
i

Enterprise Application Design Patterns: Improved and
Applied

Stuart Thiel

A Thesis
in

The Department
of

Computer Science
and

Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at

Concordia University
Montreal, Quebec, Canada

January 2010

© Stuart Thiel, 2010

i

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Stuart Thiel

Entitled: Enterprise Application Design Patterns: Improved and Applied

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.
Signed by the final examining committee:

__Chair

Dr. Nematollaah Shiri

__Examiner

Dr. Greg Butler

__Examiner

Dr. Yuhong Yan

__Supervisor

Dr. Patrice Chalin

Approved by __

Chair of Department or Graduate Program Director

Dr. Robin Drew, Dean

Faculty of Engineering and Computer Science

Date __

ii

iii

Abstract

Enterprise Application Design Patterns: Improved and Applied
Stuart Thiel

Providing developers with proper tools is of ever increasing importance as software integrates itself further into all
aspects of our lives. Aside from conventional hardware and software tools, architectural and design patterns have
been identified over the years as a means to communicate knowledge of known problems and their solutions. In this
thesis, we present several refinements and additions to these patterns, building primarily on Martin Fowler’s
Patterns of Enterprise Application Architecture (2003). We present a practical implementation approach to using
these patterns and discuss a framework that we have developed to aid practitioners in following this methodology.
We also incorporate several of Martin Fowler’s existing patterns into an iterative design example to better
demonstrate progressively improving combinations of their use in existing systems.

iv

Acknowledgements

I have never met Martin Fowler, and many people I know believe that I dislike him. Nothing could be further from
the truth. His work in Patterns of Enterprise Application Architecture has inspired me for nearly a decade. While I
have continually strived to surpass his work, I am truly standing on the shoulders of a giant.

I would also like to thank my supervisor and friend, Dr. Patrice Chalin. Without someone of his caliber to discuss
these ideas with, I do not believe I could have achieved as much so quickly. His intelligence and precision have
encouraged me to always be more. I have also greatly appreciated teaching with him, and being taught by him.
Virtually every ounce of diplomacy I have, I probably owe to him.

I would like to thank the DSRG over the last few years for tirelessly helping me with the various incarnations of my
thesis, through our reading and writing workshops where we reviewed each others current papers, or through long
discussions around scrap paper, and sometimes pints. Daniel Sinnig, Perry James, Rajiv Abraham, Stephen Barret,
Asif Dogar, George Karabotsos and Kianoush Torkzadeh, you have had a great impact on my life and on this thesis.

I would lastly like to thank my friends and family who have continually supported me and encouraged me to hurry
up and finish. I would like to particularly thank my wife Karen Bennett for her patience with me, and my newborn
daughter Kathryn who has graciously let me sleep well most nights, and who has bubbled and chirped happily next
to me while I worked on this thesis. I would also like to thank Finn Upham, Jeremy Upham, Susan Upham (yes, the
entire family independently), My-An Nguyen, Larry Thiel (my father) and David Reisch, who have each contributed
a final review that will undoubtedly have greatly improved the overall quality of this thesis.

v

Table of Contents

1 Introduction ..1
1.1 Problem ...1
1.2 Contributions...2
1.3 Scope...2

2 Background ..3
2.1 Architectural Styles: Layered and Client-Server...3
2.2 A layered approach..3
2.3 Client-Server ...4

3 WEA Design Patterns in Practice: A Tutorial and Critical Assessment...5
3.1 Introduction to the BuddyAge Application ...5
3.2 Iteration Style ..6
3.3 Iteration 1: Do-It-All TRANSACTION SCRIPTs..6

3.3.1 Pattern Description ...6
3.3.2 Pattern Usage..7
3.3.3 Concerns ...7

3.4 Iteration 2: Isolating Technical Services with ROW DATA GATEWAY (RDG)...7
3.4.1 Pattern Description ...8
3.4.2 Pattern Usage..8
3.4.3 Concerns ...9

3.5 Iteration 3: Isolating Presentation with TEMPLATE VIEW and VIEW HELPER ..9
3.5.1 Pattern Description ...9
3.5.2 Pattern Usage..10
3.5.3 Concerns ...11

3.6 Iteration 4: Data Integrity and an Isolated Domain Logic with OPTIMISTIC OFFLINE LOCK, PAGE

CONTROLLER and IDENTITY FIELDs...11
3.6.1 Pattern Description ...13
3.6.2 Pattern Usage..15
3.6.3 Concerns ...16

3.7 Iteration 5: Refined Access to the Data Source with DATA MAPPER, TABLE DATA GATEWAY and DOMAIN

MODEL...17
3.7.1 Pattern Description ...18
3.7.2 Pattern Usage..19
3.7.3 Concerns ...19

3.8 Iteration 6: An Organized Approach to the Application Layer Using the FRONT CONTROLLER Pattern.......20
3.8.1 Pattern Description ...20
3.8.2 Pattern Usage..21
3.8.3 Concerns ...21

3.9 Iteration 7: Managing In-Memory Data with LAZY LOAD (via VIRTUAL PROXY) and IDENTITY MAP21
3.9.1 Pattern Description ...23
3.9.2 Pattern Usage..23
3.9.3 Concerns ...24

3.10 Iteration 8: Accommodating a Complex Domain with UNIT OF WORK (UOW) and DEPENDENT MAPPING .24
3.10.1 Pattern Description ...26
3.10.2 Pattern Usage..27
3.10.3 Concerns ...27

4 WEA Design Patterns Revisited...28
4.1 DOMAIN OBJECT ..28

vi

4.1.1 Context ...28
4.1.2 Problem ..28
4.1.3 Solution ..28
4.1.4 Related work and contribution..29

4.2 Front Controller, Dispatchers and Commands ..30
4.2.1 Context ...30
4.2.2 Problem ..30
4.2.3 Solution ..30
4.2.4 Related work and contribution..32

4.3 Lazy Load: Domain Object Proxy and List Proxy ..32
4.3.1 Context ...32
4.3.2 Problem ..33
4.3.3 Solution ..33
4.3.4 Related work and contribution..34

4.4 Identity Map ..34
4.4.1 Context ...34
4.4.2 Problem ..35
4.4.3 Solution ..35
4.4.4 Related work and contribution..36

4.5 Input Mapper and Output Mapper Patterns ...36
4.5.1 Context ...36
4.5.2 Problem ..36
4.5.3 Solution ..36
4.5.4 Related work and contribution..41

4.6 Table Data Gateway (TDG) and Finder ..42
4.6.1 Context ...42
4.6.2 Problem ..42
4.6.3 Solution ..43
4.6.4 Related work and contribution..45

5 Applied and Improved Design: The SoenEA Framework and its Use ...46
5.1 SoenEA, our WEA Framework...46
5.2 SoenEA Patterns..47

5.2.1 Domain Objects ..48
5.2.2 GenericOutputMapper ..50
5.2.3 UoW and IdentityMap ..52
5.2.4 ListProxy ..54
5.2.5 Dispatcher and DomainCommand..56
5.2.6 InputMapper ...57
5.2.7 TDG/Finder ..58

5.3 SoeanEA DITCs..63
5.3.1 User ..63
5.3.2 Role ..63
5.3.3 DispatcherServlet and Servlet...64
5.3.4 Helper ...64

5.4 SoenEA Utilities..64
5.4.1 DispatcherFactory...65
5.4.2 UniqueIdFactory, UniqueIdTDG/Finder ..65
5.4.3 MetaDomainObject ..65
5.4.4 MapperFactory and MetaMapper ...65
5.4.5 DBRegistry, ConnectionFactorys and Connections ...66
5.4.6 ApplicationAuthorization ...66
5.4.7 ThreadLocalTracker ...66
5.4.8 Exceptions ..67

vii

5.5 SoenEA Test Suite ..67
6 Professional Software Development Using SoenEA..68
7 Conclusion..69
8 References ..71
9 Appendix ..73

viii

List of Figures
Figure 2-1 Three layer style of a WEA..3
Figure 2-2 A more accurate distribution of client-server over the three layer architecture ...4
Figure 3-1 Navigating BuddyAge application pages...5
Figure 3-2 Sample “Browse People” web page...5
Figure 3-3 Sample “View Person” web page ..5
Figure 3-4 Class diagram of TRANSACTION SCRIPTS spanning all three layers ...6
Figure 3-5 Isolating data source access in a ROW DATA GATEWAY ..8
Figure 3-6 Class diagram showing the addition of TEMPLATE VIEWs and a VIEW HELPER ..10
Figure 3-7 Warning User 2 that someone else has already updated Bob’s age ...12
Figure 3-8 A class diagram showing PAGE CONTROLLERS, IDENTITY FIELD and OPTIMISTIC OFFLINE LOCK............13
Figure 3-9 Two transactions rendered sequential ..14
Figure 3-10 Deadlock resolution on conflicting transactions ..14
Figure 3-11 Single table scan approach...16
Figure 3-12 Many applications with many databases..16
Figure 3-13 Person, PersonMapper and PersonTDG replace PersonHelper and PersonRDG...........................18
Figure 3-14 Using a FRONT CONTROLLER and COMMANDS to replace PAGE CONTROLLERS......................................20
Figure 3-15 Viewing a Person and their buddy ...22
Figure 3-16 Alice is Bob's buddy. Bob is Alice's buddy ...22
Figure 3-17 Adding a VIRTUAL PROXY and IDENTITY MAP..22
Figure 3-18 PersonProxy code for getting a real Person and illustrating delegation ...23
Figure 3-19 UOW and a relationship between PERSON and PHONENUMBER...25
Figure 3-20 PersonMapper methods..26
Figure 4-1 An implementation of Person using the Domain Object Pattern ...29
Figure 4-2 A simple Login Dispatcher using SoenEA ..31
Figure 4-3 A simple Login Command using SoenEA ...31
Figure 4-4 Separation between Dispatcher, View, Command and Domain Object Patterns32
Figure 4-5 An Object Diagram showing two instances related in both directions by the role buddy........................33
Figure 4-6 An example OutputMapper delete method ..37
Figure 4-7 Output Mappers store domain logic regarding object relations ...39
Figure 4-8 example of tables for a Person described in Figure 4-7 ...39
Figure 4-9 Two tables, representing a one-to-one relationship..40
Figure 4-10 The concrete TDG for the Person Domain Object ...40
Figure 4-11 inserting a person ...41
Figure 4-12 updating a Person...41
Figure 4-13 [XKCD, “Exploits of a Mom”, http://xkcd.com/327/] ...43
Figure 4-14 How DOs, I/O Mappers, TDGs and Finders relate ..43
Figure 4-15 update in a TDG...44
Figure 5-1 SoenEA general usage diagram ...47
Figure 5-2 Domain Objects ...48
Figure 5-3 GroupFactory Methods ..49
Figure 5-4Creating Domain Objects..50
Figure 5-5 GenericOutputMapper ...50
Figure 5-6 Creating a GenericOUTPUTMAPPER...51
Figure 5-7 GroupOutputMapper Methods...52
Figure 5-8 UoW backs IdentityMap ..52
Figure 5-9 Sample code initializing the UoW with DomainObjects and OutputMappers53
Figure 5-10 Code demonstrating the use of the UoW and IdentityMap in an InputMapper54
Figure 5-11 SetProxy and ListProxy ...55
Figure 5-12 MembershipListProxy..55
Figure 5-13 sample code from GroupMembershipInputMapper ...56
Figure 5-14 Dispatcher and DomainCommand with support classes ..56
Figure 5-15 Detailed Class diagram of GroupMembershipInputMapper ..57

ix

Figure 5-16 the getGroupMembership method..58
Figure 5-17 Class diagram of Group TDG/Finder...59
Figure 5-18 GroupTDG's update method ..60
Figure 5-19 GroupFinder's find identity find method..61
Figure 5-20 Summary of Domain Objects seen in this section..62
Figure 5-21 A simple class diagram showing the domain layer relating to the technical services layer63
Figure 5-22 MyResources.properties and Access.xml...64
Figure 5-23 Use of a UniqueIdFactory ..65
Figure 5-24 UoW using MapperFactory and MetaMapper ...66
Figure 9-1 A recommended directory structure...74
Figure 9-2 FrontController ..78
Figure 9-3 LoginDispatcher...78
Figure 9-4 LogoutDispatcher...79
Figure 9-5 LoginCommand ...79
Figure 9-6 IGroup..80
Figure 9-7 Group ...80
Figure 9-8 GroupProxy..81
Figure 9-9 GroupFactory ...82
Figure 9-10 GroupInputMapper ..83
Figure 9-11 GroupOutputMapper..84
Figure 9-12 GroupTDG...85
Figure 9-13 GroupFinder...86
Figure 9-14 IGroupMembership..87
Figure 9-15 GroupMembership ...88
Figure 9-16 GroupMembershipProxy..89
Figure 9-17 GroupMembershipFactory ...90
Figure 9-18 MembershipStatus..90
Figure 9-19 MembershipListProxy..90
Figure 9-20 GroupMembershipInputMapper ..91
Figure 9-21 GroupMembershipOutputMapper..92
Figure 9-22 GroupMembershipTDG...93
Figure 9-23 GroupMembershipFinder...94
Figure 9-24 MemberInputMapper ...95
Figure 9-25 AdminRole...95
Figure 9-26 RegisteredRole...96
Figure 9-27 RoleIds ...96
Figure 9-28 DatabaseSetup..99
Figure 9-29 Access.xml ...99
Figure 9-30 MyResources.properties...100

x

List of Terms/Acronyms
Term/Acronym Definition

ACID Atomicity, Consistency, Isolation, Durability. A set of properties, which taken
together allow data sources to be accessed in a convenient and safe fashion. Without
ACID compliant transactional resources, Web Enterprise Applications would be very
difficult to work with reliably.

CRUD CRUD stands for Create, Retrieve, Update, Delete. These general operations represent
the majority of activity that happens with Object-Oriented data. A CRUD approach is
one where these operations are applied systematically across all or most data in a
system.

Enterprise
Applications (EAs) /
Web Enterprise
Applications (WEAs)

Enterprise Applications (EAs) are generally understood to be on-demand, user-
interaction based applications that are meant to be accessed by multiple users, usually
from the same organization. Web-based Enterprise Applications (WEAs) imply EAs
made available through the Internet. These applications (EAs and WEAs) generally
use databases for persistent storage.

GoF Gang of Four. Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides
authored Design Patterns: Elements of Reusable Object-Oriented Software, a book
that describes 23 well know design patterns. The authors are referred to as the GoF,
and these patterns are referred to as the GoF patterns.

GRASP General Responsibility Assignment Software Patterns. GRASP patterns suggest
solutions to common problems of responsibility assignment. These patterns represent
basic principles of Object-Oriented software design. [Larman 2004]

GUI Graphical User Interface. Often seen as the more general term UI (User Interface)

High Cohesion A GRASP pattern. A module with high cohesion has only closely related
responsibilities; applying High Cohesion as an evaluative pattern encourages modules
that have more closely related responsibilities.

IDE Integrated Development Environment. Usually a programming environment that
incorporates a compiler, debugger and standard output for run code. The modern IDE
includes integration with revision control systems, complex auto-complete features
and many other advanced features to make development easier.

Java Server Pages
(JSP)

Often identified separately from Servlets, JSPs are the basic form of the template
language provided when working with Servlets. JSPs are transformed into java for
mini Servlets; this java is then compiled as needed. JSPs also have more complex
services, but the main purpose is to provide a simple template-like language for the
easy generation of responses to user requests while still allowing access to code. In the
most basic form, the syntax is quite similar to that of Active Server Pages (ASP) and
PHP.

LOC Lines Of Code. A readily acquired metric for measuring software. A related term is
SLOC (Source Lines Of Code) that counts only those lines that are not white space or
comments.

Low Coupling A GRASP pattern. A module with low coupling relies on few other modules; applying
Low Coupling as an evaluative pattern discourages modules that rely on many other
modules.

xi

RDG A Row Data Gateway is a simple data access pattern described in [Fowler 2004],
merging the responsibility of retrieving data from a data source with its in memory
representation.

Servlet A Servlet is a Java application running within a web application environment on a
server. The technology that enables Servlets provides access to web request data and a
means to respond in kind.

Servlet Container A Servlet Container is the technology that enables and wraps a Servlet. Several free
and commercial Servlet Containers are available today. While the manner in which a
Servlet interacts with a Servlet Container is standardized, the particulars of the
implementation of these Containers can vary, highlighting different intended uses or
development philosophies. Most of the time, these details should not directly affect
development, but occasionally there are surprises.

Servlet Context A Servlet Context is the means of identifying a section of a Servlet Container that
holds one or more Servlets. While one Servlet is instantiated for all requests to that
Servlet, it is possible to load the same classes as a separate Servlet within the same
Servlet Context, sharing static variables and other global information across all
Servlets within that Servlet Context.

SoenEA Software Engineering (SOEN) Enterprise Application (EA). This is the name of a
framework that we have developed in conjunction with this thesis to aid in the rapid
development of dependable Web Enterprise Applications.

Tomcat Tomcat is the Servlet Container that Dr. Chalin and Stuart Thiel have used on their
own and in the Software Design/Architecture courses at Concordia University, in
various incarnations, for nearly a decade. All our Servlet-based web applications and
testing environments have been developed with versions of Tomcat from 4.1 through
6.x. Tomcat is developed under the Apache Software License and is freely available.
It was previously part of the Apache Jakarta project, but now is a project in its own
right.

UML Unified Modeling Language. Text, lines and boxes as a means of communicating in
Object-Oriented analysis and design.

1

1 Introduction

Enterprise Applications (EAs) are generally understood to be on-demand, user-interaction based applications that
are meant to be accessed by multiple users, usually from the same organization. Web-based Enterprise Applications
(WEAs) imply EAs made available through the Internet. These applications (EAs and WEAs) generally use
databases for persistent storage. E-commerce sites (such as Amazon [AMAZON] and eBay [EBAY]), banking sites,
webmail, online casinos and search engines are some of the many examples of WEAs. Since 2000, US retail e-
commerce sales have steadily increased their percentage of the overall retail sector, achieving an estimated 3.6%1 in
the second quarter of 2009 [USCENSUS], highlighting the emerging importance of WEAs in the market.

Keeping up with the advancement of WEAs requires more than just single developers. Large teams comprising
many roles are now quite normal. With the increased manpower and separation of roles comes an increased need for
communication and accountability. More standardized tools, languages and approaches need to be developed and
adopted to ensure reliable results. One of the keys to improving the language of communication used in this field is
the use of design patterns. Similar to Larman we take a software design pattern to be a named problem/solution pair.
Larman, consistent with most definitions of “design pattern”, also states that a pattern is a well-known
problem/solution pair [Larman 2004].

Martin Fowler introduces 51 architectural patterns in his book, “Patterns of Enterprise Application Architecture”
[Fowler 2003]. The book describes how developers can use these patterns to understand existing Enterprise
Applications and to better write new ones. Fowler’s work provides a stable basis to further introduce good practices
to Software Engineers.

1.1 Problem

While there are many areas that warrant improvement in the field of EAs in general and WEAs in particular, we
have focused on areas that are important for learning and comprehension. In particular, we have sought to add
examples, improve guidance on usage and provide a clearer separation between theory and practice. More
specifically, we have identified the following problems:

 High level patterns lack comprehensive examples.
 Guidance regarding the use of interrelated WEA patterns is sparse.
 The separation between theory and implementation is ambiguous.
While current design patterns contribute to thinking about design, help identify design patterns in practice and are a
means to communicate those patterns to others, many of the higher level design patterns do not provide much
prescriptive guidance for developers, particularly guidance needed by those without much experience. For example,
a broader architectural pattern, such as LAZY LOAD [Fowler 2003] addresses a fairly specific problem, but one needs
additional patterns to describe the various avenues to approach a solution. Guidance as to when to use which sub-
pattern (GHOST or VIRTUAL PROXY) is minimal..

Many of the higher level patterns are paired with others with which they work well (e.g. DOMAIN MODELS with
MAPPERS; LAZY LOAD with VIRTUAL PROXY). In [Fowler 2003], code is often provided showing implementations
of these patterns in isolation. It would be more helpful to have guidelines showing the implications of mixing many
of these patterns in a standard configuration. Such examples would more readily guide developers in the use of the
patterns and their potentially complex interactions.

In [Fowler 2003], the theory of each pattern is discussed abstractly while subsequent reasoning and examples are
often given in a practical manner, albeit one that is narrow and geared strongly towards implementation. Increased
separation between the theory and implementation and a closer examination of the theory would give developers
better tools when deciding between patterns.

These problems highlight some of Fowler’s admittedly inherent shortcomings in his book, as it was intended as an
introductory resource and represents only a snapshot of his evolving understanding. As such, in critiquing his work
we are building on his already formidable starting point.

1 $32.4 billion of $906 billion total retail

2

1.2 Contributions

The main contributions of this thesis address the previously mentioned problems through

 The suggestion of additional patterns.
 Improved definitions for some existing patterns.
 More concrete guidelines regarding the application of patterns.
 In particular, we offer guidelines to address integrating compatible patterns.
 The introduction of a framework, SoenEA, designed to facilitate implementing the theory described herein

In addition to expanding on existing patterns and providing supporting implementation, as a secondary contribution
we also

 Demonstrate how a subset of Fowler's patterns can work together in gradually more complex combinations,
iteratively achieving better design.

 Provide a sample implementation integrating our recommended combination of patterns.

1.3 Scope

Using Fowler's suggested patterns and code [Fowler 2003], a simple application will be put together. Using this
example, Fowler's patterns will be briefly explained. Given a fair understanding of what Fowler has provided, the
changes and additions to these patterns will be examined. Differences and divergence from Fowler's patterns will be
highlighted. Once the theory has been covered, a practical examination of its application using the SoenEA
framework will be given, referencing examples from the sample application that is available online in source form.

It is assumed that the reader is familiar with the patterns and theory described in [Fowler 2003], [Larman 2004]’s
GRASP patterns and basic architectural styles, particularly those popularly applied to WEAs. In addition, the reader
should be familiar with UML. A summary of some basic Software Engineering concepts will be provided in Chapter
2.

3

2 Background

In this chapter, the concept of architectural styles—the layered and client-server styles in particular—are reviewed
to provide a basis for the rest of this thesis. A common layered scheme will also be discussed and used to help
organize design patterns.

2.1 Architectural Styles: Layered and Client-Server

Though there are many definitions, we see an architectural style is a general way of thinking about and approaching
a problem at a high level. Architectural styles are often described in terms of their components and connectors, as
well as the rules for their interaction. Like design patterns, architectural styles are patterns that have been found to
recur in proven systems.

In the layered style, layers are the components. Protocols that dictate how layers, and modules within layers may
depend on each other define the connectors this style. In what we describe as a “pure” layered style–in that this
variation follows the style guidelines suggested in [SG96] exactly–these protocols state that only adjacent layers
may communicate; layers below provide services to the layer immediately above and layers below are oblivious to
the layers above [SG96].

In the client-server style, components are clients and servers which are separated across a network. The connectors
for this style are requests made over network links, which come only from the clients to the servers, and the
subsequent responses.

One could, for example, have a client-server style system where the server side makes use of the layered style and
the client side might also make use of the layered style. In this way a system’s architecture will be described by
potentially many styles, just as a software design will make use of multiple design patterns.

2.2 A layered approach

Web-based Enterprise Application (WEA) development is often done using a three layered architecture. [Larman
2004] and [Fowler 2003] both provide examples of such three layer organizations, and we combine their approaches
to provide a similar breakdown shown in Figure 2-1, and described in the rest of this Section.

Figure 2-1 Three layer style of a WEA

In keeping with a pure layered style (this will become apparent in Chapter 3), we merge the Application and
Presentation layers, both described in [Larman 2004], which differs from Larman’s approach of keeping the
Application layer separate if it is used at all. Application-specific elements are those elements that have more to do
with the type of the application, (i.e. web application, desktop application, applet, etc.) than with the specific use of
the application (i.e. selling computers, guiding a user on a dragon slaying experience, etc.) Presentation-specific
elements would be those elements that a user would interact with visually, such as windows. These Presentation and
Application—specific elements are placed in this uppermost layer.

4

The Domain layer contains the logic and entities which describes the area of concern of an application. For example,
an application that acts as a digital rolodex could contain classes describing people, the Domain entities of the
application; the application’s behavior might include adding, removing and updating entries on people, which
constitutes the Domain logic of the application. The Domain layer contains the logic which defines interaction
between Domain entities (e.g. Person). An e-commerce site might contain different promotional billing strategies,
and this could also be programmatically captured in this layer.

[Larman 2004] and [Fowler 2003], differ slightly in the use of terms for the bottom-most layer, “Technical Services”
and “Data Source” respectively. As the “Technical Services” layer subsumes the “Data Source” layer, what [Larman
2004] describes in a “Persistence” package within “Technical Services”, we generally use the term “Technical
Services”. The Technical Services layer will contain adapters to third party systems (e.g. tax calculators, shipping
calculators) as well as mechanisms for communicating with data sources. A main purpose of this layer is to hide
technical details that are specific to external systems—such as libraries and utilities—from the layers above. The
technical details that a developer often wants to take for granted when thinking abstractly are often found here.

