Dr. Tanbir Ahmed
Research Associate
Department of Computer Science and Software Engineering
Concordia University
1455 De Maisonneuve Blvd. West
Montreal, QC H3G 1M8, Canada.


Email: ta_ahmed AT cs DOT concordia DOT ca

[Education]
Ph.D. in Computer Science (2013), Concordia University, Canada.
Thesis: "Some Results in Extremal Combinatorics" (Advisor: Prof. Clement Lam)

M.Sc. in Computer Science (2009), Concordia University, Canada.
Thesis: "An Implementation of the DPLL Algorithm" (Advisor: Prof. Vašek Chvátal)
[Research]
Interests: SAT, Ramsey Theory on Integers, Discrete Geometry, Permutations, Graphs, Sets and Sequences.
Publications: Journal Articles:
[12] Tanbir Ahmed and David Wildstrom, "On Distance Sets in the Triangular Lattice", to Submitted. (PDF)
[11] Tanbir Ahmed, "On Generalized Schur Numbers", Submitted. (PDF)
[10] Tanbir Ahmed and Hunter Snevily, "The α-labeling number of comets is 2", to appear in
Bulletin of the Institute of Combinatorics and its Applications (PDF)
-- (See Joseph A. Gallian's A Dynamic Survey of Graph Labeling)
[09] Tanbir Ahmed, Oliver Kullmann, and Hunter Snevily, "On the van der Waerden numbers w(2; 3, t)",
Discrete Applied Mathematics 174 (2014), 27-51. (arXiv:1102.5433v1 [math.CO])
--- (See D. E. Knuth's Volume 4B, Pre-fascicle 6A: A (Very Incomplete) Draft of Section 7.2.2.2: Satisfiability)
--- (See Wikipedia entry of Van der Waerden numbers for my contributions in that list)
--- (See an interesting lecture by V. W. Marek: Erdõs Dream, SAT, Extremal Combinatorics and Experimental Mathematics)
[08] Tanbir Ahmed and Hunter Snevily, "Sparse Distance Sets in the Triangular Lattice",
Electronic Journal of Combinatorics, 20 (4) (2013), P33. MR3158272.
[07] Tanbir Ahmed, Janusz Dybizbański, and Hunter Snevily, "Unique Sequences Containing No k-Term Arithmetic Progressions",
Electronic Journal of Combinatorics, 20 (4) (2013), P29. MR3158268.
[06] Tanbir Ahmed and Hunter Snevily, "Some properties of Roller Coaster Permutations",
Bulletin of the Institute of Combinatorics and its Applications, 68 (2013), 55-69. (PDF) MR3136863.
--- (See two conjectures in the Open Problems Garden)
[05] Tanbir Ahmed, Michael G. Eldredge, Jonathan J. Marler, and Hunter Snevily, "Strict Schur Numbers",
Integers, 13 (2013). Online version: A22. MR3083484.
[04] Tanbir Ahmed, "Some more van der Waerden numbers",
Journal of Integer Sequences, 16 (2013), Article 13.4.4. MR3056628.
[03] Tanbir Ahmed, "On computation of exact van der Waerden numbers",
Integers, 12 (3) (2012), 417-425. Online version: 11 (2011), A71. MR2955523.
[02] Tanbir Ahmed, "Two new van der Waerden numbers: w(2; 3, 17) and w(2; 3, 18)",
Integers, 10 (2010), 369-377. Online version: 10 (2010), A32. MR2684128.
[01] Tanbir Ahmed, "Some new van der Waerden numbers and some van der Waerden-type numbers",
Integers, 9 (2009), 65-76. Online version: 9 (2009), A06. MR2506138.
--- (See tawSolver 1.0: an efficient implementation of the DPLL Algorithm.)
--- (Here is an updated list of known van der Waerden numbers).
Theses:
[2] Tanbir Ahmed, "Some Results in Extremal Combinatorics", Ph.D. Thesis, Concordia University. [PDF]
[1] Tanbir Ahmed, "An Implementation of the DPLL Algorithm", M. Comp. Sci. Thesis, Concordia University. [PDF]
Activities: Reviewer, AMS Mathematical Reviews.
Reviewer, ACM Computing Reviews.
Software:
tawSolver: an efficient implementation of the DPLL Algorithm.
