Given: November 14"
Due: December 3™ at 11:59pm
Grade: 25% Assignment 2 - The Collectible Trading Card Game

Submit source code (.java .jsp any necessary .jar files) and running instructions to EAEH Do it in Java, use eclipse (as
in the lab, jdk8, tomcat8, eclipse WTP). Your work will be evaluated almost entirely on its ability to pass the provided,
evolving test suite.

Do your work individually, do not program it with anyone else, and cite in comments any snippets you grab from the web
(url, date accessed, what modifications you made). While you may find yourself using a few of these snippets, they should
only make up a small portion of your work. If they make up most of your work, you are at risk of being in violation of our
code of conduct, and there’s just no good reason to end up in that situation.

The code will be marked in eclipse with the included Test Suite, in a lab, with you there to give guidance if there is
trouble. You will have five minutes to show the marker that it can run smoothly, and then he will grade you based on the
results of the run tests (it gives a number). I will subsequently review all code to make sure that you used the patterns
identified for this assignment. Please be kind and include a database teardown/setup script or a programmatic means to do
so for your marker.

1 Learning Objectives

Learn to Critically Approach a Problem. Getting it done isn’t enough. You need to look at every problem, think
about its qualities, and come up with an appropriate solution given any constraints. It is possible to get a working solution
to this assignment while skipping this step, but achieving this learning objective is incredibly valuable and will serve you well
in all future endeavours. Think about what you need to do and why you need to do it!

Learn to Create a WEA from Start to Finish. Many of you have only experience creating snippets of working code.
This assignment may give you your first taste of putting it all together, from accessing the database to returning something
that can be seen in a web browser. Once you know that you can do this, you should be more confident with all software
development, as you know getting this far is definitely achievable (even easy, with practice).

Apply Basic WEA Patterns. In this assignment, you must use the full set of mature Architectural patterns, and any
related patterns they imply.

e Front Controller

e Dispatcher

e Command

o Template View (or Transform View)
e Domain Object

e Input Mapper

e Output Mapper

e Finder

e Table Data Gateway

o Proxy (Lazy Load)

e Identity Map

¢ Domain Object Factory

e Unit of Work

¢ Optimistic Concurrency Management

You will also come across most of these patterns in practice, and being able to identify them and understand them from
a practitioner’s perspective will be helpful for managing, maintaining or migrating such code.

Ihttps://fis.encs.concordia.ca/eas/

https://fis.encs.concordia.ca/eas/

2

Description

You will make the beginnings of a Pokemon game. Players will be able to:

1.

® N o e N

2.1

register 9. list challenges 17. bench pokemon
login 10. withdraw challenges

18. evolve pokemon
logout 11. refuse challenges
upload decks 12. accept challenges 19. play energy
view decks 13. list games 20. play trainer
view deck 14. view board
)) 21. end turn
list players 15. view hand
challenge players 16. view discard pile 22. retire from a game
Constraints

The game has a few rules to keep in mind:

1.

- W

o

© »®» N @

10.
11.
12.
13.
14.

15.
16.
17.
18.
19.

20.

21.

you must have more than one player to play a game
you cannot issue or accept a challenge without a deck
you can only retire from games you are playing

you can only view your hand in a game you are playing
you cannot have users with the same identification

you cannot challenge yourself

both players in a game may look at either discard pile
a deck must have 40 cards

there is no shuffling! Decks start in the order they are uploaded, and when you play with them, you draw cards (first
draw is the first line of the uploaded deck, etc).

It is the challenger’s turn first.

The challenger takes the first turn, starting the game with one card drawn
The challengee gets their first card when the challenger ends their first turn
there are no active pokemon!

one card is drawn at the beginning of each turn after the first (you can think of the start if the first player’s turn as
happening when a challenge is accepted)

you may only play one energy per turn

when a pokemon is evolved, it keeps its energy, the basic pokemon does not go into the discard pile, but is still "visible"
when a trainer is played, it is moved to the top of the discard pile (nothing else happens)

Each hand can have at most 7 cards

If a turn ends and that player has more than 7 cards, the oldest card in their hand is moved to the top of the discard
pile
Optimistic Concurrency Management should cause failure whenever submitted versions don’t match for all Use Cases

except Retire

A player may retire without the need of a version: Optimistic Concurrency Management should just allow retiring
whenever, as long as the player is in the game.

22. The same deck may be used in multiple games

23. A player may only have a single open challenge against another player, but may challenge as many different players as
they wish

24. A player is able to have more than one active game with a single player

2.2 Data
2.2.1 The Deck "Upload" Format

When uploading cards, they are identified by a line of text per card. The format is:
<type> "NAME"
Additionally, the format for "Stage One" pokemon will be:
<type> "NAME" "BASIC"
Where type is either e for energy, p for pokemon or t for trainer. e.g.:
e "Fire"
p "Charmander"
t "Misty"
p "Charmeleon" "Charmander”

2.2.2 The Board Data

The board consists of a list of players involved, whether they have retired or not, the player whose turn it currently is,
how many cards are in each player’s hand, deck, discard pile and the list of either player’s benched pokemon, including any
energy attached and the id of basic pokemon that have evolved into "stage one" pokemon.

