
SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

SOEN 387 Web-based Enterprise Application

Design

Stuart Thiel

Concordia University

Department of Computer & Software Engineering

Fall, 2015

1/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

Outline

Dependant Mapping

Unit of Work

2/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

Information of Limited Scope

I There is a primary object that we care about in general

I There is information that is only relevant with respect to
that object

I The object is relevant without that information

3/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

Phone Numbers Example

I What if a household is identi�ed by primary phone
number?

I Does this makes sense still?

I Did it support some unseen bias?

4/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

Phone Numbers Example Continued

I A person registers with all their phone numbers

I What happens when we delete that person?

I Note that such relations are often many-to-one

I Does a Phone Number deserve its own object?

I How do we update it?

5/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

Dependant Mapping

I Dependant Mappings depend on id and version of the
instance that references them

I They may not even need their own objects if they are
primitive types

I They are kept in a separate table with a key for the
parent object

I The mapper for the parent object maps the dependant
objects.

I The TDG for the parent object also likely has the SQL
to interact with the dependant objects.

I Modifying dependant objects can mean updating the
version of the parent object.

6/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

Dependant Mapping Class Diagram

7/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

Dependant Mapping Code 1

public static Person find(long id) throws Exception {
if (PersonIdentityMap.has(id))

return PersonIdentityMap.get(id);
ResultSet rs = PersonTDG.find(id);
if (rs.next()) {

List<PhoneNumber> numbers = new Vector<PhoneNumber>();
Person p = new Person(id, rs.getInt("p.version"),

rs.getString("p.name"), rs.getInt("p.age"),
new PersonProxy(rs.getLong("p.buddy")), numbers);

rs.close();
rs = PersonTDG.findPhoneNumbers(id);
while (rs.next()) {

numbers.add(new PhoneNumber(rs.getLong("pn.number")));
}
rs.close();
PersonIdentityMap.put(id, p);
UoW.getCurrent().registerClean(p);
return p;

}
return null;

}

8/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

Dependant Mapping Code 2

public static void insert(Person p) {
PersonTDG.insert(/* ... */ );
insertAllPhoneNumbers(p);

}

public static void update(Person p) {
PersonTDG.update(/* ... */ );
PersonTDG.deletePhoneNumbers(p.getId());
insertAllPhoneNumbers(p);

}

public static void delete(Person p) {
PersonTDG.delete(/* ... */ );
PersonTDG.deletePhoneNumbers(p.getId());

}

private static void insertAllPhoneNumbers(Person p) {
for (PhoneNumber phoneNumber : p.getPhoneNumbers()) {

PersonTDG.insertPhoneNumber(p.getId(),
phoneNumber.getPhoneNumber());

}
}

9/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

How to Manipulate Many Domain Objects?

I What if a Use Case is complex, many things change?

I Some added, some deleted, some updated?

I We need to keep all changes to DB consistent

I We need to be e�cient in our DB requests

10/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

Unit of Work

I A Pure Fabrication to track in-memory objects during a
transaction

I Tracks State

I Ensures Referential integrity

I Commits changes

I One Unit of Work for ALL objects

11/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

Keep Track of In-Memory State

I Clean: same as what is in DB

I New: not in the DB yet

I Removed: should be removed from DB

I Dirty: In-memory is more up-to-date than DB

12/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

Referential Integrity

I Some of you have asked about referential integrity

I In tracking object state, we have an opportunity to
enforce this

I UoW should take care of this

13/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

State Lifecycle

These are the transitions that make sense. . . what about
others?

CleanClean

NewNew RemovedRemoved

DirtyDirty
update

delete
delete

commit

commit

14/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

UoW with Identity Map

I Some of you may have noticed some code from
PersonMapper's �nd method

I What does Identity Map need to function as an Identity
Map?

PersonIdentityMap.put(id, p);

15/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

Identity Map as Interface on UoW

I If UoW tracks clean objects this is an easy solution!

16/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

Avoids Deadlocks

I Database-level integrity constraints can be tricky

I UoW can know necessary order so programmer can
Add/Remove/Update at will

I UoW will make sure all is done in proper order

I Doing all database changes at once is also faster/less
prone to lost updates

17/18



SOEN 387
Web-based
Enterprise
Application
Design

Stuart Thiel

Dependant
Mapping

Unit of Work

UoW and Context

I Since Identity Maps are per-request, should UoW be
per-request?

I Fowler says not always, but thar lies danger. . . LOTS of
shared memory

I Sharing a UoW is worse since it also involves tracking
changes

I Could there be a reason to use two UoWs?

I If Logging/tracing done separately?

I HOWEVER! If you do need to collect changes over
many requests, theoretically this could work

I Avoid if possible (it almost always is)

18/18


	Dependant Mapping
	Unit of Work

