
LABORATORY MANUAL

COEN 311

Computer Organization and Software

By:

K. Vitoroulis

&

Dr. S. Tahar

Concordia University

Department of Electrical and Computer Engineering

Winter 2005

Revised: July 2010, T. Obuchowicz

Version 1.2

TABLE OF CONTENTS

 Page

LAB 1 .. 1

LAB 2 ...7

LAB 3 ...9

LAB 4 ...12

LAB 5 ...13

APPENDICES ..21

 APPENDIX 1: Assembly programs

 APPENDIX 2: Selected CPU32Bug Debugger commands

 APPENDIX 3: Motorola S-Record format

 APPENDIX 4: Selected MC68000 instructions

 APPENDIX 5: LCD datasheet, ASCII table, parallel port documents

 APPENDIX 6: A sample MC68000 assembly language program

 APPENDIX 7: A sample MC68000 listing with a subroutine

ii

 1
LAB 1

OBJECTIVES

In this experiment you will:

• become familiar with the CMM332 board
• become familiar with the AxIDE assembler
• create an ASCII text file containing a simple MC68000 assembly language program
• establish a serial interface communication between a computer and the CMM332

board
• program the CMM332 board
• single-step through a downloaded program in order to verify its correct functionality.

INTRODUCTION

The CMM332 board provided by Axiom is an extension of the Motorola MC68332 BCC
(Business Card Computer) product.

The components of the CMM332 device are the following

• MC68332 Microcontroller Unit (MCU).
• Two 64K x 16 erasable programmable read only memories (EPROMs) that contain

the M68CPU32BUG debugger software
• 32k x 16 bit, byte addressable random access memory (RAM)

The CMM332 can be connected to a Personal Computer via serial port. Any ANSI termi-
nal emulator can be used to communicate with the device. In this lab will we be using the
AxIDE software which is essentially an ANSI terminal emulator.

PRE-LAB:

The following is to be performed prior to attending the scheduled lab session:

• become familiar with the CPU332BUG debugger commands to be used in the Lab by
reading Appendix 2.

• read Lab 1 in its entirety.

Part 1: Setting up serial communication with the board.

Connect the serial cable and the power connector to the CMM332 board. Inspect the
serial cable connector from the PC to the board. Inspect the power connection from the
power bar underneath the desk to the board.

 2
To set up a serial communication interface to communicate with the CMM332 board you
can use any ANSI compatible terminal emulator. On the Windows XP platform you can
use either the AxIDE application (installed on the lab-cut) or HyperTerminal (comes with
windows). The AxIDE application is preferred.

Once the ANSI terminal emulator is run, select File -> Options and set up the following
parameters for the serial port:

Baud Rate: 9600
Parity: None
Data Bits: 8
Stop Bits: 1
Handshaking Xon/Xoff : Off

Once the serial port is setup power up the CMM332 board and press the reset button. If
the serial port is setup properly the following menu will appear on the terminal window:

 --
 CMM332 AXM-0089 Utilities
 --

 d. Debug Monitor - CPU32Bug
 f. Flash EEPROM Utilities
 t. Test Hardware
 Select:

Part 2: First use of the debugger

From the main menu (see Part 1) select option (d) to run the debugger. The following
prompt will appear:

CPU32Bug>

You can now issue commands to the debugger. A list of commands can be displayed by
typing ‘HE’ on the prompt. Details for some selected commands and their syntax can be
found in Appendix 2. The CPU32BUG debugger manual, available in the accompanying
lab document set, contains the complete documentation of the debugger commands and
features.

Perform the following:

• display the register contents.
• modify the register contents using the RM and the RS commands.
• display the memory content at locations $0000 and $3000.
• change the memory content at location $3001 to the byte value $CA.
• fill the memory starting at address $4000 with the following byte sequence:

$474F4F44204A4F4212121202020. Display the memory content at location 4000
using the MD command.

 3
Part 3: Compiling a program using the Windows AS32 assembler.

In your Unix account create an appropriate directory structure for the experiments. For
example have a main ‘COEN311’ directory with subdirectories for each experiment
(EXP1, EXP2 etc.). In the subdirectory for the first experiment create an ASCII text file
(use any of the available text editors such as ‘nedit’, ‘vi’, ‘emacs’. Alternatively a Windows
text editor such as Microsoft Notepad may be used, save the file in your U:\ in an appro-
priately named folder) containing the following:

* Experiment 1
* Name: Ted Obuchowicz, put your name here
* Date: August 31, 2009

ORG $3000

CLR.L D1
CLR.L D2
CLR.L D3
CLR.L D4

MOVE.B #$01,D1
MOVE.B #$02,D2
MOVE.B #$03,D3

START
ADD D1,D1
ADD D2,D2
ADD D2,D3
MULS D1,D3
DIVS D2,D1
SUB D0,D0
BEQ START
END

Save this program under the filename “exp1.asm”.