2.3 Client-Server

WEAs are client-server applications. Making a WEA means implementing the server side of the application as well
as what will run on client machines (usually in a client's web browser). This separation does not coincide cleanly
with the boundaries of the three layers shown in Error! Reference source not found.. A common assumption is
that all presentation components should exist on the client side, but this does not take into account server-side
decisions about presentation or security.

Figure 2-2 A more accurate distribution of client-server over the three layer architecture

Figure 2-2 gives an idea of what is on the client side vs. on the server side. The breakdown of client-side to server-
side implementation is not clear-cut. The trend is that the Application / Presentation layer is usually more
represented on the client side, and the Service layer is much less so. The Domain layer tends to be represented more
evenly, usually leaning towards the server side.

While this thesis will focus on the server-side aspects of WEAs, it is important to understand the client-side aspect
as well. For example, concerns that might be considered part of the Domain layer, such as ensuring that input from
the user is valid, are often run on the client side. While client-side validation can be easily circumvented by someone
who knows their browser2, it does protect users of the application's front-end from tying up the system with multiple
erroneous network requests due to small mistakes (e.g. formatting their postal code wrong, or missing a digit from a
phone number). The tangible benefit for the end-user is responsiveness. Martin Fowler defines responsiveness as:
“… how quickly the system acknowledges a request as opposed to processing it.” [Fowler 2003, page 7] Processing
of the request does not start until the client-side checking is done.

2 As the validation is done on the client side, this validation is necessarily under the control of the client. Firefox, for example, has a plug-in

called FireBug which can be used to change any part of a web page on the client’s side, including JavaScript variables and cookies.

5

3 WEA Design Patterns in Practice: A Tutorial and Critical Assessment

In this chapter we provide an example that is simple, yet rich enough to illustrate the state of the art of Enterprise
Application (EA) patterns. The chosen example is a buddy list with age information which we will call the
BuddyAge application. The chapter is broken down into a series of iterations, each describing a version of
BuddyAge.

The goal of reading through each iteration in this chapter is to develop a familiarity with Fowler’s patterns (and one
from Sun [Alur 2001]), on which the theory in this thesis is built. We have contributed a progression through the
patterns that we feel helps in their practical understanding. We have also tried to describe how these patterns relate,
beyond what is offered in Fowler’s book [Fowler
2003].

3.1 Introduction to the BuddyAge
Application

Our BuddyAge application allows a user to choose a
name from a list of “buddies” and then see the chosen
person's age. When viewing a person's age, it is also
possible to increment that age (as one might do on a
person’s birthday).

Based on Figure 3-1 we can break down the
application’s functionality into the following initial

feature list:

 Browse People
 View Person
 Increase Age

In a session using this application, one might
browse several listed names (Figure 3-2), choose a
person and then view that person's age (Figure
3-3). When viewing a person, the system allows
the user to return to the list of buddies or choose to
increase the age of the person shown.

Figure 3-1 Navigating BuddyAge application pages

Figure 3-2 Sample “Browse People” web page

Figure 3-3 Sample “View Person” web page

6

3.2 Iteration Style

We demonstrate an evolution in the use of EA patterns in successive iterations. Each iteration focuses on one or
more patterns that increasingly apply separation of concerns or otherwise improve the overall design. The use of
iterations puts the patterns in perspective with respect to one another and further provides a basis for our discussion
on advanced patterns and pattern usage in later chapters. The iteration-wise breakdown of patterns also allows for a
gradual development of familiarity with the patterns.

Each iteration includes a brief summary of the changes from the previous iteration, a class diagram for the current
iteration, a description of the relevant patterns, some guidance on the pattern usage and a breakdown of the concerns
dealt with by the patterns. In his book on EA patterns, Fowler includes a brief quote at the beginning of each of his
pattern chapters. To quickly sum up our exposition of his patterns, and because we find Fowler’s quotes to be a good
summary, we include these quotes in the “Pattern Description” subsections.

3.3 Iteration 1: Do-It-All TRANSACTION SCRIPTs

In this iteration we provide an implementation to meet the features outlined in Section 3.1: browsing people,
viewing people, and increasing their age. This implementation variant of the TRANSACTION SCRIPT pattern is the
simplest possible design, and is often called a “Do-It-All” TRANSACTION SCRIPT. Figure 3-4 shows three
TRANSACTION SCRIPTs (denoted by the TS stereotype) used by our example application. Each kind of request—one
corresponding to each of the features in Section 3.1—has its own class, following a COMMAND pattern approach
[Fowler 2003, p.111].

3.3.1 Pattern Description

TRANSACTION SCRIPT

Figure 3-4 Class diagram of TRANSACTION SCRIPTS spanning all three layers

7

“Organizes business logic by procedures where each procedure handles a single request from the
presentation.” [Fowler 2003, p.110]

To see how this pattern works, consider what happens after the user issues a request to the server to view all people.
The BrowsePeopleTS will:

1. Retrieve data about all people from the data source.

2. Format the people data into a suitable response.

3. Return the formatted response to the client.

A TRANSACTION SCRIPT takes responsibility for an entire request.

3.3.2 Pattern Usage

This pattern, especially in the “Do-It-All” form, does little to separate concerns. Unfortunately, it typifies a very
commonly used approach to development. This overuse is because a TRANSACTION SCRIPT is easy to implement
quickly and requires little thought about program evolution. Throwaway prototypes and experimentation can lead to
the use of TRANSACTION SCRIPTs instead of a more structured approach. This pattern captures such ad hoc
approaches, the outcomes of which were never designed to be part of a production system but that all too often end
up there.

3.3.3 Concerns

TRANSACTION SCRIPTS often deal with the following basic WEA concerns:

 Receive requests from the client.
 Extract client data.
 Apply domain logic.
 Persist results in the data source.
 Generate a response.
In a “Do-It-All” TRANSACTION SCRIPT, all concerns are dealt with in a single TRANSACTION SCRIPT class.
TRANSACTION SCRIPTS can also deal with fewer concerns, as we will illustrate next.

3.4 Iteration 2: Isolating Technical Services with ROW DATA GATEWAY (RDG)

Improving on one of the simplest designs possible illustrated in the last iteration, we will introduce a pattern that
will help us to separate out the data access concerns from the do-it-all TRANSACTION SCRIPT. In terms of features,
the application remains the same.

In Figure 3-5 we see that TRANSACTION SCRIPTs no longer span all three layers, which already makes the design
better by more closely adhering to the layered style; as discussed in Section 2.1, classes should be in their own
layers instead of spanning several.

8

3.4.1 Pattern Description

ROW DATA GATEWAY

“An object that acts as a Gateway (466) to a single record in a data source. There is one instance per
row.” [Fowler 2003, p.152]

Using RDGs, the data representing a row in the database is stored in an instance of an RDG and is made accessible
by standard getters/setters (setters omitted for brevity). As the RDG in our running example has two fields, this
implies that the person table in the database has two corresponding columns: name and age.

To interact with the database, RDGs have instance methods insert, update and delete, which affect the corresponding
outbound interactions with the data source. To retrieve data from the data source, finder methods are used. These
finder methods are often either a part of the RDG or in a separate FINDER class [Fowler 2003, p.152-159, p.161].
RDG FINDERs request data from the data source and instantiate RDGs based on the data found.

3.4.2 Pattern Usage

Fowler recommends the use of RDGs when working with TRANSACTION SCRIPTs or when there is little difference
between the representation of data in the application and in the database and when little domain logic is required to
be directly associated with the RDGs. Our experience is that RDGs will remain useful longer than TRANSACTION

SCRIPTs as a system develops, but eventually become too difficult to work with, as in more complex systems they

Figure 3-5 Isolating data source access in a ROW DATA GATEWAY

9

either become gradually less cohesive, or become too highly coupled. Even so, RDGs reliably identify an approach
used in many systems, and it is a pattern that has merit.

3.4.3 Concerns

ROW DATA GATEWAYs help isolate one concern from TRANSACTION SCRIPTs (Section 3.3):

 Interact with the data source

and adds one new one:

 Stores data from tables.

It is important to note that domain logic is not encapsulated in the RDG. If it were, we would have an ACTIVE

RECORD [Fowler 2003, p.155,160], since Active Records are essentially RDGS with domain logic.

3.5 Iteration 3: Isolating Presentation with TEMPLATE VIEW and VIEW HELPER

In the previous iteration we improved the design by factoring out Technical-Services-layer specific concerns into an
RDG, leaving the rest of the concerns within the TRANSACTION SCRIPT. In this iteration, we separate presentation
concerns from Domain logic while continuing to improve on the design.

In Figure 3-6 we see the addition of two TEMPLATE VIEWs. These additional classes represent a significant
separation of concerns, i.e., the removal of the output formatting of the data from the TRANSACTION SCRIPT. The
TRANSACTION SCRIPT still contains the Application / Presentation level responsibilities of choosing which VIEW to
use (vs. previously generating a response itself) and receiving requests from the client.

TEMPLATE VIEWs are seldom found in a one-to-one relation with the types of requests to an application. In Figure
3-6 we have three types of requests (each TRANSACTION SCRIPT) and only two views. One can easily see why a
request to view people is associated with the BrowsePeopleTV and why a request to view a single person is

associated with the ViewPersonTV. Figure 3-6 shows that a request to increase the age of a person will be

associated with the ViewPersonTV, which allows the application to confirm to the user that they have indeed
increased the age of a person.

3.5.1 Pattern Description

TEMPLATE VIEW

“Renders information into HTML by embedding markers in an HTML page” [Fowler 2003, p.350]

The idea behind the TEMPLATE VIEW is to have an otherwise statically generated HTML page embedded with some
dynamic content. Java Server Pages (JSPs) provide a mechanism for doing this when working with Java Servlets
[JSP, SERVLET].

A goal is to have as little code as possible mixed into TEMPLATE VIEWs, while making them manage as much of the
presentation as possible. This usually amounts to mostly static HTML interspersed with calls to getters from a very
small number of Domain layer objects, including VIEW HELPERs, which we describe next.

VIEW HELPER

A VIEW HELPER acts, metaphorically, as an envelope to pass data from TRANSACTION SCRIPTs upwards to
Application / Presentation layer entities such as TEMPLATE VIEWs. They are often used to aggregate all the pieces
used in a VIEW, thus simplifying access. A VIEW HELPER lets us avoid placing domain logic in a VIEW class either
by encapsulating this domain logic directly in the VIEW HELPER, or more frequently in our experience, by providing
a placeholder for the results of any such domain logic such that the VIEW can just access the result. VIEW HELPERS
are also useful to eliminate dependencies from the Application / Presentation layer to the Technical Services layer
(thus helping achieve was is called a pure form of the layered architectural style [SG96]) and can act as adapters

10

over elements of the Domain layer. For example, by not exposing the RDG class the VIEW HELPER in Figure 3-6
prevents a dependency between the Application / Presentation and Technical Services layers.

Fowler makes use of helpers in his examples, but does not discuss them directly as a pattern in his Patterns of
Enterprise Application Architecture (PEAA) book. However, Fowler is a co-author of the Core J2EE Pattern
collection [Alur01, p.186] which names this pattern VIEW HELPER—and hence we have also adopted this pattern
name. The VIEW HELPER pattern is consistent with Fowler’s use of helpers in his PEAA book.

3.5.2 Pattern Usage

TEMPLATE VIEW VS TRANSFORM VIEW

As an alternative to a TEMPLATE VIEW, Fowler also describes the TRANSFORM VIEW. A TRANSFORM VIEW generates
content based on the type and format of the data provided, i.e., “transforming” the data from one representation (e.g.
XML) to another (e.g. HTML). A TEMPLATE VIEW provides a fixed structure, often with some fixed content, but
allowing data to be inserted into predefined locations. Alternately, a TRANSFORM VIEW builds content around data.
For the scope of this thesis, the distinction between the two is immaterial. The concerns discussed and the benefits of
using either type of view pattern remain the same as far as the rest of the design is concerned.

Figure 3-6 Class diagram showing the addition of TEMPLATE VIEWs and a VIEW HELPER

11

The TEMPLATE and TRANSFORM VIEWS may not be applicable for all kinds of software applications. For example, if
an application’s presentation is done directly through a windowed interface (thick-client), then one needs to
approach view related responsibilities in an entirely different manner—although the rest of the patterns work quite
well in conjunction with thick-client applications.

Although [Fowler 2003] describes both the TEMPLATE VIEW and the TRANSACTION VIEW specifically as patterns to
generate HTML, in our experience these patterns are equally well suited to any text-based output.

VIEW HELPER

Being a simple pattern, there is not much to add concerning VIEW HELPER other than they are almost always used
when a design includes VIEWS.

3.5.3 Concerns

The TEMPLATE VIEW isolates a single concern from the design of the previous section:

 Generation of output response.

The VIEW HELPER

 Acts as an envelope used to hold data being passed to VIEWs.
 Provides indirection between the Application / Presentation and Technical Services layers.

3.6 Iteration 4: Data Integrity and an Isolated Domain Logic with OPTIMISTIC OFFLINE

LOCK, PAGE CONTROLLER and IDENTITY FIELDs

The previous iteration focused on further factoring out concerns from the TRANSACTION SCRIPT. In this iteration we
deal with:

 a concurrency problem, and
 a better way of identifying people.

So far, we have considered BuddyAge from the perspective of a single user, but new problems can arise when the
application is used at the same time by multiple users. Even the simple case of two people increasing Bob’s age at
the same time can cause confusing results: namely, one user can see the age of Bob increased by two. To avoid
problems like these, we adjust the Increase Age feature so that it notifies users about conflicts due to concurrent
updates, as illustrated in Figure 3-7.

In our new design (see Figure 3-8), PAGE CONTROLLERS now occupy the Application / Presentation layer and the
remains of TRANSACTION SCRIPTS that used to span that layer and the Domain layer now exist solely in the Domain
layer. The design now respects a pure layered architecture. The VIEW HELPER and the RDG now take into account
the use of IDs and versions—to be explained shortly. Also, the RDG update() and delete() methods now return
integer values which represent how many records from the data source are affected by those operations.

12

Time User 1 User 2

0s

Bob’s page is loaded:
Bob is 22 years old.

Bob’s page is loaded:
Bob is 22 years old.

5s

User 1 increases Bob’s page:
You’ve increased Bob’s age!

Bob is 23 years old.

User 2 is still looking at their initial page, they have
not done anything yet.

10s …

User 2 finally decides to Increase Bob’s Age:
Warning: Someone has already
modified Bob’s age since you last
viewed the
page. Bob’s updated age is given
below.

Bob is 23 years old.

Figure 3-7 Warning User 2 that someone else has already updated Bob’s age

13

3.6.1 Pattern Description

OPTIMISTIC OFFLINE LOCK

“Prevents conflicts between concurrent business transactions by detecting a conflict and rolling back the
transaction.” [Fowler 2003, p.416]

Figure 3-8 A class diagram showing PAGE CONTROLLERS, IDENTITY FIELD and OPTIMISTIC OFFLINE LOCK

14

Concurrency management schemes are characterized by categories at two extremes called optimistic and pessimistic
concurrency management. Optimistic schemes do not restrict the ability to change a data source, but help detect
conflicts after the fact and focus on the resolution of these conflicts. By contrast, pessimistic schemes eliminate the
possibility of conflict by ensuring changes to a data source are serialized; i.e., a pessimistic scheme might allow only
one person at a time access to the system, eliminating conflicts with other users. OPTIMISTIC OFFLINE LOCK is best
suited to detect lost updates. Lost updates occur when two or more users attempt to change to the same data at the
same time, and an earlier change is silently “lost” due to the overwrite of later commits [Fowler05, p.64].

The OPTIMISTIC OFFLINE LOCK pattern works by versioning data in the data source and recording the versions as
part of in-memory objects so that when an update is required, the versions of in-memory objects can be compared to
those in the data source. If the versions match, the update is allowed. If the versions do not match, the data source is
left unchanged and steps are generally taken to notify the user.

If two update requests affect the same data, the first to go through will acquire a write lock on the data source, most
often a row-based lock. Hence, the requests are effectively serialized (see Figure 3-9). Now consider a more
complex scenario where two threads each want to update the same pair of rows—Figure 3-10. Conflicts such as
deadlock can occur and are detected, reported and one transaction “falls victim” and is rolled back3.

IDENTITY FIELD

“Saves a database ID field in an object to maintain identity between an in-memory object and a database
row.” [Fowler 2003, p.216]

In-memory objects do not need any additional means of identifying themselves uniquely until a data source is
involved. When using a data source to represent unique in-memory objects, there will be some form of primary key
(at worst a compound key comprising all fields in a particular row) which is used as the IDENTITY FIELD. When
possible, a simple integer field, not tied to any domain logic, is best. The concept of an IDENTITY FIELD is as simple
as it sounds. The only care that must be taken is ensuring a consistent means of getting new IDs. Fowler discusses
several methods and the reasoning behind them [Fowler 2003, p.218-220].

3 Tests confirm that MySQL detects deadlocks of this nature and throws deadlock exceptions.

Id Name Age
1 Bob 22
2 Fred 33
3 Cindy 44

Id Pet
1 Dog
2 Cat

Thread/Time T0 T1 T2 T3 T4

Thread 1
Update Fred
(row locked)

 commit (lock released)

Thread 2
Update Fred
(blocks, awaiting lock)

Lost Update
Exception

Figure 3-9 Two transactions rendered sequential

Thread/Time T0 T1 T2 T3 T4 T5 T6 T7

Thread 1
Starts
Transaction

Update Fred
(row locked)

 Update Dog (blocks, awaiting lock)
commit

Thread 2
Starts
Transaction

Update Dog
(row locked)

Update Fred
(blocks, awaiting lock)

Deadlock
detection

victim rollback
(lock released)

Figure 3-10 Deadlock resolution on conflicting transactions

15

PAGE CONTROLLER

“An object that handles a request for a specific page or action on a Web site.” [Fowler 2003, p.333]

The PAGE CONTROLLER acts as a controller [Larman04, p.288] for the application. With this form of controller, each
kind of request has its own entry point into the system in the form of that PAGE CONTROLLER. PAGE CONTROLLERS
create and/or initialize Domain layer objects and then apply domain logic as needed (by delegating to Domain
objects), finally forwarding results to a VIEW.

3.6.2 Pattern Usage

OPTIMISTIC OFFLINE LOCK

The choice of concurrency management scheme is based on an evaluation of cost. If conflicts are infrequent and the
cost of resolving any individual conflict is low, OPTIMISTIC OFFLINE LOCK is a natural choice. In terms of measuring
the cost of the conflict, one should consider:

 the cost of automated merging, or
 the cost of offering a convenient UI allowing users to manually merge changes.

IDENTITY FIELD

This pattern always exists in a WEA. In order to be extracted from a data source, there must be some means of
uniquely identifying data, though this is not always identified as a key or an IDENTITY FIELD. The actual choice is
whether an existing database schema must be used as is, or whether there is flexibility in extending table schemas by
adding one or more new columns to serve as primary key. When possible, the use of some form of integer key is
best, as integer IDs are simple, are easy to generate sequentially and integer IDs makes for very quick joins of
database tables.

16

Where one gets new ids is dependent on the
application. When only a single application is
using the database, our approach to generating a
unique ID for a new record(s) in a given table, is to
perform an initial table scan to obtain the current
maximum ID, m, and then using m+1, m+2, ... as
the new IDs (Figure 3-11). If multiple applications
use the same database, then one must resort to the
use of ID tables4 and a second database connection
(which can be used to lock the ID tables). In an
environment where there are many databases being
shared by many applications (Figure 3-12), a
Globally Unique Identifier (GUID) —also
sometimes referred to as UUID—system should be
used [Fowler 2003, p.218].

PAGE CONTROLLER

Fowler suggests a familiarity of use with PAGE

CONTROLLERS as being part of its appeal.
Conversely, our approach favors FRONT CONTROLLERS–a pattern described in Section 3.8–to avoid the duplication
inherent in using PAGE CONTROLLERS to act as multiple entry points to a single application.

3.6.3 Concerns

No one class represents the OPTIMISTIC OFFLINE LOCK. Managing lost updates, something facilitated by the
OPTIMISTIC OFFLINE LOCK pattern, is a concern that impacts other patterns as well, such as RDGs and other data
source patterns to be seen in subsequent sections. Detecting concurrency issues is relatively simple while dealing
with them can be complicated.

In this iteration, the previous TRANSACTION SCRIPT’s presentation layer concerns were factored out to PAGE

CONTROLLERS. The PAGE CONTROLLER must:

 deal with lost updates, when reported, and

4 An ID table, in this context, is a table that exists solely to track the current maximums of ids.

public class SingleAppUniqueIdFactory extends UniqueIdFactory {

 private static Hashtable<String, Long> IDs = new Hashtable<String, Long>();

 public synchronized long getId(String table, String field) throws SQLException {
 Long max_id = IDs.get(table+"."+field);
 if (max_id == null) {
 ResultSet rs = DbRegistry.getDbConnection().createStatement().executeQuery(
 "SELECT max(" + field + ") AS maximum FROM " +
 DbRegistry.getTablePrefix() + table);
 max_id = rs.next() ? rs.getLong("maximum") : 1;
 rs.close();
 }
 IDs.put(table+"."+field, ++max_id);
 return max_id;
 }
}

Figure 3-11 Single table scan approach

Figure 3-12 Many applications with many databases

17

 decide on which View to use.

While a PAGE CONTROLLER often only has one choice of VIEW to use, this is not always the case. If there were a
separate VIEW dedicated to helping a user resolve a lost update, or a VIEW geared towards displaying on a mobile
device, the PAGE CONTROLLER would be responsible for this choice.

3.7 Iteration 5: Refined Access to the Data Source with DATA MAPPER, TABLE DATA

GATEWAY and DOMAIN MODEL

In the last iteration we improved upon the means to identify objects and version them. In this iteration we improve
upon how we represent and access these objects. The changes in this iteration have no effect on the features of the
BuddyAge application.

In Figure 3-13 the PersonHelper and PersonRDG have been replaced with a PersonMapper and Person. The

data previously stored in the RDG is now stored in the Person5, an instance of part of what Fowler calls the
DOMAIN MODEL pattern. Fowler essentially describes the DOMAIN MODEL pattern as representing the requirements
artifact by the same name6.

The method names for the PersonMapper and the PersonTDG are the same, but while the PersonMapper’s

methods take a parameter from the Domain Layer, the PersonTDG takes raw data types, representing table fields,
as parameters.

5 Which represents an actual person that has a name and an age.
6 In [Fowler 2003]’s Domain Model chapter Fowler references a previous edition of [Larman 2004] as his current favorite introduction to OO.

Larman’s chapter on the Domain Model artifact is very thorough.

18

3.7.1 Pattern Description

DATA MAPPER

“A layer of Mappers (473) that moves data between objects and a database while keeping them
independent of each other and the mapper itself.” [Fowler 2003, p.165]

A DATA MAPPER allows the differences between the domain and the data source to be isolated. In-memory objects
may map to many columns, involve inheritance or have complex relationships with other in-memory objects. The
many approaches used to deal with the differences between the data source and in-memory representations of
Domain data are designed into DATA MAPPERs. These include deciding how much data to load from the database,
keeping track of loaded data to prevent duplicate loading, eliminating cyclic dependencies of loaded data, loading
data from multiple sources and persisting data from one in-memory object to multiple tables in the data source.

In-memory representations of data obtained from the data source are no longer associated with the fact that they
come from a data source. This applies a fundamental Object-Oriented design principle, the separation of concerns,
by encapsulating how fields of the in-memory representations are converted to/from the data source in the DATA

Figure 3-13 Person, PersonMapper and PersonTDG replace PersonHelper and PersonRDG

19

MAPPER. The immediate gain is the ability to intuitively represent much richer data, including associations between
in-memory representations of data from the data source—a significant improvement over what could be done with
RDGS.

TABLE DATA GATEWAY

“An object that acts as a Gateway (466) to a database table. One instance handles all the rows in the
table.” [Fowler 2003, p.144]

The TDG is simply a means to isolate SQL from the rest of the code. TDGs have static methods for standard CRUD
database access: several methods to retrieve data, a method to create rows of data, a method to update rows of data
and a method to delete rows. In cases where the TDG represents a view on a table, there may only be methods to
retrieve data.

DOMAIN MODEL

“An object model of the domain that incorporates both behavior and data..” [Fowler 2003, p.116]

[MartinFowler] provides a succinct description: "A Domain Model creates a web of interconnected objects, where
each object represents some meaningful individual, whether as large as a corporation or as small as a single line on
an order form."

