Online Task Manager

Group8d
Software Architecture Document

Version 1.4

Revision History

Date Version Description Author

09/02/2006 | 1.0 Skeleton of the Software Architecture My-An Nguyen
Document produced.

19/02/2006 | 1.1 Sections 1-3 completed. Started section | My-An Nguyen
4.

21/02/2006 | 1.2 More writing and diagrams My-An Nguyen

26/02/2006 | 1.3 Working on section 5 My-An Nguyen

02/03/2006 | 1.4 Finalizing the document Oshadha Yohan

Kariyawasan, Robin
Nadeau, My-An
Nguyen, Natalie
Villanueva

Table of Contents

O 1 oo [T o o TSRS 3
1.1 U] 0T L PRSP 3
1.2 RS To 0] o1 TSP RTOTPP PP 3
1.3 Definitions, Acronyms, and Abbreviationsccccocveveiiie s 3
14 RETEIEINCES ... et e et s be e s te e s be e s a b e e abeebeesbeesbee e 3
15 L@ 1T V= PSS 4

2. Architectural RepreSENTAtiONcccccvvii it 5

3. Architectural Goals and CONSTIAINTS..........ccooiiiriiieieirie e 6

A, USE-CASE VIEBW ..c.viiiiiiiie ettt ettt et ste et be e st e st e e te e s be e s te e sbeesabe s abeeabeenbeeebesebeeeteeenteentee e 7
4.1 Architecturally SignifiCant USE CASESccoiveiirieiiieee et 7

4.1.1 ASSIQI TASK/SUDIASK............ccveiviiieiie ittt 7
4.1.2 A NeW TASK/SUBDIASKccccooouiiiiiiiiiiiiist e 8
4.1.3 MOGITY TASK/SUBDIASKocoiiiiiiiiiiiiiieeses s 8
4.14 Delete TASK/SUDIASK.............cccoooeeiiiiiiiieee ettt 8
4.1.5 ADPLY CAEEGOLYccooeceeeeieeie st s et e e nae s 8
4.1.6 AQQ CAEEGONY ..ottt 8
4.1.7 DEICLE CAIEQOIY..........ccoecveeiie et 8
4.1.8 MOGUTY CALEGONY ...t 8
4.1.9 AGA TO-DO TEOIM ...ttt e 9
4.1.10 MOGUTY TODO TEEIM..........covecvveieeie ettt se s 9
4.1.11 DeIete TO-DO TUEIM...........ccooeeieiiiii ittt 9
4.1.12 View TaSK/SUDIASK PrOGIESScccouiiiiiiiiiisiii sttt 9
4.1.13 AGG JOUINIA] ENETY ..ottt 9
4.1.14 MOGITY JOUINIAI ETTELYc.ooecoveieiiieie et see s st te et 9
4.1.15 Delete JOUINAI ENITYc.ccooouiciiiiiiieie i se ettt 9

5. LOGICAI VIBW ...ttt 10
5.1 OVEBIVIBW ...ttt ettt ettt e et s e saeeteen b e seeese e besteeneeseeeseeseeereeneenaeenees 10
5.2 Architecturally Significant Design Packagesccccveeveviinieenecnee e sie e 11

521 Front Controller + COMUMANGScccccoooioiiiiiieienie e 11
522 TEMPIALE VIBW ...ttt sttt 12
523 DaAtQ MEPPELcc.vveieiiiiiiiii e 13
524 HEIDEL ..ottt ettt 14
525 DOMAIN MOGEL..............ccccoooiiiiiiiiiiiiieee e 15
526 TDG ...ttt ettt bbb s 17
5.3 Use-Case REANZALIONScciiii et 18

LT o o To =T YT PSR 19

N 1= T o1 [0V 4 1= 0 Y1 RS PR 20

8. IMPIEMENTALION VIBW....c.oiiiiciieie ettt st st ste e e 21
8.1 (01 11T o A= o [TSRS RS 21
8.2 BT =T =T o PP SSURTPSPR 21

LS B D - = N OO PR 22

1.1

1.2

1.3

1.4

1. Introduction

Purpose

This document provides an overview of the architecture of the Task Manager
system. It embodies the significant decisions that were made concerning the
architecture of the application.

Scope

This Software Architecture Document gives a global view of the architecture of
the Task Manager System using the “5 + 1” view model and the template found
on the SOEN344 course website. This system is developed by a team of six
students registered in the SOEN390 Software Project course.

