

Information Expert (or Expert)

What information is needed
to determine the line item
subtotal?

quantity and price.
SalesLineItem should
determine the subtotal.
This means that Sale needs
to send getSubtotal()
messages to each of the
SalesLineItems and sum
the results.

:SalesLineItem

:Sale

1 *: st := getSubtotal()

t := getTotal()

53

105

Information Expert (or Expert)

To fulfil the
responsibility of
knowing and answering
its subtotal, a
SalesLineItem needs to
know the product price.
The ProductSpecification
is the information
expert on answering its
price.

:SalesLineItem

:Sale

1 *: st := getSubtotal()

t := getTotal()

:ProductSpecification

1.1: p := getPrice()

106

Information Expert (or Expert)

To fulfil the responsibility of
knowing and answering the
sale’s total, three
responsibilities were
assigned to three design
classes
The fulfillment of a
responsibility often requires
information that is spread
across different classes of
objects. This implies that
there are many “partial
experts” who will
collaborate in the task.

Class Responsibility

Sale Knows Sale total

SalesLineItem Knows line item total

ProductSpecification Knows product price

54

107

Creator

Problem: Who should be responsible for creating a
new instance of some class?
Solution: Assign class B the responsibility to create
an instance of class A if one or more of the
following is true:

1. B aggregates A objects.
2. B contains A objects.
3. B records instances of A objects.
4. B has the initializing data that will be passed to A when it

is created (thus B is an Expert with respect to creating A).

108

Creator

In the POS application,
who should be
responsible for creating
a SalesLineItem
instance?
Since a Sale contains
many SalesLineItem
objects, the Creator
pattern suggests that
Sale is a good
candidate.

Sale
date
time

1..*

*

Described-by

Contains

Product
Specification

description
price
itemID

1

SalesLineItem

quantity

55

109

Creator

This assignment of
responsibilities requires
that a makeLineItem
method be defined in
Sale.

:Sale

:SalesLineItem

makeLineItem(quantity)

create(quantity)

110

Low Coupling

Coupling: it is a measure of how strongly one element is
connected to, has knowledge of, or relies upon other elements.
A class with high coupling depends on many other classes
(libraries, tools).
Problems because of a design with high coupling:

Changes in related classes force local changes.
Harder to understand in isolation; need to understand other
classes.
Harder to reuse because it requires additional presence of other
classes.

Problem: How to support low dependency, low change impact
and increased reuse?
Solution: Assign a responsibility so that coupling remains low.

56

111

Low Coupling

Assume we need to
create a Payment
instance and associate
it with the Sale.
What class should be
responsible for this?
By Creator, Register is
a candidate.

:Payment:Register :Sale

112

Low Coupling

Register could then
send an addPayment
message to Sale,
passing along the new
Payment as a
parameter.
The assignment of
responsibilities couples
the Register class to
knowledge of the
Payment class.

:Register

makePayment()

p:Payment

:Sale

1: create()

2:addPayment(p)

Sale also coupled to
knowledge of a Payment.

57

113

Low Coupling

An alternative solution
is to create Payment
and associate it with
the Sale.
No coupling between
Register and Payment.

:Register

makePayment()

:Sale

:Payment

1: makePayment()

1.1. create()

114

Low Coupling

Some of the places where coupling occurs:
Attributes: X has an attribute that refers to a Y instance.
Methods: e.g. a parameter or a local variable of type Y is
found in a method of X.
Subclasses: X is a subclass of Y.
Types: X implements interface Y.

There is no specific measurement for coupling, but
in general, classes that are generic and simple to
reuse have low coupling.
There will always be some coupling among objects,
otherwise, there would be no collaboration.

58

115

High Cohesion

Cohesion: it is a measure of how strongly related
and focused the responsibilities of an element are.
A class with low cohesion does many unrelated
activities or does too much work.
Problems because of a design with low cohesion:

Hard to understand.
Hard to reuse.
Hard to maintain.
Delicate, affected by change.

Problem: How to keep complexity manageable?
Solution: Assign a responsibility so that cohesion
remains high.