{
"game": {
"id": 1,
"version": 37,
"players": [12, 14],
"current": 14,
"decks": [1, 2],
"play": {
nqon. {
"status": "playing",
"handsize": 7,
"decksize": 28,
"discardsize": 2,
"bench": [
{"id": 7}’
{"id": 6},
{"idq": 2}
]
},
n 14": {
"status": "playing",
"handsize": 3,
"decksize": 28,
"discardsize": O,
"bench": [
{"id": 13},
{"id": 16, "e": [3, 4], "b": 13},
{"id": 15, "e": [2]},
{"id": 12},
{"id": 5}
]
}
}
}
}

2.2.3 The Deck Data

A list of a player’s decks:

"decks": [1, 4, 5]

2.2.4 The Deck Data

A deck would be an ordered list of cards:

{
"cards": [
{"id"Z 1’ ngn. neu’
{"id": 2’ ngn . neu,
{"id": 4, ngn . ||p||,
{"id": 5’ ngn . uen’
{"id": 6, ngn . uen,
{"id"Z 7, ngn . nen’
{"id": 8, ngn. npn’
{"id": 9, ngn . upn,
{"id": 10’ ngn. o ngn
{"id": 11, ngn . "t",
: -]
}

2.2.5 Viewing the Players

S8 BBB8BB B

IIFirell} s
"Fire"},

"Charmander"},

"Fire”},
"Fire"} s
"Fire"},

"Charmeleon",

"Meowth"},
"Fire"},

n":
npn. "MiSty”},

llbll:

A List of Players, who are actually just Users right now:

{
"players": [
{"id": 1, "user":
{"id": 2, "user":
{"id": 3, "user":
{"id": 4, "user":
]
}

2.2.6 Viewing the Challenges

"alice"},
"bOb"},
"chuck"},
"darcy"}

"Charmander"},

Each challenge consists of a challenger, who initiated, and a challengee that they wish to play against. Status starts open
(0), but it can be refused by the challengee (1), or the challenger can withdraw by refusing their own challenge (2), or lastly

it can be accepted (3). The deck used by the challenger to initiate the challenge is also shown.

{
"challenges": [
{"id": 1, "version":
{"id": 2, "version":
{"id": 3, "version":
{"id": 4, "version":
]
}

-

N = NN

-

"challenger":
"challenger":
"challenger":
"challenger":

2.2.7 General Success and Failure

DSwWw N -

-

"challengee":
"challengee":
"challengee":
"challengee":

w e~ =N

.

"status":
"status":
"status":
"status":

-

= O N W

-

"deck":
"deck":
"deck":
"deck":

1},
2},
3}3
4}

Many actions just return success or failure. The status is important, as it will be specifically tested against, but don’t

neglect making useful error messages!

{

"status":"fail",

"message":"Something went horribly wrong, but make your message more helpful!"

"status":"success",
"message":"Things went okay! We should probably say specifically what."

2.2.8 Games

When listing current games!

{
"games": [
{"id": 1, "version": 1, "players": [1, 2]},
{"id": 2, "version": 1, "players": [2, 1]},
{"id": 3, "version": 1, "players": [2, 3]},
{"id": 4, "version": 1, "players": [3, 4]},
]
}
2.2.9 Hand
When viewing your hand!
{
"hand": [13, 16, 15, 12, 5]
}

2.2.10 Hand

When viewing a discard pile!

"discard": [13, 16, 15, 12, 5]

2.3 Calls
2.3.1 Register

path
/Poke/Player/Register

method
POST

params
user
pass

returns
Returns success or failure ([2.2.7))
2.3.2 Login

path
/Poke/Player/Login

method
POST

params
user
pass

returns

Returns success or failure (2.2.7))

2.3.3 Logout

path
Poke/Player /Logout
g

method
POST

returns
Returns success or failure (2.2.7))
2.3.4 Upload Deck

path
/Poke/Deck

method
POST

params
deck - the String of cards, one per line in the format from section [2.2.1

returns
Returns success or failure (2.2.7))
2.3.5 View Decks

We only want to show decks uploaded by the current player.

path
/Poke/Deck

method
GET

returns
Returns deck (2.2.4]) or failure ([2.2.7))
2.3.6 View Deck

This will show the deck specified. Any player may view any deck... because.

