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2.2 PrrEs AND FILTERS

In a pipe-and-filter style each component has a set of inputs and a set of outputs. A compo-
nent reads streams of data on its inputs and produces streams of data on its outputs. This is
usually accomplished by applying a local transformation to the input streams and comput-
ing incrementally, so that output begins before input is consumed. Hence components are
termed filters. The connectors of this style serve as conduits for the streams, transmitting
outputs of one filter to inputs of another. Hence the connectors are termed pipes.

Among the important invariants of the style is the condition that filters must be inde-
pendent entities: in particular, they should not share state with other filters. Another impor-
tant invariant is that filters do not know the identity of their upstream and downstream
filters. Their specifications might restrict what appears on the input pipes or make guaran-
tees about what appears on the output pipes, but they may not identify the components at
the ends of those pipes. Furthermore, the correctness of the output of a pipe-and-filter net-
work should not depend on the order in which the filters perform their incremental pro-
cessing—although fair scheduling can be assumed. (See [AG92, AAG93] for in-depth
treatment of this style and its formal properties.) Figure 2.2 illustrates this style.
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FIGURE 2.2 Pipes and Filters
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Common specializations of this style include pipelines, which restrict the topologies
to linear sequences of filters; bounded pipes, which restrict the amount of data that can
reside on a pipe; and typed pipes, which require that the data passed between two filters
have a well-defined type.

A degenerate case of a pipeline architecture occurs when each filter processes all of its
input data as a single entity.? In this case the architecture becomes a batch sequential sys-
tem. In these systems pipes no longer serve the function of providing a stream of data, and
therefore are largely vestigial. Hence such systems are best treated as instances of a separate
architectural style.

The best-known examples of pipe-and-filter architectures are programs written in
the Unix shell {Bac86]. Unix supports this style by providing a notation for connecting
components (represented as Unix processes) and by providing run-time mechanisms for
implementing pipes. As another well-known example, traditionally compilers have been

- In general, we find that the boundaries of styles can overlap. This should not deter us from identifying
the main features of a stvle with its central examples of use.
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viewed as pipeline systems (though the phases are often not incremental). The stages in the
pipeline include lexical analysis, parsing, semantic analysis, and code generation. (We
return to this example in the case studies.) Other examples of pipes and filters occur in
signal-processing domains [DG90], parallel programming [BAS89], functional program-
ming {Kah74], and distributed systems [BWW88].

Pipe-and-filter systems have a number of nice properties. First, they allow the
designer to understand the overall input/output behavior of a system as a simple composi-
tion of the behaviors of the individual filters. Second, they support reuse: any two filters
can be hooked together, provided they agree on the data that are being transmitted
between them. Third, systems are easy to maintain and enhance: new filters can be added
to existing systems and old filters can be replaced by improved ones. Fourth, they permit
certain kinds of specialized analysis, such as throughput and deadlock analysis. Finally,
they naturally support concurrent execution. Each filter can be implemented as a separate
task and potentially executed in parallet with other filters.

But these systems also have their disadvantages.” First, pipe-and-filter systems often
lead to a batch organization of processing. Although filters can process data incrementally,
they are inherently independent, so the designer must think of each filter as providing a
complete transformation of input data to output data. In particular, because of their trans-
formational character, pipe-and-filter systems are typically not good at handling interac-
tive applications. This problem is most severe when incremental display updates are
required, because the output pattern for incremental updates is radically different from the
pattern for filter output. Second, they may be hampered by having to maintain correspon-
dences between two separate but related streams. Third, depending on the implementa-
tion, they may force a lowest common denominator on data transmission, resulting in
added work for each filter to parse and unparse its data. This, in turn, can lead both to loss
of performance and to increased complexity in writing the filters themselves.

2.3  DATA ABSTRACTION AND OBJECT-ORIENTED ORGANIZATION

In the style based on data abstraction and object-oriented organization, data representa-
tions and their associated primitive operations are encapsulated in an abstract data type or
object. The components of this style are the objects—or, if you will, instances of abstract
data types. Objects are examples of a type of component we call a manager because it is
responsible for preserving the integrity of a resource (here the representation). Objects
interact through function and procedure invocations. Two important aspects of this style
are (1) that an object is responsible for preserving the integrity of its representation (usu-
ally by maintaining some invariant over it}, and (2) that the representation is hidden from
other objects. Figure 2.3 illustrates this style.*

* This is true in spite of the fact that the pipe-and-filter style, like every style, has a set of devout
followers—people who believe that all problems worth solving can best be solved using that particular style.