The AxIDE assembler is somewhat quirky. Here a few hints which will prevent assembly
errors:

• lines containing only comments should begin in column 1 as in:

* Experiment 1

* T. Obuchowicz

* July 27, 2006

 * comments should become in column 1, this will cause an error

 4
• mnemonics representing executable instructions and assembler directives should begin
after a TAB as in:

 ORG $3000

 CLR.L D1

CLR.L D2 * executable instructions should start after a TAB

• The assembler is very particular about whitespace characters between operands or
labels as in:

ADD D0, D1 * this will assemble with 0 warnings 0 error

* but the machine code generated will be

* INCORRECT.

ADD D0,D1 * note no blank after the , this is CORRECT

* and will produce correct machine code.

LOOP:

 <some instructions>

 DBRA D3, LOOP * this will assemble, but the machine code

* will be incorrect but no errors will be

* reported by the assembler.

LOOP:

 <some instructions>

 DBRA D3,LOOP * this is correct, note that there is no

* space after the ,

To assemble the program perform the following steps:

1. Open a command prompt (Start --> Accessories --> Command Prompt)
2. Issue the command: path=%path%;”C:\Program Files\as32” This com-

mand will add the location of the assembler program to the shell path variable.

 5
3. Change the directory to the location of the source code by specifying U: to change to
the U:\ drive then use the cd <name_of_directory> to the directory containing your
source code.

4. Issue the command: as32 -l exp1.asm > exp1.lst Note that the as32 com-
mand can be recognized because of the addition of its location to the path variable
in step (2)

The correct execution of the AS32 command produces the following files in the same
directory as the source code:

• exp1.lst: the listing file produced by the compilation of the source code. This code
will contain the machine code given in hexadecimal notation and the source code of
the program side by side. The contents of this file should be the following:

•
 * Experiment 1
00003000 ORG $3000

00003000 4281 CLR.L D1
00003002 4282 CLR.L D2
00003004 4283 CLR.L D3
00003006 4284 CLR.L D4

00003008 123c 0001 MOVE.B #$01,D1
0000300c 143c 0002 MOVE.B #$02,D2
00003010 163c 0003 MOVE.B #$03,D3

 START
00003014 d241 ADD D1,D1
00003016 d442 ADD D2,D2
00003018 d642 ADD D2,D3
0000301a c7c1 MULS D1,D3
0000301c 83c2 DIVS D2,D1
0000301e 9040 SUB D0,D0
00003020 67f2 BEQ START

END

 ===== 0 Error(s)
 ===== 0 Warning(s)

The numbers on the left hand side of the listing file specify main memory addresses in
hexadecimal notation. The addresses start from the number specified with the ORG
assembler directive (ORG is short hand notation for ORIGIN). Motorola 68000 instruc-

 6
tions are of various sizes. For example, a CLR.L D1 instruction occupies two bytes in
main memory. The numbers to the right of the main memory addresses specify the
machine code in hexadecimal format. When the program is loaded into main memory,
the PC register will be loaded with the starting address of the first instruction. As each
instruction is fetched from main memory and executed by the microprocessor the value
of PC will be updated to point to the next instruction to be fetched and executed.

• exp1.s19: this is the assembled program in a format appropriate for downloading to the
board. It is an ASCII text file. Take some time to open the file and read its content. The S-
record format will be studied in greater detail in Lab 3.

Part 4: Downloading the program to the CMM332 board.

To download the program go to the debugger window (the AxIDE software window) and
do the following:

• Issue the command LO at the debugger prompt
• Click the ‘Upload’ button (or select the ‘Upload’ menu option) in the AxIDE software.
• In the window that appears specify either the “exp1.s19” or the “exp1b.s” file and click

the OK button.
• if the prompt does not return to ‘CPU32Bug>’ press the <enter> key a few times.

The program should now be loaded at location $3000 of the memory.

Part 5: Single step execution of a program in the debugger.

In Part 4 a program was downloaded to the board. To execute the program in single step
mode do the following:

• set the program counter to location $3000 (make use of the RS command)
• enter the command T at the debugger prompt. This command will execute an instruc-

tion, show the register content as well as the following instruction at the next location
where the PC points.

• carefully examine the register contents and verify that the program runs as expected.

QUESTIONS

1. What is the definition of the following terms: CPU, MCU. What is the difference
between a CPU and an MCU?

2. What is a register? How is a register implemented in hardware?
3. What is the purpose of the PC register, the SR register, the D0-D7 and A0-A7 regis-

ters?
4. What is the difference between a source code file (.asm) and a listing file (.lst)?
5. What is machine code?
6. What information does an S-record file contain? What format is an S-record file in?

 7
LAB 2

OBJECTIVES

In this experiment you will:

• Assemble, and download a given assembly program.

• Change the program’s functionality by directly altering the memory content.

• Learn the differences between the G (GO) debugger command and the T (TRACE)
command.

INTRODUCTION

The CPU can only execute a program which is in machine language form and already
stored in memory.

In Lab 1 we saw how a program is converted into machine language, stored in an S-
Record file and loaded into the main memory for execution.

A programmer these days will very rarely, if ever, need to work directly with machine lan-
uage. It is however important to have a good understanding of the process involved in
the machine code generation and execution by the CPU.