3.7.2 Pattern Usage

DATA MAPPER

Fowler suggests the use of the DATA MAPPER pattern whenever the data source's organization and in-memory
organization evolve independently [Fowler 2003, p.170]. He also suggests that the DATA MAPPER can be avoided if
“the domain model is pretty simple, and the database is under the domain model developer's control”. We find that
the organization of data for a system of any complexity quickly evolves to the point where a DATA MAPPER is
needed, so we always advocate its use.

TABLE DATA GATEWAY

Fowler suggests that the use of DATA MAPPER subsumes the role of TDG, leaving the DATA MAPPER spanning two
layers. Larman, in contrast, considers that TDGS can be complementary to DATA MAPPERS, placing each in a
separate layer, and suggests using TDGS to isolate the SQL—which is the approach we use here.

DOMAIN MODEL

Fowler suggests that DOMAIN MODEL is used when an application becomes complex enough, We discuss our
approach to the DOMAIN MODEL pattern in Section 4.1.

3.7.3 Concerns

The DOMAIN MODEL pattern helps lower representational gap between conceptual representation and corresponding
implementation.

Helpers like the PersonHelper in Figure 3-8 are replaced by classes that contain data directly, instead of using
underlying data access elements like RDGS. In doing so, one must separate the storage of in-memory data from
interaction with a data source, hence new concerns are highlighted for the DATA MAPPER:

 Mapping data from the data source to in-memory objects;
 Persisting, to the data source, new in-memory objects and changing existing ones.

TDGs have one obvious concern, the isolation of SQL. While not mentioned explicitly in Fowler, his examples
show careful attention to sanitizing outbound data, which is a TDG’s second concern.

20

3.8 Iteration 6: An Organized Approach to the Application Layer Using the FRONT

CONTROLLER Pattern

The last iteration improved how we represented and accessed data, dealing with the Domain and Technical Services
layers. This iteration will factor out the Application components of the system, continuing to keep the same overall
features for the BuddyAge application.

In Figure 3-14, the PAGE CONTROLLERs are replaced by FRONT COMMANDS, a variant on the COMMAND pattern
[GoF]. An abstract FrontCommand allows the newly added FRONT CONTROLLER to have no direct dependency on
the concrete FRONT COMMANDS. The FRONT CONTROLLER replaces most of the code that was duplicated across the
original PAGE CONTROLLER classes, specifically the initialization and the incoming request mechanism.

3.8.1 Pattern Description

FRONT CONTROLLER

“A controller that handles all requests for a Web site.” [Fowler 2003, p.344]

FRONT CONTROLLERS handle all incoming requests to a WEA and dispatch the requests to an appropriate FRONT

COMMAND. FRONT CONTROLLERS can instantiate FRONT COMMANDs through various means: a simple if/else tree,
looking up the FRONT COMMAND in a database or properties file based on a provided key, or sending that key to a
factory which does the lookup. In environments that support reflection, if the key is a fully qualified class name, the

Figure 3-14 Using a FRONT CONTROLLER and COMMANDS to replace PAGE CONTROLLERS

21

appropriate FRONT COMMAND can be directly instantiated using the reflection mechanism [Fowler 2003, p.348].
Fowler describes a FRONT COMMAND as the part of the FRONT CONTROLLER pattern that redirects to the desired
VIEW after its processing of domain logic is complete.

3.8.2 Pattern Usage

FRONT CONTROLLER

The FRONT CONTROLLER pattern is used by a system as a single point of access, which makes sense if the goal is to
isolate most of the environment-specific elements of a WEA. This approach is commonly used in a wide variety of
open source PHP/CGI applications, although it is not explicitly named. Users access a single page with different
parameters and the web application does different things accordingly.

FRONT CONTROLLERs can also be mixed with PAGE CONTROLLERs or split into mini-FRONT CONTROLLERs, each
covering a different part of the application's functionality, or a separate subsystem [Larman 2004]. One could
imagine one FRONT CONTROLLER taking care of all the publicly available functionality for a system, thus foregoing
security checks, while a sibling FRONT CONTROLLER takes care of the secured behaviors. Reasons for doing so are
dependent on topics well outside the scope of this thesis, however we promote the use of a single FRONT

CONTROLLER.

3.8.3 Concerns

Refactoring of PAGE CONTROLLERs into a FRONT CONTROLLER and FRONT COMMANDS simplifies the application
design and also renders it more adaptive: i.e., the CONTROLLER no longer needs to know explicitly what sorts of
requests it is capable of serving, as this knowledge can be inferred at runtime. The FRONT CONTROLLER is instead
tasked to:

 receive requests from the client,
 redirect to FRONT COMMANDS supplied in the request.

The PAGE CONTROLLERS are otherwise turned into FRONT COMMANDS which

 Extract client data,
 Apply any domain logic,
 Decide on which VIEW to use.

A FRONT CONTROLLER may also extract data from requests, but only so much as to allow the appropriate FRONT

COMMAND to be determined.

In more advanced applications, the FRONT CONTROLLER, being the single entry point, often appears to take on other
concerns. One finds various application level configurations for logging and database configuration as well as some
per-request preparation for things like database transactions, file upload preparation or the cleaning out of
ThreadLocals7 in a shared thread environment (like in Tomcat 5 or later releases). These concerns are not part of
the FRONT CONTROLLER pattern, but they often appear in its implementation.

3.9 Iteration 7: Managing In-Memory Data with LAZY LOAD (via VIRTUAL PROXY) and

IDENTITY MAP

The previous two iterations focused on organizing basic web application concerns cleanly across the three-layered
scheme. In this iteration, the focus will be on patterns that provide guidance for dealing with some common WEA
issues such as loading the same data into memory more than once or loading data that contains cyclic references.

7 Declaring a field as ThreadLocal makes it appear to be unique to each thread. Behind the scenes, a ThreadLocal field access behaves like

accessing a field that is a hash table keyed on the id of the current thread.

22

To highlight the issues, we will change the system slightly.
A Person can now have a buddy who may be any other

Person in the system. So, as far as a user of BuddyAge is

concerned, when viewing a Person, that Person’s buddy
will be shown (Figure 3-15).

In Figure 3-16, we see the trivial case of how a cyclic
reference can happen. While it appears easily avoidable, one
can imagine a more complex and less direct cyclic reference

involving more than two objects. In order
to be able to create an Alice object we
need a reference to Bob, but we cannot
create Bob unless we first have a
reference to Alice. While code could be
written specifically to handle this
situation, LAZY LOAD provides a simpler
and uniformly applicable solution
regardless of the complexity of the object

interdependencies.

Bob is 23 years old.
Bob’s buddy, Alice, is 29 years old.

Figure 3-15 Viewing a Person and their buddy

Figure 3-16 Alice is Bob's buddy. Bob is Alice's buddy

Figure 3-17 Adding a VIRTUAL PROXY and IDENTITY MAP

23

LAZY LOAD via VIRTUAL PROXY is illustrated in Figure 3-17: the interface of Person has been factored out into the

IPerson and a PersonProxy has been added. IPerson abstracts away whether a Person or a PersonProxy is

being used. A PersonProxy can stand in for a Person without actually needing any of that Person’s data, except

the IDENTITY FIELD. Figure 3-18 shows how the VIRTUAL PROXY finds an actual Person using the person's id; the
rest is done with delegation.

The next change to the class diagram is the addition of an IDENTITY MAP. Whenever the PersonMapper is tasked

with finding a Person, it will first query the IDENTITY MAP to see if the Person has already been loaded, and if not,

it loads the Person and stores it in the IDENTITY MAP. IDENTITY MAP's are unique to each request, which is

guaranteed by the ThreadLocalSingleton stereotype.

3.9.1 Pattern Description

LAZY LOAD

“An object that doesn’t contain all of the data you need but knows how to get it.” [Fowler 2003, p.200]

Fowler describes the problem of loading an object from a heavily interconnected database. If each object loaded into
memory loads up all associated objects, one could conceivably end up with an entire database loaded. The key idea
is that rather than have an object getting fully loaded into memory, it will instead get loaded into memory only when
it is needed. Larman describes loading the entire object into memory immediately as “eager” loading, also using the
term “lazy” to describe when the object is not fully loaded until used [Larman 2005].

Fowler does not explicitly discuss cyclic references in his description of Lazy Load. We have found that it happens
more readily than the loading of too much data, so we suggest that this is the primary problem addressed by Lazy
Loading, and will discuss the matter further in Section 4.3.

IDENTITY MAP

“Ensures that each object gets loaded only once by keeping every loaded object in a map. Looks up
objects using the map when referring to them.” [Fowler 2003, p.195]

Problems can arise if an object is loaded into memory more than once and one instance is changed in one way, while
another instance is changed in a different way. Correctness can not be guaranteed if both those changes were written
to the database.

3.9.2 Pattern Usage

LAZY LOAD

Fowler suggests three variants of the LAZY LOAD pattern. Of his suggested variations, the VIRTUAL PROXY is the
cleanest, in our opinion. Another common approach is to use a GHOST, wherein an object can be partially loaded.
This partially loaded object would then load itself the rest of the way as needed. A GHOST essentially acts as a
VIRTUAL PROXY for itself. There is also a variation on LAZY LOAD called LAZY INITIALIZATION [Larman 2004]
where null is assigned to a field. Any access to that field checks if it is null, loading the real data if the field was
null.

Figure 3-18 PersonProxy code for getting a real Person and illustrating delegation

private Person getRealPerson() {
 if(realPerson == null) {
 realPerson = PersonMapper.find(id);
 }
 return realPerson;
}

public int getAge() {
 return getRealPerson().getAge();
}

24

Fowler advocates that LAZY LOAD should be used as dictated by performance, and sparingly at that. We strongly
advocate the use of LAZY LOAD even when performance does not explicitly indicate that it would be needed. While
our reasoning will be explained fully in Chapter 4, at this stage the avoidance of problems arising from cyclic
dependencies alone is a very strong reason to use this pattern.

As mentioned earlier, we advocate the use of VIRTUAL PROXY as the preferred variant of LAZY LOAD. Both GHOST
and LAZY INITIALIZATION create incomplete objects that must be aware of a means to load additional data. With
VIRTUAL PROXY, objects remain oblivious to the fact that their data is not completely loaded, as well as to how that
data would be retrieved, thus making for less coupling and higher cohesion.

IDENTITY MAP

The IDENTITY MAP is required in any system where data is retrieved from a data source, changed, and saved again.
Specifically, anything in memory making use of the IDENTITY FIELD pattern should be used with an IDENTITY MAP.
Fowler also suggests that IDENTITY MAPs act as a reading cache, saving external calls to a data source. Our
experience has shown that this use is beneficial in a wide variety of systems, even though it is a side effect of the
main benefit of the IDENTITY MAP.

3.9.3 Concerns

The concerns dealt with by these two patterns are of a different nature than those we have discussed thus far. The
LAZY LOAD pattern:

 ensures that problems arising from cyclic dependencies can be avoided,
 prevents a system from using resources it does not need.

The IDENTITY MAP pattern:

 ensures that an object only gets loaded from the data source into memory at most once per request,
 potentially helps reduce the number of calls to the persistent store.

3.10 Iteration 8: Accommodating a Complex Domain with UNIT OF WORK (UOW) and
DEPENDENT MAPPING

In this iteration we change how the BuddyAge application works. Now each Person will have several

PhoneNumbers associated with him/her. These PhoneNumbers are only relevant insofar as they are related to a

Person. In Figure 3-19 we see that the additional PhoneNumber class has a many-to-one relationship with Person.

The code for the PersonMapper’s find, insert, update and delete methods is given in Figure 3-20. It illustrates the

new responsibilities assigned to PersonMapper with respect to keeping track of a person’s PhoneNumbers. Since

PhoneNumbers do not have an independent identity, we use the DEPENDENT MAPPING pattern, embodied in the

PersonMapper methods, where:

 inserting a person causes their phone numbers to be inserted (line 30),
 deleting a person causes their phone numbers to be deleted (line 39),
 updating a person causes their phone numbers to be deleted and reinserted (line 34-35) and
 loading a Person into memory causes their PhoneNumbers to also be loaded (line 16-20).

There is no need for an IDENTITY MAP when using DEPENDENT MAPPING on PhoneNumbers as they lack identity.

Figure 3-20 also shows a UNIT OF WORK with the principle function of keeping track of changes to in-memory
objects. As a Person is changed, removed or added, this change will be registered with the UNIT OF WORK (line 23).
When a Command is finished processing, it will use the UNIT OF WORK to commit all the registered objects.

25

Figure 3-19 UOW and a relationship between PERSON and PHONENUMBER

26

3.10.1 Pattern Description

UNIT OF WORK

“Maintains a list of objects affected by a business transaction and coordinates the writing out of changes
and the resolution of concurrency problems.” [Fowler 2003, p.184]

If data is changed in-memory, it needs to be persisted to the data source for other requests to see it. If not
done systematically, keeping track of what is changed is difficult as a system becomes larger.
Alternatively, writing out changes frequently can be slow and impractical; there may be many changes,
and an actual transaction opened in a data source may need to persist across multiple requests [Fowler
2003, p.184].

The UNIT OF WORK addresses these problems by tracking the state of four types of in-memory data:

 Clean: the object is in the data source and the in-memory data is consistent with the data source data;
 New: the object is not yet in the data source;
 Removed: the object should be removed from the data source;
 Dirty: the object has changed from what was retrieved from the data source.

The UNIT OF WORK supports a business transaction by tracking such categorized data: recording changes (and
possibly reads), starting the transaction, performing concurrency checks and then writing the changes to the data
source all at once [Fowler, p.185].

Fowler describes the Unit of Work as also being the place to resolve the two related technical problems:

 Maintaining referential integrity (relative to foreign keys)
 Avoiding deadlocks

A data source has referential integrity if all foreign keys refer to entries that exist. E.g., imagine a Person table and
a Pet table. If Pet has a foreign key on Person, perhaps owner, then a Pet must always have a corresponding row
in the Person table. If one needs to delete a row from Person, and the corresponding row(s) from Pet, one must

1 public static Person find(long id) {

2 if(PersonIdentityMap.has(id))

3 return PersonIdentityMap.get(id);

4 Resultset rs = PersonTDG.find(id);

5 if(rs.next()) {

6 List<PhoneNumber> numbers =

7 new Vector<PhoneNumber>();

8 Person p = new Person(id,

9 rs.getLong(“p.version”),

10 rs.getString(“p.name”),

11 rs.getInt(“p.age”),

12 new PersonProxy(rs.getLong(“p.buddy”)),

13 numbers

14);

15 rs.close();

16 rs = PersonTDG.findPhoneNumbers(id);

17 while(rs.next()) {

18 numbers.add(

19 new PhoneNumber(rs.getLong(“pn.number”)));

20 }

21 rs.close();

22 PersonIdentityMap.put(id, p);

23 UoW.registerClean(p);

24 return p;

25 }

26 return null;

27 }

28 public static void insert(Person p) {

29 personTDG.insert(...);

30 insertAllPhoneNumbers(p);

31 }

32 public static void update(Person p) {

33 personTDG.update(...);

34 personTDG.deletePhoneNumbers(p.getId());

35 insertAllPhoneNumbers(p);

36 }

37 public static void delete(Person p) {

38 personTDG.delete(...);

39 personTDG.deletePhoneNumbers(p.getId());

40 }

41 private static void

42 insertAllPhoneNumbers(Person p) {

43 for(PhoneNumber phoneNumber: p.getPhoneNumbers()) {

44 personTDG.insertPhoneNumber(p.getId(),

45 phoneNumber.getPhoneNumber());

46 }

47 }

Figure 3-20 PersonMapper methods

27

be careful of the order of database requests to ensure referential integrity, i.e. if the Person row is deleted first,
referential integrity is violated.

A form of lost update, for row-based locking, can cause deadlocks as covered in Section 3.6.1, particularly Figure
3-10. Table-based locking would simply make this a bigger problem. Fowler suggests that logic organizing the order
of actual data source interactions is a means to minimize both deadlock and referential integrity issues, and that such
logic belongs in a UNIT OF WORK. Explicit ordering mechanisms are not given as part of UNIT OF WORK, but a
suggestion of topological sorting is made [Fowler, p.188].

DEPENDENT MAPPING

“Has one class perform the database mapping for a child class.” [Fowler 2003, p.262]

Some data does not need, and often does not have, unique identifiers. The DEPENDENT MAPPING pattern deals with
this situation. DEPENDENT MAPPINGs do not need versions or IDs, they depend on the version and ID of the data that
references them.

3.10.2 Pattern Usage

UNIT OF WORK

The UNIT OF WORK pattern is simple to use and can provide tangible performance benefits with very minimal
implementation or design effort. If a UNIT OF WORK implementation accepts different types of object, it makes it
even easier to continue to use it as a system evolves. Fowler also points out that it effectively scales to support
concurrency management [Fowler 2003, p.190], and while there are other means of keeping track of changes to in-
memory data, UNIT OF WORK is arguably the simplest to use.

UNIT OF WORK is always applied within the context of a single request. Fowler discusses the possible use of UNIT OF

WORK across multiple requests, without offering details. We consider spanning multiple requests with a UNIT OF

WORK to be non-trivial and outside the scope of this thesis. Furthermore, Fowler suggests that IDENTITY MAP can be
bundled into UNIT OF WORK by recording reads as well as other changes, an approach that we endorse.

DEPENDENT MAPPING

A DEPENDENT MAPPING should be used whenever a Domain Model identifies dependent data that is exclusively
referenced by some primary data. For example, if a system keeps track of a person’s phone numbers (e.g. mobile,
home, work, etc.), this could be a candidate for a DEPENDENT MAPPING.

Conversely, if a person and their significant other are in a given system, and they share the same pool of phone
numbers, phone numbers always changing for both of them at the same time, then the dependent data would no
longer be exclusively referenced by one person and such a system would not be a candidate for DEPENDENT

MAPPING.

Dependent data does not have identity beyond that of its primary data, but it can always be looked up using its
primary data.

3.10.3 Concerns

The UNIT OF WORK and DEPENDENT MAPPING patterns mostly help contribute to simplified implementations. The
UNIT OF WORK prescribes a way of thinking about in-memory objects that is in-line with the CRUD approach to
dealing with data. Consequently, UNIT OF WORK:

 groups all changes to the database for a request, and also
 provides a means to manage concurrency

The DEPENDENT MAPPING pattern does not so much separate a concern as it identifies an organization of data in the
database, so we will not assign a specific concern to that pattern.

28

4 WEA Design Patterns Revisited

In the previous chapter we looked at some of the key patterns described in [Fowler 2003] and how they can be used
in conjunction with each other. This chapter presents a refinement of the patterns described in the previous chapter,
as well as some additional design patterns that have become apparent given our experiences teaching WEA design
patterns and applying them to sizeable academic and commercial applications.

4.1 DOMAIN OBJECT

This section presents a pattern which identifies how real world concepts can be translated into programmatic
equivalents that address common identity and concurrency issues.

4.1.1 Context

DOMAIN OBJECT and Business Object8, often used interchangeably, are terms that we have frequently come across in
EAs. These kinds of objects are instances of DOMAIN MODEL classes. “Domain Object” (as the name of a class) is
also used in the context of EAs, most often to mean a class that represents a LAYER SUPERTYPE

9 to Domain Model
classes. To our knowledge however, no other author has formally defined DOMAIN OBJECT as a pattern. We provide
such a definition for DOMAIN OBJECT in this section.

4.1.2 Problem

Maintaining identity and consistency in a DOMAIN OBJECT that is represented both in memory and in persistent
storage can be difficult. In particular, a DOMAIN OBJECT represents data that needs to be isolated and to have identity
because it should be manipulated by the system as a single unit. Furthermore, concurrent access of DOMAIN

OBJECTS is extremely common, which leads to the general problem of Lost Updates and Inconsistent Reads [Fowler
2003, p.64].

4.1.3 Solution

The first step is to isolate the data along conceptual boundaries. This can be done be identifying the elements
representing abstract classes in a Domain Model diagram. Describing these elements in terms of DOMAIN OBJECTS
provides an identity that remains with the associated data both in memory and in the persistent storage, which allows
for clearer identification of when either of these two representations have changed.

For example, one can have a particular Person, uniquely identified by the ID 1 and having a version 1. This Person

can be stored, changed, retrieved and otherwise accessed concurrently. This Person, instantiated, could represent
Bob, who is 18 years old. A program can change Bob to be 19 years old, but this would necessarily change the
version to 2. Another program, still thinking Bob is 18 (having version 1 in memory) would be able to identify that
its version of Bob is not as current as the version of Bob that is 19 (a similar example was covered in Figure 3-7).
This means that it is possible for two programs using the same WEA to have different versions of the same data.

The primary advantage is that concurrency management can be encapsulated within the DOMAIN OBJECT. A
secondary advantage is that DOMAIN OBJECTS now have an explicit meaning for non-developers that is consistent
with its meaning for developers.

8 “Technically, business objects encapsulate traditional lower-level objects that implement a business process (i.e., they are a collection of lower-

level objects that behave as single, reusable units). User interfaces can be thought of as views of large-grained Business Objects. Databases
maintain a record of the "state" of Business Objects as they change over time.” [Sutherland97]

9 Layer Supertype is a pattern from [Fowler 2003]

29

Figure 4-1 An implementation of Person using the Domain Object Pattern

Figure 4-1 illustrates the use of interfaces during the implementation of a system that uses the DOMAIN OBJECT
pattern. Using interfaces in this way is a well established programming practice to separate behavior from
implementation. In this case, the implementation of the Person is made clear: it uses a LAYER SUPERTYPE [Fowler
2003 p.475] which contains ID and version data. Instances of such a concrete implementation are often considered
the “real” in-memory DOMAIN OBJECTs. This practice should always be considered when implementing a system
that applies the DOMAIN OBJECT pattern.

Developers and other stakeholders do not need to know if a DOMAIN OBJECT instance is of a particular type of that
DOMAIN OBJECT, or if it is a PROXY (LAZY LOAD [Fowler 2003 p.200] pattern via VIRTUAL PROXY), as an interface
such as IPerson would hide this information. The particulars of implementation out of the way, stakeholders have
new terminology that is valuable in its familiarity, and made effective by its low representational gap. For example,
when a developer talks about a programmatic Person and an end user talks about a real Person using the system,
they can overlook the fact that they are talking about different concepts10.

4.1.4 Related work and contribution

Related work:

 Fowler [Fowler 2003] used the term DOMAIN OBJECT without an explicit definition.
 DOMAIN OBJECTS have been loosely associated with “Business Objects”11.
 Fowler [Fowler 2003] used a DomainObject LAYER SUPERTYPE in some examples.
 DOMAIN OBJECTS have been described as part of the DOMAIN MODEL discussed in Section 3.7.

Our contribution:

 Identify DOMAIN OBJECT as a pattern.
 Require DOMAIN OBJECTS to have unique IDs

10 Thomas Triplet (http://www.thomastriplet.net/) casually suggested that Domain Objects seemed to behave like interfaces between classes of

people who know computers, and those who did not.
11 [Fowler 2003] mentions “domain objects” in the DOMAIN MODEL chapter and elsewhere uses DomainObject as a LAYER SUPERTYPE in that

context. [Larman 2004] describes the “Business Object Model” as a superset of the “Domain Model” artifact.

30

 Require DOMAIN OBJECTS to have versions
 Prescribe an approach to implementing DOMAIN OBJECTs.

4.2 Front Controller, Dispatchers and Commands

This Section presents a refinement of the FRONT CONTROLLER pattern described in [Fowler 2003]. FRONT

COMMANDs are promoted out of the FRONT CONTROLLER pattern and split into DISPATCHERs, a pattern based on
[J2EE]’s DISPATCH VIEW pattern, and COMMANDs. These additional patterns, and their interrelations, are also
described in this Section.

4.2.1 Context

Entry into a WEA is an important step in any request. It is at this point that an application can prepare the request so
that it may be processed consistently, and where the intent of the request is made clear. As discussed in Section 3.8,
the use of the FRONT CONTROLLER pattern implies a separation between the entry point and that part of the
application which processes a given request. Once at that part of the application, a decision is often required to select
which VIEW should be reached.

4.2.2 Problem

The FRONT CONTROLLER pattern described in [Fowler 2003] acts as a CONTROLLER in a high-level application
manner (the handler [Fowler 2003, p.346]) and in a use case CONTROLLER manner (the command [Fowler 2003,
p.346])12. In fact, the short definition of a FRONT CONTROLLER that we quoted in Chapter 3 only describes the
handler aspect: “A controller that handles all requests for a Web site”[Fowler 2003, p344].

The scope of a FRONT COMMAND, acting as a use case CONTROLLER, has not been well defined in terms of
implementation. The implementation must clearly meet the requirements for that particular type of request (e.g. a
successful login request must lead to the user being logged in), but there is no explicit description of what that
means in terms of separation of concerns.

The concept of a FRONT COMMAND lacks cohesion, in that implemented FRONT COMMANDs both process requests,
and make decisions about how requests should be processed and to which VIEWs they should be redirected. Or more
simply, they both “Do” and “Decide”, where the former requires visibility on the Domain layer, and the latter
requires visibility on the Application layer.