116

High Cohesion

Assume we need to create
a Payment instance and
associate it with Sale. What
class should be responsible
for this?
By Creator, Register is a
candidate.
Register may become
bloated if it is assigned
more and more system
operations.

:Register

p:Payment

:Sale

create()

addPayment(p)

makePayment()

59

117

High Cohesion

An alternative design
delegates the Payment
creation responsibility
to the Sale, which
supports higher
cohesion in the
Register.
This design supports
high cohesion and low
coupling.

:Register :Sale

create()

makePayment()

:Payment

makePayment()

118

High Cohesion

Scenarios that illustrate varying degrees of
functional cohesion

1. Very low cohesion: class responsible for many
things in many different areas.

e.g.: a class responsible for interfacing with a data base
and remote-procedure-calls.

2. Low cohesion: class responsible for complex task
in a functional area.

e.g.: a class responsible for interacting with a relational
database.

60

119

High Cohesion

3. High cohesion: class has moderate responsibility
in one functional area and it collaborates with
other classes to fulfill a task.

e.g.: a class responsible for one section of interfacing
with a data base.

Rule of thumb: a class with high cohesion has a
relative low number of methods, with highly related
functionality, and doesn’t do much work. It
collaborates and delegates.

120

Controller

Problem: Who should be responsible for handling an
input system event?
Solution: Assign the responsibility for receiving or
handling a system event message to a class
representing one of he following choices:

Represents the overall system.
Represents a use case scenario.
A Controller is a non-user interface object that defines the
method for the system operation. Note that windows,
applets, etc. typically receive events and delegate them to
a controller.

61

121

Use Case Realizations

122

Use Case Realizations
A use-case realization
describes how a use case is
realized in terms of
collaborating objects.
UML interaction diagrams are
used to illustrate use case
realizations.
Recall Process Sale: from
main scenario we identified a
number of system events
(operations)
Each system event was then
described by a contract.

System

makeNewSale()
addLineItem(itemID, quantity)
endSale()
makePayment()

Contract CO1: makeNewSale
Operation: makeNewSale ()
Cross References: Use Cases: Process Sale.
Pre-conditions: none.
Post-conditions:

A Sale instance s was created. (instance
creation)
s was associated with the Register
(association formed)
Attributes of s were initialized

62

123

Object Design: makeNewSale
We work through the postcondition state changes
and design message interactions to satisfy the
requirements.

:Register

:Sale

create()

makeNewSale()

:SalesLineItem

create()

Register creates a
Sale by Creator.

By Creator, Sale creates
an empty multiobject
which will eventually hold
SalesLineItem instances

By Controller.

This is NOT a SalesLineItem
Instance but a collection object.

Implied to take place within the
constructor of Sale instance.

124

Object Design: addLineItem
Contract CO2: addLineItem
…
Post-conditions:

A SalesLineItem instance sli was created. (instance creation)
sli was associated with the Sale. (association formed)
sli.quantity was set to quantity. (attribute modification)
sli was associated with a ProductSpecification, based on itemID match
(association formed)

:Register

addLineItem(itemID, quantity)

:Sale

sli:SalesLineItem

2: makeLineItem(spec, quantity)

2.1: create (spec, quantity)
:ProductCatalog

:ProductSpecification

:SalesLineItem

2.2: add (sli)
1: getSpecification(itemID)

1.1: spec:= find(itemID)

63

125

Object Design: addLineItem

:Register

addLineItem(itemID, quantity)

:Sale

sli:SalesLineItem

2: makeLineItem(spec, quantity)

2.1: create (spec, quantity)
:ProductCatalog

:ProductSpecification

:SalesLineItem

2.2: add (sli)1: getSpecification(itemID)

1.1: spec:= find(itemID)

By Controller. By Creator.

By Expert.

This is a multiobject collection. It
contains many instances of
ProductSpecification.

find and add are generic
implementation-independent
messages.

126

Object Design: endSale

Contract CO3: endSale
…
Post-conditions:

Sale.isComplete became true (attribute modification)

:Register
endSale()

s:Sale
1: becomeComplete()

By Expert.By Controller.

