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Credit to Dr. Chalin

• These notes are based on his originals
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Reminders

• Read the material!
• I need your teams today

– Sit with you teammates in class
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HTTP Methods

• How many of them were there?
• Name them.
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HTTP Methods

• GET resource at given URL.
• POST – (simplifying) like a GET with extra 

param.
• HEAD – get header part only.
• TRACE – loopback request message.

• PUT – put info at given URL.
• DELETE given URL.
• OPTIONS – list HTTP methods URL can respond to.
• CONNECT.
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Servlet Classes

• What do they subclass?
• What interface does this subclassing give?
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HttpServlet Interface
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Just HTTP?

• Can a servlet subclass something else?
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Idempotency

• In mathematics a function is idempotent if 
returns the same result no matter how 
many times you apply it. E.g.
– abs(-3) = abs(abs(-3)) = 3

• An method can be idempotent if repeat 
calls yield the same (visible) effect and 
result.
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Side Effects

• There can be side effects like?
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Which HTTP Methods?

• Which ones should be idempotent?
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Which HTTP Methods?
• GET
• POST
• HEAD
• PUT
• DELETE

• idempotent
• non-idempotent
• idempotent
• Idempotent*
• non-idempotent
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What about PUT?
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What does CRUD stand for?
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CRUD as guidance?

• UI Design?
• DB Design?
• Webapp / service design?
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CRUD to SQL?

• How do the pieces map to SQL 
statements?
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REST

• Representational State Transfer
– That’s a mouthful
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Simple idea of REST

• Implementing CRUD on resources over 
HTTP

• Oversimplification to the point of being 
wrong, but still a useful starting point
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Philosophical Tangent

• World currently prizes oversimplification 
– in media
– In courses



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

• As Engineers, we must fight this
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• In the various golden ages of intellect the 
other things happened

• Complex thought became prized for its 
complexity, not its thought
– Still happens in academia
– CS – glorification of obfuscation
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• As Engineers, we must fight this
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CRUD to HTTP Methods?
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CRUD to HTTP

• Create
• Read
• Update
• Delete

• GET
• POST
• HEAD
• TRACE
• PUT
• DELETE
• OPTIONS
• CONNECT



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

More on REST later

• Much more in SOEN487
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How Tomcat Processes Requests
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What happens at the beginning

• Tomcat gets HTTP Request
• URL determines context
• web.xml from context determines servlet

class
– Simplification…

• If there’s no instance, Tomcat makes it 
(s.init())

• Tomcat prepares request/response 
objects



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

What Happens in the Middle

• Tomcat runs a thread on the servlet
instance’s service method, passing 
request and response (s.service(req,resp))

• This method then determines and calls the 
appropriate servlet method 
(doGet/doPost(req, resp))
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What happens at the End

• Some stuff is left for garbage collection
– Most cleanup is left to the programmer
– Don’t store the request object in the 

session/application context!
• When a servlet is shut down call 

s.destroy()
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Hand in diagrams from last week
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Chalkboard Solution… what’s 
happening?

Container: ControllerServlet:

HTTP Get

doGet(req,resp)

g:Greeterreq: Greeting.jsp
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Did we do it right?
Container: ControllerServlet:

HTTP Get

doGet(req,resp)

g:Greeter

req:

setAttribute("Greeter",g)
forward(".../Greeting.jsp")

Greeting.jsp

g

...

getGreeting()

<<create>>

getParameter("name")

getAttribute(“Greeter”)