4.2.3 Solution

We have adapted [Fowler 2003]’s definition of the FRONT CONTROLLER pattern to only describe an entry point to an
application whose main responsibility is to decide the high-level course of a request ([Fowler 2003]’s “handler”),
thereby acting as an application CONTROLLER, bringing the FRONT CONTROLLER in line with its initial description
([Fowler 2003, p.344). The remaining responsibilities assigned to [Fowler 2003]’s FRONT COMMANDs then fit into
the DISPATCHER and COMMAND patterns.

Each request will follow a scenario of a use case, and a DISPATCHER implemented while following a use case in this
manner takes on a very specific form. For a high-level use case, each line—or set of lines—representing something
the system does can be represented by a corresponding line of code, the execution of a COMMAND by the
DISPATCHER. The alternate—or exceptional—scenarios will be treated in the same fashion within a given
DISPATCHER (Figure 4-2, lines 08-10). We describe this as the DISPATCHER dispatching to COMMANDs and VIEWs as
dictated by a use case (Figure 4-2, line 06).

12 Larman04 breaks the Controller GRASP pattern into two flavors, a façade controller representing the overall system or subsystem, and a use

case scenario.

31

01 public class LoginDispatcher extends Dispatcher {
02
03 @Override
04 public void execute() throws ServletException, IOException {
05 try {
06 new LoginCommand(myHelper).execute();
07 forward("/WEB-INF/JSP/html/main_menu.jsp");
08 } catch (Exception e) {
09 forward("/WEB-INF/JSP/html/login.jsp");
10 }
11 }
12 }

Figure 4-2 A simple Login Dispatcher using SoenEA

01 public class LoginCommand extends Command {
02
03 ...
04
05 @Override
06 public void execute()
07 throws CommandException {
08 String username = helper.getString("username");
09 String password = helper.getString("password");
10
11 try {
12 helper.setSessionAttribute("CurrentUser",
13 UserInputMapper.find(username, password));
14 } catch (SQLException e) {
15 throw new CommandException(e);
16 } catch (MapperException e) {
17 getNotifications().add("Sorry, no user for that " +
18 "username and password combo.");
19 throw new CommandException("Sorry, no user for that " +
20 "username and password combo.");
21 }
22 }
23 }

Figure 4-3 A simple Login Command using SoenEA

At then end of each scenario in a use case, either the system gives feedback to the user, which is represented by
dispatching to an appropriate VIEW (Figure 4-2, line 07), or it redirects to another use case, or part of a use case
(Figure 4-2, line 09, is effectively taking the user back to the beginning of the Login use case).

32

Promoting the “dispatcher” component from [Alur 2001]’s DISPATCHER VIEW pattern to a pattern in its own right,
representing a solution to the problem of deciding what to do and what to show, we can consider DISPATCHERs as
“deciding”, and COMMANDs as “doing”. The COMMAND then fits into the Domain layer, working primarily with
DOMAIN OBJECTs, and has no dependency on VIEWs, which are in the layer above. Similarly separated, the
DISPATCHER does not depend on DOMAIN OBJECTs, but does depend on VIEWs, COMMANDs, and even other
DISPATCHERs (Figure 4-4).

4.2.4 Related work and contribution

Related work:

 [Fowler 2003] identifies the FRONT CONTROLLER pattern.
 [Fowler 2003] identifies FRONT COMMANDs as part of the FRONT CONTROLLER pattern.
 [Fowler 2003] identifies the LAZY LOAD pattern.
 [Fowler 2003] suggests that the FRONT CONTROLLER is a good place to implement entry point–specific features.
 The COMMAND pattern is a well established behavioral Gang of Four (GoF) pattern.
 [Alur 2001] identifies the DISPATCHER VIEW pattern.
 [Alur 2001] mentions the “dispatcher component” of the DISPATCHER VIEW pattern.

Our contribution:

 Using DISPATCHERs and COMMANDs to replace FRONT COMMANDs in the description of FRONT CONTROLLER
 Making an association between use cases and DISPATCHERs
 Drawing out a DISPATCHER pattern from [Alur 2001]’s DISPATCHER VIEW
 Identifying how DISPATCHERs would dispatch to COMMANDs and VIEWs

4.3 Lazy Load: Domain Object Proxy and List Proxy

This Section presents two approaches to LAZY LOAD:

 a DOMAIN OBJECT PROXY which provides a placeholder for a single DOMAIN OBJECT and
 a LIST PROXY which provides a placeholder representing a placeholder for many DOMAIN OBJECTs at once.

The Section also presents how the implementation of these approaches provides a systematic treatment of various
problems associated with loading DOMAIN OBJECTs.

4.3.1 Context

[Fowler 2003] identifies a problem of performance loss due to the loading of huge numbers of interrelated objects.
Fowler proposes interrupting such large loads by “leaving a marker in the object structure so that if the data is
needed it can be loaded only when it is used” [Fowler 2003, p. 200]. Fowler then goes on to explain four main
implementations of LAZY LOAD. Of the approaches Fowler describes, VIRTUAL PROXY is a good match for the
DOMAIN OBJECT PROXY we promote and the VIRTUAL LIST PROXY would correspond to our LIST PROXY. What is
emphasized in our description of these patterns is that they deal with DOMAIN OBJECTs.

Figure 4-4 Separation between Dispatcher, View, Command and Domain Object Patterns

33

4.3.2 Problem

A major problem that arises with DOMAIN OBJECTs is that they tend to be interconnected. Imagine if a Person class

was defined as having Parents and Children. Even in a genealogical application it might prove cumbersome to load

the entire data source into memory just to look at a single Person.

Given the simple example where a Person class stores a Person's name and identifies who their buddy is, the

obvious case where one can run into trouble is when two People— for example Alice and Bob—are each other’s
buddy.

Figure 4-5 An Object Diagram showing two instances related in both directions by the role buddy

This example was used once before in Section 3.9. To reiterate, the problem is the implementation issue whereby
loading up Alice causes the loading of Bob which causes the loading of Alice, etc. As mentioned previously, this
seems simplistic and easy to avoid, but a cycle can be created from an arbitrary number of instances, and may not be
at all obvious. Since cycles occur naturally in some domains, it is up to the application to ensure that they are
handled correctly.

4.3.3 Solution

In terms of implementation, one might be able to come up with several solutions. One of the simplest that matches
conceptually with how people think about such problems is to load the object of immediate concern and no objects
beyond it. In circumstances where you can consider that there is a related object (that a person has parents),
programmatically, one has a DOMAIN OBJECT PROXY (or PROXY LIST). This functions as a placeholder that is used
superficially as a DOMAIN OBJECT (or List of DOMAIN OBJECTs), but which does not actually load anything from
persistent storage, yet identifies that there is something to load.

Loading only a single DOMAIN OBJECT and not any DOMAIN OBJECTs that are its fields is also an implicit solution to
the problem of cyclic references causing infinite loops of loading. Given the example in Figure 4-5, if an instance of
Alice is loaded, only a placeholder for the instance of Bob will be loaded, and thus there is no cycle.

A PROXY should contain a field with the same value as the IDENTITY FIELD of the DOMAIN OBJECT that it represents,
which will allow the PROXY to load its DOMAIN OBJECT when needed. An important part of using a PROXY with
DOMAIN OBJECTs is that they should be treated as the same externally; equality and hashcode methods, depending
on the language used, should be overridden so that DOMAIN OBJECTs and their PROXYS are treated accordingly.
Given that a PROXY has the IDENTITY FIELD value available, checks for equality do not need to load the actual
DOMAIN OBJECT.

LIST PROXYs need not concern themselves with equality. However, LIST PROXYs still need a means to load their
content, and this is done by storing the containing DOMAIN OBJECT. For example, if a Person, Bob, has a List of

buddies, a LIST PROXY representing that List would contain a Person field whose value was Bob.

Our approach is to always use a PROXY whenever another DOMAIN OBJECT is a field for a DOMAIN OBJECT that is
being loaded. If an attempted load primarily involves loading multiple DOMAIN OBJECTs of the same type (as in the
loading of the content of a LIST PROXY, findAllBuddies(…)), we propose that all objects created be DOMAIN

OBJECT PROXYs. Whenever a DOMAIN OBJECT field represents a Collection of DOMAIN OBJECTs, we propose using
a LIST PROXY (or some other form of COLLECTION PROXY)

34

What this leaves is a system where any request to load a DOMAIN OBJECT from the data source will never load more
than a single DOMAIN OBJECT. It also greatly reduces the complexity of any given attempt to load a DOMAIN

OBJECT. The tradeoff, as Fowler suggests, is that such systems may have to make more individual loads.

We do realize that this approach does not scale in many cases, in that more complex systems will eventually need
optimization that may be inconsistent with our prescribed use of PROXYs, e.g. when loading the data for many
DOMAIN OBJECTs at once. However, as a first pass to any development, it is a consistent and easily followed
approach. Once a system is further developed (and has a comprehensive test suite), performance testing can identify
where the use of PROXYs can be phased out as excessive, improving performance as needed.

4.3.4 Related work and contribution

Related work:

 [Fowler 2003] identifies the “Lazy Load” pattern.
 [Fowler 2003] associates “Lazy Load” with improving performance.
 [Fowler 2003] describes several implementations of “Lazy Load”:

 Lazy Initialization
 Virtual Proxy / Virtual List
 Value Holder
 Ghosts

 [Fowler 2003] identifies the “ripple loading” problem that can stem from LAZY LOAD..

Our contribution:

 Explicitly associating LAZY LOAD with DOMAIN OBJECTs
 Identifying how LAZY LOAD reduces representational gap for developers
 Identifying cyclic references as an additional problem dealt with by LAZY LOAD

4.4 Identity Map

This Section presents a refinement of [Fowler 2003]’s IDENTITY MAP pattern, clarifying its scope in an application
and identifying how it relates to DOMAIN OBJECTs. This Section also presents how the IDENTITY MAP pattern
contributes to resolving previously discussed problems, and associates this pattern with the LAZY LOAD pattern.

4.4.1 Context

[Fowler 2003] describes the problem of potentially loading data from the “same database record into two different
objects” [Fowler 2003, p.195], then potentially changing both of them independently and trying to coordinate saving
that back to the database. Fowler’s proposed solution is to use a form of map, relative to the current session, to store
every object that gets loaded.

[Fowler 2003] discusses various implementation issues:

 “Choice of Keys”
 Use of either “Explicit or Generic” IDENTITY MAPs
 Correspondence between IDENTITY MAPS and classes
 Location of an IDENTITY MAP in the design

The IDENTITY MAP embodies the idea that all attempts to access a particular DOMAIN OBJECT that exists in persistent
storage, access a single instance of that DOMAIN OBJECT in memory. We consider these accesses to be within a
context (e.g. all accesses within a single thread). [Fowler 2003] discusses IDENTITY MAP and offers some suggested
implementation guidelines.

35

4.4.2 Problem

Expanding slightly on [Fowler 2003], consider the problem of using sessions as the context for IDENTITY MAPs. In a
WEA, a user may have multiple windows open, and may make multiple requests within the same session. Once
again, sharing an IDENTITY MAP inside a session becomes a concurrency problem. In addition, there is often no
explicit end to a session, save a server timing it out. Therefore anything recorded in a session can persist for an
indeterminate amount of time, and an IDENTITY MAP may store a large number of DOMAIN OBJECTs. Lastly, within a
given session, DOMAIN OBJECTs may be changed by users in other sessions. When such external changes happen,
either any request initiating a change must check if there are any IDENTITY MAPs that hold that object and
synchronize with any found—a daunting task, related to the “lost update” concurrency problem—or IDENTITY MAPs
can become a source of “inconsistent reads” as they read in new data that is synchronized with the external state
while maintaining older, now incorrect data.

Considering non-session related issues, we know that in WEAs, each request may have complex business logic,
sometimes split into multiple COMMANDS. A difficult problem to detect arises when two different instances of the
same DOMAIN OBJECT are loaded, then changed, as might happen in the case of multiple COMMANDs. Safely re-
synchronizing the DOMAIN OBJECT with the data source can be difficult when such a dual loading/changing
happens. Taken alone, our approach to LAZY LOAD described in Section 4.3.3 actually increases the likelihood of the
same DOMAIN OBJECT being instantiated multiple times within the same request.

Given that we propose using PROXYS in conjunction with IDENTITY MAPs, we must decide whether only DOMAIN

OBJECTs are stored in the IDENTITY MAP, or whether both DOMAIN OBJECTs and PROXYS are stored. We must also
indicate when an IDENTITY MAP should be checked.

4.4.3 Solution

[Fowler 2003 p.198] suggests that an IDENTITY MAP avoids conflicts within a single session. This principle is true
where a session is either explicitly serialized or runs in a single thread, which implicitly serializes the session. In
modern WEAs, this serialization is not the case. Multiple concurrent requests can happen within a single session,
which leads to the solution of associating IDENTITY MAPs with a single request, indirectly stating that an IDENTITY

MAP exists for a fixed duration within the context of a thread. This solution eliminates all the problems of using the
session context at the cost of having to rebuild IDENTITY MAPs for each request.

Within each request, the use of an IDENTITY MAP eliminates the problem of duplicate DOMAIN OBJECTs being
created during a load, first by delaying the creation of additional DOMAIN OBJECT instances by using PROXYS (to
prevent infinite loops), and then by checking against the IDENTITY MAP whenever a PROXY attempts to load the
DOMAIN OBJECT that it represents. This completely avoids all the problems of trying to synchronize two instances of
the same DOMAIN OBJECT within the same request.

Given the effective pairing of IDENTITY MAP with PROXYs, we feel that IDENTITY MAP should be explicitly stated as
part of the LAZY LOAD pattern. The examples in [Fowler 2003] show the LAZY LOAD implementation accessing
IDENTITY MAPs directly. The approach we favor has IDENTITY MAPs being accessed by the mechanism that does the
actual loading (the MAPPER). Both approaches work well, but our approach slightly reduces coupling as MAPPERs
will already have a dependency on IDENTITY MAPs.

To provide a consistent approach, we consider two questions:

 Where should an IDENTITY MAP get checked?
 Should an IDENTITY MAP contain PROXYs and DOMAIN OBJECTs or only DOMAIN OBJECTs?

As stated above, we favor checks to the IDENTITY MAP being made from the MAPPER instead of the PROXY. The
reasoning is that PROXYs will access the same find methods in a MAPPER to instantiate their DOMAIN OBJECTs, as
COMMANDs will use to instantiate any DOMAIN OBJECTs they need. If the MAPPER is responsible for finding these
DOMAIN OBJECTs, then it should also be responsible for checking all the places where they might be, such as the
data source or the IDENTITY MAP.

The purpose of an IDENTITY MAP is to provide access to previously loaded DOMAIN OBJECTs, and through its use,
prevent their duplicate loading. As well, the principal benefit of storing proxies in the IDENTITY MAP would be
eliminating the instantiation of PROXYs, which is not an intensive activity in that no database access is involved.

36

While [Fowler 2003] does not propose storing PROXYS in IDENTITY MAPs, we find that students regularly try to do
so on the grounds that they do not wish to create unneeded PROXYs. The downside of this practice is that it makes
the IDENTITY MAP more complicated, and adds another layer of checking wherever a PROXY might be instantiated—
which is code that developers will work with often, in our experience. The minimal gains do not justify the extra
complication, and as such we promote storing only DOMAIN OBJECTs in IDENTITY MAPs.

4.4.4 Related work and contribution

Related work:

 [Fowler 2003] identifies the IDENTITY MAP pattern.
 [Fowler 2003] identifies IDENTITY MAP as a means to improve correctness.
 [Fowler 2003] identifies IDENTITY MAP as a caching mechanism that can improve performance.
 [Fowler 2003] discusses some implementation issues with IDENTITY MAP.
 [Fowler 2003] associates concurrency management with IDENTITY MAP very briefly.

Our contribution:

 Proposing that IDENTITY MAP should be associated with a single request
 Recognizing how IDENTITY MAP contributes to our recommended solution of the cyclic reference problem

mentioned in Section 4.2 (LAZY LOAD)
 Explicitly associating IDENTITY MAP with DOMAIN OBJECTs
 Describing when the IDENTITY MAP should be checked

4.5 Input Mapper and Output Mapper Patterns

This section presents a significant refinement of [Fowler 2003]’s DATA MAPPER pattern, identifying new patterns
and incorporating optimistic concurrency management. This section also presents how these new patterns interact
with DOMAIN OBJECTs, in particular giving guidance on initial optimization approaches.

4.5.1 Context

In order to have DOMAIN OBJECTs, we need data from some source. Barring storage in an Object-Oriented Database,
this data is usually stored as primitive types. Getting to and from this primitive state needs to be done carefully to
ensure smooth working of a system.

4.5.2 Problem

The DATA MAPPER pattern has two distinct responsibilities, getting data from, and sending it back to, the data
source. Besides the fact that DOMAIN OBJECTs and their data source are common participants for both behaviors, the
processes involved for transfers in either direction is completely independent—yet they are identified together in the
same pattern. While [Fowler 2003] suggests the possibility of splitting out Finders into a SEPARATED INTERFACE,
which would partially address this problem, there is nothing specifically mentioned about splitting out direct access
to the data source, which is an orthogonal problem.

4.5.3 Solution

Fowler’s short definition of a Data Mapper is

 “A layer of Mappers (473) that moves data between objects and a database while keeping them independent of each
other and the mapper itself” [Fowler 2003, p165]

To expatiate on the identified goals, we propose a definition of what could be called DOMAIN MAPPERs:

classes that map between persistent storage and in-memory DOMAIN OBJECTs, both data and structure that are
necessary to keep the DOMAIN OBJECTs consistent, while maintaining separation of concerns.

37

Fowler discusses using a SEPARATED INTERFACE [Fowler 2003 pg.176] to move the implementation of the “find”
methods outside of the DATA MAPPER. Building upon this idea we split the entire “find” behavior away from the
DATA MAPPER, and are left with two flavors of DATA MAPPER, the INPUT MAPPER and the OUTPUT MAPPER. The
INPUT MAPPER corresponds to the external behavior described by Fowler’s FINDERs, but neither MAPPER is
dependant on the other.

One of the most important differences is that all the behavior that Fowler identified could be factored out of the
DATA MAPPER is, in our system, identified as being completely cohesive. Additionally, the remaining behavior in
the DATA MAPPER is also cohesive and there is no coupling between these components. The INPUT MAPPER will
then “input” data to instances of DOMAIN OBJECTs and the OUTPUT MAPPER will “output” data from instances of
DOMAIN OBJECTs to the data source.

A further split is to remove all direct data source access from INPUT and OUTPUT MAPPERs and place them in
FINDERs and TABLE DATA GATEWAYs (TDGs), respectively. For an SQL database, Finders would contain all the
select statements and TDGs would have the standard update/insert/delete SQL as well as any other data modification
statements.

The original definition considered only databases. From an abstract sense, the term ‘database’ and ‘persistent
storage’ are interchangeable. ‘Database’ is also an overloaded term in this domain, often understood to be a service
like a MySQL or Oracle server. The term persistent storage allows the definition to cover xml or other flat-file
systems, as well as any other means of persisting data that can be produced. As with the original DATA MAPPER
pattern (and related patterns), it is strongly advised that the persistent storage mechanism used be ACID-compliant
to maintain reliable behavior.

A point made in [Fowler 2003]'s section on the DATA MAPPER pattern is that the goal is “to minimize database
queries”. This is tempered by Fowler's regular advice to do it correctly first and optimize later. Our position is that,
particularly in the case of INPUT/OUTPUT MAPPERs, early iterations should focus more on making the INPUT/OUTPUT

MAPPERs as simple as possible, regardless of the number of database queries.

An initial approach to an OUTPUT MAPPER design can be demonstrated with an example of a delete method :

01 public void delete(Person d) throws SQLException, MapperException,
02 LostUpdateException{
03 int count = PersonTDG.delete(d.getId(), d.getVersion());
04 if(count==0) throw new LostUpdateException();
05 PersonTDG.deleteBuddyRelationWithPersonId(d.getId());
06 PersonTDG.deleteBuddyRelationWithBuddyId(d.getId());
07 }

Figure 4-6 An example OutputMapper delete method

Cascading deletions are explicitly shown in the delete method instead of being hidden in the database. Either
explicit calls to delete multiple objects or some UNIT OF WORK mechanism would make a call for each Person to be
deleted. Thus the method bodies of OUTPUT MAPPERs number often less than 10 LOC.

Also note that an OUTPUT MAPPER supports optimistic concurrency management by checking for lost updates and
reporting them. In conjunction with TABLE DATA GATEWAYs, this provides an effective means of detecting this
form of concurrency problem.

The advantage is in simple and clear code, as in Figure 4-6. If a single delete call were made to PersonTDG, then

the responsibility of figuring out what it means to delete a Person would be relegated to the GATEWAY. If cascades
were done in the database, then that information would not exist in the code. Our suggestion is to follow the patterns
simply first, before considering optimization, and we explicitly state that as a heuristic of the INPUT/OUTPUT

MAPPER patterns in particular.

The question of how much data to pull back from persistent storage in one request is related to optimization.
Optimization is an effort that should be applied once a system is put together and metrics can be gathered as to
where optimization will do the most good. Requests to an INPUT MAPPER can be used to create either a particular

38

DOMAIN OBJECT, or List of DOMAIN OBJECTs. At most, only those requested DOMAIN OBJECTs should be created,

with all related DOMAIN OBJECTs–be they fields in the specified DOMAIN OBJECT or Lists of DOMAIN OBJECTs that
represent some sort of aggregate associated with the DOMAIN OBJECT in question–attached via a PROXY (or PROXY

LIST).

The primary use of this LAZY LOAD approach is to prevent cyclic reference infinite loops. There are often
optimization benefits, but there is also associated overhead that should be a consideration once the initial phases of
development are complete and streamlining needs to begin. If one can guarantee no cyclic references and that large
lists of PROXYs—that all get used—are being generated then it is often wise to forego the LAZY LOAD and
instantiate the DOMAIN OBJECTs directly. This is carried out only when there are metrics which indicate the need for
that variety of optimization.

The OUTPUT MAPPER not only takes the data from the DOMAIN OBJECTs passing it through to the TDG, it must also
represent the structure of the overall DOMAIN MODEL. While it is easy to associate a DOMAIN OBJECT to a
corresponding row in a database table, there is often data found in other tables that will be affected by changes in a
DOMAIN OBJECT. These secondary effects are often described as either cascades, or demonstrations of aggregation
or composition.

39

Figure 4-8 example of tables for a Person described in Figure 4-7

When considering the deletion of “Bob”, the three different shadings in Figure 4-8 represent the explicit removal in
the Person table, and the two varieties of implicit side effect (in BuddyRelations) that we would like to make explicit
in the PersonOutputMapper.

It is the OUTPUT MAPPER's representation of the structure that allows the decision of what to delete to be made
explicit in the PersonOutputMapper's delete method (Figure 4-6). While a PersonTDG would explicitly define

the methods that would communicate with the database to effect the actual changes, PersonOutputMapper's

delete method would specify that deleting a Person means removing that Person from persistent storage (the

red/solid shading in Person, Figure 4-8). It would also mean removing all BuddyRelations where that Person is

the subject of the BuddyRelation (green/brick shading, three rows in BuddyRelations, Figure 4-8), and removing

all BuddyRelations where that Person is the object of the BuddyRelation (blue/dithered shading in

BuddyRelations, Figure 4-8)

Cascades are a separate concept from aggregations and compositions. Cascades represent the logic of what happens
to other DOMAIN OBJECTs when a related DOMAIN OBJECT is affected. This logic is generally directly in the
database, but is very much domain logic, hence we deal with it in the Domain layer instead of leaving it to the
Technical Services layer or below.

Figure 4-7 Output Mappers store domain logic regarding object relations

40

Aggregations and compositions describe how DOMAIN OBJECTs can be related. Simple associations are also used to
relate DOMAIN OBJECTs, but their consideration is not problematic and is not dealt with directly in the
INPUT/OUTPUT MAPPERs except where cascades are concerned.

One of the common features of frameworks like Struts [Struts] and Hibernate [Hibernate] are some facility for
dealing with the one-to-one, many-to-one and many-to-many relationships that give a relational database structure in
terms of a DOMAIN MODEL. Presuming a well normalized database (at least 3NF or BCNF), duplication is
minimized, and parallels can be drawn between DOMAIN OBJECTs and the database. This is true regardless of
framework.

Our approach differs from Hibernate in the location where one manages these relationships. One-to-one
relationships are handled entirely by the UNIT OF WORK, which is standard. They are represented as foreign key
fields in a database table that already represents a DOMAIN OBJECT. The preference is not enforce this with database
mechanisms. If two DOMAIN OBJECTs become related, the containing object will be registered dirty when the other
object becomes contained by it. On update, the foreign key will be set appropriately, removing any previous
relationship. In Hibernate, such relations are represented in Hibernate's configuration files, and as such the
underlying mechanism is hidden.