{
public void becomeComplete() {

isComplete = true;
}
}

UML notation for a constraint

{s.isComplete = true}

64

127

Design Model: Determining
Visibility

128

Introduction

Visibility: the ability of an object to “see” or
have reference to another object.
For a sender object to send a message to a
receiver object, the receiver must be visible
to the sender – the sender must have some
kind of reference (or pointer) to the receiver
object.

65

129

Visibility Between Objects

The getSpecification
message sent from a
Register to a
ProductCatalog, implies
that the ProductCatalog
instance is visible to the
Register instance.

:Register

:ProductCatalog

1: spec := getSpecification(itemID)

addLineItem(itemID, quantity)

130

Visibility

How do we determine whether one resource (such
as an instance) is within the scope of another?
Visibility can be achieved from object A to object B
in four common ways:

Attribute visibility: B is an attribute of A.
Parameter visibility: B is a parameter of a method of A.
Local visibility: B is a (non-parameter) local object in a
method of A.
Global visibility: B is in some way globally visible.

66

131

Visibility

The Regiser must have
visibility to the
ProductCatalog.
A typical visibility
solution is that a
reference to the
ProductCatalog
instance is maintained
as an attribute of the
Register.

:Register

:ProductCatalog

1: spec := getSpecification(itemID)

addLineItem(itemID, quantity)

132

Attribute Visibility

Attribute visibility from A to B exists when B is
an attribute of A.
It is a relatively permanent visibility, because
it persists as long as A and B exist.
In the addLineItem collaboration diagram,
Register needs to send message
getSpecification message to a
ProductCatalog. Thus, visibility from Register
to ProductCatalog is required.

67

133

Attribute Visibility

class Register {
…
private ProductCatalog catalog;
…

public void addLineItem (…) { … }
}

public void addLineItem (itemID itemID,
int quantity) {

…
spec = catalog.getSpecification(itemID);
…

}

:Register

:ProductCatalog

1: spec := getSpecification(itemID)

addLineItem(itemID, quantity)

134

Parameter Visibility

Parameter visibility from A to B exists when B
is passed as a parameter to a method of A.
It is a relatively temporary visibility, because it
persists only within the scope of the method.
When the makeLineItem message is sent to
a Sale instance, a ProductSpecification
instance is passed as a parameter.

68

135

:Register

: ProductCatalog

1: spec := getSpecification(itemID)

addLineItem(itemID,quantity)

:Sale

sli: SalesLineItem

2: makeLineItem(spec, quantity)

2.1: create(spec, quantity)

Parameter Visibility
makeLineItem(ProductSpecification spec, int quantity) {

…
sli = new SalesLineItem(spec, quantity);
…

}

136

Parameter Visibility

When Sale crates a new
SalesLineItem, it passes a
ProductSpecification to its
constructor.
We can assign
ProductSpecification to an
attribute in the constructor,
thus transforming
parameter visibility to
attribute visibility.

// constructor
SalesLineItem(ProductSpecification spec,

int quantity) {
…
// parameter to attribute visibility
productSpec = spec;
…

}

69

137

Local Visibility

Locally declared visibility from A to B exists when B is
declared as a local object within a method of A.
It is relatively temporary visibility because it persists only
within the scope of the method. Can be achieved as follows:

1. Create a new local instance and assign it to a local
variable.

2. Assign the return object from a method invocation to a
local variable.

addLineItem(itemID, quantity) {
…
ProductSpecification spec = catalog.getSpecification(itemID);
...

}

138

Global Visibility

Global visibility from A to B exists when B is
global to A.
It is a relatively permanent visibility because it
persists as long as A and B exist.
One way to achieve this is to assign an
instance to a global variable (possible in C++
but not in Java).

70

139

Design Model: Creating Design
Class Diagrams

140

When to create DCDs

Once the interaction diagrams have been
completed it is possible to identify the
specification for the software classes and
interfaces.
A class diagram differs from a Domain Model
by showing software entities rather than real-
world concepts.
The UML has notation to define design
details in static structure, or class diagrams.