* We haven’t mentioned inheritance in this description. While inheritance is an important organizing
principle for defining the types of objects in a system, it does not have a direct architectural function. In particu-
lar, in our view, an inheritance relationship is not a connector, since it does not define the interaction between
components in a system. Also, in an architectural setting inheritance of properties is not restricted to object
types—but may include connectors and even architectural styles.
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Note: obj is a manager; op is an invocation.
FIGURE 2.3  Abstract Data Types and Objects

The use of abstract data types, and increasingly the use of object-oriented systems, is,
of course, widespread. There are many variations. For example, some systems allow “objects”
to be concurrent tasks; others allow objects to have multiple interfaces [KG89, Har87b].

Object-oriented systems have many nice properties, most of which are well known.
Because an object hides its representation from its clients, it is possible to change the
implementation without affecting those clients. Additionally, the bundling of a set of
accessing routines with the data they manipulate allows designers to decompose problems
into collections of interacting agents.

But object-oriented systems also have some disadvantages. The most significant is
that in order for one object to interact with another (via procedure call) it must know the
identity of that other object. This is in contrast, for example, to pipe-and-filter systems,
where filters do not need to know what other filters are in the system in order to interact
with them. In object-oriented systems, then, whenever the identity of an object changes it
Is necessary to modify all other objects that explicitly invoke it. In a module-oriented lan-
guage this manifests itself as the need to change the “import” list of every module that uses
the changed module. There can also be side-effect problems: if A uses object B and C also
uses B, then C’s effects on B look like unexpected side effects to A, and vice versa.

2.4 EVENT-BasSeD, IMPLICIT INVOCATION

In a system in which the component interfaces provide a collection of procedures and
functions, such as an object-oriented system, components typically interact with each
other by explicitly invoking those routines. Recently, however, there has been considerable
interest in an alternative integration technique, variously referred to as implicit invocation,
reactive integration, and selective broadcast. This style has historical roots in systems based
on actors [Hew69], constraint satisfaction, daemons, and packet-switched networks.
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The idea behind implicit invocation is that instead of invoking a procedure directly, a
component can announce (or broadcast) one or more events. Other components in the
system can register an interest in an event by associating a procedure with it. When the
event is announced, the system itself invokes all of the procedures that have been registered
for the event. Thus an event announcement “implicitly” causes the invocation of proce-
dures in other modules.

For example, in the Field system [Re190], tools such as editors and variable monitors
register for a debugger’s breakpoint events. When a debugger stops at a breakpoint, it
announces an event that allows the system to automatically invoke procedures of those reg-
istered tools. These procedures might scroll an editor to the appropriate source line or
redisplay the value of monitored variables. In this scheme, the debugger simply announces
an event, but does not know what other tools or actions (if any) are concerned with that
event, or what they will do when that event is announced.

Architecturally speaking, the components in an implicit invocation style are mod-
ules whose interfaces provide both a collection of procedures (as with abstract data types)
and a set of events. Procedures may be called in the usual way, but a component can also
register some of its procedures with events of the system. This will cause these procedures
to be invoked when those events are announced at run time.

The main invariant of this style is that announcers of events do not know which
components will be affected by those events. Thus components cannot make assumptions
about the order of processing, or even about what processing will occur as a result of their
events. For this reason, most implicit invocation systems also include explicit invocation
(i.e., normal procedure call) as a complementary form of interaction.

Examples of systems with implicit invocation mechanisms abound [GKN92]. They
are used in programming environments to integrate tools [Ger89, Rei90], in database man-
agement systems to ensure consistency constraints [Hew69, Bal86], in user interfaces to
separate presentation of data from applications that manage the data [KP88, SBH+83], and
by syntax-directed editors to support incremental semantic checking [HN86, HGN91].

One important benefit of implicit invocation is that it provides strong support for
reuse. Any component can be introduced into a system simply by registering it for the
events of that system. A second benefit is that implicit invocation eases system evolution
[SN92]. Components may be replaced by other components without affecting the inter-
faces of other components in the system.