The Task Manager provides users with the ability to manage and categorize their
tasks, track their progress, and create a list of general things to do. All of those
features are available to the users wherever they can find a computer with an
Internet connection.

Definitions, Acronyms, and Abbreviations

HTML = Hypertext Markup Language.
JSP = Java Server Pages.

TA = Teacher’s Assistant.

TDG = Table Data Gateway.

Ul = User Interface.

SOEN342 = Software Requirements course.
SOEN343 = Software Design course.

SOEN344 = Software Architecture course.
SOEN357 = User Interface Design course.
SOEN390 = Software Development Project course.

References

“SOEN 344, Software Architecture” SOEN344 Course Page [Website] Accessible:
http://www.cs.concordia.ca/~chalin/courses/06W/SOEN344/. Accessed
February 9, 2006.

“The Servlet Life Cycle” Java Servlet Programming [Website] Accessible:
http://www.unix.org.ua/orelly/java-ent/servlet/ch03_01.htm. Accessed

http://www.cs.concordia.ca/%7Echalin/courses/06W/SOEN344/
http://www.unix.org.ua/orelly/java-ent/servlet/ch03_01.htm

1.5

February 26, 2006.

Fowler, Martin. Patterns of Enterprise Application Architecture. Boston: Pearson
Education, 2003

Overview

In compliance with the specified purpose and scope, the rest of this document
will deal with the following topics: The Architectural Representation used to
describe the system, namely the “5 + 1” view model; The Architectural Goals
and Constraints of the Task Manager; The Use Case View; The Logical View; The
Process View; The Deployment View and The Implementation View.

Architectural Representation

The architecture is represented in this document as a set of five views: the Use
Case view, the Logical view, the Process view, the Deployment view, and the
Implementation view.

The Use Case view presents the architecturally significant use cases.

The Logical view focuses on the functional requirements of the system.

The Process view presents the allocation of the Logical view components to
processes or tasks.

The Deployment view shows the allocation of the Logical view elements to
hardware.

The Implementation view is the actual organization of the software. It allocates
the Logical view elements to implementation components.

The Data view describes the persistent data storage perspective of the system.

Architectural Goals and Constraints

There are a number of goals and constraints that impact the design and
architecture of the Task Manager.

1.

The Task Manager is developed as part of the SOEN390 course, which, in
turn, is intended to be the amalgamation of concepts studied in SOEN342,
SOEN343, SOEN344, and SOEN357. Therefore, the system’s design will
follow a layered, client-server architecture and apply a proper subset of Web
Enterprise Application patterns, in addition to using good Ul design practices.

The development environment provided consists of the Java software
development kit (J2SE 1.4.x), Eclipse, Apache Tomcat Server (4.1.x), MySQL
database, and common web server. This environment strongly suggests that
the Task Manager should, and will, be implemented as a web application
using JSP and Servlets.

The configuration of the layered architecture is determined by the
TaskManBase.zip provided by Stuart Thiel. The login functionality is also
provided by him and, therefore, must be integrated within the design.

The Task Manager application is dependent on the server on which it runs,
Stu. Its performance must be optimized for that server, but its availability is
dependent on Stu’s up-time.

The Stu server has some security policies that limit the implementation and
the features of the application. Namely, Stu does not allow one to send
emails from it; therefore, the Task Manager cannot send email notifications.
Also, the JSP cannot directly access the database, nor can it call any methods
that directly access the database.

Since the Task Manager is an online application, users must have at least a
basic Internet connection and a web browser that supports pages with
JavaScript, Cascading Style Sheets and HTML 4.01 Transitional.

The Task Manager must ensure a degree of security and privacy; therefore,
all users are required to log in with their unique username and password.

The Task Manager must ensure that concurrent operations on the system do
not cause any errors in the data or transactions.

All functional and non-functional requirements mentioned in the Vision
Document and Supplementary Requirements and Specification Document
must be taken into consideration as the architecture is being developed.

4. Use-Case View

This Use Case view will be used to present the architecturally significant use
cases and identify the set of scenarios and use cases that represent important
and fundamental functionalities of the system.