To convert assembly into machine code one needs the op-code for the instructions. The
instruction op-codes are well documented in the programmer’s reference documentation
of the CPU at hand. The 68000 programmer’s documentation is available in the addi-
tional lab documents. Appendix 4 contains a very small portion of that documentation for
some frequently used commands. The text book also contains the instructions along
with their op-codes.

Take a look at some of the instructions provided in Appendix 4 and identify the Instruction
Format and the tables that provide values for the Instruction Format fields.

In this experiment you will be downloading a program and then directly alter the memory
content to change the functionality of that program.

PRELAB

The following is to be performed prior to attending the scheduled lab session:

• Read Lab 2 in its entirety.

• Create the text file containing the source code for this lab in Appendix 1 in your com-
puter account.

• Familiarize yourself with Appendix 4 and the “hand-assembly” process. If necessary,
refer to your textbook. Hand assemble the changes indicated in the source code for this
lab.

Part 1: Assembly program compilation and downloa d

 8
Appendix 1 contains the assembly program for this experiment. Create the program
using a text editor and save the file. Assemble, download and trace its execution.

Part 2: Machine code identification

Obtain the machine code for this program. You can use the MD command of the debug-
ger to view the memory content after you download your program. You can also obtain
the machine code from the listing file.

The memory content is displayed in hexadecimal format. The machine code is the
binary version of the memory content.

Part 3: Direct modification of the program in memory .

Use the MC68000 instruction reference found in Appendix 4 and change the machine
code to directly to implement the changes outlined Appendix 1 listed in the source code
for this lab. If you need information for commands not described in Appendix 4, use your
textbook. Alternatively, one may edit the source code to contain the desired program
modification, and then assemble the code to obtain the listing file which will contain the
desired machine code. The appropriate memory locations may then be modified accord-
ingly using either the MS or MM debugger commands.

Trace the execution of the modified program to verify that it functions correctly.

Part 4: Execution of the program with the GO debugger command.

Reload the machine code of the original program given in Appendix 1 and run the pro-
gram using the GO debugger command instead of the T command. Make sure that you
set the value of the PC to the starting address of the program before entering the GO
command from the debugger prompt.

QUESTIONS

1. Which debugger commands are used in this lab?

2. Identify all addressing modes used in the program.

3.What does the original program perform? What does the modified program do?

4. Compare the opcode bits (the most significant 4 bits of the instruction) as specified in
Appendix 4 for a SUB instruction with the opcode give in your modified listing as pro-
duced by the AS32 assembler. What can you conclude with the information given for the
SUB instruction in Appendix 4?

5. What is the difference between the T and GO debugger commands?

 9
LAB 3

OBJECTIVES

In this experiment you will:

• Manually produce the machine code and the S-Record for a given assembly program
• Program the CMM-332 board with your own generated code.

INTRODUCTION

Once assembly code is written, an assembler program is used to process the code and
generate the corresponding machine language instructions.

The machine code is the only thing a CPU can execute. The machine code is accessed
by the CPU only after it is loaded in the main memory. A loader program is usually used
to transfer to the machine code to the memory.

Motorola developed the S-record format to facilitate the transfer of data from a computer
to a device (or another computer). For our case the S-record format is used to transfer
data to the CMM332 board.

An S-record file is a simple ASCII text file that contains all the necessary information for
the data to be transferred. Such information includes:

• target address location
• length of a block of data
• the data itself
• checksum information to ensure the data is transferred correctly

More detailed information about the S-Record format can be found in Appendix 3.

Once assembly code is generated, the assembler produces the appropriate S-record file
which can be recognized by the .s or .s19 extension to the filename. This file incor-
porates the machine language instructions together with other information that is neces-
sary for loading the machine code into main memory.

For this experiment you can use Appendix 4, the 68000 programmer’s reference manual
as a reference for the op-code of the assembly instructions. Alternatively, the appropriate
section of the textbook may be used as a reference.

PRELAB

The following is to be performed prior to attending the scheduled lab session:

• Read the contents of this lab in its entirety.

 10
• Read Appendix 3 in its entirety.

• Generate the S-record file which is to be downloaded to the microcontroller board.

Part 1: Machine code generation

The assembly program for this experiment is in Appendix 1.

Generate the machine code that corresponds to this program into machine code in hexa-
decimal format.

Part 2: S-Record creation

Generate the S-record file for the machine code created in Part 1.

In order to generate the S-record file a thorough understanding of the S-record format is
needed. Refer to the Appendix 3 for the details of the S-record format.

The following example illustrates the steps for the generation of an S-record. Note that
the spaces between the numbers in the steps below are for readability and should not be
there in the actual S-record file.

Example program:

ORG $4000
MOVE.L #$1234,D0
MOVE.L D0,D1

Step 1: Generate the machine code in byte code format:

20 3C 00 00 12 34
22 00

Step 2: Break the code into blocks. For this example, 2 blocks will be used, even though
one would be sufficient.

Block 1: 20 3C 00 00 12 34
Block 2: 22 00

Step 3: Append to the left the starting address, or the address location where the blocks
will be stored. Address $4000 will be used to store this program as specified by the ORG
command in the code:

40 00 20 3C 00 00 12 23
40 06 22 00

Step 4: Count the character pairs (bytes) of each block in step 3. Add 1 to this number
and append the final result to the left of each block.