The primary disadvantage of implicit invocation is that components relinquish con-
trol over the computation performed by the system. When a component announces an
event, it cannot assume other components will respond to it. Moreover, even if it does
know what other components are interested in the events it announces, it cannot rely on
the order in which they are invoked. Another problem concerns exchange of data. Some-
times data can be passed with an event, but in other situations event systems must rely on a
shared repository for interaction. In these cases global performance and resource manage-
ment can become critical issues. Finally, reasoning about correctness can be problematic,
since the meaning of a procedure that announces events will depend on the context of
bindings in which it is invoked. This is in contrast to traditional reasoning about procedure
calls, which need only consider a procedure’s pre- and post-conditions when reasoning
about the functional behavior of its invocation.
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2.5 LAYERED SYSTEMS

A layered system is organized hierarchically, each layer providing service to the layer above it
and serving as a client to the layer below. In some layered systems inner layers are hidden
from all except the adjacent outer layer, except for certain functions carefully selected for
export. Thus in these systerns the components implement a virtual machine at some layer in
the hierarchy. (In other layered systems the layers may be only partially opaque.) The con-
nectors are defined by the protocols that determine how the layers will interact. Topological
constraints include limiting interactions to adjacent layers. Figure 2.4 illustrates this style.
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The most widely known examples of this kind of architectural style are layered com-
munication protocols [McC91]. In such applications each layer provides a substrate for
communication at some level of abstraction. Lower levels define lower levels of interaction,
the lowest typically being defined by hardware connections. Other application areas for
this style include database systems and operating systems [BO92, FO85, LS79].

Layered systems have several desirable properties. First, they support designs based on
increasing levels of abstraction. This allows implementors to partition a complex problem
into a sequence of incremental steps. Second, they support enhancement. As with pipelines,
because each layer interacts with at most the layers below and above, changes to the func-
tion of one layer affect at most two other layers. Third, they support reuse. Like abstract data
types, they allow different implementations of the same layer to be used interchangeably,
provided they support the same interfaces to their adjacent layers. This leads to the possibil-
ity of defining standard layer interfaces upon which different implementors can build.
(Good examples are the OSI ISO model and some of the X Window System protocols.)

But layered systems also have disadvantages. Not all systems are easily structured in a
layered fashion. (We will see an example of this later in the case studies of Chapter 3.) And
even if a system can logically be structured in layers, considerations of performance may
require closer coupling between logically high-level functions and their lower-level imple-
mentations. Additionally, it may be quite difficult to find the right levels of abstraction.
This is particularly true for standardized layered models. The communications commu-
nity, for instance, has had some difficulty mapping existing protocols into the ISO frame-
work because many of those protocols bridge several layers.
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2.6 REPOSITORIES

In a repository style there are two quite distinct kinds of components: a central data struc-
ture represents the current state, and a collection of independent components operate on
the central data store. Interactions between the repository and its external components can
vary significantly among systems.

The choice of a control discipline leads to two major subcategories. If the types of
transactions in an input stream trigger selection of processes to execute, the repository can
be a traditional database. On the other hand, if the current state of the central data structure
is the main trigger for selecting processes to execute, the repository can be a blackboard.

Figure 2.5 illustrates a simple view of a blackboard architecture. {We will examine
more detailed models in the case studies.) The blackboard model is usually presented with
three major parts:

1. The knowledge sources: separate, independent parcels of application-dependent knowl-
edge. Interaction among knowledge sources takes place solely through the blackboard.

2. The blackboard data structure: problem-solving state data, organized into an appli-
cation-dependent hierarchy. Knowledge sources make changes to the blackboard
that lead incrementally to a solution to the problem.

3. Control: driven entirely by the state of the blackboard. Knowledge sources respond
opportunistically when changes in the blackboard make them applicable.
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Note: ks is a knowledge source. FIGURE 2.5 The Blackboard

The diagram shows no explicit representation of the control component. Invocation
of a knowledge source (ks) is triggered by the state of the blackboard. The actual locus of
control, and hence its implementation, can be in the knowledge sources, the blackboard, a
separate module, or some combination of these.

Blackboard systems have traditionally been used for applications requiring complex
interpretations of signal processing, such as speech and pattern recognition. Several of
these are surveyed by Nii [Nii86]. They have also appeared in other kinds of systems that
involve shared access to data with loosely coupled agents [ACM90].

There are, of course, many other examples of repository systems. Batch-sequential
systems with global databases are a special case. Programming environments are often
organized as a collection of tools together with a shared repository of programs and pro-
gram fragments [BSS84|. Even applications that have traditionally been viewed as pipeline
architectures may be more accurately interpreted as repository systems. For example, as we
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will see later, while compiler architecture has traditionally been presented as a pipeline, the
“phases” of most modern compilers operate on a base of shared information (symbol
tables, abstract syntax tree, etc.).

