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e Fast Radix: plug-in replacement

e Improved GraphChi Performance

e Large graph processing

e ['xamining pre-processing

e An improved LSD Radix Sort

e ['xperimental Results

e Graph processing: sorting is frequent

o ~20% of server time spent sorting

e Better sorting can save time and money

e Offers competitive performance, one PC

e Improvements can make it even better

e GraphChi Pre-processing 20-80% of total processing time

Sample Graph
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e Working with large graphs: 10s of billions
of edges

e Operations such as Page Rank

e Pre-process once per graph, apply many graph processing operations after

e Sorting happens in pre-processing

e Single-machine graph processing

e [idge-wise graph processing

e Sorts to grid

e Processes graph using parallel sliding windows approach

Pre-processing Results

Graph Name Vertices| Edges |  GraphChi: Fast Radix: | A Time

google [7] 900K = 5M 1.7s 155 14%
live-journal [1]| 4.8M | 69M 325 325 0%
hollywood [4, 2] | 1.1IM 113M 458 385 18%
twitter-2010 [5| 42M 15B  759s 693s | 9.4%
friendster [9]  66M  1.8B 1022s 9215 11%

uk-union [3] | 134M|55B| 2549 2135 | 19%

Concordia University

e Social media/Web graphs

e google|7]: web graph

e live-journal|1]:

e hollywood| |4, 2|: related actors

social media graph

e IM-150M vertices, 5M-5.5B edges

o twitter-2010[5]: social media graph

e friendster|9]: social media graph

e uk-union|3|: web graph

e parallel sliding windows needs organized data

e Sorting during pre-processing creates a grid to support later processing

Shard Creation

e GraphChi uses Problem Based Benchmark Suite (PBBS) Radix Sort
e PBBS is a Least Significant Digit Radix Sort

— Scan right-most digit

— Deal into buckets

— Consider next digit and repeat

e We introduce Fast Radix as an alternative

e Eistimate bucket size

— okips initial counting pass, Manages overflow

e Eistimate bucket sizes
e Deal into buckets based on LSD

e Deal from buckets and overflow based on next digit

e Repeat until all significant digits dealt, everything is sorted

Deal and Count Deal

shovelbuffer shards
graph.txt (12 ] 13 | 46 | 24 | 36 | 34 | 35 | 23 | 45 12 | 24 | 36
12 < shovel 1 shovel 2 1,3 3,4 4.6
13 ?g & 3.5
46 = o > 45 | 5
2 4 = S
36 5 12 ] 23 3
34 13 | 34
395 2,4 3,5 shard 1 shard 2 shard 3
23 46 || 45 12 | 13 | 23 | 24 | 34 | 35 | 45 | 46 | 36
45 3,6 shardsink
shovels
e Converting graph input into edge format
e [illing a shovel buffer with edges
e Sorting edges by destination into shovels
e Performing a k-way merge of shovels into a shard buffer
e sorting edges in shard buffer into shards
Sorting Results
Graph Name Vertices | Edges GraphChi: Fast Radix: A Sort | overflow
Sort Sort,
google [7] 900K = 5M 0.15s 0.077s 1 99% 0.65%
live-journal [1] 4.8M | 69M 5.48 5.48 0% 0.72%
hollywood [4, 2] | 1.1M |113M 7.28 4.98 47% 10.50%
twitter-2010 5| 42M @ 1.5B 128s 106s 21% 11.54%
friendster [9] | 66M  1.8B 165s 133s 24% 10.12%
uk-union [3] |134M| 5.5B 469s 329s 43% 10.49%
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