Many-to-one, or the general case of many-to-many, can be considered as having two approaches, however the first
uses the UNIT OF WORK approach described above and represents composition. More often, such relationships are
independent of the identity of either related DomainObjects. As such, the record of those relations is kept

independently of the associated DomainObjects. In this second situation, updating the containing object generally
involves deleting all of the previous relationships and then creating the new ones13.

Figure 4-9 Two tables, representing a one-to-one relationship

Figure 4-10 The concrete TDG for the Person Domain Object

Consider a function allowing a person to record their home town. If this were to be represented as a one-to-one
relationship, the Person table might have a foreign key, hometown_id (Figure 4-9). A DomainObject in memory

of type Person would have an attribute of type Town. Upon the initial creation of a Person, the

PersonOutputMapper would send values for id, version, name and hometown_id to the TDG's insert

method. As far as the PersonOutputMapper is concerned, the Town should already exist, therefore only the id of

that Town needs to be known; where that comes from is not the concern of the PersonOutputMapper.

13 Of course, optimization concerns can lead to variation. It is possible that removing all associations and creating them anew could be costly.

However, that logic could be worked into the OutputMapper when it was determined to be appropriate, and with the possible exception of the
TDG, all other classes would be oblivious to this concern.

41

Similarly, if a Person's hometown changed, the update method would be called and the Town table would still not
be affected.

Imagine a Person “Stuart” with id 1 and two Towns, “Montreal” and “Huntingdon”, with ids 3 and 4, respectively.

Upon initial creation of the system, imagine that the Towns were added with an initialization script. The first

Person added, “Stuart”, might be associated with the Town “Montreal”. The PersonOutputMapper would be

responsible for dealing with the insert request for Person “Stuart” (as the newly created DOMAIN OBJECT would

be registered new), and would call the insert method in the PersonTDG using the call in Figure 4-11.

insert(myPerson.getId(), myPerson.getVersion(), myPerson.getName(),
myPerson.getHomeTown().getId());
or with literals:
insert(1, 0, "Stuart", 3);

Figure 4-11 inserting a person

Later, it is learned that “Stuart”, currently lives in “Montreal” but actually is from “Huntingdon”. The application
would be used to update the Person “Stuart”, who would then be registered dirty prompting the

PersonOutputMapper to deal with the update request for Person “Stuart”. This would prompt a call to the
update method in the PersonTDG (Figure 4-12).

update(myPerson.getId(), myPerson.getVersion(), myPerson.getName(),
myPerson.getHomeTown().getId());
or with literals:
update(1, 1, "Stuart", 4);

Figure 4-12 updating a Person

The important thing to note is that only the PersonOutputMapper and the PersonTDG were used. No Town
DOMAIN OBJECT was changed.

4.5.4 Related work and contribution

Related work:

 [Fowler 2003] defines a DATA MAPPER.
 [Fowler 2003] describes DATA MAPPERs using a “rich constructor” ([Fowler 2003 p169]).
 [Fowler 2003] proposes LAZY LOAD can address a problem with “rich constructor”, the cyclic load14.
 [Fowler 2003] proposes that DATA MAPPERs should insert newly created objects into IDENTITY MAPs, and that

doing so after using a blank constructor is an effective way to avoid cyclic loading.
 [Fowler 2003] describes splitting Finders out of the Data Mapper.

Our contribution:

 Splitting DATA MAPPER into INPUT MAPPER and OUTPUT MAPPER
 Splitting direct data source access out of the MAPPERS and into TABLE DATA GATEWAYs
 Explicitly including the evaluation of optimistic concurrency as a responsibility of OUTPUT MAPPERs
 Providing guidance on the degree of optimization to consider during initial development
 Providing guidance for how the MAPPERs interact with other patterns15

14 Fowler suggests that the solution is “messy” ([Fowler 2003 p169])
15 Covered in Sections 5.2.2 and 5.2.6

42

4.6 Table Data Gateway (TDG) and Finder

In this Section we present a refinement of the TDG pattern, separating it from the DATA MAPPER pattern in a fashion
consistent with our description of the OUTPUT MAPPER pattern in Section 4.5. We also present a newly identified
sub-pattern of TDG, the FINDER, which corresponds more closely to the INPUT MAPPER PATTERN. In this Section,
both concurrency and security problems are also addressed.

4.6.1 Context

Abstracting software systems into layers is a common practice. A Services layer is where the more technical access
to data is often found. Several patterns/structures are used to describe how this layer functions or what its primary
components might be. [Fowler 2003] describes a few, some straddling the boundary to the Domain layer above:
TABLE DATA GATEWAYs, TABLE MODULEs, DATA MAPPERs, ROW DATA GATEWAYs, ACTIVE RECORDs and DATA

TRANSFER OBJECTs, among others16.

Without going into the details of these patterns, one can still see a general purpose. They represent a means to
separate the details of accessing a data source implementation from the rest of an application's use of the
data/objects. The various named patterns are not prescriptive. These patterns describe how this separation of
concerns has been implemented in various ways.

4.6.2 Problem

Accessing data in a database

Once data is acquired it must be stored for later use, and thus is made persistent. In WEAs, this is primarily done
with a database. Developers need a way of interacting with this database while being as oblivious as possible to the
underlying data source. In considering how to accomplish this practically, several methods, such as the Service layer
patterns mentioned above, have been proposed17. A main problem is choosing the correct approach from the many
that exist.

Avoiding Lost Updates, Optimistic Concurrency Management

Lost Updates are a serious problem that can lead to incorrect data. A Lost Update occurs when the same Domain
Object is updated in two different transactions at essentially the same time. The user who makes the first update
thinks their changes are successfully persisted. The user making the second update may overwrite the first users
change immediately afterwards, without knowing that they have done so.

Ensuring that data is sanitized

Security considerations are often overlooked or considered something to be dealt with later. Security is becoming
more and more critical, particularly with the volume of monetary information and personal data stored in WEAs
increasing. As such, security considerations should be explicitly addressed, and a TDG, being a vulnerable boundary
between two systems, is a place that needs such consideration.

16 Microsoft has DATA ACCESS OBJECTs, for example.
17 There are many more. Even stored procedures in the database can be considered a part of this. Fowler acknowledges having seen stored

procedures serving essentially as TDGs for an application (as have we).

43

Figure 4-13 [XKCD, “Exploits of a Mom”, http://xkcd.com/327/]

4.6.3 Solution

Accessing data in a database

The deciding factors are simplicity, separation of concerns and the showing of intent. Our choice of TDG, in
combination with our OUTPUT MAPPER pattern, represents what we feel to be the optimal implementation in keeping
with the four pillars of good design outlined by Kent Beck:

 It should be simple
 It should show intent
 It should meet user requirements
 It should be easily maintainable

Figure 4-14 How DOs, I/O Mappers, TDGs and Finders relate

A TDG's methods take only primitive data types. This allows TDGs to avoid upwards dependencies and highlights
the separation of concerns between them and their corresponding INPUT/OUTPUT MAPPERS. INPUT MAPPERs pass the
parameters that will eventually fill out SELECT statements and OUTPUT MAPPERs communicate all primitive data
that corresponds to each column that needs to be updated or inserted from the DOMAIN OBJECT.

44

Concerns are separated as follows18:

 (Domain Object) Providing an interface to the data that the rest of the application can use

 (Mappers) Providing an interface on the persistence mechanism for the data for the rest of the application19

 (InputMapper) Mapping the data to a useable object20

 (TDG) Changing the data source

 (TDG/Finder) Sanitizing the data

 (Finder) Reading data from the data source

The design fits in the layered scheme without straddling bounds, keeps high cohesion and fairly low coupling, and
can be consistently applied across all DOMAIN OBJECTs.

Avoiding Lost Updates, Optimistic Concurrency Management

Lost updates are mentioned in Fowler, as is optimistic concurrency management21. A good solution is even given.
However, this solution is not mentioned as explicitly belonging in a TDG. It is considered a separate pattern
(OPTIMISTIC OFFLINE LOCK(416) [Fowler 2003]). We go so far as to say that a TDG is wrong if it does not
implement this protection.

01 private static final String UPDATE_STRING =
02 "UPDATE Person SET name = ?, age = ?, buddy_id = ?, " +
03 "version = (version + 1) " +
04 "WHERE id=? AND version=?;";
05
06 public static int update(long id, long version, String name,
07 int age, long buddy_id)
08 throws SQLException {
09 Connection con = DbRegistry.getDbConnection();
10 PreparedStatement ps = con.prepareStatement(UPDATE_STRING);
11 ps.setString(1, name);
12 ps.setInt(2, age);
13 ps.setLong(3, buddy_id);
14 ps.setLong(4, id);
15 ps.setLong(5, version);
16 int result = ps.executeUpdate();
17 ps.close();
18 return result;
19 }

Figure 4-15 update in a TDG

The TDG is responsible for determining from the database whether any changes were actually made. In Figure 4-15,
if the result is 0, no rows were updated, and there was likely a lost update. A similar thing happens with delete
methods in a TDG. We have seen alternate approaches where the update is made and then the version is checked. It
all boils down to interacting with the data source to determine if versions correspond.

Ensuring that data is sanitized

18 Concerns regarding "lost update" issues are not explicitly mentioned here. Each piece has a part to do. Domain Objects store the version,

Mappers notify the world about it when there is a problem, Unit of Work passes the buck and either a Session Command or a Dispatcher will
decide what to do about it. Even the UI can have a big part, giving a merge interface in a nicely done application. The TDG's contribution is
strictly in how it interacts with the database.

19 The provision of interfaces implies as intuitive an Object Oriented interface as possible for both the data and the persistence mechanism.
20 In some implementations, data is not mapped beyond what is returned from the database driver, something like a RecordSet. This is sometimes

used explicitly, or wrapped in an interface. Some implementations do (The Data Mapper's primary purpose)
21 "Optimistic Offline Lock" is the variation mentioned in [Fowler 2003], a term that is perhaps misleading in that database locking is not used.

45

While this is strictly an implementation issue, it has become apparent that data sanitizing is infrequently applied.
Many languages offer simple solutions (e.g. Java's PreparedStatement). When such solutions do not exist, they
should be implemented. The security risk associated with this is such that it is architecturally relevant.

More specifically, data coming down to the TDG invariably comes in from the user interface. Either by accident, or
through intent, unsanitized data can lead to trouble, such as maliciously crafted data that subverts SQL statements.
As the trouble happens to the database, GRASP suggests that the responsibility for addressing it lies as close to the
database as possible. Fortunately, most modern languages/drivers subscribe to this view and have easy mechanisms
for sanitizing data. Unfortunately, our experience has shown that many programmers still build their SQL with
String concatenation or some form of printf22.

4.6.4 Related work and contribution

Related work:

 [Fowler 2003] provides a pattern definition for TDGs.
 [Larman] suggests TDGs are a good place to isolate SQL away from the Mapper.
 [Fowler 2003] mentions using TDGs with Mappers when you “prefer handcoding for the actual mapping to the

domain objects” [P.146]23.
 [Fowler 2003] also describes the general Gateway pattern.
 [Fowler 2003] hints that one could have a separate TDG for views and “interesting queries”[Fowler 2003,

p145].
 [Fowler 2003] gives an implementation of optimistic concurrency management for lost updates24.

Our Contribution:

 Pairing Mappers with Gateways as the primary means retrieving and storing Domain Objects.
 Explicitly including optimistic concurrency management in TDGs
 Explicitly stating that data inputs should be sanitized
 Promoting of the Finder pattern to isolate the SELECT statements from the TDG’s data modification statements

22In PHP, for example, developers can still use printf while sanitizing their parameters using methods like mysql_real_escape_string() on the

parameters.
23 From our perspective, this is not so much about hand-coding, but about code generation / reflexive programming being from an OO perspective

instead of from a data source perspective. Fowler does lots of neat things to make for less code via reflection, but this often proves to be less
simple and shows less intent. In any EA of any complexity whatsoever, the mapping of data source to Domain Objects needs to be explicit and
clear, as this is the key thing that ties in with other artifacts describing the structure of the database and system. At times students try to take
the reflexive, data-centric approach to more complex systems… they start off looking like they are ahead (fast domain layer code generation,
usually) until teammates stop understanding what is happening and the details of complex Domain Objects creep in, leaving difficult-to-trace
bugs.

24 Just not explicitly in the TDG

46

5 Applied and Improved Design: The SoenEA Framework and its Use

SoenEA is a framework we have developed over the last decade that encapsulates the best practices and guidance
that we have acquired, particularly in the use of the patterns described in this thesis. The goal of SoenEA is to make
it easier to write quality Web-based EAs. To this end, SoenEA includes implementations for many patterns
described in this thesis, helpful utilities and sample code that serves both as examples of how to use SoenEA and as
ready-to-use production-level code. We wrote SoenEA to

 help eliminate tedious tasks,
 help programmers to make fewer mistakes, and
 give guidance on proper practices.

While SoenEA was written with Java in mind and incorporates many Java-specific features, the patterns it embodies
can be applied to other languages.

5.1 SoenEA, our WEA Framework

SoenEA can be split into four areas:

 Patterns
 Utility components
 Default Implementations of Typical Components (DITCs)
 Test components

The most important area is the patterns, which corresponds directly to the patterns discussed in this thesis. Partial or
complete implementations of most of these patterns allow developers to quickly begin implementing their business
logic while writing code that is consistent with our prescribed approach.

The utilities smooth out working in the web development environment. Some of these utilities may not be
commonly found in other such frameworks. Other utilities, such as our DbRegistry, represent a very common
implementation of access to a database, typical most web frameworks with which we have worked.

The DITCs consist of those classes that make use of the patterns and utilities to demonstrate how a developer might
make use of SoenEA. These default implementations also provide some out-of-the-box resources that can be used
directly in an application instead of having to re-implement them. The test components ensure that SoenEA is
working properly after updates.

In summary, the patterns of SoenEA help to ensure that the code is right. Like a jigsaw puzzle, effort has been made
to ensure it is difficult to assemble the pieces incorrectly. The utility components help make implementation easy,
and often utility classes are hidden behind parts of a pattern, enabling their simple use. The DITCs facilitate the
development of web applications, as they are ready-made pieces. Both the DITCs and the tests provide examples,
giving further guidance on best practices for developing with SoenEA.

47

5.2 SoenEA Patterns

Figure 5-1 shows pattern classes from the SoenEA framework as well as sample user-defined classes. Such user-
defined classes generally constitute the basic building blocks of a real application. In this section, we explain the
thought process and activities of a developer while creating such classes.

Figure 5-1 SoenEA general usage diagram

48

5.2.1 Domain Objects

As described in Section 4.1, DomainObject<IDField>25 instances have an id and a version. The interface

IDomainObject provides get methods for both version and id, but only version can be set, as changing an id

on a DomainObject would not be consistent with maintaining the identity of DomainObject instances. The

DomainObjectProxy class acts as a generic proxy on DomainObjects, storing an innerObject26 that is used in

delegation, and an id that acts as a key to find the innerObject as it is needed. The DomainObjectProxy also
provides the getInnerObject() method to aid in delegation and the abstract method getFromMapper(…) that is
intended to be the means by which a DomainObjectProxy gets its innerObject. Both DomainObjectProxy

and DomainObject have overridden equals(…) methods to allow tests that compared classes have the same id

and are conceptually of the same type (e.g. IPerson and Person are both “people”).

25 The generic parameters such as <IDField> are programmatically useful. However, we feel that once it is made clear where they are, it is much

easier to read diagrams and text if they are omitted. From time to time they will still be included where we feel they serve as a clarification or a
reminder of their existence.

26 In the Chapter describing Fowler’s description of proxy, this field was referred to as realObject.

Figure 5-2 Domain Objects

49

The IDField type parameter of DomainObject
allows domain objects to have a variety of key types.
The key should correspond to the primary key in the
data source, usually a Long. The DomainObject-
Proxy’s second type parameter is a user-defined

implementation of a DomainObject. This ensures
that at compile time, when getFromMapper() is
called, an appropriate id can be passed and an
expected type can be returned.

DomainObject and UoWDomainObject represent
two approaches for using UoW. The most basic
approach is to not associate DomainObjects with the

UoW at all. This is what Fowler dubs “caller

registration”: i.e., any time a Domain Object needs to

be registered with UoW, the client (either a COMMAND
or FACTORY) class is responsible for explicitly calling
the appropriate UoW register methods, as illustrated in
Figure 5-3 (lines 11 and 21).

In an alternative approach, called “object registration”, DOMAIN OBJECTS manage their own UoW state. The UoW

still has its same methods called, but the UoWDomainObject class provides methods that allow access to the

UoW through the DomainObject itself (see Figure 5-2). Additionally, the constructor can base UoW status on the
passed version/id, and setter methods in the user’s subclass can explicitly call the markDirty() method so that
the use of UoW can be transparent.

How a developer would use the Domain Object related patterns

Figure 5-4 shows how developer-implemented classes should subclass DomainObject to implement the DOMAIN

OBJECT pattern. Developer-implemented interfaces for their DomainObjects should extend IDomainObject.

Developers should create a PROXY by sub-classing DomainObjectProxy and implementing their
DomainObject’s interface. Their overridden getFromMapper(IDField id) method should call an appropriate

InputMapper.

A FACTORY should be created for each DomainObject. The FACTORY contains at least one createClean(…) and

one createNew(…) method, and each of these methods should make the appropriate calls to a UoW. In Figure 5-3,

we show how two createNew(…) methods can be written to make the creation of new Groups more convenient.

The parameters for these create methods, besides id and version, are the fields of Group, name and

groupMembership (the IGroupMembership DOMAIN OBJECT not being shown here). It also demonstrates that

providing new ids is the responsibility of the TDG.

1 public static Group createNew(String name,

2 List<IGroupMembership> members) throws

3 SQLException {

4 return createNew(GroupTDG.maxId(), 1, name, members);

5 }

6

7 public static Group createNew(Long id, long version,

8 String name, List<IGroupMembership> members) throws

9 SQLException {

10 Group result = new Group(id, version, name, members);

11 UoW.getCurrent().registerNew(result);

12 return result;

13 }

14

15 public static Group createClean(Long id,

16 long version, String name,

17 List<IGroupMembership> members)

18 throws SQLException {

19 Group result = new Group(id, version,

20 name, members);

21 UoW.getCurrent().registerClean(result);

22 return result;

23 }

Figure 5-3 GroupFactory Methods

50

5.2.2 GenericOutputMapper

Figure 5-4Creating Domain Objects

Figure 5-5 GenericOutputMapper

51

Figure 5-5 demonstrates the interface provided by GenericOutputMapper. The use of the parameterized type
MappedObject is convenient in allowing IDEs to generate appropriate method headers, but is primarily used to
enforce compile-time checking in other parts of SoenEA. The insert/update/delete methods provided in this
interface correspond to the new/dirty/removed registries in that will be seen in section 5.2.3 on UoW.

How a developer would implement GenericOutputMapper

Once a user-defined DomainObject class is written, a GenericOutputMapper for that DomainObject can be
created, as in Figure 5-6. The insert(), delete() and update() methods extract data from the passed
DomainObject (MappedObject) and call appropriate TDG methods, passing the extracted data.

Figure 5-7 shows how the update() and delete() methods should check that the return value from the TDG is

not zero (lines 11 and 21), as that generally indicates a lost update. There are several types of SQLException that
can be detected and dealt with according to the user’s needs, such as deadlock exceptions (a variety of lost update)
or constraint failures on inserts. When any of these problems arise, a MapperException should be thrown.

Figure 5-6 Creating a GenericOUTPUTMAPPER

52

Registering Domain Objects with a UoW from within an OutputMapper will cause errors when the

OutputMapper has already been called from within a UoW during its commit. Similarly, one has to be careful

about calling TDGs that might change data that would also be changed by a subsequent or continued commit in

UoW. The best approach is for each OutputMapper to limit which data it persists to only the DomainObject for
which it is responsible.

5.2.3 UoW and IdentityMap

Our implementation of a UoW is a THREADLOCAL SINGLETON. In general, this means at most one UoW instance

will exist for each request to a web Servlet27. The UoW defines Sets for all in-memory DomainObjects,

27 Provided the user cleans out the ThreadLocalTracker, something that is done automatically in our Servlet implementation’s

postProcessRequest() method.

1 public void insert(Group group) throws MapperException {

2 try {

3 GroupTDG.insert(group.getId(), group.getVersion(), group.getName());

4 } catch (SQLException e) {

5 throw new MapperException("Could not insert Group " + group.getId(),e);

6 }

7 }

8 public void update(Group group) throws MapperException {

9 try {

10 int count = GroupTDG.update(group.getId(), group.getVersion(), group.getName());

11 if(count == 0) throw new LostUpdateException("GroupTDG: id " + group.getId() + " version " + group.getVersion());

12 group.setVersion(group.getVersion()+1);

13 } catch (SQLException e) {

14 throw new MapperException("Could not update Group " + group.getId(),e);

16 }

17 }

18 public void delete(Profile object) throws MapperException {

19 try {

20 int count = GroupTDG.delete(group.getId(), group.getVersion());

21 if(count == 0) throw new LostUpdateException("GroupTDG: id " + group.getId() + " version " + group.getVersion());

22 } catch (SQLException e) {

23 throw new MapperException("Could not delete Group " + group.getId(),e);

24 }

25 }

Figure 5-7 GroupOutputMapper Methods

Figure 5-8 UoW backs IdentityMap

53

depending on their state (clean, dirty, deleted or new). As such, it makes sense to use the UoW as the back-end for

an IdentityMap; the cleanObjects Set serves no purpose in a commit, but is used by the IdentityMap.

The UoW can distinguish between different types of DomainObjects, eliminating the need for shared sequential

IDs (i.e. the UoW could accept two Chairs with ids 1 and 2, as well as two Tables, also with ids 1 and 2).

DomainObjects must still be mapped to their corresponding GenericOutputMappers using a MapperFactory
(Figure 5-9). This mapping is static, so all instances of the UoW will have this information available. The

particulars of the MapperFactory will be discussed in section 5.4.4.

IdentityMap methods are has(…) and get(…), which identify whether a particular DomainObject is in the

UoW and retrieve that DomainObject, respectively. The methods’ first parameter is the id to be searched for, as is

normal in an IdentityMap, the second parameter is the Class of the desired DomainObject.

UoW’s most important methods are:

 newCurrent()
newCurrent() returns a new UoW which is set as the current unit of work in the THREADLOCAL SINGLETON,

setting up the UoW and flushing out any previously allocated UoWs (via previous calls to newCurrent()).
 setCurrent(…)

setCurrent(…)is used internally by newCurrent(), but can also be used as a means to let the UoW span
requests (a complex activity outside the scope of this thesis).

 getCurrent()
getCurrent() returns the current instance from the THREADLOCAL SINGLETON.

 registerNew/Dirty/Removed/Clean(…)
The register methods register DomainObjects in the appropriate internal registries.

 commit()
Calling commit() attempts to process new/dirty/removed DomainObjects (in that order) by calling their

respective GenericOutputMappers, calling commit() on the data source on success and calling

rollback()if an exception is thrown from one of the GenericOutputMapper methods.

 initMapper(…)
This method statically sets up the UoW to be able to identify which GenericOutputMapper to use for each

type of DomainObject. If a developer attempts to register an unmapped type, an exception indicating such is
thrown.

How a developer would use UoW and IdentityMap

The most often overlooked aspect of using a UoW is its preparation28. In Servlets, the init() method of the

HttpServlet (DispatcherServlet) is a convenient place to call a service method (like the one in Figure 5-9) to

set up the mappings between DomainObjects and GenericOutputMappers. It is also worth noting that the

compiler has sufficient information to statically check the correspondence between DomainObject and

GenericOutputMapper, helping avoid runtime exceptions due to mismatches.

28 This is based on the most frequent problems students have reported when using Unit of Work.

1 public static void setupUoW() {

2 MapperFactory myDomain2MapperMapper = new MapperFactory();

3 myDomain2MapperMapper.addMapping(Group.class, GroupOutputMapper.class);

4 myDomain2MapperMapper.addMapping(User.class, UserOutputMapper.class);

5 myDomain2MapperMapper.addMapping(GroupMember.class, GroupMemberOutputMapper.class);

6 UoW.initMapperFactory(myDomain2MapperMapper);

7 }

Figure 5-9 Sample code initializing the UoW with DomainObjects and OutputMappers

54

Some setup is also required for every request, as a UoW instance must be explicitly created with the static call to
UoW.newCurrent(). The preferred means to do this is by placing the newCurrent() call in the FRONT

CONTROLLER implementation, for example, in Servlet class’ preProcessRequest() method.

Once the setup of UoW is complete, there are two ways to use it. The first involves InputMapper find methods.