4.1 Architecturally significant use cases

The architecturally significant use cases are those highlighted in blue in the
following diagram:

Task Manager System
Add New
=M TaskiSubtask Seextend>>
N

=<include>> _ —~
- - e
- - - Assign Task/Subtask
- 0 -
- SR Modify Task/Subtask f Z<axtend>>

— = { Delete TaskiSublask

Manage
Tasks/Subtasks
T =~ =<include>>
-~ -
-<axlands; ~a T
View Tasks/Subtasks & — — V'E“‘ Task by R =~ oy Mark Task/Subtask
ategory ~ st_lndude» Do

<<includes= . — —4 Add Category

-
-~
-~
-~
-
~
-~
-)

I

I
z
. ..=
®

Apply Category

Manage Category

Higrarchies — — _ _ <<include>>

- T = =4 Delete Catagory

~ .
= exinclude>>

i/
4
/

-~

Wiew To-Do List

Modify Ca

i

Professors, Students, Tutors al arl
<<include>3; Add To-Do ltem

Wiew Task/Subtask

-

Manage To-Do List — — —3 Modify To-Da ltem

~
b
<<includes>
RS

<
-
N
N
~
T---
) -
N
-
-
-
~

&
%
=
)
v
|
lI !

Add Journal Entry

- -
< - -
N <|nrJLft§v; P
Delets To-Do ltem Pt PPt
View Journal _ -7 esincludesz. = 7
Entries P —— Modify Joumal
- - =
- —~ -
- - <<include> -7
- - include>> _ - —

=T -

<=include>> Delets Journal

77777777777777777777777777777777 Eniry

\
\
b
. ..E‘ .. .3
< g

Perform Progress
Journaling

Figure 1. Architecturally Significant Use Case Diagram

4.1.1 Assign Task/Subtask

This use case occurs when a user of the system wishes to assign a
task/subtask to himself or another user. The user delegates a task to a
user and the assignee must be aware of the new assignment.

4.1.2 Add New Task/Subtask

This use case occurs when a user wants to create a new task/subtask.
The user must be able to break down a big task into smaller, more
manageable tasks and, for each task, track its progress.

4.1.3 Modify Task/Subtask

This use case occurs when users want to modify a task/subtask that they
have created or that had been assigned to them by someone else. In
modifying the task/subtask, the system will allow the users to enter their
progress and, thereby, manage and track their advancement.

4.1.4 Delete Task/Subtask

This use case allows users to delete a task or subtask that they have
created. The users cannot delete a task that they have not created. If
he/she deletes a task that has subtasks, then the task and all of its
subtasks are deleted too.

4.1.5 Apply Category

See group8d’'s Use Case Model — “Use Case: Apply a Category to a Task”

4.1.6 Add Category

See group8d’s Use Case Model — “Use Case: Manage Categories”

4.1.7 Delete Category

See group8d’'s Use Case Model — “Use Case: Manage Categories”

4.1.8 Modify Category

This use case allows users to modify a category that they have created.
They can change the category’s hame and specify a different location for
it in the category hierarchy.

4.1.9 Add To-Do Item

This use case lets users add a new To-do item to their list of To-do items.

4.1.10 Modify To-Do Item

This use case allows users to modify a To-do item.

4.1.11 Delete To-Do Item

This use case allows users to delete a To-do item.

4.1.12 View Task/Subtask Progress

This use case occurs when users wish to view their progress for a
particular task/subtask. The progress is calculated from the journal
entries’ inputted information.

4.1.13 Add Journal Entry

See group8d’'s Use Case Model — “Use Case: Manage Journal Entry”

4.1.14 Modify Journal Entry

See group8d’s Use Case Model — “Use Case: Manage Journal Entry”

4.1.15 Delete Journal Entry

See group8d’s Use Case Model — “Use Case: Manage Journal Entry”

5. Logical View

This Logical View of the Task Manager is used to visualize how the functional
requirements are satisfied in the system.

5.1 Overview

The Task Manager follows the client-server architecture and the server’s
architecture is based on the layered style. The application is decomposed into six
packages, which are split between three layers in the following manner:

Presentation Layer
Front Controller + Commands | } Template View
T Ay 5
i N S b
D)
1 - A\
i * . N 5
1 3 “
Domain anic Layer \\ o . \
[* i \\
Presentation Layer | ~ ~3y
Data Mapper Helper Domain Model
| ===y T pe=-- >
| ~
| Y T - -7
W \ e - =
kY
kY
Domain Logic Layer N
\
N
I N
: Data Source Layer \\
_| | \\
A4 -y
TDG
Data Source Layer

Figure 2. Logical View — Packages

Each layer is represented as a package itself.