71

141

DCD and UP Terminology

Typical information in a DCD includes:
Classes, associations and attributes
Interfaces (with operations and constants)
Methods
Attribute type information
Navigability
Dependencies

The DCD depends upon the Domain Model and
interaction diagrams.
The UP defines a Design Model which includes
interaction and class diagrams.

142

Domain Model vs. Design Model
Classes

1Captures

Sale
Date
isComplete : Boolean
timeaddLineItem(…)

…

Register

1

makeLineItem()

1Captures

Sale

Date
isComplete : Boolean
time

Register

1
Domain Model

Design Model

72

143

An Example DCD

1Captures

Sale

Date
isComplete : Boolean
time

addLineItem(…)
…

Register

1

makeLineItem()

Three section box Navigability

methods; parameters not specified Type information

144

Creating a NextGen POS DCD

Identify all the classes participating in the software solution. Do this
by analyzing the interaction diagrams. Draw them in a class
diagram.
Duplicate the attributes from the associated concepts in the Domain
Model.

Register

Store

ProductCatalog

SalesLineItem

quantity

Sale

Payment

address
name

date
isComplete
time

amountquantity

ProductSpecification
description
price
itemID

73

145

Creating a NextGen POS DCD

Add method names by analyzing the interaction diagrams.
The methods for each class can be identified by analyzing the
interaction diagrams.

Sale

date
isComplete
time

:Register :Sale
3: makeLineItem(spec, quantity)

makeLineItem()

If the message makeLineItem is
sent to an instance of class
Sale, then class Sale must
define a makeLineItem method.

146

Creating a NextGen POS DCD

Add type information to the attributes and methods.
Register

Store

ProductCatalog ProductSpecification

SalesLineItem

Quantity: Integer

Sale

Payment

Address: String
Name: String

date
isComplete: Boolean
time

amount… description
price
itemIDendSale()

addLineItem()
makeNewSale()
makePayment()

getSpecification()

becomeComplete()
makeLineItem()
makePayment()
getTotal()

getSubtotal()

addSale()

74

147

Method Names -Multiobjects

The find message to
the multiobject should
be interpreted as a
message to the
container/ collection
object.
The find method is not
part of he
ProductSpecification
class.

:ProductSpecification

1.1: spec := find(id)

1: spec := getSpecification(id)

:ProductCatalog

148

Associations, Navigability, and
Dependency Relationships

Add the associations necessary to support the required
attribute visibility.

Each end of an association is called a role.
Navigability is a property of the role implying visibility of the
source to target class.

Attribute visibility is implied.
Add navigability arrows to the associations to indicate the
direction of attribute visibility where applicable.
Common situations suggesting a need to define an
association with navigability from A to B:

A sends a message to B.
A creates an instance of B.
A needs to maintain a connection to B

Add dependency relationship lines to indicate non-attribute
visibility.

75

149

Creating a NextGen POS DCD

1Captures

Sale

Date
isComplete : Boolean
time

endSale()
addLineItem()
makePayment()

Register

1

makeLineItem()

Register class will probably
have an attribute pointing to a
Sale object.

Navigability arrow indicates
Register objects are connected
uni-directionally to Sale objects.

Absence of navigability arrow
indicates no connection from
Sale to Register.

150

Adding Navigability and Dependency
Relationships

1

Captures

1

endSale()
enterItem()
makePayment()

Register

ProductSpecification
description : Text
price : Money
itemID: itemID

SaleLineItem

quantity : Integer
getSubtotal()

Payment
amount : Money

ProductCatalog

getSpecification()

Sale

becomeComplete()
makeLineItem()
makePayment()
getTotal()

Date : Date
isComplete : Boolean
time : Time

address : Address
name : Text

Store

addSale()