09 40 00 20 3C 00 00 12 34
05 40 06 22 00

 11
Step 5: Add the values of the bytes of each block and append the one’s complement of
the least two significant bytes of the sum to the right side of the block:

09 40 00 20 3C 00 00 12 34 14
05 40 06 22 00 92

Step 6: complete the s-record with the header record, the header types and the termina-
tion records:

S0 10 00 00 47 4F 20 48 41 42 53 20 47 4F 21 20 20 04
S1 09 40 00 20 3C 00 00 12 34 14
S1 05 40 06 22 00 92
S9 03 00 00 FC

Comment: The header and termination records are the first and last line in the above list-
ing of step 6. Details about the format of these records can be found in Appendix 3.

Part 3: Downloading to the board.

Download your S-record file to the board. More details on how to download a file to the
board can be found in the first experiment.

Part 4: Contrast with assembler output

Assemble the program using the MC68332 assembler to obtain the listing and the S-
record files.

Once the listing and the S-record files are obtained, compare them with your hand gener-
ated files.

Part 5: Run the program.

Single step execute your program and observe the results.

QUESTIONS

1. What does the given assembly program do?

2. What is the purpose of the “checksum” field in the s-record format?

3. Why is it possible to have many different S-record files for a given assembly program?

4. Elaborate on the tasks of an assembler and a loader program.

5. In the given S0 record (Step 6 of Part 2), what is the ASCII string represented by the
13 bytes appearing after the 2 byte address filed of 00 00?

 12
LAB 4

OBJECTIVES

In this experiment you will:

Investigate subroutines

INTRODUCTION

Subroutines in assembly language are constructs that allow the programmer to reuse
code of a task that has already been coded in an easier fashion. The subject of subrou-
tines is covered in depth in your textbook.

PRELAB

The following is to be performed prior to attending the scheduled lab session:

• Read the contents of this lab in its entirety.

• Read the appropriate sections of your textbook to become familiar with the subroutine
call/return mechanism and parameter passing via the run-time stack in Motorola 68000
assembly language.

• Create the source code for this lab.

Part 1: Subroutines

Rewrite the program given in the appendix as a subroutine where parameters are
passed using the stack. Ensure that your the state of the stack is the same before and
after the subroutine has run (i.e. it will be necessary to adjust the Stack Pointer). Assem-
ble, download and trace the execution of the program. Monitor and record the stack con-
tents, the Stack Pointer register the Program Counter register on every step of the
execution immediately before and after the subroutine execution.

QUESTIONS

1. Which register is used as the Stack Pointer in the 68000 microprocessor?

2. Why is it important to modify the stack pointer register upon a return from a subrou-
tine when parameters have been pushed onto the stack?

3. What is another way of passing parameters to a subroutine other than pushing them
onto the stack?

 13
LAB 5

OBJECTIVES

In this experiment you will interface a light emitting diode (LED)to the parallel port of the
CMM 332 board. Additionally, the parallel port will be used to control the operation of a
liquid crystal display (LCD).

INTRODUCTION

Liquid Crystal Display -- LCD:

The LCDs are devices that allow the visual display of information to the user. One of the
many LCD types is the Alphanumeric LCD which is capable of displaying character and
number literals to its screen.

LCD displays contain a driver IC which controls their operation. By far the most common
driver IC for an alphanumeric LCD is the HD44780 from Hitachi. Other companies pro-
vide compatible drivers to the HD44780 because of its popularity. Their operation is the
same.

The HD44780 (or compatible) LCD driver is controlled by the following input signals:

Table 1: HD44780 LCD driver control signals.

Signal Description

R/W*
This is the read/write signal for the display. When R/W* is HIGH, infor-
mation is read from the display. When R/W* is LOW, information (com-
mands/characters) is written to the display.

RS This is a register select signal. Its value specifies which of the internal
registers (instruction register or data register) is read or written to.

E
This is an enable signal. When the value of this signal transits from
HIGH to LOW then the information is written to or read from the LCD.
Note that it is only at the TRANSITION of this signal that the read or
write operation takes place

D0 ~ D7
 8-bit data bus. Character information or commands to the display are
placed on this bus. Also information read from the display is written to
this bus. The reading or writing operation takes place only at the transi-
tion of the enable signal E from HIGH to LOW.

 14
CMM332 board parallel port interface:

The CMM332 microcontroller board that we use in this laboratory features parallel port
interfaces which we will use in this experiment to communicate with the LCD display.

The parallel ports of the microcontroller are initialized by writing to control registers which
are mapped to specific memory locations. A summary of these registers is shown in
table 2 below. Appendix 5 contains a more detailed description of these registers.

We will be using parallel ports E and F of the microcontroller

To control a parallel port you need to perform the following steps:

1. Configure the pins associated with the parallel port for data Input/Output (I/O) opera-
tion. This is achieved by writing a value of ‘0’ to the appropriate bits of the ‘Port pin
Assignment Register’ (see table 2).