2.7 INTERPRETERS

In an interpreter organization a virtual machine is produced in software. An interpreter
includes the pseudoprogram being interpreted and the interpretation engine itself. The
pseudoprogram includes the program itself and the interpreter’s analog of its execution
state (activation record). The interpretation engine includes both the definition of the
interpreter and the current state of its execution. Thus an interpreter generally has four
components: an interpretation engine to do the work, a memory that contains the pseudo-
code to be interpreted, a representation of the control state of the interpretation engine,
and a representation of the current state of the program being simulated (see Figure 2.6).
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FIGURE 2.6 Interpreter

Interpreters are commonly used to build virtual machines that close the gap between
the computing engine expected by the semantics of the program and the computing
engine available in hardware. We occasionally speak of a programming language as provid-
ing, for example, a “virtual Pascal machine.”

2.8 Process CONTROL

Another architectural style is based on process control loops. This system organization is
not widely recognized in the software community; nevertheless it seems to quietly appear
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within designs dominated by other models. Unlike object-oriented or functional designs,
which are characterized by the kinds of components that appear, control-loop designs are
characterized both by the kinds of components involved and the special relations that must
hold among them.

2.8.1 ProOCESS-CONTROL PARADIGMS

Continuous processes of many kinds convert input materials to products with specific
properties by performing operations on the inputs and on intermediate products. The val-
ues of measurable properties of system state (materials, equipment settings, etc.) are called
the variables of the process. Process variables that measure the output materials are called
the controlled variables of the process. The properties of the input materials, intermediate
products, and operations are captured in other process variables. In particular, the manip-
ulated variables are associated with things that can be changed by the control system in
order to regulate the process. (Process variables should not be confused with program vari-
ables.) Figure 2.7 gives some useful definitions.

Process variables. Properties of the process Closed-loop system. System in which

that can be measured; several specific information about process variables is

kinds are often distinguished. used to manipulate a process variable
Controlled variable. Process variable whose to compensate for variations in process

value the system is intended to control. variables and operating conditions.
Input variable. Process variable that mea-  Feedback control system.The controlled

sures an input to the process. variable is measured, and the result is
Manipulated variable. Process variable used to manipulate one or more of the

whose value can be changed by the process variables.

controller. Feedforward control system. Some of
Set point. The desired value for a controlled the process variables are measured,

variable. and anticipated disturbances are com-
Open-loop system. System in which infor- pensated for without waiting for

mation about process variables is not changes in the controlled variable to be

used to adjust the system. visible.

FIGURE 2.7 Process-Control Definitions

The purpose of a control system is to maintain specified properties of the outputs of
the process at (sufficiently near) given reference values called the set points. If the input
materials are pure, if the process is fully defined, and if the operations are completely
repeatable, the process can simply run without surveillance. Such a process is called an
open-loop system. Figure 2.8 shows such a system, a hot-air furnace that uses a constant
burner setting to raise the temperature of the air that passes through. A similar furnace that
uses a timer to turn the burner off and on at fixed intervals is also an open-loop system.

The open-loop assumptions are rarely valid for physical processes in the real world.
More often, properties such as temperature, pressure, and flow rates are monitored, and
their values are used to control the process by changing the settings of apparatus such as
valves, heaters, and chillers. Such systems are called closed-loop systems. A home thermostat
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is a common example: the air temperature at the thermostat is measured, and the furnace
is turned on and off as necessary to maintain the desired temperature (the set point). Fig-
ure 2.9 shows the addition of a thermostat to convert Figure 2.8 to a closed-loop system.
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There are two general forms of closed-loop control. Feedback control, illustrated in
Figure 2.10, adjusts the process according to measurements of the controlled variable. The
important components of a feedback controller are the process definition, the process vari-
ables (including designated input and controlled variables), a sensor to obtain the con-
trolled variable from the physical output, the set point (target value for the controlled
variable), and a control algorithm. Figure 2.9 corresponds to Figure 2.10 as follows: the
furnace with burner is the process; the thermostat is the controller; the return air tempera-
ture is the input variable; the hot air temperature is the controlled variable; the thermostat
setting is the set point; and the temperature sensor is the sensor.
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Feedforward control, shown in Figure 2.11, anticipates future effects on the con-
trolled variable by measuring other process variables whose values may be more timely; it
adjusts the process based on these variables. The important components of a feedforward
controller are essentially the same as for a feedback controller except that the sensor(s)
obtains values of input or intermediate variables. It is valuable when lags in the process
delay the effect of control changes.
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These are simplified models. They do not deal with complexities such as properties of
sensors, transmission delays, and calibration issues. They ignore the response characteristics
of the system, such as gain, lag, and hysteresis. They don’t show how to combine feedforward
and feedback or how to choose which process variables to manipulate. Chemical engineering
provides excellent quantitative models for predicting how processes will react to various con-
trol algorithms; indeed there are a number of standard strategies [P+84, Section 22]. These
are mentioned in Section 3.4.3, but a detailed discussion is beyond the scope of this book.