1

1

1

1

1

1

1

1 1 1

1
1

*

*

Uses

Houses

Looks-in

Contains

Contains

Describes

Logs-completed Paid-by

Illustrates non-attribute visibility

76

151

Implementation Model: Mapping
Designs to Code

152

Defining a Class with Methods and
Simple Attributes

1

ProductSpecification
description : Text
price : Money
itemID : ItemID

SalesLineItem

quantity : Integer

getSubtotal():Money

* Described-by

public class SalesLineItem {

private int quantity;

public SalesLineItem(ProductSpecification spec, int, qty) {...}
public Money getSubtotal() {…}
…

}

77

153

Adding Reference Attributes

public class SalesLineItem {

private int quantity;
private ProductSpecification productSpec; // reference attribute
…

}

1

ProductSpecification
description : Text
price : Money
itemID : ItemID

SalesLineItem

quantity : Integer

getSubtotal():Money

* Described-by

154

Reference Attributes and Role Names

public class SalesLineItem {

private int quantity;
private ProductSpecification productSpec;
…

}

productSpec

1

ProductSpecification
description : Text
price : Money
itemID : ItemID

SalesLineItem

quantity : Integer

getSubtotal():Money

* Described-by

78

155

Creating Methods from Interaction
Diagrams

:Sale

sli:SalesLineItem

addLineItem(itemID, quantity)

:ProductSpecification

1:spec := getSpecification(itemID)

:Register

:SalesLineItem

:ProductCatalog

1.1:spec := find(itemID)

2 : makeLineItem(spec, quantity)

2.2 : add(sli) 2.1 : create(spec, quantity)

156

The Register – addLineItem method

The addLineItem collaboration diagram will be used to
illustrate the Java definition of the addLineItem method.
In which class does addLineItem belong to?
The addLineItem message is sent to a Register instance,
therefore the addLineItem method is defined in class
Register.

public void addLineItem(itemID itemID, int quantity);
Message 1. A getSpecification message is sent to the
productCatalog to retrieve a productSpecification

productSpecification spec = catalog.getSpecification(itemID);
Message 2: The makeLineItem message is sent to the
Sale.

sale.makeLineItem(spec, quantity);

79

157

A Skeletal definition of Register Class

Captures

ProductCatalog

getSpecification()

Sale

becomeComplete()
makeLineItem()
makePayment()
getTotal()

Date : Date
isComplete : Boolean
time : Time

1

1

1 1

Looks-in

public class Register {

private productCatalog catalog;
private Sale sale;

public Register (ProductCatalog pc) {…}

public void endSale();
public void addLineItem (ItemID itemID, int quantity);
public void makeNewSale() {…}
public void makePayment (Money cashTendered) {…}

}

endSale()
addLineItem()
makeNewSale()
makePayment()

Register

158

Container/Collection Classes in Code

SalesLineItem
quantity : Integer
getSubtotal():Money

public class Sale {
. . .

private Vector lineItems;
}

Sale

becomeComplete()
makeLineItem()
makePayment()
getTotal()

Date : Date
isComplete : Boolean
time : Time 1

Contains

1 .. *

A container class is necessary to
maintain attribute visibility to all
the SalesLineItem instances.

Vector is an example of a dynamic data
structure.

80

159

Iteration 2 and its Requirements

160

From Iteration 1 to 2

By the end of Elaboration 1 the software has been
built and tested.
The idea of UP is to do early, and continuous
verification of quality and correctness.

Early feedback guides the developers to adapt and improve
the system.
Stakeholders get to see early visible progress with the
system.

Requirements for the next iteration are chosen.
Most of them will have been identified during Inception.

81

161

From Iteration 1 to 2

Use cases will be revisited, and more
scenarios will be implemented.
It is common to work on varying scenarios or
features of the same use case over several
iterations and gradually extend the system.
Short, simple use cases may be completely
implemented within one iteration.

162

Iteration 3 and its Requirements

82

163

Iteration 3 Emphasis

Inception and Iteration 1 explored a variety of
fundamental issues in requirements analysis
and OOA/D.
Iteration 2 emphasizes object design.
Iteration 3 explores a wide variety of analysis
and design.