Having already written a DomainObject and its GenericOutputMapper, a developer would then implement an

InputMapper. When writing their InputMapper’s find() method, they would check the IdentityMap for an

existing DomainObject (Figure 5-10, line 4). In the event that one is not found, an instance of the DomainObject

would be created after getting a ResultSet from the TDG (line 9), which would indirectly register that

DomainObject as clean in the UoW by calling the createClean() method (line 15), as was already described in

Section 5.2.1’s description of DomainObjects in Figure 5-3.

The second way UoW is used is when writing DomainCommands. A developer will make use of the UoW’s other

register methods, registering new DomainObjects via a Factory, or explicitly registering them being deleted or

updated as appropriate. At the end of such COMMANDS or possibly near the end of a Dispatcher, UoW.commit()
will get called. Care should be taken not to write the code so that multiple commits could occur within the same
request, though an explanation of why not is outside the scope of this thesis.

When commit() is called, each Set in the UoW is iterated through, calling the appropriate

GenericOutputMapper methods on each DomainObject in that Set. It is important to be aware that the order of

the Sets should be assumed to be non-deterministic; in some database systems this can cause trouble if also using

FOREIGN KEY constraints. If there are MapperExceptions, commit() throws them back up after initiating the

rollback, and the DomainCommand is responsible for any additional changes or for continuing to pass up the

exception so that the Dispatcher may forward to an appropriate View to deal with the conflict.

5.2.4 ListProxy

Frequently there are one-to-many relationships between DOMAIN OBJECTs. In SoenEA these can be represented by
ListProxy29 and SetProxy. There are also several MapProxys30 that can support additional relationships.

29 The original List Proxy source was written by Dave Reisch, based on instructions from this thesis.
30 The various Map Proxies were contributed by Steve Morse.

01 public static Group find(Long id)

02 throws SQLException, DomainObjectCreationException {

03 try {

04 return IdentityMap.get(id, Group.class);

05 } catch (DomainObjectNotFoundException e) {

06 } catch (ObjectRemovedException e) {

07

08 }

09 return getGroup(GroupTDG.find(id));

10 }

11

12 private static Group getGroup(ResultSet rs)

13 throws SQLException, MapperException, DomainObjectCreationException {

14 GroupProxy g = new GroupProxy(rs.getLong("g.id"));

15 Group result = GroupFactory.createClean(

16 rs.getLong("g.id"),

17 rs.getLong("g.version"),

18 rs.getString("g.name"),

19 new MembershipListProxy(g)

20);

21 return result;

22 }

Figure 5-10 Code demonstrating the use of the UoW and IdentityMap in an InputMapper

55

In Figure 5-11 we see that ListProxy and SetProxy implement Java’s List and Set interfaces. All methods from
these interfaces are implemented, delegating to their innerSet and innerList respectively, via the getInner
methods. The abstract getActual methods are used in the getInner methods to get the actual Collections.

How a developer would use a ListProxy

Figure 5-10 shows GroupInputMapper passing a new MembershipListProxy to the GroupFactory’s

createNew method. Figure 5-3 shows that the parameter is of type List<IGroupMembership>. All the developer

must do is subclass ListProxy as in Figure 5-12, overriding getActualList and implement an appropriate

constructor. It is important that all ListProxys have a field for the DomainObject that contains the List, as that

will be used in retrieving the actual List from an InputMapper (line 9).

We often see that aside from returning a single DomainObject based on an ID, InputMappers are tasked with

returning collections of DomainObjects. The initial set of methods of this nature (that return collections of

DomainObjects), and in fact all of the InputMapper methods, can be identified simply by looking at the Proxys,

be they DomainObjectProxys or one of these CollectionProxys. Developers can always follow the same
implementation approach.

Figure 5-11 SetProxy and ListProxy

01 public class MembershipListProxy extends ListProxy<IGroupMembership> {

02 private IGroup myGroup;

03 public MembershipListProxy(IGroup myGroup) {

04 super();

05 this.myGroup = myGroup;

06 }

07 @Override

08 protected List<IGroupMembership> getActualList() throws Exception {

09 return GroupMembershipInputMapper.find (myGroup);

10 }

11 }

Figure 5-12 MembershipListProxy

56

5.2.5 Dispatcher and DomainCommand

In making use of the DISPATCHER pattern, a user would subclass the Dispatcher class as needed. This makes

available myHelper31, which wraps the HttpServletRequest by default and provides the following methods:

 init(…)
This method is used to prepare a Dispatcher for use. It is convenient to instantiate a Dispatcher with a
default constructor when using reflection. Overriding the init(…) method can be done where needed, whereas
a constructor must always be overridden.

 forward(…)
This forwards the request to a new target, usually a JSP, but one can also forward to static content or a Servlet.
The response is then generated from that target.

 include(…)
As with forward(…), include(…) can take a target. The difference is that one may only forward to content

31 We will discuss Helpers more in Section 5.3.4

1 public static List<IGroupMembership> buildCollection(ResultSet rs, String idString)

2 throws SQLException, MapperException, DomainObjectCreationException {

3 List<IGroupMembership> l = new ArrayList<IGroupMembership>();

4 while(rs.next()) {

5 l.add(new GroupMembershipProxy(rs.getLong(idString)));

6 }

7 return l;

8 }

9

10 public static List<IGroupMembership> find(IGroup myGroup) throws SQLException,

11 MapperException, DomainObjectCreationException {

12 ResultSet rs = GroupMembershipFinder.findByGroup(myGroup.getId());

13 return buildCollection(rs, "gm.id");

14 }

Figure 5-13 sample code from GroupMembershipInputMapper

Figure 5-14 Dispatcher and DomainCommand with support classes

57

once, and upon returning from the forward(…) call, subsequent forwards/includes to content are forbidden.
An include may be called several times on different targets.

 redirectToDispatcher(…)
This is a convenience method to allow the quick chaining of Dispatchers. Passing a newly instantiated

Dispatcher as a parameter to this method will automatically call its init(…) and then execute() methods.

 execute()
This abstract method is a placeholder to guide the sub-classing of Dispatcher, and facilitates the dynamic

dispatching mechanism that keeps FRONT CONTROLLERs oblivious to the actual Dispatchers that are called.

When using SoenEA, the general approach towards Dispatchers is to let a FRONT CONTROLLER examine the

request parameters to find the canonical class name of the Dispatcher to be used for that request.

DispatcherFactory’s getInstance(…) method can then be called to dynamically create the Dispatcher. The

FRONT CONTROLLER would then call the Dispatcher’s init(…) method, passing the HttpServletRequest and

HttpServletResponse. Lastly, the execute() method is called.

DomainCommands are similarly sub-classed by developers. The default DomainCommand implementation
provides a constructor, an abstract execute() method, and access to the helper, mostly existing to identify a level
of granularity for the developer, and to give guidance on where to start implementation.

How a developer would use Dispatcher and DomainCommand

Each activity that could be undertaken by the system user (e.g. logging in, logging out, requesting to join a group)
can be implemented as a subclass of Dispatcher. Thus, one would create Dispatchers for all major use cases. The

implementation of such DISPATCHERs is usually brief, calling a few DomainCommands and then deciding which

JSP, File or other Dispatcher to forward to.

DomainCommands would take care of interaction with DomainObjects in order to accomplish any subtasks for

the Dispatchers.

5.2.6 InputMapper

INPUT MAPPERs, as described in Section 4.5, facilitate the reading in of data from a data source and its placement
into a DomainObject, much in the way an OUTPUT MAPPER does the opposite when making changes or additions
to a data source.

In SoenEA there is no base implementation of an INPUT MAPPER, but their creation is part of the process for each
DOMAIN OBJECT and several related patterns so they warrant mention. And while the developer is responsible for
implementing the entire INPUT MAPPER, there are significant similarities in all implementations, enough to give very
specific guidance to their implementation.

Figure 5-15 Detailed Class diagram of GroupMembershipInputMapper

Input Mappers primarily offer a variety of find methods, either geared to finding a single specific

DomainObject, or a range of them. Because DomainObjects must have identity, there is always a find()

method with a parameter for accepting the IDENTITY FIELD of the corresponding DomainObject.

58

Other common features in Input Mappers are methods that accept a ResultSet and transform a row of data into a

specific DomainObject (usually one per InputMapper) and collection building methods that accept a ResultSet

and return Collections of IDomainObjects. All these methods will be static, and with the exception of the

methods that accept a ResultSet for internal use (which should be private), these methods will be public.

How a developer would implement the InputMapper Pattern

Determining what other find methods are needed is guided by their use in Commands or the various List Proxys

(or other Collection Proxys) described in Section 5.2.4. These methods will take corresponding domain-specific

parameters, e.g. if a Command needed to find all GroupMemberships for a Group, the GroupMembership-
InputMapper would have a find(IGroup group) method that returns List<IGroupMembership>.

Following the approach of initially creating at most one DomainObject per find request, the method responsible

for generating that DomainObject from a ResultSet should create Proxys for any other DomainObject used

(Figure 5-16, lines 10 and 11). Recall that the createClean method called from the DomainObject’s Factory

will register this object as clean with the UoW.

Again, considering initially only creating at most one DomainObject per find request, the build methods will

instantiate an appropriate type of Collection and then iterate over the provided ResultSet, inserting Proxys into

the Collection (Figure 5-13).

01 private static GroupMembership getGroupMembership(ResultSet rs)
02 throws SQLException, MapperException,
03 DomainObjectCreationException {
04 Calendar cal = Calendar.getInstance();
05 cal.setTimeInMillis(rs.getLong("gm.lastUpdated"));
06 GroupMembership result =
07 GroupMembershipFactory.createClean(
08 rs.getLong("gm.id"),
09 rs.getLong("gm.version"),
10 new UserProxy(rs.getLong("gm.member")),
11 new GroupProxy(rs.getLong("gm.group")),
12 MembershipStatus.values()[rs.getInt("gm.status")],
13 cal
14);
15 return result;
16 }

Figure 5-16 the getGroupMembership method

5.2.7 TDG/Finder

In Section 4.5, we highlighted our contributions of including elements of optimistic concurrency management, data
sanitization and the use of a Finder on top of the TDG, elements which will be illustrated here. As in Section 5.2.6

on InputMappers, there is no generic implementation of the TDG or FINDER patterns in SoenEA, but they are part
of the standard patterns used for each DOMAIN OBJECT and have a well established procedure for their
implementation.

TDGs generally have 6 methods:

 insert
 update

59

 delete
 createTable
 dropTable
 getMaxId

The insert and update take primitive types based on the Domain Object. delete only takes an id and
version. The createTable and dropTable methods take no parameters and allow the programmatic setting up
and tearing down of database tables. The getMaxId method always returns an unused id from the system.

Finders generally have several find methods that take appropriate primitive type data, e.g. findAll() or
findByGroup(Long group), where the group parameter would be the id of the Group being looked for. Each of

these find methods returns a ResultSet that can be used to get data for one or potentially many Domain Objects.

Both Finders and TDGs store their SQL Strings in static final fields. As a minor convention, we store the table

name both with and without any table prefix as public static fields in the TDG, facilitating working with some other

SoenEA utility classes and allowing other TDGs to build aggregate names based on the names of tables.

How a developer would implement the TDG and Finder Patterns

Figure 5-17 Class diagram of Group TDG/Finder

The arguments of the insert and update method are dictated entirely by the DomainObject’s fields. All

primitive data types in the DomainObject correspond to primitive data types in the data source. Enumerations

correspond to an integer data type, and store the ordinal of the enumeration. When other DomainObjects are fields,

then a data type corresponding to the IDENTITY FIELD is used (i.e. BIGINT in MySQL for a Long IDENTITY FIELD).

60

01 public final static String UPDATE_SQL =
02 "UPDATE " + TABLE + " " +
03 "SET version=version+1,name=? WHERE id=? and version=?;";
04
05 public static int update(long id, long version, String name)
06 throws SQLException {
07 Connection con = DbRegistry.getDbConnection();
08 PreparedStatement ps = con.prepareStatement(UPDATE_SQL);
09 ps.setString(1, name);
10 ps.setLong(2,id);
11 ps.setLong(3,version);
12 int count = SQLLogger.processUpdate(ps);
13 ps.close();
14 return count;
15 }

Figure 5-18 GroupTDG's update method

As discussed in Section 4.6, sanitizing data is a part of the process. Using Java’s PreparedStatement mechanism,

question marks are placeholders in the SQL String (Figure 5-18, line 03). Parameters are assigned using type-

specific method calls, safely filling out the placeholders (Figure 5-18, lines 09-1132). The PreparedStatement
mechanism prevents inappropriate data from changing the nature of the statement. If the call to setString includes
end quotes, one can be assured that it cannot sneak in SQL code.

The execution of update statements (updates and deletes) return the number of rows updated. In Section 4.6 we
identified that optimistic concurrency management should belong in TDGs, and returning the updated rows is the
means by which this is done.

Often special case changes to the database are required, and they also belong in the TDG. The
createTable/dropTable methods shown in Figure 5-17 are examples of this.

32 The first argument represents the 1-based position of the placeholder in the string; the second is the data to be placed.

61

01 public static String SELECT_BY_ID_SQL =
02 "SELECT g.id,g.version,g.name FROM " +
03 GroupTDG.TABLE + " AS g "+
04 "WHERE g.id=?;";
05
06 public static ResultSet find(long id) throws SQLException{
07 Connection con = DbRegistry.getDbConnection();
08 PreparedStatement ps = con.prepareStatement(SELECT_BY_ID_SQL);
09 ps.setLong(1, id);
10 return SQLLogger.processQuery(ps);
11 }
12
13 public static String SELECT_ALL_SQL =
14 "SELECT g.id FROM " + GroupTDG.TABLE + " AS g;";
15
16 public static ResultSet findAll() throws SQLException{
17 Connection con = DbRegistry.getDbConnection();
18 PreparedStatement ps = con.prepareStatement(SELECT_ALL_SQL);
19 return SQLLogger.processQuery(ps);
20 }

Figure 5-19 GroupFinder's find identity find method

Finders have similar pairs of SQL Strings and methods as TDGs. A minimal implementation of a Finder will have
one of these pairs for the IDENTITY FIELD of their DOMAIN OBJECT (e.g. the pair shown in Figure 5-19, lines 01
through 11). When the data source supports it, we use table aliases (“AS g” line 03 of Figure 5-19) to reduce the
potential for confusion when moving around SQL code and to better identify which fields come from which tables33.

When choosing which fields to provide in select statements, list all fields when looking up a single entry (Figure
5-19 line 2). When looking up many entries, only include the IDENTITY FIELD, as PROXYS will be generated from the
returned data, an approach that may be altered in later phases, once analysis of the data usage indicates where best to
optimize.

Some tables represent the one-many or many-many relationships between DOMAIN OBJECTs, explicitly represented
in fields of those DOMAIN OBJECTs or not. These tables may not have INPUT or OUTPUT MAPPERs, but should have
TDGs and FINDERs implemented for them as needed because the INPUT/OUTPUT MAPPERs of associated DOMAIN

OBJECTs will use them.

How a developer would use the TDG and Finder Patterns

The Output Mapper’s update/insert/delete methods accept their appropriate DOMAIN OBJECTs as parameters,

and then call the corresponding TDG methods passing the values of that DOMAIN OBJECT’s fields as parameters.

update/insert/delete methods in an Output Mapper may also call other TDG methods as needed, for example

TDGs that cover logging, statistics, or some forms of cascading changes in data.

Input Mappers and Factorys also make use of these classes, the former getting ResultSets, which all find

methods return, and the latter calling the appropriate TDG’s getMaxId() when a new id is needed during a
createNew(…) call.

TDGs and Finders will also often get used by setup scripts, and even by Commands and service threads to effect
database changes that are generally less explicitly tied to the concept of a DOMAIN OBJECT, or which affect one or
more DOMAIN OBJECTs indirectly (e.g. updating a database-cached value of the number of times a Message
DOMAIN OBJECT has been viewed, or expiring time sensitive entries).

33 Our experience has indicated that this clarification avoids more errors than are created by copy/pasting SQL strings and having to change the

table aliases in the Finders and InputMappers.

62

Figure 5-20 Summary of Domain Objects seen in this section

63

5.3 SoeanEA DITCs

We have noted that we repeat some components frequently in the development of web applications. They are
generally implementations of patterns discussed in this paper, and appear prominently in their applications.
Eventually we began to create base implementations that could be used as-is or sub-classed which saves significant
development time. This section quickly runs through some of these and how they are expected to be used.

5.3.1 User

User is a common term in web applications. This DomainObject stores username and password information in a

database and keeps track of a User’s Roles. SoenEA comes with the DomainObject, its interface, Proxy,

Factory, Mappers, TDG and Finder. Common subclasses strengthen how passwords are stored, but most systems
can make use of it as is.

The current User is usually stored in a session attribute, thus allowing it to be checked throughout the user’s
session.

5.3.2 Role

A common approach in web applications is to only allow certain Users to do certain things. The use of the Role

DomainObject in SoenEA is used to represent permanent and high-level groupings of these behaviors, e.g. Guest,

Admin or Registered.

Figure 5-21 A simple class diagram showing the domain layer relating to the technical services layer

64

Role is not treated the same way as most DomainObjects in SoenEA’s implementation, and demonstrates that

instead of storing a DomainObject in a database, one can keep more permanent data elsewhere. As such, there is

neither a TDG or Finder, but there is an altered Factory (which is more traditional as it does not use UoW and

hands out SINGLETONs), a default GuestRole implementation, and the ApplicationAuthorization class to allow

the quick checking of application-level authorization for a User.

MyResources.propeties

ConcreteRole_1=org.dsrg.soenea.domain.role.impl.GuestRole
Access.xml

<role name="org.dsrg.soenea.domain.role.impl.GuestRole">
 <command name="application.dispatcher.group.ViewGroup" get="true" />
</role>

Figure 5-22 MyResources.properties and Access.xml

Concrete Roles need to be registered in the MyResources.properties file (Figure 5-22), as does the location of an

access XML file34. Once that is done, ApplicationAuthorization can be used to restrict which Dispatchers are

called based on the User currently active in a request’s session. ApplicationAuthorization expects a simple XML

format identifying each potential Role as well as identifying which Dispatchers35 are allowed for each Role, and

which HTTP methods are accepted for each Dispatcher. If it finds a match,
ApplicationAuthorization.hasAuthority(…) returns true, otherwise it returns false.

5.3.3 DispatcherServlet and Servlet

Servlet acts as our default implementation of a CONTROLLER. It organizes the flow of the call from Tomcat, hiding
the difference between get calls and post calls, sets some initial values for a recommended error VIEW, and calls
setup and cleanup items to ensure the smooth running of a system, ensuring database connections are closed and
ThreadLocal items are appropriately cleaned out between requests.

Normally, a developer would still need to write code to implement the part of their CONTROLLER that called
DISPATCHERs, so DispatcherServlet was created to allow a default implementation of a FRONT CONTROLLER
without any authorization. Any application that is simple and does not require more than one database connection
could use DispatcherServlet, as is, for a FRONT CONTROLLER.

5.3.4 Helper

SoenEA’s HELPER facilitates use of the HttpServletRequest. It wraps it and provides convenience methods to
access attributes in various contexts, it provides type specific access to passed parameters
(getBoolean/getLong/etc.), and it provides easy access to a session ID. SoenEA’s specific implementation is
HttpServletHelper.

The default implementation is sufficient in most cases, however where multi-part posts are made, one needs to
implement a custom HELPER.

5.4 SoenEA Utilities

To support the pattern classes, as well as the DITCs, and just for general use, SoenEA has several utility classes. We
will quickly touch on the purpose of the most frequently seen utilities, as they are primarily of practical interest in
this thesis. Any theory behind them is outside the scope of this thesis.

34 This is relative to the context of the application, usually WEB-INF/classes/Access.xml
35 Or FrontCommands, which is why command is used instead of dispatcher, as our SOEN students had learned this first.

65

5.4.1 DispatcherFactory

The DispatcherFactory creates instances of the Dispatcher class when passed a canonical class name. We

generally pass the full canonical class name of Dispatchers to Front Controllers instead of making up an
artificial key.

5.4.2 UniqueIdFactory, UniqueIdTDG/Finder

The IDENTITY FIELD is a required aspect of DOMAIN OBJECTs, as discussed in Sections 4.1 and 5.2.1. DOMAIN

OBJECT Factorys will need IDs when creating new Domain Objects, and they will accordingly call the

appropriate DOMAIN OBJECT’s TDG method, getMaxId(), as new IDs are needed. This getMaxId() method
should make use of an appropriate UniqueIdFactory to accomplish this task (Figure 5-23).

We have created two types of Unique ID FACTORY: one is suited to applications that are the sole means of accessing
a database; the other can be used with any number of applications accessing the same data while still providing each
with Unique IDs. We call these two FACTORYS SingleAppUniqueIdFactory and MultiAppUniqueIdFactory

respectively. By default, UniqueIdFactory will return a SingleAppUniqueIdFactory, but the Factory that it
uses internally can be set as desired.

public static long getMaxId() throws SQLException {
 return UniqueIdFactory.getMaxId(BASE_NAME, "id");
}

Figure 5-23 Use of a UniqueIdFactory

MultiAppUniqueIdFactory ensures unique IDs across applications by locking an ID table. This means the

overhead of using MultiAppUniqueIdFactory is an additional database connection. The access to this

MultiAppUniqueIdFactory’s ID table is done through the UniqueIdTDG and UniqueIdFinder.

SingleAppUniqueIdFactory requires no additional table or connection.

5.4.3 MetaDomainObject

The motivation for the use of the MetaDomainObject is to be able to check for equality. By creating a

MetaDomainObject with ID and class fields, a developer can then test for equality with an actual

DomainObject.

MetaDomainObject is primarily used as a convenience class by IdentityMap and UoW. It is meant to simplify

the code used for looking up DomainObjects in the UoW.

5.4.4 MapperFactory and MetaMapper

These utilities allow the UoW to call the correct OUTPUT MAPPER implementation for a given DomainObject that

is registered with it (e.g. insertNew() calling insert methods for each DomainObject that was registered new

in Figure 5-24, lines 10-15). It does so by storing a MapperFactory, which acts as a Map of

GenericOutputMappers, which all DomainObject OUTPUT MAPPERs implement. This map is populated by

MapperFactory’s addMapping method, usually in a Front Controller’s initialization (as previously shown in
Figure 5-9).

66

01 private static MapperFactory myFactory;
02
03 public static <ResourceType extends Object> void
04 initMapperFactory(MapperFactory f) {
05 MyMapper = new MetaMapper<ResourceType>();
06 MyMapper.init(f);
07 myFactory = f;
08 }
09
10 protected void insertNew() throws SQLException,
11 KeyNotFoundException, CreationException, MapperException {
12 for (DomainObject<?> d: newObjects) {
13 MyMapper.insert(d);
14 }
15 }

Figure 5-24 UoW using MapperFactory and MetaMapper

MetaMapper provides a simple interface over this process, allowing UoW’s use of the MapperFactory to be
more intuitive.

5.4.5 DBRegistry, ConnectionFactorys and Connections

Most frameworks have some means of interacting with databases easily. SoenEA makes use of a ThreadLocal
registry, DBRegistry. DBRegistry keeps track of ConnectionFactorys that are used to identify how a database

connection is made. For a given Thread, DBRegistry will keep track of any Connections created through

DBRegistry for the duration of the Thread.

Two database-specific Connections have been implemented, one for MySQL and one for Derby. Their purpose is
to wrap some of the database specific differences in such a way that developers can overlook them. Currently, only
write locks on tables are supported in this fashion. Otherwise, SoenEA Connections behave exactly like

java.sql.Connection.

5.4.6 ApplicationAuthorization

ApplicationAuthorization is a utility that allows quick determination of whether a List of Roles has access to a

given command for a given HTTP method. Generally, the command is a canonical class name of a Dispatcher, but

it could in theory represent any String required for authentication.

ApplicationAuthorization offers a means to apply “Application Level Authentication”, a term we use to represent
the restriction of access to a behavior at the application level, vs. in the GUI, where one would be effectively
restricting visibility, or in the Domain layer where one would check for access in Commands. While this concept is
one that we explore in many of the implementations using SoenEA, it is outside the scope of this thesis.

5.4.7 ThreadLocalTracker

The re-use of Threads to serve multiple requests is extremely common. In Tomcat, for example, one cannot

assume that a subsequent request to the server will spawn a new Thread, as it may just re-use an existing thread
that is not currently serving another request.

67

The concept of ThreadLocal is otherwise very useful to act as a point of access to data that needs to be used
throughout an application, and which would otherwise clutter method calls with extra parameters. To resolve the
problem, we register ThreadLocal instances used by requests with the ThreadLocalTracker, and at the end of
each request, we ensure that they are purged. This is similar to how we ensure that our database connections are
closed, so that the next Thread may start fresh.

5.4.8 Exceptions

SoenEA comes with a few general use Exceptions to better classify common problems that may happen. Here we
will outline some of the more commonly used ones:

 MapperException
 DomainObjectCreationException

This exception is thrown when an expected creation of a DomainObject fails. This Exception could be
thrown when a request erroneously asks for an id that is not in the database. This is often a sign that
DomainObjects are not being cleaned up properly after deletes or updates, or that the wrong set of ids

are being used to pull up DomainObjects.