2. Specify the data direction of the port. In other words whether the port will read data
from an external source (INPUT) or if it will output data from the micro controller
(OUTPUT). This is done by setting the values of the port bits in the ‘Port Direction
Register’ to ‘1’ (see table 2).

3. Read the data from the port or write the data to the port. This is done by reading or
writing to the memory location of the ‘Port Data Register’ (see table 2).

Steps (1) and (2) are initialization steps and need to be performed once.

The registers to control the ports are listed below:

Table 2: Control registers for ports E and F.

Memory
location

Register Information

$FFFA16 PORT E PIN ASSIGN-
MENT REGISTER
(PEPAR)

This register specifies whether the pins
associated with the port are used for par-
allel port IO or not. Assign value $00F0 to
use the last 4 pins for parallel IO, port E.

$FFFA14 PORT E DATA DIREC-
TION (DDRE)

This register specifies the direction of the
port. Assign value $00FF to set the port to
write mode.

$FFFA10 PORT E DATA REGISTER
(PEDR)

This register holds the data of the port. If
you are writing to the port write to this
location your data. If you are reading from
the port read the value of this location.

$FFFA1E PORT F PIN ASSIGN-
MENT REGISTER
(PFPAR)

This register specifies whether the pins
associated with the port are used for par-
allel port IO or not. Assign value $0000 to
use all 8 pins for parallel IO, port F.

 15

0

Below is sample code that initializes port F and writes value $AB to it:

PORTF0 EQU $FFFA18
DDRF EQU $FFFA1C
PFPAR EQU $FFFA1E

ORG $5000
START MOVE.W #$0000,PFPAR

MOVE.W #$00FF,DDRF
MOVE.W #$00AB,PORTF0

Connection of the LCD to the display:

The connection of the LCD to the CMM332 board was made by connecting the pins of
the microcontroller ports E and F directly to the connector of the LCD. The table below
shows the pin to pin correspondence:

Sending commands to the LCD display:

The LCD datasheet in Appendix 5 contains a table with the commands that can be
issued to the display. An ASCII character table of the display is also there for reference.

Familiarize yourself with these tables to understand how to control and send data to the
LCD module.

$FFFA1C PORT F DATA DIREC-
TION (DDRF)

This register specifies the direction of the
port. Assign value $00FF to set the port to
write mode.

$FFFA18 PORT F DATA REGISTER
(PFDR)

This register holds the data of the port. If
you are writing to the port write to this
location your data. If you are reading from
the port read the value of this location.

Table 3: LCD to parallel ports connection

Port bit E3 E2 E1 E0 F7 F6 F5 F4 F3 F2 F1 F

LCD signal E R/W* RS D7 D6 D5 D4 D3 D2 D1 D0

Table 2: Control registers for ports E and F.

Memory
location

Register Information

 16
The character table is easy to interpret: the value of a character is formed by combining
the column number and row number. For example character “A” has a hexadecimal
value of $41 and character “m” has a value of $6D.

The LCD command table is also easy to read. For example the second row of the table
describes the LCD instruction ‘Clear Display’. The RS, R/W*, and D0-D7 signals for that
instruction are given. They are: RS R/W* D7~D0 = 0 0 0 0 0 0 0 0 0 1.

In order to send this ‘Clear Display’ instruction to the display, the following steps are
needed:

1. write the binary value 00000001 (or in HEX: $01) to the port F. This is because the
port F is directly connected to signals D7-D0 (see table 3).

2. write value 00000100 (or in HEX: $04) in port E. This is because according to table
3, bits 0 1 and 2 of this port are connected to the LCD signals RS R/W* and E respec-
tively. We want to make signal E ‘1’.

3. write value 00000000 (or in HEX: $00) in port E. This is because we want to cause a
TRANSITION from HIGH to LOW on signal E of the LCD which is connected to bit 2
of port E

Important notes:

1. You must turn the LCD display on AFTER the CMM332 board has been powered up
and reset. This is because during power on the board performs a self diagnostic
which will fail if the LCD (which is connected to the pins of the microcontroller) is
turned on.

2. If you wish to run your program using the GO command of the debugger, you would
need to slow down the rate at which the commands are given to the LCD display.
This is because the microcontroller is too fast for the LCD driver...

You can do this by inserting a delay loop after each command send to the LCD. A
delay loop is nothing more than subroutine in which a register is decremented from
$EFFF to 0.