164

Refining the Domain Model

83

165

Association Classes

Authorization services assign a merchant ID to each
store for identification during communications.
A payment authorization request from the store to
an authorization service requires the inclusion of the
merchant ID that identifies the store to the service.
Consider a store that has a different merchant ID for
each service. (e.g. Id for Visa is XXX, Id for MC is
YYY, etc.)

166

Association Classes

Where in the conceptual
model should the merchant
ID attribute reside?
Placing the merchantId in
the Store is incorrect,
because a Store may have
more than one value for
merchantId.
The same is true with
placing it in the
AuthorizationService

Store

address
merchantId
name

AuthorizationService

address
merchantId
name
phoneNumber

84

167

Association Classes

In a conceptual model, if a class C can simultaneously have
many values for the same kind of attribute A, do not place
attribute A in C. Place attribute A in another type that is
associated with C.

Store

address
name

AuthorizationService

address
name
phoneNumber

ServiceContract

merchantId

Authorizes-payment-via
* 1..*

Purchases

1..* *
Sells

168

Association Classes
The merchantId is an attribute related to the association
between the Store and AuthorizationService; it depends on
their relationship.
ServiceContract may then be modeled as an association
class.

Store

address
name

AuthorizationService

address
name
phoneNumber

ServiceContract

merchantId

Authorizes-payment-via

* 1..*

An association class.
Its attributes are related to
the association.
Its lifetime is dependent on
the association.

85

169

Guidelines for Association Classes
An attribute is related to an association.
Instances of the association class have a life-time dependency on
the association.
There is a many-to-many association between two concepts.
The presence of a many-to-many association between two concepts
is a clue that a useful associative type should exist in the
background somewhere.

Company Person

Employment

salary

Employs
* *

A person may have
employment with several
companies.

170

Aggregation and Composition

Aggregation is a kind of association used to
model whole-part relationships.
The whole is generally called the composite;
parts have no standard name (part or
component is common).

86

171

Composite Aggregation - Filled
diamond

Composite aggregation
or composition means
that the multiplicity at
the composite end may
be at most one
signified with a filled
diamond).
ProductCatalog is an
aggregate of
ProductSpecification.

Product
Catalog

Product
Specification

1 1..*

172

Shared Aggregation - Hollow diamond

Shared aggregation
means that the
multiplicity at the
composite end may be
more than one
(signified with a hollow
diamond).
It implies that the part
may be in many
composite instances.

UMLPackage UMLElement
* *

References

87

173

How to identify Aggregation

The lifetime of the part is bound within the lifetime of
the composite.
There is a create-delete dependency of the part on
the whole.
There is an obvious whole-part physical or logical
assembly.
Some properties of the composite propagate to the
parts, such as its location.
Operations applied to the composite propagate to
the parts, such as destruction, movement, recording.

174

Aggregation in the POS Domain
Model

In the POS domain, the
SalesLineItem may be
considered a part of a
composite Sale; in general,
transaction line items are
viewed as part of an
aggregate transaction.
In addition, there is a
create-delete dependency
of the line items on the Sale
- their lifetime is bound
within the lifetime of the
Sale.

Sale SalesLineItem
1 1..*

88

175

Association Role Names

Each end of an association
is a role, which has various
properties such as name,
and multiplicity.
The role name identifies an
end of an association and
ideally describes the role
played by objects in the
association.
An explicit role name is not
required - it is useful only
when the role of the object
is not clear.

Flight City* 1Flies-to

destination

176

Roles as concepts versus roles in
associations

In a conceptual model, a real-world role may
be modeled in a number of ways, such as

a discrete concept, or
expressed as a role in an association.

89

177

“Roles in associations”

A relatively accurate way to express the notion that the same
instance of a person takes on multiple (and dynamically
changing) roles in various environments.

Store Person*Employs-to-handle sales

*1

manager

Manages

worker

manager

Employs-to-manage

1 *

178

“Roles as concepts”

Modeling roles as concepts provides ease and
flexibility in adding unique attributes, associations,
and additional semantics.

Store Manager*

Employs

Employs

Cashier*

1

1

1

*

Manages

90

179

Derived Elements

A derived element can be determined from others.