 DomainObjectNotFoundException

This is an Exception thrown by IdentityMap when a call to get a DomainObject is made and the id and

class are not in the map. This Exception should be thrown whenever a call on IdentityMap for the same id
and class would return false.

 LostUpdateException

This is an Exception that should be thrown by GenericOutputMappers when they identify that a lost update
has occurred. Usually, an OUTPUT MAPPER would check the result of a delete or update to ensure that the
resulting changed rows are not 0, but could also be caused by other more complex problems (as certain race
conditions in poorly ordered database requests can lead to MySQL throwing a deadlock exception which
represents a failed lost update).

 CommandException

Most problems that occur in a Command should throw a CommandException. Based on the

CommandException thrown, the Dispatcher should be able to determine the appropriate additional

Commands or Views to dispatch to.

 ProxyException

A ProxyException is thrown when one of the CollectionProxys is unable to instantiate its innerList. This

is generally caused by some form of database problem in the InputMapper find method being called to build
the innerList.

5.5 SoenEA Test Suite

SoenEA comes with an ever growing test suite. There are currently 11 regular test classes and 6 regression test
classes, covering 50 different unit tests. To support these tests, several concrete implementations of the patterns are
included. While these are distributed with SoenEA for the purpose of testing, they are not considered DITCs,
although they still offer good examples for simple implementation.

68

6 Professional Software Development Using SoenEA

Throughout the writing of this thesis, we have been applying the theory described herein and implementing using
SoenEA on a variety of projects. Both the theory and SoenEA have been constantly changing based on our
experience, but we have confirmed the commercial viability of both. Here are a few:

 J-Site
This is a complex forum/internal messaging/gallery/CMS system with the potential to expand to support other
features or systems as needed. It went into production for several months, at its peak supporting between 1 and
2 million hits/day and having 6000 distinct registered users logging in per day and even more guest users. It was
developed by Stuart Thiel with some development done by contract employees. (46k SLOC, 10 months
development)

 Cubique
This is a portal system with file management/internal messaging/user management, and is still in development.
It is being developed by Concordia’s Bioinformatics Lab and is being overseen by Stuart Thiel. (37k SLOC, 13
months development)

 YP Listings
A yellow pages listing service that has been in production for two years and supports several million records. It
was developed by Stuart Thiel with some development done by contract employees. (24k SLOC, 8 months
development)

 Korsakow5
This is an open source desktop application for the creation of non-linear video narrative presentations. It was
developed by David Reisch, designed and managed until initial release by Stuart Thiel, and funded by CINER-
G (Concordia Interactive Narrative Experimentation and Research Group). The original concept and
development was by Florian Thalhofer. (59k SLOC, 14 months development — 8 until initial release)

69

7 Conclusion

Our approach has been very successful in practice. We have trained developers to reliably create effective software
that meets requirements, has few bugs, and is easier to test and to review than most other WEA code that we have
explored. Primarily, the developers introduced to SoenEA and the approach presented in this thesis have been for
novices and students. As such, we have focused on making the system easy to learn and use, while not
oversimplifying to the point of being useless. Given both the success in training new developers with this software
and the viability of applications that have been developed using the framework and prescribed approach, we are
confident that there is a future for this work.

The goal of refining the existing toolkit of patterns, has been hugely successful. While our experience is biased
towards new developments, the changes we have introduced are founded in simple and reliable development
principles and the result is accordingly simple and reliable.

The biggest achievement, and a major reason for our success in training developers, is the more concrete guidance in
approach. A developer who has a UML Domain Model worked out along with some Use Cases can almost
deterministically generate all the code they require without having to make any complex decisions until a working
system is running under enough load to provide performance data. Accompanying this practical guidance is
SoenEA, which further reinforces the recommended approach while limiting tedious implementation tasks. This
combination has greatly exceeded our expectations.

Future Work

There are several important areas where the theory presented in this thesis could be expanded. We have already
begun work on how testing fits in with this approach, in particular we have begun work on a system-level testing
approach that is tied closely to both DISPATCHERs and Use Cases.

Once a systematic testing approach exists, the next areas to explore are the advanced topics needed to progress a
project to commercial readiness. This would cover the theory of analyzing the performance of a system, given the
domain-oriented approach we promote, and the subsequent optimization of the access to data. To complement that
theory, some guidance on the specifics of working with SQL and the general types of SQL
statements/optimization/problems frequently come across when working with Domain Objects world be instructive.

Marek Krajewski, working with the Concordia Bioinformatics lab, has been working on a project titled DOCrib to
help codify the relationship between DOMAIN OBJECTs, INPUT MAPPERs and TDGs. DOCrib has the potential to
further improve on the implementation approach suggested by SoenEA by reducing much of the duplication in
TDGs and FINDERs and making the querying of ResultSets in INPUT MAPPERs more intuitive.

The advent of AJAX has given WEAs the responsiveness of desktop applications, and the flexibility for incredibly
rich interfaces, but there is little guidance available on the integration of such GUIs with a back-end system. An
examination of the existing Javascript frameworks/toolkits available today would further help WEA developers, as
would a comprehensive examination of UI design patterns.

As much of the theory described in this thesis leads to a nearly deterministic approach to implementation, there has
already been some work in terms of code generation. Asif Dogar’s Master’s thesis, Model Driven Development for
Enterprise Applications [DOGAR 2007], demonstrated a simplistic approach to code generation based on SoenEA
using Rational Software Architect. More recently, Brendan Asselstine, working for the Concordia Bioinformatics
lab, developed SeaDog: a more sophisticated code generation tool with a web interface that allows the visual
creation of Domain Models in UML and their subsequent transformation into an implementation that uses SoenEA
and follows the suggested approaches from the thesis. SeaDog is incomplete, but is already far enough along that
some developers have successfully used it to create a basic class structure for some simple projects. As of January
2010, the Concordia Bioinformatics lab has allocated another programmer to advance the development of SeaDog.

In terms of WEA development, we have begun to note a large number of Application patterns. We have already
begun to experiment with these high-level patterns, such as the Forum/Thread/Message model used in J-Site and the
Auditing model used in Cubique. The newest version of SoenEA has some abstract classes for the use of
Forums/Threads/Messages. However, the implications of such high level patterns are broad, and it is easy to fall into

70

the trap of defining a pattern that is implementation-specific. Further analysis on how to describe such patterns is
necessary, if we can even continue to call it a pattern.

As with implementation using this approach and SoenEA, one always knows the next step. In good engineering, the
satisfaction comes not in finding a solution, but in implementing that solution expertly. We hope to continue
improving on this work in that spirit.

71

8 References

[Fowler 2003] Martin Fowler, Patterns of Enterprise Application Architecture, Addison-

Wesley, 2003, ISBN: 0321127420

[MartinFowler] “P of EAA: Domain Model”

http://www.martinfowler.com/eaaCatalog/domainModel.html, Jan. 24, 2010

[EBAY] “eBay” http://www.ebay.ca/

[AMAZON] “Amazon.com” http://www.amazon.com/

[Tomcat] “Apache Tomcat” http://tomcat.apache.org/

[Hibernate] “Hibernate” http://www.hibernate.org Mar. 30, 2008

[Struts] “Apache Struts” http://struts.apache.org/ Jan. 24, 2010

[EJB] “Enterprise Java Beans" http://java.sun.com/products/ejb/ Mar. 30, 2008

[Sutherland97] “The Object Technology Architecture: Business Objects for Corporate

Information System” http://jeffsutherland.com/papers/boa_pap.html May. 01,

2008

[Larman 2004] Larman, Craig [2004] (2005). Applying UML and Patterns - An Introduction to

Object-Oriented Analysis and Design and Iterative Development, 3rd, Prentice

Hall PTR. ISBN 0-13-148906-2.

[YP] “EasYellowPages.com development site”

http://ns2.htmlweb.com/yp/search.html Uses SoenEA/commercial

[MovieMapper] “Brand Hype” http://www.brandhype.org Uses SoenEA/ written in collaboration

with a communications prof. Uses an older version of SoenEA (was the testbed

for the jump from java4 to java5).

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on an

Emerging Discipline.

 [Alur 2001] Deepak Alur, John Crupi, Dan Malks (2001), Core J2EE Patterns: Best

Practices and Design Strategies, Prentice Hall / Sun Microsystems Press, 2nd

Edition. ISBN:0130648841

[JSP] “JavaServer Pages Technology” http://java.sun.com/products/jsp/ Feb. 09, 2009

[SERVLET] “Java Servlet Technology” http://java.sun.com/products/servlet/ Feb. 09, 2009

[DOGAR 2007] Dogar, Asif Model Driven Development for Enterprise Applications. M.A.

thesis, Concordia University Computer Science and Software Engineering

Department, Montreal, Canada (2007)

72

 [USCENSUS] “U.S. Census Bureau E-Stats”

http://www2.census.gov/retail/releases/historical/ecomm/09Q2.html Jan. 23,

2010

73

9 Appendix

In this Section we will provide the initial files for the WEA described in Chapter 5. The file structure will be shown
to provide an example of how an implementation can be structured within an eclipse project. All the Java source, as
well as the Access.xml and MyResources.properties files will be included. A digital version will be made available
under https://soenea.htmlweb.com/trac/browser/SoenEA/trunk/documentation/Thesis/trunk

74

Figure 9-1 A recommended directory structure

75

001 package app;
002
003 //imports
004
005 public class FrontController extends DispatcherServlet {
006
007 private static final long serialVersionUID = 1L;
008 public static final String LOG_STRING = "soenea.test";
009 private static String defaultDispatcher = "";
010
011 @Override
012 public void init(ServletConfig config) throws ServletException {
013 super.init(config);
014 try {
015 defaultDispatcher = Registry.getProperty("defaultDispatcher");
016 } catch (Exception e1) {
017
018 }
019 ApplicationAuthorizaton.setBasePath(getServletContext()
020 .getRealPath("."));
021 prepareDbRegistry();
022
023 setupUoW();
024
025 /**
026 * My attempts to use Logging commons utilities
027 */
028 String loglevel = null;
029 try {
030 loglevel = Registry.getProperty("LogLevel");
031 if (loglevel.trim().equals(""))
032 throw new Exception("EmptyProperty");
033 } catch (Exception e1) {
034 loglevel = "INFO";
035 }
036
037 try {
038 for (Handler h : Logger.getLogger(FrontController.LOG_STRING)
039 .getHandlers()) {
040 Logger.getLogger(FrontController.LOG_STRING).removeHandler(h);
041 }
042
043 ConsoleHandler ch = new ConsoleHandler();
044 ch.setLevel(Level.ALL);
045 Logger.getLogger(FrontController.LOG_STRING).addHandler(ch);
046 Logger.getLogger(FrontController.LOG_STRING).setLevel(
047 Level.parse(loglevel));
048 Logging.setLoggerString(FrontController.LOG_STRING);
049 SQLLogger.setLegThreshold(500);
050 } catch (SecurityException e) {
051 // TODO Auto-generated catch block
052 e.printStackTrace();
053 }
054
055 }
056
057 public static void setupUoW() {
058 MapperFactory myDomain2MapperMapper = new MapperFactory();

76

059
060 myDomain2MapperMapper.addMapping(User.class, UserOutputMapper.class);
061 myDomain2MapperMapper.addMapping(GuestUser.class,
062 UserOutputMapper.class);
063 myDomain2MapperMapper.addMapping(GuestRole.class,
064 RoleOutputMapper.class);
065 myDomain2MapperMapper.addMapping(AdminRole.class,
066 RoleOutputMapper.class);
067 myDomain2MapperMapper.addMapping(RegisteredRole.class,
068 RoleOutputMapper.class);
069
070 UoW.initMapperFactory(myDomain2MapperMapper);
071 }
072
073 public static void prepareDbRegistry() {
074 prepareDbRegistry("");
075 }
076
077 public static void prepareDbRegistry(String key) {
078 MySQLConnectionFactory f = new MySQLConnectionFactory(null, null, null,
079 null);
080 try {
081 f.defaultInitialization();
082 } catch (SQLException e2) {
083 // TODO Auto-generated catch block
084 e2.printStackTrace();
085 }
086 DbRegistry.setConFactory(key, f);
087 String tablePrefix;
088 try {
089 tablePrefix = Registry.getProperty(key + "mySqlTablePrefix");
090 } catch (Exception e1) {
091 // TODO Auto-generated catch block
092 e1.printStackTrace();
093 tablePrefix = "";
094 }
095 if (tablePrefix == null) {
096 tablePrefix = "";
097 }
098 DbRegistry.setTablePrefix(key, tablePrefix);
099 }
100
101 @Override
102 protected void processRequest(HttpServletRequest request,
103 HttpServletResponse response) throws ServletException,
104 java.io.IOException {
105 request.setCharacterEncoding("UTF-8");
106 Helper myHelper = null;
107 Dispatcher command = null;
108 String commandName = null;
109 IUser user = null;
110 try {
111
112 for (Object key : request.getParameterMap().keySet()) {
113 Logger.getLogger(LOG_STRING).log(
114 Level.FINEST,
115 ("Key: " + key + " Value: " + Arrays.toString(request
116 .getParameterValues(key.toString()))));

77

117 }
118 commandName = getCommandName(request);
119
120 if (commandName == null)
121 commandName = "";
122
123 user = (IUser) myHelper.getSessionAttribute("CurrentUser");
124
125 if (user == null) {
126 user = new GuestUser();
127 request.getSession(true).setAttribute("CurrentUser", user);
128 }
129
130 if (!(user instanceof GuestUser)) {
131 user = UserInputMapper.find(user.getId());
132 request.getSession(true).setAttribute("CurrentUser", user);
133 }
134
135 if (!ApplicationAuthorizaton.hasAuthority(commandName, user
136 .getRoles(),
137 ApplicationAuthorizaton.RequestMethod.valueOf(request.getMethod()))) {
138 throw new Exception("Access Denied to " + commandName
139 + " for user " + user.getUsername());
140 }
141 command = DispatcherFactory.getInstance(commandName);
142
143 Logger.getLogger(LOG_STRING).log(Level.FINE,
144 command.getClass().toString());
145 command.init(request, response);
146 long time = System.currentTimeMillis();
147 command.execute();
148 Logger.getLogger(LOG_STRING).log(
149 Level.FINER,
150 "Time to execute command: "
151 + (System.currentTimeMillis() - time) + "ms.");
152 } catch (Exception exception) {
153 Throwable e = exception;
154 Logger.getLogger(LOG_STRING).throwing(getClass().getName(),
155 "processRequest", e);
156 request.setAttribute("errorMessage", e.getMessage());
157 request.setAttribute("exception", e);
158 request.getRequestDispatcher("/WEB-INF/JSP/html/Error.jsp")
159 .forward(request, response);
160 }
161 }
162
163 @Override
164 protected void preProcessRequest(HttpServletRequest request,
165 HttpServletResponse response) {
166 super.preProcessRequest(request, response);
167 UoW.newCurrent();
168 try {
169 DbRegistry.getDbConnection().setAutoCommit(false);
170 DbRegistry.getDbConnection().createStatement().execute(
171 "START TRANSACTION;");
172 } catch (SQLException e) {
173 e.printStackTrace();
174 }

78

175 }
176
177 @Override
178 protected void postProcessRequest(HttpServletRequest request,
179 HttpServletResponse response) {
180 try {
181 DbRegistry.getDbConnection().createStatement().execute("ROLLBACK;");
182 DbRegistry.getDbConnection().close();
183 DbRegistry.closeDbConnectionIfNeeded();
184 } catch (Exception e) {
185 e.printStackTrace();
186 }
187 ThreadLocalTracker.purgeThreadLocal();
188 }
189
190 protected String getCommandName(HttpServletRequest request)
191 throws Exception {
192 String commandName = request.getParameter("command");
193 if (commandName == null || commandName.equals("")) {
194 if (defaultDispatcher == null)
195 throw new Exception("HTTP attribute 'command' is missing.");
196 else
197 commandName = defaultDispatcher;
198 }
199 return commandName;
200 }
201
202 }

Figure 9-2 FrontController

001 package app.dispatcher;
002
003 //imports
004
005 public class LoginDispatcher extends Dispatcher {
006
007 @Override
008 public void execute() throws ServletException, IOException {
009 try {
010 new LoginCommand(myHelper).execute();
011 forward("/WEB-INF/JSP/html/Menu.jsp");
012 } catch (Exception e) {
013 forward("/WEB-INF/JSP/html/TryLogin.jsp");
014 }
015 }
016
017 }

Figure 9-3 LoginDispatcher

79

001 package app.dispatcher;
002
003 //imports
004
005 public class LogoutDispatcher extends Dispatcher {
006 @Override
007 public void execute() throws ServletException, IOException {
008 try {
009 myRequest.getSession().invalidate();
010 myHelper.setSessionAttribute("CurrentUser", new GuestUser());
011 forward("/WEB-INF/JSP/html/TryLogin.jsp");
012 } catch (Exception e) {
013 forward("/WEB-INF/JSP/html/TryLogin.jsp");
014 }
015 }
016
017 }

Figure 9-4 LogoutDispatcher

001 package dom.command;
002
003 //imports
004
005 public class LoginCommand extends Command {
006
007 public LoginCommand(Helper helper) {
008 super(helper);
009 }
010
011 @Override
012 public void execute()
013 throws CommandException {
014 String username = helper.getString("username");
015 String password = helper.getString("password");
016
017 if(username == null && password == null) throw new CommandException("");
018
019 try {
020 helper.setSessionAttribute("CurrentUser",
021 UserInputMapper.find(username, password));
022
023 } catch (SQLException e) {
024
025 e.printStackTrace();
026 throw new CommandException(e);
027 } catch (MapperException e) {
028 getNotifications().add("Sorry, no user for that " +
029 "username and password combo.");
030 throw new CommandException("Sorry, no user for that " +
031 "username and password combo.");
032 }
033
034 }
035 }

Figure 9-5 LoginCommand

80

001 package dom.model.group;
002
003 //imports
004
005 public interface IGroup extends IDomainObject<Long> {
006
007 public abstract String getName();
008
009 public abstract void setName(String name);
010
011 public List<IGroupMembership> getMembers();
012
013 public void setMembers(List<IGroupMembership> members);
014 }

Figure 9-6 IGroup

001 package dom.model.group;
002
003 //imports
004
005 public class Group extends DomainObject<Long> implements IGroup {
006 private String name;
007 private List<IGroupMembership> members;
008
009 protected Group(Long id, long version, String name, List<IGroupMembership> members) {
010 super(id, version);
011 this.name=name;
012 this.members=members;
013 }
014
015 public String getName() {
016 return name;
017 }
018 public void setName(String name) {
019 this.name = name;
020 }
021
022 public List<IGroupMembership> getMembers() {
023 return members;
024 }
025
026 public void setMembers(List<IGroupMembership> members) {
027 this.members = members;
028 }
029 }

Figure 9-7 Group

81

001 package dom.model.group;
002
003 //imports
004
005 public class GroupProxy extends DomainObjectProxy<Long, Group> implements
006 IGroup {
007
008 public GroupProxy(Long id) {
009 super(id);
010 }
011
012 @Override
013 protected Group getFromMapper(Long id) throws SQLException,
014 DomainObjectCreationException {
015 try {
016 return GroupInputMapper.find(id);
017 } catch (MapperException e) {
018 throw new DomainObjectCreationException(e.getMessage(),e);
019 }
020 }
021
022 @Override
023 public String getName() {
024 return getInnerObject().getName();
025 }
026
027 @Override
028 public void setName(String name) {
029 getInnerObject().setName(name);
030 }
031
032 @Override
033 public List<IGroupMembership> getMembers() {
034 return getInnerObject().getMembers();
035 }
036
037 @Override
038 public void setMembers(List<IGroupMembership> members) {
039 getInnerObject().setMembers(members);
040 }
041
042 }

Figure 9-8 GroupProxy

82

001 package dom.model.group;
002
003 //imports
004
005 public class GroupFactory {
006 public static Group createNew(String name, List<IGroupMembership> members) throws SQLException
007 Group result = new Group(GroupTDG.getMaxId(), 0l, name, members);
008 UoW.getCurrent().registerNew(result);
009 return result;
010 }
011
012 public static Group createClean(long id, long version, String name, List<IGroupMembership>
members)
013 throws SQLException {
014 Group result = new Group(id, version, name, members);
015 UoW.getCurrent().registerClean(result);
016 return result;
017 }
018 }

Figure 9-9 GroupFactory

83

001 package dom.model.group.mappers;
002
003 //imports
004
005 public class GroupInputMapper {
006
007 public static List<IGroup> buildCollection(ResultSet rs)
008 throws SQLException, MapperException, DomainObjectCreationException {
009 return buildCollection(rs, "g.id");
010 }
011 public static List<IGroup> buildCollection(ResultSet rs, String idString)
012 throws SQLException, MapperException, DomainObjectCreationException {
013 ArrayList<IGroup> l = new ArrayList<IGroup>();
014 while(rs.next()) {
015 l.add(new GroupProxy(rs.getLong(idString)));
016 }
017 return l;
018 }
019
020 public static List<IGroup> findAll() throws SQLException, MapperException,
DomainObjectCreationException {
021 ResultSet rs = GroupFinder.findAll();
022 return buildCollection(rs);
023 }
024
025 public static Group findByName(String name) throws SQLException, MapperException,
026 DomainObjectCreationException {
027 ResultSet rs = GroupFinder.findByName(name);
028
029 if(!rs.next()) throw new MapperException("The record for this Group id doesn't exist");
030 try {
031 return IdentityMap.get(rs.getLong("g.id"), Group.class);
032 } catch (DomainObjectNotFoundException e) {
033 } catch (ObjectRemovedException e) {
034
035 }
036
037 return getGroup(rs);
038 }
039
040 public static Group find(long id) throws SQLException, MapperException,
DomainObjectCreationException {
041 try {
042 return IdentityMap.get(id, Group.class);
043 } catch (DomainObjectNotFoundException e) {
044 } catch (ObjectRemovedException e) {
045
046 }
047 ResultSet rs = GroupFinder.find(id);
048 if(!rs.next()) throw new MapperException("The record for this Group id doesn't exist");
049 return getGroup(rs);
050 }
051
052
053 private static Group getGroup(ResultSet rs) throws SQLException, MapperException,
054 DomainObjectCreationException {
055 long id = rs.getLong("g.id");
056 IGroup thisGroup = new GroupProxy(id);
057 Group result = GroupFactory.createClean(
058 id,
059 rs.getLong("g.version"),
060 rs.getString("g.name"),
061 new MembershipListProxy(thisGroup)
062);
063 return result;
064 }

84

001 package dom.model.group.mappers;
002
003 //imports
004
005 public class GroupOutputMapper implements
006 GenericOutputMapper<Long, Group> {
007
008 @Override
009 public void delete(Group group) throws MapperException {
010 try {
011 int count = GroupTDG.delete(group.getId(), group.getVersion());
012 if(count == 0) throw new LostUpdateException("GroupTDG: id " + group.getId() +
013 " version " + group.getVersion());
014 group.setVersion(group.getVersion()+1);
015 } catch (SQLException e) {
016 throw new MapperException("Could not delete Group " + group.getId(),e);
017 }
018 }
019 @Override
020 public void insert(Group group) throws MapperException {
021 try {
022 GroupTDG.insert(group.getId(), group.getVersion(), group.getName());
023 } catch (SQLException e) {
024 throw new MapperException("Could not insert Group " + group.getId(),e);
025 }
026 }
027
028 @Override
029 public void update(Group group) throws MapperException {
030 try {
031 int count = GroupTDG.update(group.getId(), group.getVersion(), group.getName());
032 if(count == 0) throw new LostUpdateException("GroupTDG: id " + group.getId() +
033 " version " + group.getVersion());
034 group.setVersion(group.getVersion()+1);
035 } catch (SQLException e) {
036 throw new MapperException("Could not update Sponsor " + group.getId(),e);
037 }
038 }
039 }

