
Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

SOEN 387 

Web-based Enterprise 
Application Design



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

Credit to Dr. Chalin

• These notes are based on his originals



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

Reminders

• Read the material!
• I need your teams today

– Sit with you teammates in class



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

HTTP Methods

• How many of them were there?
• Name them.



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

HTTP Methods

• GET resource at given URL.
• POST – (simplifying) like a GET with extra 

param.
• HEAD – get header part only.
• TRACE – loopback request message.

• PUT – put info at given URL.
• DELETE given URL.
• OPTIONS – list HTTP methods URL can respond to.
• CONNECT.



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

Servlet Classes

• What do they subclass?
• What interface does this subclassing give?



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

HttpServlet Interface



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

Just HTTP?

• Can a servlet subclass something else?



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

Idempotency

• In mathematics a function is idempotent if 
returns the same result no matter how 
many times you apply it. E.g.
– abs(-3) = abs(abs(-3)) = 3

• An method can be idempotent if repeat 
calls yield the same (visible) effect and 
result.



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

Side Effects

• There can be side effects like?



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

Which HTTP Methods?

• Which ones should be idempotent?



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

Which HTTP Methods?
• GET
• POST
• HEAD
• PUT
• DELETE

• idempotent
• non-idempotent
• idempotent
• Idempotent*
• non-idempotent



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

What about PUT?



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

What does CRUD stand for?



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

CRUD as guidance?

• UI Design?
• DB Design?
• Webapp / service design?



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

CRUD to SQL?

• How do the pieces map to SQL 
statements?



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

REST

• Representational State Transfer
– That’s a mouthful



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

Simple idea of REST

• Implementing CRUD on resources over 
HTTP

• Oversimplification to the point of being 
wrong, but still a useful starting point



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

Philosophical Tangent

• World currently prizes oversimplification 
– in media
– In courses



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

• As Engineers, we must fight this



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

• In the various golden ages of intellect the 
other things happened

• Complex thought became prized for its 
complexity, not its thought
– Still happens in academia
– CS – glorification of obfuscation



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

• As Engineers, we must fight this



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

CRUD to HTTP Methods?



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

CRUD to HTTP

• Create
• Read
• Update
• Delete

• GET
• POST
• HEAD
• TRACE
• PUT
• DELETE
• OPTIONS
• CONNECT



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

More on REST later

• Much more in SOEN487



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

How Tomcat Processes Requests



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

What happens at the beginning

• Tomcat gets HTTP Request
• URL determines context
• web.xml from context determines servlet

class
– Simplification…

• If there’s no instance, Tomcat makes it 
(s.init())

• Tomcat prepares request/response 
objects



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

What Happens in the Middle

• Tomcat runs a thread on the servlet
instance’s service method, passing 
request and response (s.service(req,resp))

• This method then determines and calls the 
appropriate servlet method 
(doGet/doPost(req, resp))



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

What happens at the End

• Some stuff is left for garbage collection
– Most cleanup is left to the programmer
– Don’t store the request object in the 

session/application context!
• When a servlet is shut down call 

s.destroy()



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

Hand in diagrams from last week



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

Chalkboard Solution… what’s 
happening?

Container: ControllerServlet:

HTTP Get

doGet(req,resp)

g:Greeterreq: Greeting.jsp



Soen 387 - Web-Based Ent. App. 
Design (c) 2011, Stuart Thiel

Did we do it right?
Container: ControllerServlet:

HTTP Get

doGet(req,resp)

g:Greeter

req:

setAttribute("Greeter",g)
forward(".../Greeting.jsp")

Greeting.jsp

g

...

getGreeting()

<<create>>

getParameter("name")

getAttribute(“Greeter”)