Presentation Layer

The Presentation Layer manages the interactions between the user and the Task
Manager system. It displays the information to its user, accepts commands from
the user, and passes on the requests to the Domain Logic Layer. No business
logic operation should be performed in this layer and this layer is only dependent
on the components of the Domain Logic Layer.

10

Domain Logic Layer

The Domain Logic Layer contains components that are related to the business
logic of the system, such as data processing and database manipulation. This
layer acts as a bridge between the Presentation Layer and the Data Source Layer
and is only dependent on the components of the Data Source Layer.

Data Source Layer

The Data Source Layer abstracts transactions with the database. This layer is
responsible for storing, retrieving, and modifying data.

Architecturally Significant Design Packages
5.2.1 Front Controller + Commands

This package receives all requests from the Task Manager website and
dispatches to the appropriate commands to handle the request.

TaskManServiet

Commands

Front Controller Package

AddCategory Login
[ISP_LOGIN_JSP - string = "JSP/Login jsp"
+execute(in req: HitpServietRequest, in resp: HipServietResponse) - void FSUCCESSFUL_LOGIN_JSF : string = "JSP/LoggedIn.jsp"
+Login() : vold
Hexecutalin req: HitpServietRequest, in resp: HitpServietResponsa) @ void
AddJournalEntry
Logout
in req: Hitp! AetReq , in resp: HitpServietResponse) | void LJSP_LOGIN_JSP : string = "JSP/Login jsp"

+Logout) : void
Hexecute(in req: HitpServietRequest, in resp: HitpServietResponse) : void

AddTask

MarkAsDone

Hexecute(in req: HitpSendetRequest, in resp: HitpServletResponse) : void

Fexecute(in req: HitpServietRequest, in resp: HitpServietResponse) : void

AddUser

ModifyTask

+AddUser() : void
+execute(in req: HitpServietRequest, In resp: HilpSaervletRespanse) © vold

Hexecute(in req: HitpServietRequest, in resp: HitpServietResponse) : void

DeleteTask

ViewAllTask

+execute(in req: HitpServietRequest, in resp: HitpServietResponse) © void

+executelin req: HitpServietRequest, in resp: HitpServietResponse) : void

DeleteUser

ViewDelegatedTask
+Deletellser) : void
+execute(in req: HitpSen quest, in resp: HitpServietf - vioid Hexecute(in req: HitpServietRequest, in resp: HitpServietResponse) : void
ListUsers ViewJournal
FISP ; sting = "JSPiListUsers. jsp"
+ListUsers() : void Haxeculelin req: HitpServietRequest, in resp: HitpServielResponse) : void

+execute(in req: HitpServietRequest, In resp: HilpSaervletRespanse) © vold

Commands Package within the Front Controller Package

Figure 3. Contents of the Front Controller + Commands Package

11

Class Description

TaskManServlet Receive all the requests from the users and
dispatches to the appropriate commands to
handle them.

AddCategory Provides the functionality to add a new category.

AddJournalEntry Provides the functionality to add a new journal
entry for a task.

AddTask Provides the functionality to add a new task.

AddUser Provides the functionality to add a new user.

DeleteTask Provides the functionality to delete a task.

DeleteUser Provides the functionality to delete a user.

ListUsers Provides the functionality to view a list of users.

Login Provides the functionality to log in to the Task
Manager.

Logout Provides the functionality to log out of the Task
Manager.

MarkAsDone Provides the functionality to mark a task as
completed.

ModifyTask Provides the functionality to modify a task.

ViewAllTask Provides the functionality to view all tasks
assigned to the user currently logged on.

ViewDelegatedTask | Provides the functionality to view all tasks that the
user currently logged on has assigned to others.

ViewJournal Provides the functionality to view the journal
entries associated with a task.

Each command is independent from each other, but each depends on a helper
object and the corresponding Domain Model and Data Mapper classes.

5.2.2 Template View

This package renders the information onto an HTML web page using JSP.

12

AddUser.jsp Error.jsp

Loggedin.jsp style.css

ViewJournal jsp

ListUsers.jsp Login.jsp

TaskManager.jsp ViewCategory.jsp

Figure 4. Contents of the Template View

File Description
AddUser.jsp Provides the user interface for adding a new user.
Error.jsp Provides the user interface when an error has

occurred in a transaction.

ListUsers.jsp

Provides the user interface for listing users.

Login.jsp

Provides the user interface for logging in.

LoggedIn.jsp

Provides the user interface for after a user has
logged in.

style.css Determines the style and look of each page.

TaskManager.jsp Provides the user interface for the main Task
Manager page.