Sale
SalesLineItem

1 1..*
/quantity

Derivable from the number of
instances of Items associated with
the line item.

Sale

Date
/total
time

Can be derived from SalesLineItem
and ProductSpecification
information.

180

Recursive or Reflexive Associations

A concept may have an
association to itself; this
is known as a recursive
association or reflective
association.

Person

*2
parent

Creates

child

91

181

Modeling Behavior in
Statechart Diagrams

182

Introduction

A state diagram (also state transition
diagram) illustrates the events and the states
of things: use cases, people, transactions,
objects, etc.

92

183

Events, States and Transitions

An event is a trigger, or occurrence.
e.g. a telephone receiver is taken off the hook.

A state is the condition of an entity (object) at
a moment in time - the time between events.

e.g. a telephone is in the state of being idle after
the receiver is placed on the hook and until it is
taken off the hook.

184

Events, States and Transitions

A transition is a relationship between two
states; It indicates that when an event occurs,
the object moves from the prior state to the
subsequent state.

e.g. when an event off the hook occurs, transition
the telephone from the idle state to active state.

93

185

Statechart Diagrams

stateactiveidle

It is common to include an initial pseudo-state
which automatically transitions to another state
when the instance is created.

off hook

on hook

event
transition

Telephone

186

Statechart Diagrams

A statechart diagram shows the life-cycle of an
object; what events it experiences, its transitions
and the states it is in between events.
A state diagram need not illustrate every possible
event; if an event arises that is not represented in
the diagram, the event is ignored as far as the state
diagram is concerned.
Thus, we can create a state diagram which
describes the life-cycle of an object at any simple or
complex level of detail, depending on our needs.

94

187

Statechart Diagrams

A statechart diagram may be applied to a variety of
UML elements, including:

classes (conceptual or software)
use cases

Since an entire system can be represented by a
class, a statechart diagram may be used to
represent it.
Any UP element (Domain Model, Design model,
etc.) may have deploy statecharts to model its
dynamic behavior in response to events.

188

Use Case Statechart Diagrams

A useful application of state diagrams is to
describe the legal sequence of external
system events that are recognized and
handled by a system in the context of a use
case.
For example, During the Process Sale use
case in the NextGen POS application, it is not
legal to perform the makeCreditPayment
operation until the endSale event has taken
place.

95

189

Use Case Statechart Diagrams

WaitingForPayment

makeNewSale
addLineItem

makePayment

WaitingForSale EnteringItems

endSale

(external)
system
event

190

Utility of Use Case State Diagrams

A statechart diagram that illustrates the legal order
of external events is particularly helpful for complex
use cases.
It is necessary to implement designs that ensure
that no out-of-sequence events occur.
Possible design solutions include:

Hard-coded conditional tests for out-of-order events.
Disabling widgets in active windows to disallow illegal

events.
A state machine interpreter that runs a state table

representing use case state diagram.

96

191

Classes that Benefit from Statechart
Diagrams
1. State-independent and State Dependent Objects

An entity is considered to be state-independent if it
responds in the same manner to all events.

An object receives a message and the corresponding
method always does the same thing. The object is state-
independent with respect to that message.
If, for all events of interest, an object always reacts the
same way, it is a state-independent object.

An entity is considered to be state-dependent if it
responds differently to events.

State diagrams are created for state-dependent entities
with complex behavior.

192

Classes that Benefit from Statechart
Diagrams
2. Common State-dependent Classes

Use cases:
Process Sale use case reacts differently to the endSale
event, depending on whether a sale is underway or not.

Systems:
A type representing the overall behavior of the system.

Windows:
Edit-paste action is only valid if there is something in the
“clipboard” to paste.

Transaction. Dependent on its current state within
the overall life-cycle.

If a Sale received a makeLineItem message after the
endSale event, it should raise an exception.

97

193

Illustrating External and Internal
Events

External event: caused by something outside
a system boundary.

SSDs illustrate external events.
Internal event: caused by something inside
the system boundary.