Figure 9-11 GroupOutputMapper

85

001 package dom.model.group.tdg;
002
003 // imports
004
005 public class GroupTDG {
006
007 public static final String BASE_NAME = "Group";
008 public final static String TABLE = DbRegistry.getTablePrefix() + BASE_NAME;
009
010 public final static String CREATE_TABLE =
011 "CREATE TABLE IF NOT EXISTS " + TABLE + " (" +
012 "id BIGINT,"+
013 "version int,"+
014 "name varchar(128),"+
015 "PRIMARY KEY(id)"+
016 ") ENGINE=InnoDB;";
017
018 public final static String DROP_TABLE =
019 "DROP TABLE IF EXISTS " + TABLE + ";";
020
021 public final static String DELETE_BYID_SQL =
022 "DELETE FROM " + TABLE + " WHERE id=? AND version=?;";
023
024 public final static String INSERT_BYID_SQL =
025 "INSERT INTO " + TABLE + " (id,version,name) values(?,?,?);";
026
027 public final static String UPDATE_BYID_SQL =
028 "UPDATE " + TABLE + " " +
029 "SET version=version+1,name=? WHERE id=? and version=?;";
030
031 public static void createTable() throws SQLException {
032 SQLLogger.processUpdate(DbRegistry.getDbConnection().createStatement(), CREATE_TABLE);
033 }
034
035 public static void dropTable() throws SQLException {
036 SQLLogger.processUpdate(DbRegistry.getDbConnection().createStatement(), DROP_TABLE);
037 }
038
039 public static int insert(long id, long version, String name) throws SQLException
040 {
041 Connection con = DbRegistry.getDbConnection();
042 PreparedStatement ps = con.prepareStatement(INSERT_BYID_SQL);
043 ps.setLong(1,id);
044 ps.setLong(2,version);
045 ps.setString(3, name);
046 int count = SQLLogger.processUpdate(ps);
047 ps.close();
048 return count;
049 }
050
051 public static int update(long id, long version, String name) throws SQLException
052 {
053 Connection con = DbRegistry.getDbConnection();
054 PreparedStatement ps = con.prepareStatement(UPDATE_BYID_SQL);
055 ps.setString(1, name);
056 ps.setLong(2,id);
057 ps.setLong(3,version);
058 int count = SQLLogger.processUpdate(ps);
059 ps.close();
060 return count;
061 }
062
063 public static int delete(long id, long version) throws SQLException
064 {
065 Connection con = DbRegistry.getDbConnection();

86

001 package dom.model.group.tdg;
002
003 // imports
004
005 public class GroupFinder {
006
007 public static String SELECT_BY_ID_SQL =
008 "SELECT g.id,g.version,g.name FROM " + GroupTDG.TABLE + " AS g "+
009 "WHERE g.id=?;";
010
011 public static String SELECT_ALL_SQL =
012 "SELECT g.id FROM " + GroupTDG.TABLE + " AS g;";
013
014 public static String SELECT_BY_NAME_SQL =
015 "SELECT g.id,g.version,g.name FROM " + GroupTDG.TABLE + " AS g "+
016 "WHERE g.name=?;";
017
018
019 public static ResultSet find(long id) throws SQLException{
020 Connection con = DbRegistry.getDbConnection();
021 PreparedStatement ps = con.prepareStatement(SELECT_BY_ID_SQL);
022 ps.setLong(1, id);
023 return SQLLogger.processQuery(ps);
024 }
025
026 public static ResultSet findAll() throws SQLException{
027 Connection con = DbRegistry.getDbConnection();
028 PreparedStatement ps = con.prepareStatement(SELECT_ALL_SQL);
029 return SQLLogger.processQuery(ps);
030 }
031
032 public static ResultSet findByName(String name) throws SQLException{
033 Connection con = DbRegistry.getDbConnection();
034 PreparedStatement ps = con.prepareStatement(SELECT_BY_NAME_SQL);
035 ps.setString(1, name);
036 return SQLLogger.processQuery(ps);
037 }
038 }

Figure 9-13 GroupFinder

87

001 package dom.model.groupmembership;
002
003 // imports
004
005 public interface IGroupMembership extends IDomainObject<Long>{
006
007 public abstract IUser getMember();
008
009 public abstract void setMember(IUser member);
010
011 public abstract IGroup getGroup();
012
013 public abstract void setGroup(IGroup group);
014
015 public abstract MembershipStatus getStatus();
016
017 public abstract void setStatus(MembershipStatus status);
018
019 public abstract Calendar getLastUpdated();
020
021 public abstract void setLastUpdated(Calendar lastUpdated);
022
023 }

Figure 9-14 IGroupMembership

88

001 package dom.model.groupmembership;
002
003 // imports
004
005 public class GroupMembership extends DomainObject<Long> implements
006 IGroupMembership {
007 private IUser member;
008 private IGroup group;
009 private MembershipStatus status;
010 private Calendar lastUpdated;
011
012 public GroupMembership(Long id, long version, IUser member, IGroup group,
013 MembershipStatus status, Calendar lastUpdated) {
014 super(id, version);
015 this.member = member;
016 this.group = group;
017 this.status = status;
018 this.lastUpdated = lastUpdated;
019 }
020
021 public IUser getMember() {
022 return member;
023 }
024
025 public void setMember(IUser member) {
026 this.member = member;
027 }
028
029 public IGroup getGroup() {
030 return group;
031 }
032
033 public void setGroup(IGroup group) {
034 this.group = group;
035 }
036
037 public MembershipStatus getStatus() {
038 return status;
039 }
040
041 public void setStatus(MembershipStatus status) {
042 this.status = status;
043 }
044
045 public Calendar getLastUpdated() {
046 return lastUpdated;
047 }
048
049 public void setLastUpdated(Calendar lastUpdated) {
050 this.lastUpdated = lastUpdated;
051 }
052 }

Figure 9-15 GroupMembership

89

001 package dom.model.groupmembership;
002
003 // imports
004
005 public class GroupMembershipProxy extends
006 DomainObjectProxy<Long, GroupMembership> implements IGroupMembership {
007
008 public GroupMembershipProxy(Long id) {
009 super(id);
010 }
011
012 @Override
013 protected GroupMembership getFromMapper(Long id) throws SQLException,
014 DomainObjectCreationException {
015 try {
016 return GroupMembershipInputMapper.find(id);
017 } catch (MapperException e) {
018 throw new DomainObjectCreationException(e.getMessage(), e);
019 }
020 }
021
022 @Override
023 public IGroup getGroup() {
024 return getInnerObject().getGroup();
025 }
026
027 @Override
028 public Calendar getLastUpdated() {
029 return getInnerObject().getLastUpdated();
030 }
031
032 @Override
033 public IUser getMember() {
034 return getInnerObject().getMember();
035 }
036
037 @Override
038 public MembershipStatus getStatus() {
039 return getInnerObject().getStatus();
040 }
041
042 @Override
043 public void setGroup(IGroup group) {
044 getInnerObject().setGroup(group);
045 }
046
047 @Override
048 public void setLastUpdated(Calendar lastUpdated) {
049 getInnerObject().setLastUpdated(lastUpdated);
050 }
051
052 @Override
053 public void setMember(IUser member) {
054 getInnerObject().setMember(member);
055 }
056
057 @Override
058 public void setStatus(MembershipStatus status) {
059 getInnerObject().setStatus(status);
060 }
061
062 }

Figure 9-16 GroupMembershipProxy

90

001 package dom.model.groupmembership;
002
003 // imports
004
005 public class GroupMembershipFactory {
006
007 public static GroupMembership createNew(IUser member, IGroup group,
008 MembershipStatus status, Calendar lastUpdated) throws SQLException {
009 GroupMembership result = new GroupMembership(
010 GroupMembershipTDG.maxId(), 0l, member, group, status,
011 lastUpdated);
012 UoW.getCurrent().registerNew(result);
013 return result;
014 }
015
016 public static GroupMembership createClean(long id, long version,
017 IUser member, IGroup group, MembershipStatus status,
018 Calendar lastUpdated) throws SQLException {
019 GroupMembership result = new GroupMembership(id, version, member,
020 group, status, lastUpdated);
021 UoW.getCurrent().registerClean(result);
022 return result;
023 }
024 }

Figure 9-17 GroupMembershipFactory

001 package dom.model.groupmembership;
002
003 public enum MembershipStatus {
004 LEADER,
005 INVITED,
006 ACCEPTED
007 }

Figure 9-18 MembershipStatus

001 package dom.model.groupmembership;
002
003 // imports
004
005 public class MembershipListProxy extends ListProxy<IGroupMembership> {
006
007 private IGroup parent;
008
009 public MembershipListProxy(IGroup parent) {
010 super();
011 this.parent = parent;
012 }
013
014 @Override
015 protected List<IGroupMembership> getActualList() throws Exception {
016 return GroupMembershipInputMapper.find(parent);
017 }
018 }

Figure 9-19 MembershipListProxy

91

001 package dom.model.groupmembership.mappers;
002
003 // imports
004
005 public class GroupMembershipInputMapper {
006
007 public static List<IGroupMembership> buildCollection(ResultSet rs)
008 throws SQLException, MapperException, DomainObjectCreationException {
009 return buildCollection(rs, "gm.id");
010 }
011
012 public static List<IGroupMembership> buildCollection(ResultSet rs,
013 String idString) throws SQLException, MapperException,
014 DomainObjectCreationException {
015 ArrayList<IGroupMembership> l = new ArrayList<IGroupMembership>();
016 while (rs.next()) {
017 l.add(new GroupMembershipProxy(rs.getLong(idString)));
018 }
019 return l;
020 }
021
022 public static List<IGroupMembership> findAll() throws SQLException,
023 MapperException, DomainObjectCreationException {
024 ResultSet rs = GroupMembershipFinder.findAll();
025 return buildCollection(rs);
026 }
027
028 public static List<IGroupMembership> find(IGroup myGroup)
029 throws SQLException, MapperException, DomainObjectCreationException {
030 ResultSet rs = GroupMembershipFinder.findByGroup(myGroup.getId());
031 return buildCollection(rs);
032 }
033
034 public static GroupMembership find(long id) throws SQLException,
035 MapperException, DomainObjectCreationException {
036 try {
037 return IdentityMap.get(id, GroupMembership.class);
038 } catch (DomainObjectNotFoundException e) {
039 } catch (ObjectRemovedException e) {
040
041 }
042 ResultSet rs = GroupMembershipFinder.find(id);
043 if (!rs.next())
044 throw new MapperException(
045 "The record for this GroupMembership id doesn't exist");
046 return getGroupMembership(rs);
047 }
048
049 private static GroupMembership getGroupMembership(ResultSet rs)
050 throws SQLException, MapperException, DomainObjectCreationException {
051 Calendar cal = Calendar.getInstance();
052 cal.setTimeInMillis(rs.getLong("gm.lastUpdated"));
053 GroupMembership result = GroupMembershipFactory.createClean(rs
054 .getLong("gm.id"), rs.getLong("gm.version"), new UserProxy(rs
055 .getLong("gm.member")), new GroupProxy(rs.getLong("gm._group")),
056 MembershipStatus.values()[rs.getInt("gm.status")], cal);
057 return result;
058 }
059
060 }

Figure 9-20 GroupMembershipInputMapper

92

001 package dom.model.groupmembership.mappers;
002
003 // imports
004
005 public class GroupMembershipOutputMapper implements
006 GenericOutputMapper<Long, GroupMembership> {
007
008 @Override
009 public void delete(GroupMembership membership) throws MapperException {
010 try {
011 int count = GroupMembershipTDG.delete(membership.getId(),
012 membership.getVersion());
013 if (count == 0)
014 throw new LostUpdateException("GroupMembershipTDG: id "
015 + membership.getId() + " version "
016 + membership.getVersion());
017 membership.setVersion(membership.getVersion() + 1);
018 } catch (SQLException e) {
019 throw new MapperException("Could not delete GroupMembership "
020 + membership.getId(), e);
021 }
022 }
023
024 @Override
025 public void insert(GroupMembership membership) throws MapperException {
026 try {
027 GroupMembershipTDG.insert(membership.getId(), membership
028 .getVersion(), membership.getMember().getId(), membership
029 .getGroup().getId(), membership.getStatus().ordinal(),
030 membership.getLastUpdated().getTimeInMillis());
031 } catch (SQLException e) {
032 throw new MapperException("Could not insert GroupMembership "
033 + membership.getId(), e);
034 }
035 }
036
037 @Override
038 public void update(GroupMembership membership) throws MapperException {
039 try {
040 int count = GroupMembershipTDG.update(membership.getId(),
041 membership.getVersion(), membership.getMember().getId(),
042 membership.getGroup().getId(), membership.getStatus()
043 .ordinal(), membership.getLastUpdated()
044 .getTimeInMillis());
045 if (count == 0)
046 throw new LostUpdateException("GroupMembershipTDG: id "
047 + membership.getId() + " version "
048 + membership.getVersion());
049 membership.setVersion(membership.getVersion() + 1);
050 } catch (SQLException e) {
051 throw new MapperException("Could not update GroupMembership "
052 + membership.getId(), e);
053 }
054 }
055
056 }

Figure 9-21 GroupMembershipOutputMapper

93

001 package dom.model.groupmembership.tdg;
002
003 // imports
004
005 public class GroupMembershipTDG {
006
007 public static final String BASE_NAME = "GroupMembership";
008 public final static String TABLE = DbRegistry.getTablePrefix() + BASE_NAME;
009
010 public final static String CREATE_TABLE = "CREATE TABLE IF NOT EXISTS "
011 + TABLE + " (" + "id BIGINT," + "version int," + "member BIGINT,"
012 + "_group BIGINT," + "status int," + "lastUpdated BIGINT,"
013 + "PRIMARY KEY(id)," + "INDEX (_group)" + ") ENGINE=InnoDB;";
014
015 public final static String DROP_TABLE = "DROP TABLE IF EXISTS " + TABLE
016 + ";";
017
018 public final static String DELETE_BYID_SQL = "DELETE FROM " + TABLE
019 + " WHERE id=? AND version=?;";
020
021 public final static String INSERT_BYID_SQL = "INSERT INTO "
022 + TABLE
023 + " (id,version,member,_group,status,lastUpdated) values(?,?,?,?,?,?);";
024
025 public final static String UPDATE_BYID_SQL = "UPDATE "
026 + TABLE
027 + " "
028 + "SET version=version+1,member=?,_group=?,status=?,lastUpdated=? WHERE id=? and version=?;"
029
030 public static void createTable() throws SQLException {
031 SQLLogger.processUpdate(DbRegistry.getDbConnection().createStatement(),
032 CREATE_TABLE);
033 }
034
035 public static void dropTable() throws SQLException {
036 SQLLogger.processUpdate(DbRegistry.getDbConnection().createStatement(),
037 DROP_TABLE);
038 }
039
040 public static int insert(long id, long version, Long member, Long group,
041 Integer status, Long lastUpdated) throws SQLException {
042 Connection con = DbRegistry.getDbConnection();
043 PreparedStatement ps = con.prepareStatement(INSERT_BYID_SQL);
044 ps.setLong(1, id);
045 ps.setLong(2, version);
046 ps.setLong(3, member);
047 ps.setLong(4, group);
048 ps.setInt(5, status);
049 ps.setLong(6, lastUpdated);
050 int count = SQLLogger.processUpdate(ps);
051 ps.close();
052 return count;
053 }
054
055 public static int update(long id, long version, Long member, Long group,
056 Integer status, Long lastUpdated) throws SQLException {
057 Connection con = DbRegistry.getDbConnection();
058 PreparedStatement ps = con.prepareStatement(UPDATE_BYID_SQL);
059 ps.setLong(1, member);
060 ps.setLong(2, group);
061 ps.setInt(3, status);
062 ps.setLong(4, lastUpdated);
063 ps.setLong(5, id);
064 ps.setLong(6, version);
065 int count = SQLLogger.processUpdate(ps);

94

001 package dom.model.groupmembership.tdg;
002
003 // imports
004
005 public class GroupMembershipFinder {
006
007 public static String SELECT_BY_ID_SQL = "SELECT gm.id,gm.version,gm.member,"
008 + "gm._group,gm.status,gm.lastUpdated FROM "
009 + GroupMembershipTDG.TABLE + " AS gm " + "WHERE gm.id=?;";
010
011 public static String SELECT_ALL_SQL = "SELECT gm.id FROM "
012 + GroupMembershipTDG.TABLE + " AS gm;";
013
014 public static String SELECT_BY_GROUP_SQL = "SELECT gm.id,gm.member FROM "
015 + GroupMembershipTDG.TABLE + " AS gm " + "WHERE gm._group=?";
016
017 public static ResultSet find(long id) throws SQLException {
018 Connection con = DbRegistry.getDbConnection();
019 PreparedStatement ps = con.prepareStatement(SELECT_BY_ID_SQL);
020 ps.setLong(1, id);
021 return SQLLogger.processQuery(ps);
022 }
023
024 public static ResultSet findAll() throws SQLException {
025 Connection con = DbRegistry.getDbConnection();
026 PreparedStatement ps = con.prepareStatement(SELECT_ALL_SQL);
027 return SQLLogger.processQuery(ps);
028 }
029
030 public static ResultSet findByGroup(Long group) throws SQLException {
031 Connection con = DbRegistry.getDbConnection();
032 PreparedStatement ps = con.prepareStatement(SELECT_ALL_SQL);
033 ps.setLong(1, group);
034 return SQLLogger.processQuery(ps);
035 }
036 }

Figure 9-23 GroupMembershipFinder

95

001 package dom.model.member.mappers;
002
003 // imports
004
005 public class MemberInputMapper {
006 public static List<IUser> buildCollection(ResultSet rs, String idString)
007 throws SQLException, MapperException, DomainObjectCreationException {
008 ArrayList<IUser> l = new ArrayList<IUser>();
009 while(rs.next()) {
010 l.add(new UserProxy(rs.getLong(idString)));
011 }
012 return l;
013 }
014
015 public static List<IUser> find(IGroup myGroup) throws SQLException,
016 MapperException, DomainObjectCreationException {
017 ResultSet rs = GroupMembershipFinder.findByGroup(myGroup.getId());
018 return buildCollection(rs, "gm.member");
019 }
020 }

Figure 9-24 MemberInputMapper

001 package dom.model.role;
002
003 // imports
004
005 public class AdminRole extends Role implements IRole {
006
007 private static final long ROLE_ID = RoleIds.ADMIN;
008 private static final String ROLE_NAME = "AdminRole";
009
010 public AdminRole() {
011 super(ROLE_ID, 1, ROLE_NAME);
012 }
013
014 @Override
015 public String getName() {
016 return ROLE_NAME;
017 }
018
019 @Override
020 public Long getId() {
021 return ROLE_ID;
022 }
023
024 @Override
025 public long getVersion() {
026 return 1;
027 }
028
029 }
030

Figure 9-25 AdminRole

96

001 package dom.model.role;
002
003 // imports
004
005 public class RegisteredRole extends Role implements IRole {
006
007 private static final long ROLE_ID = RoleIds.ADMIN;
008 private static final String ROLE_NAME = "RegisteredRole";
009
010 public RegisteredRole() {
011 super(ROLE_ID, 1, ROLE_NAME);
012 }
013
014 @Override
015 public String getName() {
016 return ROLE_NAME;
017 }
018
019 @Override
020 public Long getId() {
021 return ROLE_ID;
022 }
023
024 @Override
025 public long getVersion() {
026 return 1;
027 }
028
029 }
030

Figure 9-26 RegisteredRole

001 package dom.model.role;
002
003 public class RoleIds {
004 public static final long REGISTERED = 2L;
005 public static final long ADMIN = 3L;
006 }

Figure 9-27 RoleIds

001 package ts;
002
003 // imports
004
005 public abstract class DatabaseSetup {
006
007 public static void main(String[] args) {
008 setupLogging();
009 FrontController.prepareDbRegistry();
010 FrontController.setupUoW();
011 dropAllTables();
012 createAllTables();
013 }
014
015 public static void setup()
016 {
017 setupLogging();

97

018 FrontController.prepareDbRegistry();
019 FrontController.setupUoW();
020 try {
021 startTransaction();
022 createAllTablesNoCommit();
023 finishTransaction();
024 } catch (Exception e)
025 {
026 e.printStackTrace();
027 System.exit(1);
028 }
029 }
030
031 public static void teardown()
032 {
033 try {
034 startTransaction();
035 dropAllTablesNoCommit();
036 finishTransaction();
037 DbRegistry.closeDbConnectionIfNeeded();
038 } catch (Exception e) {
039 e.printStackTrace();
040 }
041 }
042
043 public static void createAllTablesNoCommit() throws SQLException, IOException {
044 createAllTablesNoCommit(true);
045 }
046
047 public static void createAllTablesNoCommit(boolean doBaseDataInsert) throws SQLException,
IOException
048 {
049 UserTDG.createTable();
050 UserTDG.createUserRoleTable();
051 GroupTDG.createTable();
052 GroupMembershipTDG.createTable();
053 List<IRole> roles = new ArrayList<IRole>();
054 roles.add(new AdminRole());
055 roles.add(new GuestRole());
056 roles.add(new RegisteredRole());
057 UserFactory.createNew("sthiel", "sthiel", roles);
058
059 }
060
061 public static void createAllTables() {
062 createAllTables(true);
063 }
064
065 public static void createAllTables(boolean doCars) {
066 FrontController.setupUoW();
067
068 try {
069 startTransaction();
070 createAllTablesNoCommit(doCars);
071 UoW.getCurrent().commit();
072 } catch (Exception e) {
073 e.printStackTrace();
074 } finally {

98

075 try {
076 DbRegistry.closeDbConnectionIfNeeded();
077 } catch (Exception e) {
078 e.printStackTrace();
079 }
080 }
081 }
082
083 public static void dropAllTablesNoCommit() throws SQLException
084 {
085 try {
086 UserTDG.dropTable();
087 } catch (Exception e) { }
088 try {
089 UserTDG.dropUserRoleTable();
090 } catch (Exception e) { }
091 try {
092 GroupTDG.dropTable();
093 } catch (Exception e) { }
094 try {
095 GroupMembershipTDG.dropTable();
096 } catch (Exception e) { }
097
098 }
099
100
101 public static void dropAllTables() {
102
103 try {
104 DbRegistry.getDbConnection().setAutoCommit(false);
105 dropAllTablesNoCommit();
106 DbRegistry.getDbConnection().commit();
107 } catch (Exception e) {
108 e.printStackTrace();
109 } finally {
110 try {
111 DbRegistry.closeDbConnectionIfNeeded();
112 } catch (Exception e) {
113 // TODO Auto-generated catch block
114 e.printStackTrace();
115 }
116 }
117 }
118
119
120 public static void startTransaction() throws SQLException {
121 DbRegistry.getDbConnection().setAutoCommit(false);
122 DbRegistry.getDbConnection().createStatement().execute("Start Transaction");
123 UoW.newCurrent();
124 }
125
126 public static void finishTransaction()
127 {
128 try {
129 UoW.getCurrent().commit();
130 }
131 catch (Exception e) {
132 e.printStackTrace();

99

133 }
134 }
135
136 public static void setupLogging() {
137
138 String loglevel = null;
139 try {
140 loglevel = Registry.getProperty("LogLevel");
141 if(loglevel.trim().equals("")) throw new Exception("EmptyProperty");
142 } catch (Exception e1) {
143 loglevel = "INFO";
144 }
145
146 try {
147 for(Handler h : Logger.getLogger(FrontController.LOG_STRING).getHandlers()) {
148 Logger.getLogger(FrontController.LOG_STRING).removeHandler(h);
149 }
150
151 ConsoleHandler ch = new ConsoleHandler();
152 ch.setLevel(Level.ALL);
153 Logger.getLogger(FrontController.LOG_STRING).addHandler(ch);
154 Logger.getLogger(FrontController.LOG_STRING).setLevel(Level.parse(loglevel));
155 } catch (SecurityException e) {
156 e.printStackTrace();
157 }
158
159
160 }
161 }

Figure 9-28 DatabaseSetup

001 <access>
002 <role name="org.dsrg.soenea.domain.role.impl.GuestRole">
003 <command name="app.dispatcher.LoginDispatcher" get="true" post="true" />
004 <command name="app.dispatcher.LogoutDispatcher" get="true" post="true" />
005 </role>
006
007 <role name="dom.model.role.RegisteredRole">
008 <command name="app.dispatcher.CreateGroupDispatcher" post="true" />
009 <command name="app.dispatcher.RemoveGroupDispatcher" post="true" />
010 <command name="app.dispatcher.ViewGroupDispatcher" get="true"/>
011 <command name="app.dispatcher.InviteMemberDispatcher" post="true" />
012 <command name="app.dispatcher.AcceptInviteDispatcher" post="true" />
013 <command name="app.dispatcher.RemoveMemberDispatcher" post="true" />
014 </role>
015
016 <role name="dom.model.role.AdminRole">
017 <command name="app.dispatcher.AddUserDispatcher" post="true" />
018 </role>
019 </access>

Figure 9-29 Access.xml

100

001 mySqlHostName=localhost:3306
002 mySqlUserName=soenea
003 mySqlPassword=soenea
004 mySqlDatabase=soenea?characterEncoding=utf8
005 mySqlTablePrefix=soenea_
006 LogLevel=ALL
007 LogFile=
008 myDefaultServletEntrypoint=index.html
009 AccessXMLFile=WEB-INF/classes/Access.xml
010 ConcreteRole_1=org.dsrg.soenea.domain.role.impl.GuestRole
011 ConcreteRole_2=dom.model.role.RegisteredRole
012 ConcreteRole_3=dom.model.role.AdminRole
013 defaultDispatcher=app.dispatcher.LoginDispatcher
014 GUEST_USER_ID=-1

Figure 9-30 MyResources.properties