ViewCategory.jsp Provides the user interface for viewing categories.

ViewJournal.jsp

Provides the user interface for viewing a journal.

5.2.3 Data Mapper

This package acts as a go-between between the Domain Model and the
Gateway or database itself by reconciling differences between the object

oriented and the relational model of data.

13

TaskMapper

-TaskMapper() : void

JournalMapper

“loadTaskiin rs : ResuliSetl) : Taskinterface

-applyCategory(in task : TaskMapper, in user - IUser) - void
Hdelete(in task : Taskinterface) : void

-JoumalMapper{) : void

-loadJoumalEntry(in rs - ResultSet) : JournalEntry
HoadJournalEntries(in rs | ResultSet) : Journal

+Hind{in task : Taskinterface, in user : IUser) : Journal
+findByld(in id : long) : Journal

+HindAll{) - List<JournalEntry>

+HindANENtriesByUserd(in user . IUser) : List<JoumalEntry=

+update(in task : Taskinterface, in user : IUser) : void

+insertJournalEntry(in task : Taskinterface, in user ; User) : void +updatae(in lask : Taskinterface) | void

+findiin taskld : long, in userld : long) : Taskintesface

HindAIChild Tasks{in taskid : long, in userld : long) : List<Taskinterface>
insert(in task : Taskinterface) : void

+findAllAssignedTaolin user : |User) : List<Taskinterface>
+findAlriginatedBy({in user : IUser) : List<TaskInterface=>
+indAllOriginatedByOrAssignedTolin user : IUser) - List<lUser=
+HindAllAssigneesiin taskld - long) : List=|User=

+assigneeUpdate(in task : Taskinterface, in user : |User) : void

HaddAssignee(in task | Taskinterface, in user - IUser) - void

- e =
A

CategoryMapper UserMapper
l-CategoryMapper() : woid FUsarhapgper() : void
-loadCategory(in rs | ResultSet) - void HioadUser(in rs : ResuliSet) : Taskinterface
+delete(in cat - Categorylnterface) : void raddUser(in |User u) ; void
+HindCatOwnedBy(in user : IUser) : List=Categorylnterfaces Hdeletelser(in IUser u) : void
+HindByTaskldAndUserld(in taskld : lang, in userld : long) : List=Categorylmeaces HindByMame(in name : string) : Taskinterface
+HindANChildran(in catld : long) : List<Categorylnterface= HfindByld() : Taskinterfaca
+update(in cat : Categorylnterface) : void HfindAllUsers() : List<TaskInterface=
+inseri{in cat - Categorylnterface, in userld ; long) : void

Figure 5. Contents of the Data Mapper package

Class

Description

CategoryMapper

Maps the Category objects to the Category Table
Data Gateway database accessor.

JournalMapper

Maps the Journal objects to the Journal Table
Data Gateway database accessor.

TaskMapper Maps the Task objects to the Task Table Data
Gateway and UserTask Table Data Gateway
database accessors.

UserMapper Maps the User objects to the User Table Data

Gateway database accessor.

Each class in the Data Mapper package depends on TDG classes.

5.2.4 Helper

This package acts as a go-between between the Presentation Layer and
Domain Logic Layer by wrapping one or more objects from the Domain
Model into a single Helper object to ease the passing of data in the

presentation.

14

TaskManHelper

-newlrselectedTask: Task
-status ; sting

Huser

-askList: List<Tasklnterface=
-categorylist: List<Categoryinterface=
FuserList; List</Usear=

Houmal: Jaurmal
+TaskManHelper()
+appendStatus(in s ; string) ; void
+oetTaskTitlel) - string
+getMavigationfMenu) : string
+getTaskhenu() : string
+getAddFieldsSimplel) : string
+oetdddFieldsAdvanced|) ; string
+oetChildTasks() : string
-buildRow) - string

Figure 6. Contents of the Helper package®

Class Description
TaskManHelper Wraps one or more Task and User objects to be
passed between the Presentation and Domain
Logic Layer.

5.2.5 Domain Model

This package provides an object model of the domain in which the Task
Manager operates. The model incorporates the attributes and behaviour
needed into the appropriate objects.

! The getters and setters for each attribute of are omitted from the diagram.

