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Credit to Dr. Chalin

 These notes are based on his originals
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Reminders

e Read the material!

* | need your teams today
— Sit with you teammates in class
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HTTP Methods

« How many of them were there?
« Name them.
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HTTP Methods

GET resource at given URL.

POST — @simplifying) liIke a GET with extra

param.
HEAD — get header part only.
TRACE - loopback request message.

PUT — put info at given URL.

DELETE given URL.

OPTIONS - list HTTP methods URL can respond to.
CONNECT.
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Servlet Classes

e What do they subclass?
 What interface does this subclassing give?
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HttpServlet Interface

HttpServlet

service (HttpServietRequest, HttpServietResponse)
service (ServletRequest, ServletResponse)
doGet(HttpServletRequest, HitpServletResponse)
doPost(HttpServietRequest, HitpServietResponse)
doHead(HttpServietRequest, HttpServletResponse)
doOptions(HttpServietRequest, HitpServietResponse)
doPut(HttpServietRequest, RHitpServietResponse)
doTrace(HttpServietRequest, HttpServietResponse)
doDelete(HttpServietRequest, HitpServletResponse)
getLastModified(HttpServietRequest)
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Just HTTP?

e Can a servlet subclass something else?
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ldempotency

* In mathematics a function is idempotent if
returns the same result no matter how
many times you apply it. E.g.

—abs(-3) = abs(abs(-3)) = 3
 An method can be idempotent If repeat

calls yield the same (visible) effect and
result.
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Side Effects

e There can be side effects like?
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Which HTTP Methods?

* Which ones should be idempotent?
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Which HTTP Methods?

e GET e idempotent

e POST * non-idempotent
« HEAD e Idempotent

e PUT e |dempotent*

« DELETE * non-idempotent

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel



What about PUT?
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What does CRUD stand for?
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CRUD as guidance?

e Ul Design?
DB Design?
 \Webapp / service design?
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CRUD to SQL?

 How do the pieces map to SQL
statements?
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REST

 Representational State Transfer
— That’s a mouthful
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Simple idea of REST

e Implementing CRUD on resources over
HTTP

e Oversimplification to the point of being
wrong, but still a useful starting point
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Philosophical Tangent

e World currently prizes oversimplification
—In media
— In courses
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* As Engineers, we must fight this

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel



 In the various golden ages of intellect the
other things happened

o Complex thought became prized for its
complexity, not its thought
— Still happens in academia
— CS — glorification of obfuscation
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* As Engineers, we must fight this
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CRUD to HTTP Methods?
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Create
Read
Update
Delete

CRUD to HTTP

GET
POST
HEAD
TRACE
PUT
DELETE
OPTIONS
CONNECT
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More on REST later

e Much more in SOEN487
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How Tomcat Processes Requests

«subsystem»
Server

o
[

:HelloWebServlet resp:

Http Request : :
' [

> resolve URL using web.xml
|

«create»

«create»

N

doGet(req, resp) ! setContentType(...

N

— N/ ]
e ___\
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What happens at the beginning

e Tomcat gets HT TP Request
« URL determines context

o web.xml from context determines servlet
class
— Simplification...

e |f there’s no instance, Tomcat makes it
(s.1nit())

e Tomcat prepares request/response
objects
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What Happens in the Middle

 Tomcat runs a thread on the servlet
Instance’s service method, passing
request and response (s.service(req,resp))

e This method then determines and calls the
appropriate servlet method
(doGet/doPost(req, resp))
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What happens at the End

o Some stuff is left for garbage collection
— Most cleanup is left to the programmer

— Don’t store the request object in the
session/application context!

e When a servlet Is shut down call
s.destroy()

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel



Hand In diagrams from last week
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Chalkboard Solution... what'’s

happening?

Container: ControllerServlet: req: g:Greeter Greeting.jsp
HTTP Get,
N

doGet(req,resp)

T
I
I
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Did we do 1t right?

Container: ControllerServlet: Greeting.jsp req:
HTTP Get | | <<create>> ! !
| | | |
doGet(req,resp) : : 4

I getParameter("name") [

! N

f A

| |

| |

g:Greeter | |

[ [

T I I

| | |

! | |

setAttribute("Greeter",g) |

| |

forward(".../Greeting.jsp") 2

|

|

|

gletAttribute(“Greetér”)
|

getGreeting()
i%

______ L

_____________ L
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