Also if you want to use the GO command to run your program you must end it with the
appropriate TRAP command to return control to the debugger. End your program
with the following two instructions:

TRAP #15
DC.W $63

3. The LCD will be disabled once you power it on. To initialize it properly send a com-
mand to clear it. Note that before you writing any data to the LCD module it is neces-
sary to first send the “DISPLAY ON” command:

 17
* prepare to write to the LCD display

 MOVE.W #$0004,PEDR * bit 3 2 1 0

* 0 1 0 0

 E R/W RS

 MOVE.W #$000F,PFDR * send the DISPLAY ON command to the LCD

* RS RW D7 D6 D5 D4 D3 D2 D1 D0

* Display control 0 0 0 0 0 0 1 D C B

*

* D = 1 = display ON

* D = 0 = display OFF

* --------------------

* C = 1 = cursor ON

* C = 0 = cursor OFF

* --------------------

* B = 1 = cursor BLINKING

* B = 0 = cursor NOT BLINKING

Once the LCD module has been initialized with the DISPLAY ON command, ASCII data
may be written it using the following sequence of instructions:

* WRITE ASCII DATA TO PORT F and STROBE using E=0

* and DELAY in between strobes

* WRITE "T" ASCII 54H

 MOVE.W #$0005,PEDR * bit 3 2 1 0

* 0 1 0 1

* E R/W RS note RS = 1 for

* writing data into LCD

 MOVE.W #$0054,PFDR * send "T" to the LCD

 BSR DELAY

 18
 MOVE.W #$0001,PEDR * make E= 0 (info strobed to Display)

* bit 3 2 1 0

* 0 0 0 1

* E R/W RS note RS = 1 for

* writing data into LCD

 BSR DELAY

PRELAB

The following is to be performed prior to attending the scheduled lab session:

• Read the contents of this lab in its entirety.

• Read and understand the LCD datasheet given in Appendix 5

• Write the required MC68000 programs.

Part 1: Requirement

Write an MC68000 program which will turn on and off a light emitting diode. The LED is
to be connected to bit 0 of Port F and ground. Refer to Figure 1 for the details of con-
necting the LED to the CMM 332 board. The LED is to be ON for approximately 0.5 sec-
onds and OFF for 0.5 seconds. Use a delay subroutine to control these ON and OFF
times. The main program is to initialize the ports and then repeatedly turn ON and OFF
bit 0 of Port F. The printed circuit board containing the main CMM 332 board and the
LCD display contains a 14 pin header which provides access to all 8 bits of Port F and
the three low-order bits of Port E. It is necessary to turn on the power switch which pro-
vides power to the LCD module in order to be able to access the pins of the header. The
pseudocode is as follows:

 configure Port F as parallel output

loop: write a logic ‘1’ to port F, bit 0

 delay for 0.5 seconds

 write a logic ‘0’ to port F, bit 0

 delay for 0.5 seconds

 branch to loop

 19
Figure 1: Port header connections.

Part 2: Requirement

Write an MC68000 program that will initialize the LCD and display your name. Your pro-
gram is to make use of a delay subroutine as well as a subroutine which displays an
ASCII character stored in register D0 on the LCD. Store the characters composing your

LCD

MODULE

RS232

CMM 332
board

Power supply jack
slide switch

14 pin header

24

3 113

14 6

5

to bit 0
of port f

LED

14 pin header
113 11 9 7 5 3

2468101214

GNDE1F0F2F4F6

F7 F5 F3 F1 E2 E0

E0 = port E bit 0
F0 = port F bit 0

shorter
lead of LED
is connected
to ground.

long lead
connects to
port F.

 20
name in a buffer in main memory. This can be easily done with the DC.B (Declare Con-
stant) assembler directive as in:

 ORG $4000

BUF DC.B ’j’,’A’,’c’,’K’,’ ’, ’f’,’L’,’a’,’S’,’h’,’#’,’1’

Use a loop structure to move the characters from the memory buffer into register D0.

Once the character is in register D0, make a call to your subroutine which handles the
writing of the character to the LCD display.

APPENDIX 1

Contains:

• Assembly programs for all experiments

*ASSEMBLY PROGRAM FOR EXPERIMENT #2

ORG $4000
CLR D1
CLR D2
CLR D3
MOVE.W #$200A,D2
MOVE.W #$1000,D3
ADD D2,D1
ADD D3,D1
TRAP #15
DC.W $63

MODIFICATIONS TO BE PERFORMED TO THIS PROGRAM BY DIRECTLY
CHANGING THE MEMORY:

1. Make the program load value 15ff instead of 200A in register D2
2. Make the program load value 00FF instead of 1000 in register D3
3. Make the program subtract value D3 from D1 (instead of adding it)

*ASSEMBLY PROGRAM FOR EXPERIMENT #3

ORG $4000
MOVE.W #$4,D0
MOVE.W #$5,D1
CLR D2
SUB #1,D0
ADD D1,D2
ADD D0,D2
TRAP #15
DC.W $63

*OP-CODE FOR THE TRAP INSTRUCTION IS 4E4X, WHERE X IS THE VECTOR NUMBER IN
HEX.

*IF X IS #15 THEN THE TRAP INSTRUCTION WILL EXECUTE THE USER ROUTINE
*SPECIFIED IN THE FOLLOWING DC.W INSTRUCTION.

*THE DC.W $63 SPECIFIES THAT CONTROL OF THE EXECUTION IS RETURNED TO THE
*CPU32 DEBUGGER.

*ASSEMBLY PROGRAM FOR EXPERIMENT #4

*THIS PROGRAM USES THREE NUMBERS CONTAINED IN
*REGISTERS D0, D1 AND D2 TO PERFORM CALCULATIONS
*AND STORES THE RESULT IN REGISTER D3.
*THE REGISTERS D0, D1, D2 WILL CONTAIN THEIR
*INITIAL CONTENT AFTER THE EXECUTION OF THIS PROGRAM.