path
/Poke/Deck/(\d+)

method
GET

in-url-param
The id of the deck to be viewed

returns
Returns deck (2.2.4) or failure (2.2.7)
2.3.7 List Players

path
/Poke/Player

method
GET

returns

Returns a list of players (2.2.5))

2.3.8 Challenge Player

path
/Poke/Player/(\d+)/Challenge

method
POST

in-url-param
The id of the player challenged

params
deck - the deck to be used by the challenger if the challenge is accepted

returns
Returns success or failure (2.2.7))
2.3.9 List Challenges

List Challanges that the current player is involved in.

path
/Poke/Challenge

method
GET

returns
Returns a list of players (2.2.6))
2.3.10 Withdraw Challenge

path
Poke allenge +)/Withdraw
ke/Chall d hd

method
POST

in-url-param
The id of the challenge

params
version - the version of the challenge

returns
Returns success or failure (2.2.7))
2.3.11 Refuse Challenge

path
/Poke/Challenge/(\d+)/Refuse

method
POST

in-url-param
The id of the challenge

params
version - the version of the challenge

returns

Returns success or failure (2.2.7))

2.3.12 Accept Challenge

path
/Poke/Challenge/(\d+)/Accept

method
POST

in-url-param
The id of the challenge

params
version - the version of the challenge
deck - the deck to be used by the challengee

returns
Returns success or failure ([2.2.7))
2.3.13 List Games

List games that the current player is involved in.

path
/Poke/Game

method
GET

returns
Returns games (2.2.8)) or failure (2.2.7))
2.3.14 View Board

path
/Poke/Game/(\d+)

method
GET

in-url-param
The id of the game

returns
Returns board (2.2.2)) or failure (2.2.7)
2.3.15 View Hand

path
/Poke/Game/(\d+)/Hand

method
GET

in-url-param
The id of the game

returns

Returns hand ([2.2.10) or failure (2.2.7))

2.3.16 View Discard Pile

path
/Poke/Game/(\d+)/Player/(\d+)/Discard

method
GET

in-url-param
The id of the game
The id of the player whose discard is to be returned

returns
Returns hand (2.2.10) or failure (2.2.7))
2.3.17 Play Pokemon to Bench
Play a "basic" pokemon (those without the extra field) to the bench.

path
/Poke/Game/(\d+)/Hand/(\d+)/Play

method
POST

in-url-param
The id of the game
The pokemon to play from the hand

params
version - the version of the game

returns

Returns success or failure (2.2.7))

2.3.18 Evolve Pokemon

The current player evolves a "basic" pokemon on the bench with a "stage one" pokemon from their hand. The stageone
pokemon is removed from the hand and replaces the benched basic pokemon, keeping any attached energy.

path
/Poke/Game/(\d+)/Hand/(\d+)/Play

method
POST

in-url-param
The id of the game
The id of the stage one pokemon to be played

params
basic - the id of the basic pokemon on the bench to be evolved
version - the version of the game

returns
Returns success or failure (2.2.7))
2.3.19 Play Energy

The current player attaches an energy onto a benched pokemon. The energy card is removed from the player’s hand. Can
only be done once per turn.

path
/Poke/Game/(\d+)/Hand/(\d+)/Play

method
POST

10

in-url-param
The id of the game
The id of the energy to be played

params
pokemon - the id of the pokemon on the bench to attach the energy to
version - the version of the game

returns
Returns success or failure (2.2.7))
2.3.20 Play Trainer

The current player plays an trainer. The trainer card is removed from the player’s hand and placed into their discard.
Can be done any number of times per turn.

path
/Poke/Game/(\d+)/Hand/(\d+)/Play

method
POST

in-url-param
The id of the game
The id of the trainer to be played

params
version - the version of the game

returns
Returns success or failure (2.2.7))
2.3.21 End Turn

The current player’s turn ends, player status changes accordingly, and the next player draws a card.

path
/Poke/Game/(\d+)/EndTurn

method
POST

in-url-param
The id of the game

params
version - the version of the game

returns
Returns success or failure (2.2.7))
2.3.22 Retire

path
/Poke/Game/(\d+)/Retire

method
POST

in-url-param
The id of the game

returns

Returns success or failure (2.2.7))

11

	Learning Objectives
	Description
	Constraints
	Data
	The Deck "Upload" Format
	The Board Data
	The Deck Data
	The Deck Data
	Viewing the Players
	Viewing the Challenges
	General Success and Failure
	Games
	Hand
	Hand

	Calls
	Register
	Login
	Logout
	Upload Deck
	View Decks
	View Deck
	List Players
	Challenge Player
	List Challenges
	Withdraw Challenge
	Refuse Challenge
	Accept Challenge
	List Games
	View Board
	View Hand
	View Discard Pile
	Play Pokemon to Bench
	Evolve Pokemon
	Play Energy
	Play Trainer
	End Turn
	Retire