15

«interfaces
UsarProwy _ IUser
o < int ===
+UserPraxy(in id : long) : void Yk\
Ay
Ay
1 -Bssigrer Ay
childTasks 1. -parentTasks 0.1 1 Y
User
Task FUsername : string
ey FPassword ; string
:la:kNémoengs.trin +addUserTaskassignedTo(in aTask @ Taskinterface) @ void
— mskDescrI;I:tlon -gstrlng +addUserTaskOriginatedBy(in aTask : Taskinterface) : :E:d
winterfaces | 4 : +addUserC: ies(in someCat : Ca Interface] : woid
Taskinterface L L [-status @ string Ategories| 12901y !
— ™ =j-deleted : bool]
-priority : string ol N
/I\ loreationDate ; string absignees
I [startDate : string
| |-dueDate : string I Inatad®
-projectedTime © int keOriginatedBy
| fimeSpent : int
I Fassigner : |User -
[lassignees : List<IUsar= -lasksAssignedTo
[|-categories : List <Categoryinterface=
[oumnal © Journal
) +Taskiin Al Allibules) .
| [[+Taskiin aTaskld : long, in aTaskMName : string) - void
1 1 +addAsChild(in aChild : Taskinterface) : void 1
] +addCategory(in aCategory - Categoryinterface) - void -referencedTasks
I +removeCategonyin aCategory ; Categorylnterface) ; void
| +removeChild(in aChild : Taskinterface) : void - -categories
1 +addAssigneslin anAssignee © IUsear) void "
]] winterfaces
I Categorylnterface e
I ~ e
-
I| Journal N > =
| Cournalld | long f’ CategoryProxy g
! HJoumal() ' Foategoryld © long o
Ir +addJournalEntry(in alournalEntry : JoumalEntry) ! H+CategoryProxy(in aCatld : long) : void §
I I'r
1 1 |
TaskProxy
[Taskid ; long Categary
FTaskProxy(in aTaskid : long) | void reategoryld : long
FoategoryName : string
— HparentCatagory | Categorylnterface
treferencedTasks : List<Taskinterface>
+Category(in aCatld : long, in aCatName : string, in aParentCat | Categorylnterface) - void

+addChildCategory(in aCategory : Categorylnterface) : vold

-journal 1

+removeChildCategory(in aCategory © Category) @ void
+addReferencedTask(in aReferencedTask © Task) : void
+removeReferencedTask(in aReferencedTask : Task) : void

- -journalEntries

-childCategories

JournalEntry

FHournalEniryld : long
+dateOfEntry @ string
HimeSpent - long

Fsubject ; string

FournalEntry - string
+JournalEntry(in ald : keng, in aSubject : string, in aDate : string, in aTimeSpent : leng, in anEntry : siring) : void

Figure 7. Contents of the Domain Model package.?

Class Description
Category Models the attributes and behaviour of a
Category.
Journal Models the attributes and behaviour of a Journal.
A Journal object contains one or more Journal

% The getters and setters for each attribute of each class are omitted.

16

Entries and is associated to one particular Task.

JournalEntry Models the attributes and behaviour of a Journal
Entry. A Journal Entry is contained within a
Journal and has information concerning the
progress of a Task.

Task Models the attributes and behaviour of a Task.

IUser Provides the interface for the User object model.

User Models the attributes and behaviour of a User.

UserProxy Models the attributes and behaviour of a
temporary placeholder for a real User object. This
is needed for Lazy Loading.

5.2.6 TDG

This package provides access to the database.

UserTDG

-TABLE_NAME : string = "Usars"

Hinsert(in name : string, in passwerd ! string) : int
Hind(in name : siring) : ResultSet

+Hind(in id : long) : ResultSet

HindAll() | ResultSet

Hdelete(in id : int) : int

UserTaskTDG

-TABLE_MAME : string = "UserTasks"

+insert{in userld : long, in taskld - long, in taskMame : stang, in parentld : lona) ; int
+insert(in .. &l TeskAttibutes) - int

+delata(in userld ; long, in taskld - long) : int

+update(in .. allTaskatributes) | int

+find{in taskld : long, inuserld : long) © ResuliSet

HindAssignees(in taskld ; lona) | ResuliSel

+HindByParent(in taskid : keng) @ ResultSet

CategoryTDG

CountersTDG

-TABLE_NAME : string = "Category™
- TABLE_NAME_TWO : siring = "TaskCat"

-TABLE_NAME : siring = "Counters"
tinsert{in name : string) : int

+delete(in catld ; long) - int

+HindAll() : ResultSet

HindCatOwnedBy(in userd : long) : ResultSet
HindANChildren{in catld - long) : ResuliSet
+find(in catld : long) | ResultSet

