SOEN 387

Web-based Enterprise
Application Design

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

Credit to Dr. Chalin

 These notes are based on his originals

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

Reminders

e Read the material!

* | need your teams today
— Sit with you teammates in class

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

HTTP Methods

« How many of them were there?
« Name them.

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

HTTP Methods

GET resource at given URL.

POST — @simplifying) liIke a GET with extra

param.
HEAD — get header part only.
TRACE - loopback request message.

PUT — put info at given URL.

DELETE given URL.

OPTIONS - list HTTP methods URL can respond to.
CONNECT.

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

Servlet Classes

e What do they subclass?
 What interface does this subclassing give?

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

HttpServlet Interface

HttpServlet

service (HttpServietRequest, HttpServietResponse)
service (ServletRequest, ServletResponse)
doGet(HttpServletRequest, HitpServletResponse)
doPost(HttpServietRequest, HitpServietResponse)
doHead(HttpServietRequest, HttpServletResponse)
doOptions(HttpServietRequest, HitpServietResponse)
doPut(HttpServietRequest, RHitpServietResponse)
doTrace(HttpServietRequest, HttpServietResponse)
doDelete(HttpServietRequest, HitpServletResponse)
getLastModified(HttpServietRequest)

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

Just HTTP?

e Can a servlet subclass something else?

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

ldempotency

* In mathematics a function is idempotent if
returns the same result no matter how
many times you apply it. E.g.

—abs(-3) = abs(abs(-3)) = 3
 An method can be idempotent If repeat

calls yield the same (visible) effect and
result.

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

Side Effects

e There can be side effects like?

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

Which HTTP Methods?

* Which ones should be idempotent?

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

Which HTTP Methods?

e GET e idempotent

e POST * non-idempotent
« HEAD e Idempotent

e PUT e |dempotent*

« DELETE * non-idempotent

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

What about PUT?

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

What does CRUD stand for?

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

CRUD as guidance?

e Ul Design?
DB Design?
 \Webapp / service design?

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

CRUD to SQL?

 How do the pieces map to SQL
statements?

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

REST

 Representational State Transfer
— That’s a mouthful

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

Simple idea of REST

e Implementing CRUD on resources over
HTTP

e Oversimplification to the point of being
wrong, but still a useful starting point

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

Philosophical Tangent

e World currently prizes oversimplification
—In media
— In courses

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

* As Engineers, we must fight this

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

 In the various golden ages of intellect the
other things happened

o Complex thought became prized for its
complexity, not its thought
— Still happens in academia
— CS — glorification of obfuscation

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

* As Engineers, we must fight this

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

CRUD to HTTP Methods?

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

Create
Read
Update
Delete

CRUD to HTTP

GET
POST
HEAD
TRACE
PUT
DELETE
OPTIONS
CONNECT

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

More on REST later

e Much more in SOEN487

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

How Tomcat Processes Requests

«subsystem»
Server

o
[

:HelloWebServlet resp:

Http Request : :
' [

> resolve URL using web.xml
|

«create»

«create»

N

doGet(req, resp) ! setContentType(...

N

— N/]
e ___\

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

What happens at the beginning

e Tomcat gets HT TP Request
« URL determines context

o web.xml from context determines servlet
class
— Simplification...

e |f there’s no instance, Tomcat makes it
(s.1nit())

e Tomcat prepares request/response
objects

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

What Happens in the Middle

 Tomcat runs a thread on the servlet
Instance’s service method, passing
request and response (s.service(req,resp))

e This method then determines and calls the
appropriate servlet method
(doGet/doPost(req, resp))

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

What happens at the End

o Some stuff is left for garbage collection
— Most cleanup is left to the programmer

— Don’t store the request object in the
session/application context!

e When a servlet Is shut down call
s.destroy()

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

Hand In diagrams from last week

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

Chalkboard Solution... what'’s

happening?

Container: ControllerServlet: req: g:Greeter Greeting.jsp
HTTP Get,
N

doGet(req,resp)

T
I
I

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

Did we do 1t right?

Container: ControllerServlet: Greeting.jsp req:
HTTP Get | | <<create>> ! !
| | | |
doGet(req,resp) : : 4

I getParameter("name") [

! N

f A

| |

| |

g:Greeter | |

[[

T I I

| | |

! | |

setAttribute("Greeter",g) |

| |

forward(".../Greeting.jsp") 2

|

|

|

gletAttribute(“Greetér”)
|

getGreeting()
i%

______ L

_____________ L

Soen 387 - Web-Based Ent. App.
Design (c) 2011, Stuart Thiel