CLR.L D3
ADD.L D0,D3
ADD.L D1,D3
SUB.L D2,D3

APPENDIX 2

Contains:

• Selected Debugger commands for the CPU332BUG debugger. The complete docu-
mentation of the debugger provided as supplemental lab material contains the com-
plete command documentation

APPENDIX 3

Contains:

• The Motorola S-Record format documentation.

APPENDIX 4

Contains:

• Selected Motorola 68000 instructions. These pages where taken from the MC68000
programmer’s reference documentation which is available in the additional lab materi-
als set of documents. Chapter 4 of that documents contains all the MC68000 instruc-
tions.

APPENDIX 5

Contains

• LCD datasheet for the HD44780 commands
• ASCII character table for the LCD characters
• Excerpt from the 68332 documentation on the parallel port control register descrip-

tions. The complete 68332 documentation is available in the additional lab materials
set of documents.

APPENDIX 6

A sample MC68000 assembly language program.

* Program 1 - Find the maximum value of an array of number

* T. Obuchowicz

* October 29, 2008

 ORG $3000

RSLT DS.B 1 * reserve 1 byte of storage to hold the result

ARRAY DC.B 2,5,1,4,3 * declare byte sized constants

 ORG $5000

 CLR.L D0

 CLR.L D1

 MOVE.L #4,D0 * setup D0 as a counter

 MOVEA.L #ARRAY,A0

 MOVE.B (A0),D1 * get first element of array

LOOP CMP.B (A0)+,D1

 BGT BIGGER

 MOVE.B -1(A0),D1

BIGGER DBRA D0,LOOP

 MOVE.B D1,RSLT

 END

NOTE: If you intend the run the program using the GO command, add the two lines

TRAP #15

DC.W $63

as the last two instructions before the END assembler directive.

APPENDIX 7

A MC68000 assembly language program listing containing assmebler directives to define
memory constants, a subroutine definition, and a main program which calls the subrou-
tine.

* Program 1 - Adds two numbers using a subroutine

* makes use of parameter passing using CPU registers

* T. Obuchowicz

* August 29, 2010

* define a subroutine which adds two numbers

* the addend and augend are expected to be in registers D0 and D1

* the sum is returned via register D1

00003000 ORG $3000

00003000 d240 MYSUB ADD D0,D1

00003002 4e75 RTS

* define some memory locations which hold the

* numbers to be added and place to store the

* sum

00004000 ORG $4000

00004000 0001 MICK DC.W 1

00004002 0002 KEITH DC.W 2

00004004 0000 RON DC.W ?

* The main program

00005000 ORG $5000

00005000 3038 4000 MOVE MICK,D0

00005004 3238 4002 MOVE KEITH,D1

00005008 6100 dff6 BSR MYSUB

0000500c 31c1 4004 MOVE D1,RON

END

 ===== 0 Error(s)

 ===== 0 Warning(s)

The Extended Concise LCD Data Sheet for HD44780

Version: 25.6.1999

Instruction RS RW D7 D6 D5 D4 D3 D2 D1 D0 Description Clock-
Cycles

NOP 0 0 0 0 0 0 0 0 0 0 No Operation 0

Clear Display 0 0 0 0 0 0 0 0 0 1 Clear display & set address counter to zero 165

Cursor Home 0 0 0 0 0 0 0 0 1 x
Set adress counter to zero, return shifted
display to original position.
DD RAM contents remains unchanged.

3

Entry Mode
Set

0 0 0 0 0 0 0 1 I/D S Set cursor move direction (I/D) and specify
automatic display shift (S).

3

Display
Control

0 0 0 0 0 0 1 D C B Turn display (D), cursor on/off (C), and
cursor blinking (B).

3

Cursor /
Display shift

0 0 0 0 0 1 S/C R/L x x Shift display or move cursor (S/C) and
specify direction (R/L).

3

Function Set 0 0 0 0 1 DL N F x x Set interface data width (DL), number of
display lines (N) and character font (F).

3

Set CGRAM
Address

0 0 0 1 CGRAM Address Set CGRAM address. CGRAM data is sent
afterwards.

3

Set DDRAM
Address

0 0 1 DDRAM Address Set DDRAM address. DDRAM data is sent
afterwards.