2.8.2 A SOFTWARE PARADIGM FOR ProcCEss CONTROL

We usually think of software as algorithmic: we compute outputs (or execute continuous
systems) solely on the basis of the inputs. This normal model does not allow for external
perturbations; if noninput values of a computation change spontaneously, this is regarded
as a hardware error. The normal software model corresponds to an open-loop system, and
in most cases it is entirely appropriate. However, when the operating conditions of a soft-
ware system are not completely predictable—especially when the software is operating a
physical system—the purely algorithmic model breaks down. When the execution of a
software system is affected by external disturbances—forces or events that are not directly
visible to or controllable by the software—then a control paradigm should probably be
considered for the software architecture.

An architectural style for software that controls continuous processes can be based
on the process-control model, incorporating the essential parts of a process-control loop:

1. Computational elements: separate the process of interest from the control policy.
+ Process definition, including mechanisms for manipulating some process variables.

- Control algorithm for deciding how to manipulate process variables, including a
model for how the process variables reflect the true state.

2. Data elements: continuously updated process variables and sensors that collect them.

» Process variables, including designated input, controlled, and manipulated vari-
ables, and knowledge of which can be sensed.
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+ Set point, or reference value for controlled variable.
»  Sensors to obtain values of process variables pertinent to control.

3. The control loop paradigm: establishes the relation that the control algorithm exer-
cises. It collects information about the actual and intended states of the process, and
tunes the process variables to drive the actual state toward the intended state.

The two computational elements separate issues about desired functionality from
issues about responses to external disturbances. For a software system, we can bundle the
process and the process variables; that is, we can regard the process definition together
with the process variables and sensors as a single subsystem whose input and controlled
variables are visible in the subsystem interface. We can then bundle the control algorithm
and the set point as a second subsystem; this controller has continuous access to current
values of the set point and the monitored variables. For a feedback system, this will be the
controlled variable. There are two interactions between these major systems: the controller
receives values of process variables from the process, and the controller supplies continu-
ous guidance to the process about changes to the manipulated variables.

The result is a particular kind of dataflow architecture. The primary characteristic of
dataflow architectures is that the components interact by providing data to each other,
each component executing when data is available. Most dataflow architectures involve
independent (often concurrent) processes and pacing that depend on the rates at which
the processes provide data for each other. The control-loop paradigm assumes further that
data related to process variables is updated continuously. Moreover, unlike many dataflow
architectures, which are linear, the control-loop architecture requires a cyclic topology.
Finally, the control loop establishes an intrinsic asymmetry between the control element
and the process element.

2.9 OTHER FAMILIAR ARCHITECTURES

There are numerous other architectural styles and patterns. Some are widespread, and oth-
ers are specific to particular domains. While a detailed treatment is beyond the scope of
this chapter, we briefly note a few of the important categories.

- Distributed processes: Distributed systems have developed a number of common
organizations for multiprocess systems [And91]. Some can be characterized prima-
rily by their topological features, such as ring and star organizations. Others are bet-
ter characterized in terms of the kinds of interprocess protocols that are used for
communication (e.g., heartbeat algorithms).

One common form of distributed system architecture is a clierit-server organization
[Ber92]. In these systems a server represents a process that provides services to other
processes (the clients). Usually the server does not know in advance the identities or
number of clients that will access it at run time. On the other hand, clients know the
identity of a server (or can find it out through some other server) and access it by
remote procedure call.

+ Main program/subroutine organizations: The primary organization of many sys-
tems mirrors the programming language in which the system is written. For lan-
guages without support for modularization, this often results in a system organized