Hinsert(in catld : long, in id - long. in catMame : string. in parentld : long) : int

+update(in catName : stnng, in parentld : long, in catld © long) © int

+HindByTask|dAndUserld(in taskld ; long, in userld ; lona) : ResultSet

+delete(in name @ string}) © int

TaskCatTDG
-TABLE_NAME : siring = "TaskCat"

+insert(in taskld : long, in catld : long) : int
+delete(in taskld | long, in catld - long) : int

+Hind TaskByCat(in catld ! long) : ResultSet

JourmnalTDG

-TABLE_NAME : string = "Joumal"

+Hind(in taskld : long, In userld @ long) : ResultSat
HindByld(in journalld : long) | ResultSet

HfindAll{in catld : long) : ResuliSet
HfindAllEntriesByUserld(in userid : long) : ResultSet

Hinsert(in joumalld : leng, in taskld - long. in subject : string. in joumalEntry © string. in dateEntry : string. in timaSpent - long) @ int
+update(in jourralld ; long, in taskld ; long, in userld : long, in subject : string, in journalErtry ; strng, in dateEntry ; sting, in timeSpent ; long) « int

TaskTDG

-TABLE_NAME : string = "Task"
-TABLE NAME_TWO : slring = "UserTasks"
FTABLE_NAME_THREE : string = "Users"

+Hnsert(in ...allTaskAtributes) @ int

Hupdate(in ...alTaskAttrbutes) - int

Hdelete(in taskld : long) @ int

+Hind(in taskid ; long, in userld : long) ; ResultSet

HindAll() : ResultSet
HHindAllAssignedTolin userld : long) : ResultSet
HindANlOriginatedBy(in userld : long) : ResuliSet

+HindByParent(in parertld ; long, in userld ; long) : ResultSet

+HindAllOrginatedByCrassignedTa(in userld : long) : ResultSst

Figure 8. Contents of the TDG package

17

5.3

Class Description

CategoryTDG Provides access to the Category table.
JournalTDG Provides access to the Journal table.
TaskCatTDG Provides access to the TaskCat table.

The TaskCat table establishes the relationship
between a Task and a Category (a Task can have
Categories associated with it)

TaskTDG Provides access to the Task table.

UserTaskTDG Provides access to the UserTask table.
The UserTask table establishes the relationship
between a User and a Task.

UserTDG Provides access to the Users table.

Each class in the TDG package is independent from each other, but each is relied
upon by the appropriate class in the Data Mapper package.

Use-Case Realizations

This section will describe the realization of the architecturally significant use case
Add New Task, and how the packages contribute to its functionality.

Use case: Add a New Task
Refer to group8d’'s Use Case Model — Task Management Use Cases: Add a
new Task (page 8).

In this use case, the user interacts directly with components of the Presentation
Layer and that action propagates through the Domain Logic and Data Source
Layers.

The user interacts with the graphical user interface (TaskManager.jsp), filling the
form to add a new task and indicates to the system that he/she wants to add
that new task by invoking the AddTask command through the web page.

The AddTask command constructs a new Task object and calls on the
TaskMapper to insert it into the database.

The TaskMapper then extracts the information from the Task object and calls on
the TaskTDG to insert the appropriate tuple into the database. If there is more
than one assignee, then the TaskMapper will call on the TaskTDG to insert a
tuple for each.

After successfully inserting the task into the database, the flow of the program

returns to the AddTask command which will call upon the Mapper to construct an
updated list of the logged in user’s tasks, list of other users of the system, and

18

list of the logged in user's categories and store them in the helper. The
command then forwards this helper to the TaskManager.jsp where the page will
be refreshed with an updated list of tasks.

If the transaction was not successful, then the command would forward the
control to the Error.jsp page.

Process View

This Process View will be used to visualize the system’s decomposition into
threads and processes. The Task Manager will run on Stu, a server provided to
us by Concordia University. It is a multi-threaded application, where each user
request via an Internet browser spawns a new thread to be handled by a single
servlet. The system will ensure a certain level of concurrency control.

Stu Web Server (stu02.encs.concordia.ca)

<<Process>>

Task Manager

<=Process>>

‘Web Browser

Task Manager

<<Process>>

Web Browser

Creates 3 Request

" Creates a Request. .

