
SOEN 387
Web-based
Enterprise

Application Design

Stuart Thiel

RESTSOEN 387 Web-based Enterprise
Application Design

Stuart Thiel

Concordia University
Department of Computer & Software Engineering

Fall, 2015

1/16



SOEN 387
Web-based
Enterprise

Application Design

Stuart Thiel

REST

Outline

REST

2/16



SOEN 387
Web-based
Enterprise

Application Design

Stuart Thiel

REST

Starting with Idempotence

I A property whereby subsequent occurrences of the same
thing make no further changes beyond the first
occurrence.

I What happens when an image loads up?

I Should that be Idempotent?

I What else should be Idempotent

3/16



SOEN 387
Web-based
Enterprise

Application Design

Stuart Thiel

REST

HTTP Methods for Idempotence

I GET is suitable for this behaviour

I . . . what about the other methods

I PUT, DELETE, POST?

I If GET is idempotent, what does that imply about
those others?

4/16



SOEN 387
Web-based
Enterprise

Application Design

Stuart Thiel

REST

Is GET Idempotent?

I Actually, no

I That’s just a convention, and a VERY good idea

I So how do we do it?

5/16



SOEN 387
Web-based
Enterprise

Application Design

Stuart Thiel

REST

Idempotence

I A nonce is a good start for determining if a request has
happened before

I . . . unfortunate alternate meaning for that word
I . . . also lots of effort for this

I Just make no changes on GET requests

6/16



SOEN 387
Web-based
Enterprise

Application Design

Stuart Thiel

REST

Requesting Idempotence

I So we access certain pages for GET and other pages for
the other methods?

I Maybe we can rethink how we make requests?

7/16



SOEN 387
Web-based
Enterprise

Application Design

Stuart Thiel

REST

Introducing REST

I REpresentational State Transfer
I Client-Server
I Stateless
I Cacheable
I Layered Sytem
I Code-on-Demand
I Uniform Interface

8/16



SOEN 387
Web-based
Enterprise

Application Design

Stuart Thiel

REST

Do We Need Stateless?

I Technically yes. . .

I People waffle/qualify or ignore Stateless, usually to
work for stuff like logging in while discouraging heavy
caching within the server’s session

9/16



SOEN 387
Web-based
Enterprise

Application Design

Stuart Thiel

REST

Do We Need Code-on-Demand?

I Technically yes. . .

I Code-on-Demand has been tacked on.

I This one is officially optional

I It’s done, but I’m certain that wasn’t always there, and
feels like a bandaid to justify client-side programming
that might otherwise not fit the purists definition of
REST

10/16



SOEN 387
Web-based
Enterprise

Application Design

Stuart Thiel

REST

Do We Need Uniform Interface?

I Technically yes. . .

I Uniform Interface is generally fine and we’ve all been
doing it

I “Hypermedia As The Engine of Application State”
(HATEOAS) suggests more than passing around ids,
URLs are a convention

I Simpler to allow the client to know the fixed entry
points to application which means it knows how to stick
resource ids into URLs

11/16



SOEN 387
Web-based
Enterprise

Application Design

Stuart Thiel

REST

Pure REST?

I It’s like documentation, don’t use it just to use it

I You have to take some time to understand why those
rules exist, why people feel strongly about them

I But realize some people are zealots and in the end you
have to be practical

I The main idea of REST is brilliant, but use it as
conventient

I Understand that you will be shown to not understand
things properly over time, so be ready to learn and
adjust

12/16



SOEN 387
Web-based
Enterprise

Application Design

Stuart Thiel

REST

Practical REST

I Each Domain Object has a URL pattern
I /SpaceTime/Player/1

I GET views the player
I POST updates the player
I DELETE deletes the player

I /SpaceTime/Player/
I GET lists all players
I PUT could register players

I What else could we add?

13/16



SOEN 387
Web-based
Enterprise

Application Design

Stuart Thiel

REST

HTTP Method Purists

I What’s the problem? I use GET for reads and POST for
everything else

I What’s good about using the specific methods?

I Simple support for authorizing Use Cases based on role
at the application level

I Matches well with CRUD approach to Resources

14/16



SOEN 387
Web-based
Enterprise

Application Design

Stuart Thiel

REST

When HTTP Methods Fail

I How about accepting a Challenge in SpaceTime?

I HTTP Methods are dumb for this

I I and others advocate attaching verbs to the resource
URL

I /SpaceTime/Invite/1/Decline

I Could that be done with a post on the Invite resource?

I Which is more flexible?

I Why not always use verbs instead of Methods?

15/16



SOEN 387
Web-based
Enterprise

Application Design

Stuart Thiel

REST

AJAX and REST

I I know we’re skipping most of the Front End

I You’ll note the tests actually pull ids from responses

I AJAX does exactly the same, it just then draws pretty
html/etc

I More importantly, RESTful interfaces have nice support
for pulling small chunks of data

I . . . support for caching commonly requested small
chunks

I e.g. upcoming calendar events json/xml can be a
separate call that is cached

I GREATLY simplifies each request by breaking them up
this way

I GREATLY simplifies server-load

I If you can handle the adventure that is server-side
caching and need it, you get even more power

16/16


	REST