3

Busy Flag &
Address

0 1 BF Address Counter Read busy flag (BF) and address counter 0

Write Data 1 0 Data Write data into DDRAM or CGRAM 3

Read Data 1 1 Data Read data from DDRAM or CGRAM 3

I/D 1
0

Increment
Decrement

R/L 1
0

Shift to the right
Shift to the left

S 1
0

Automatic display shift DL 1
0

8 bit interface
4 bit interface

D 1
0

Display ON
Display OFF

N 1
0

2 lines
1 line

C 1
0

Cursor ON
Cursor OFF

F 1
0

5x10 dots
5x7 dots

B 1
0

Cursor blinking

x : Don't care

S/C 1
0

Display shift
Cursor move

DDRAM : Display Data RAM

CGRAM : Character Generator RAM

LCD Display with 2 lines x 40 characters :

LCD Display with 2 lines x 16 characters :
Pin No Name Function Description

1 Vss Power GND
2 Vdd Power + 5 V
3 Vee Contrast Adj. (-2) 0 - 5 V
4 RS Command Register Select
5 R/W Command Read / Write
6 E Command Enable (Strobe)
7 D0 I/O Data LSB
8 D1 I/O Data
9 D2 I/O Data
10 D3 I/O Data
11 D4 I/O Data
12 D5 I/O Data
13 D6 I/O Data
14 D7 I/O Data MSB

Bus Timing Characteristics
(Ta = - 20 to + 75°C)

Write-Cycle VDD 2.7 - 4.5 V (2) 4.5 - 5.5 V (2) 2.7 - 4.5 V (2) 4.5 - 5.5 V (2)

Parameter Symbol Min(1) Typ(1) Max(1) Unit

Enable Cycle Time tc 1000 500 - - - ns

Enable Pulse Width (High) tw 450 230 - - - ns

Enable Rise/Fall Time tr, tf - - - 25 20 ns

Address Setup Time tas 60 40 - - - ns

Address Hold Time tah 20 10 - - - ns

Data Setup Time tds 195 80 - - - ns

Data Hold Time th 10 10 - - - ns

(1) The above specifications are indications only (based on Hitachi HD44780). Timing will vary from manufacturer
to manufacturer.

(2) Power Supply : HD44780 S : VDD = 4.5 - 5.5 V
 HD44780 U : VDD = 2.7 - 5.5 V

This data sheet refers to specifications for the Hitachi HD44780 LCD Driver chip, which is used for most LCD
modules.

Common types are : 1 line x 20 characters
2 lines x 16 characters
2 lines x 20 characters
2 lines x 40 characters
4 lines x 20 characters
4 lines x 40 characters

© 1998/1999 by Craig Peacock, Australia http://www.beyondlogic.org
Peter Luethi, Switzerland http://www.electronic-engineering.ch

	Laboratory manual
	revised_2010_body.pdf
	LAB 1
	Objectives
	Introduction
	Part 1: Setting up serial communication with the board.
	Part 2: First use of the debugger
	Part 3: Compiling a program using the Windows AS32 assembler.
	1. Open a command prompt (Start --> Accessories --> Command Prompt)
	2. Issue the command: path=%path%;”C:\Program Files\as32” This command will add the location of t...
	3. Change the directory to the location of the source code by specifying U: to change to the U:\ ...
	4. Issue the command: as32 -l exp1.asm > exp1.lst Note that the as32 command can be recognized be...

	The numbers on the left hand side of the listing file specify main memory addresses in hexadecima...
	• exp1.s19: this is the assembled program in a format appropriate for downloading to the board. I...
	Part 4: Downloading the program to the CMM332 board.
	Part 5: Single step execution of a program in the debugger.

	Questions
	1. What is the definition of the following terms: CPU, MCU. What is the difference between a CPU ...
	2. What is a register? How is a register implemented in hardware?
	3. What is the purpose of the PC register, the SR register, the D0-D7 and A0-A7 registers?
	4. What is the difference between a source code file (.asm) and a listing file (.lst)?
	5. What is machine code?
	6. What information does an S-record file contain? What format is an S-record file in?

	LAB 3
	objectives
	introduction
	PRELAB
	Part 1: Machine code generation
	Part 2: S-Record creation
	Part 3: Downloading to the board.
	Part 4: Contrast with assembler output
	Part 5: Run the program.

	questions

	LAB 5
	introduction
	Table 1: HD44780 LCD driver control signals.
	1. Configure the pins associated with the parallel port for data Input/Output (I/O) operation. Th...
	2. Specify the data direction of the port. In other words whether the port will read data from an...
	3. Read the data from the port or write the data to the port. This is done by reading or writing ...

	Table 2: Control registers for ports E and F.
	Table 3: LCD to parallel ports connection
	1. write the binary value 00000001 (or in HEX: $01) to the port F. This is because the port F is ...
	2. write value 00000100 (or in HEX: $04) in port E. This is because according to table 3, bits 0 ...
	3. write value 00000000 (or in HEX: $00) in port E. This is because we want to cause a TRANSITION...
	1. You must turn the LCD display on AFTER the CMM332 board has been powered up and reset. This is...
	2. If you wish to run your program using the GO command of the debugger, you would need to slow d...
	3. The LCD will be disabled once you power it on. To initialize it properly send a command to cle...

	* prepare to write to the LCD display
	Once the LCD module has been initialized with the DISPLAY ON command, ASCII data may be written i...
	Part 2: Requirement
	Write an MC68000 program that will initialize the LCD and display your name. Your program is to m...

	appendix.pdf
	appendix 1
	1. Make the program load value 15ff instead of 200A in register D2
	2. Make the program load value 00FF instead of 1000 in register D3
	3. Make the program subtract value D3 from D1 (instead of adding it)

	APPENDIX 2
	APPENDIX 3
	APPENDIx 4
	appendix 5