-

Creates 3 Request

Creates

4 v
<<Process=> / _Creates

Task Manager Servlat

Creates

=<<Thread=>>

)

=<Thread=>

Task Manager Page Request

Task Manager Page Request |\

S

<<Thread>>

Task Manager Page Request

Accesses

Accesses

ACCasses

Task Manager MySQL

Database

Figure 9. Process View

19

Deployment View

This Deployment View is used to show how the Task Manager application is to be
deployed upon hardware and how tasks are distributed over the hardware. There
is only one configuration possible for the Task Manager. The system will be
deployed on the Stu server and accessed via an Internet browser from any
computer that can be connected to the Web.

Client's laptop or desktop
Stu Server (stu02.encs.concordia.ca)

Internet Browser

Task Manager System

Internet Connection

. :‘ Web Server (Apache +
Client’s laptop or desktop - Tomcat 4 1)
Internet Connection
- d MySOL database

Intemet Browser

Figure 10. Deployment View

Stu Web Server (stu02.encs.concordia.ca)

<<Process=>
<<Procass>> ST
Wab Browser |Creates a Raquest—m| |Creates.

Task Manager Servist

Task Manager MySQL
Database

Process
View

Task Manager Page
Request

Task Manager

\
!

\

\

‘ .

W

Internet Connection——s=

Task Manager System

View

Internet Browser

Deployment

MySQL database

- Web Server (Apachs +
Client's laptop or desktop Tomeat 4.1)

Stu Server (stu02.encs.concordia.ca)

Figure 11. Mapping of the Process View to the Deployment View

20

8.

8.1

8.2

Implementation View

This Implementation View describes the overall structure of the implementation
of the Task Manager.

Client side

On the client side of the system, only the Mozilla web browsers with JavaScript
enabled and supporting CSS will be supported.

Server side

In terms of third party packages, Apache + Tomcat 4.1 shall be used as web
server and MySQL shall be selected as the database system.

The implementation shall be done using Java Servlet and Java Server Pages
technology, in addition to using web programming languages for the interface,
such as HTML, JavaScript, and Cascading Style Sheets (CSS). Various Java
libraries will also be used, as needed, namely “java.util” and “java.sql”.

All three layers mentioned in the Logical View shall be represented as a different
folder in the source tree and shall make use of a package that was provided to
us by the teacher’'s assistant called “org.dsrg” which contains miscellaneous
complementary functionalities for our system, such as a Unique ID Factory. Each
layer will have subfolders representing the different Enterprise Application
pattern packages mentioned in the Logical View.

.Jjava and .class files shall be kept in separate directories.

21

9. Data View

The database provides persistence for all data input into the Task Manager. The
schema in which the relevant data is represented is as illustrated in the E/R

diagram below.

fore] . ,
priority X

Journal

taskld starDate M,

\,

O\
(taskNarre)—(pmjec‘tedﬂme>\ RN
‘-.\ \\ ‘.\
1
mskDesaipLion) timeSpent }._____ \
status) parentid >-_

UserTasks

YD
N

taskld

taskMNamea

/’ hY
/’ \\
/ ‘\
,J, \\
/ \,
4 '\ ™,
/ A
/ \
V. \ \
Usars Y

Category
g

Figurel2. E/R Diagram for the Task Manager’s database

22

	1. Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Definitions, Acronyms, and Abbreviations
	1.4 References
	1.5 Overview

	 2. Architectural Representation
	 3. Architectural Goals and Constraints
	 4. Use-Case View
	4.1 Architecturally significant use cases
	4.1.1 Assign Task/Subtask
	4.1.2 Add New Task/Subtask
	4.1.3 Modify Task/Subtask
	4.1.4 Delete Task/Subtask
	4.1.5 Apply Category
	4.1.6 Add Category
	4.1.7 Delete Category
	4.1.8 Modify Category
	4.1.9 Add To-Do Item
	4.1.10 Modify To-Do Item
	4.1.11 Delete To-Do Item
	4.1.12 View Task/Subtask Progress
	4.1.13 Add Journal Entry
	4.1.14 Modify Journal Entry
	4.1.15 Delete Journal Entry

	5. Logical View
	5.1 Overview
	5.2 Architecturally Significant Design Packages
	5.2.1 Front Controller + Commands
	5.2.2 Template View
	5.2.3 Data Mapper
	5.2.4 Helper
	5.2.5 Domain Model
	5.2.6 TDG

	5.3 Use-Case Realizations

	6. Process View
	7. Deployment View
	8. Implementation View
	8.1 Client side
	8.2 Server side

	9. Data View