Messages in interaction diagrams suggest internal
events.

194

Illustrating External and Internal
Events

Temporal event: caused by the occurrence of
a specific date and time or passage of time.

Driven by a real-time or simulated-time clock.
Suppose that after an endSale, a makePayment
operation must occur within 5 minutes.

Prefer using state diagrams to illustrate
external and temporal events, and the
reaction to them.

98

195

Additional Statechart Diagram
Notation

Activeidle

[valid subscriber] off hook / play dial tone

on hook

This is an action fired
by the transitionguard (condition)

196

Additional Statechart Diagram
Notation

Idle PlayingDialTone

Dialing Connecting

Talking

Active

digit

digit

complete

connected
on hook

[valid subscriber] off hook / play dial tone

99

197

Additional Statechart Diagram
Notation

A state allows nesting to contain substates. A
substate inherits the transitions of its
superstate (the enclosing state).

Within the Active state, and no matter what
substate the object is in, if the on hook event
occurs, a transition to the idle state occurs.

198

Comments on Iterative
Development and the UP

100

199

Additional UP Best Practices and
Concepts

The central idea behind the UP is short
timeboxed iterative, adaptive development.
Tackle high-risk and high-value issues in
early iterations.

Leave easier work in later iterations.
This way the project does not “fail late”
Better to “fail early” if at all.

200

Additional UP Best Practices and
Concepts

Continuously engage users.
Development involves taking small steps and
getting feedback.
“The majority of failed projects are correlated with
lack of user engagement” [Standish, 1994]

Early iterations focus on core architecture.
Continuously verify quality.

No big surprises near the end of the project.

101

201

Additional UP Best Practices and
Concepts

Apply Use Cases.
Use Cases explore and record functional requirements.
Capture requirements, used for design, testing and writing
end-user documentation.

UML supports abstract (and visual) models of
software.
Carefully manage requirements.

“Poor requirements management is a common factor on
troubled projects” [Standish, 1994]

Control changes.
UP embraces change, not chaos.

202

The Construction and Transition Phases

During Elaboration “most” requirements are
understood.

Elaboration builds the risky and architecturally
significant core of the system.

Construction builds the remainder.
Development proceeds through a series of
timeboxed iterations.
Testing during Construction is referred to as
“alpha testing”.

102

203

The Construction and Transition Phases

Construction ends when the system is ready
for operational deployment and all supporting
materials are complete (user guides, training
material etc.)
The purpose of Transition phase is to put the
system into production use.

Testing during Transition is referred to as “beta
testing”

204

Other Practices

Extreme Programming
Write a unit test before the code to be tested, and
write tests for all classes.
http://www.extremeprogramming.org/

SCRUM process pattern
Focuses on team behavior.
http://www.controlchaos.com

103

205

Motivations for Timeboxing an Iteration

Development team has to focus to produce a
tested executable partial system on-time.
Timeboxing forces developers to prioritize
work and risks, as well as identify tasks of
high business and high technical value.
Complete mini projects build team confidence
and stakeholder confidence.

206

The Sequential “Waterfall” Lifecycle

Clarify, record and commit to a set of final
requirements.
Design a system based on these
requirements.
Implement based on design.
Integrate different modules.
Evaluate and test for correctness and quality.

104

207

Some Problems with the Waterfall
Lifecycle

Tackling high-risk or difficult problems late.
In a waterfall lifecycle there is no attempt to identify and
tackle riskiest issues first.
In an iterative development (like the UP) early iterations
focus on driving down the risk.

Requirements speculation and inflexibility.
The waterfall process assumes that requirements can be
fully specified and then frozen in the first phase of the
project.

Stakeholders want to see something concrete very early.
Market changes.

In iterative development requirements tend to stabilize after
several iterations.

208

Some Problems with the Waterfall
Lifecycle

Design speculation and inflexibility.
The waterfall lifecycle dictates that the
architecture should be fully specified once the
requirements are clarified and before
implementation begins.

Since requirements usually change, the original
design will not be reliable.
Lack of feedback on design until long after design
decisions are made.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