[Links]
Seminars McGill DMO, McGill Algorithms, ConCoCO, CRM,
Journals Electronic Mathematics Research Journals,
People: Ronald Graham, Donald Knuth, Clement Lam, Vašek Chvátal, Doron Zeilberger,
Math Blogs: Tomothy Gowers, Terence Tao,
Concordia: Home, CSE, ENCS, Email, Myconcordia, Library, IT Helpdesk,
LaTeX Cheat Sheet, Ref Card, Math Symbols, PSTricks, Graph Theory, Beamer Class Manual,
Experimental Mathematics Experimental Mathematics Website
[Teaching]
As Teaching Assistant: Computer Science and Software Engineering, Concordia University
(S: SUMMER, F: FALL, W: WINTER)
- COMP 218 (Fundamentals of C++ Programming): F05, F08
- COMP 233 (Probability and Statistics for Comp. Sci.): W10
- COMP 238 (Mathematics for Computer Science I): F05, W06, F07, W08, F08, W09
- COMP 239 (Mathematics for Computer Science II): F08, W09
- COMP 335 (Introduction to Theoretical Computer Science): F05, F06, S10, F10, F11
- COMP 345 (Advanced Programming in C++): W10
- COMP 352 (Data Structures and Algorithms): S08, F08, S09, F09
- COMP 361 (Elementary Numerical Methods, COMP 5611): F09, F10
- COMP 367 (Techniques of Symbolic Computation, MAST 332): W09
- COMP 5421 (Advanced Prog. in C++): S08, S09, S10
- COMP 6651 (Design and Analysis of Algorithms): W06, F06
- ENCS 5821 (Technical Writing and Communication): W06, W07, F08, F09
[Miscellanies]
Library van der Waerden numbers:
- List of known van der Waerden numbers; Some van der Waerden type numbers
- William Gasarch's van der Waerden links;
- P. R. Herwig, M. J. H. Heule, P. M. van Lambalgen, H. van Maaren - A New Method to construct Lower Bounds for Van Der Waerden Numbers, The Electronic Journal of Combinatorics, 14 (2007) [PDF]
- B. Landman, A. Robertson, C. Culver - Some New Exact van der Waerden Numbers, Integers 5 (2005) 2 [PDF]
- M. Kouril, J. Franco - Resolution Tunnels for Improved SAT Solver Performance, Theory and Applications of Satisfiability Testing, Springer Berlin / Heidelberg (2005) [PDF]
- M. R. Dransfield, L. Liu, V. W. Marek, M. Truszczyński - Satisfiability and computing van der Waerden Numbers, The Electronic Journal of Combinatorics, 11 (2004) [PDF]
- T. Gowers - A new proof of Szemerédi's Theorem (preprint), 2001, [PDF]
- S. Shelah - Primitive recursive bounds for van der Waerden numbers, Journal of the American Mathematical Society, 1-3, (1988) [LINK]
- M. Beeler - A new van der Waerden number, Discrete Applied Math. 6 (1983), 207.
- M. Beeler, P. O'Neil - Some new van der Waerden numbers, Discrete Math. 28 (1979), 135-146
- J. R. Rabung - Some Prgrogression-free Partitions Constructed Using Folkman's Method, Canadian Mathematical Bulletin, vol. 22 (1979) 87-91. [PDF]
- T. C. Brown - Some new van der Waerden numbers (preliminary report), Notices American Math. Society 21 (1974), A-432.
- R. L. Graham, B. L. Rothschild - A short proof of van der Waerden's theorem on arithmetic progressions, Proc. of the AMS, 42(2) (1974) [LINK]
- V. Chvátal - Some unknown van der Waerden numbers, Combinatorial Structures and Their Applications (R.Guy et al.,eds.), Gordon and Breach, New York, (1970) [PDF]
[Personal]
Picture Gallery: - Seminar and conference pictures (picasa)
- Personal pictures (picasa)


Google
Merriam-Webster Online





I am nerdier than 99% of all people. Are you a nerd? Click here to take the Nerd Test, get nerdy images and jokes, and talk on the nerd forum!