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1. NUMBER SYSTEMS USED IN COMPUTING: 
THE BINARY NUMBER SYSTEM 

 
 
1.1 Introduction 

Given that digital logic and memory devices are based on two 
electrical states (on and off), it is natural to use a number system, 
called the binary number system, which contains only two 
symbols, namely 0 and 1.  

This Chapter begins by introducing conversion between 
decimal and binary numbers, then treats binary arithmetic. In 
common practice of using binary numbers, many conventions 
have been devised, so this chapter also introduces several 
conventions for manipulating and storing binary numbers, 
including the IEEE floating-point standard. 
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1.2 Binary Numbers 

Positive Integers 
In order to get some idea of the correspondence between binary 
numbers and the more familiar decimal numbers, one need only 
glance at the table below. 
 
Decimal Binary   Decimal Binary  

0 0   9 1001 23+20  
1 1 20 21-1 10 1010 23+21  
2 10 21  11 1011 23+21+20  
3 11 21+20 22-1 12 1100 23+22  
4 100 22  13 1101 23+22+20  
5 101 22+20  14 1110 23+22+21  
6 110 22+21  15 1111 23+22+21+2

0 
24-1 

7 111 22+21+20 23-1 16 10000 24  
8 1000 23      

 
 Some salient features of the correspondence include:  

• a 1 followed by n 0’s in binary represents decimal 2n. 
• a group of n 1’s in binary represents decimal (2n-1).  

 This is the basic structure of binary arithmetic. 
 
Ex. 1: The decimal number 14 is represented in binary as: 
 
14base 10 = 8 + 4 + 2 + 0 = 1*23 + 1*22 + 1*21 + 0*20  
  = 1110base 2 = %1110. 
 
The % indicates that we are dealing with a binary number. 
 
It is useful (and easy) to generate a list of powers of 2: 
20 = %1  =1  26 = %1000000  =64 
21 = %10  =2  27 = %10000000  =128 
22 = %100  =4  28 = %100000000  =256 
23 = %1000  =8  29 = %1000000000 =512 
24 = %10000  =16  210 = %10000000000 =1024 
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25 = %100000  =32  211 = %100000000000 =2048 
 
Ex. 2: The decimal number 353 is represented in binary as: 

  353 = 256 + 64 + 32 + 1 = 1*28 + 0*27 + 1*26 + 1*25 + 0*24 + 
    0*23 + 0*22 + 0*21 + 1*20 =%101100001 

 
Ex. 3: The decimal number 251 is represented in binary as: 
251 = 128 + 64 + 32 + 16 + 8 + 2 + 1  
 = 1*27 + 1*26 + 1*25 + 1*24 + 1*23 + 0*22 + 1*21 + 1*20  
 = %11111011 
 
An alternative view:  
If you remember that 256 = 28 = %100000000,  
then you can notice that 255 = 28-1 = %11111111,  
and that 251 is 255-4 = 255-22 = %11111011  
(simply remove the “1” corresponding to the 22  position.) 
 
Ex. 4: One can use the same idea as in Ex 3 in many cases to 
convert from binary to decimal:  
%11011101  = 255 - 25  - 21  = 255 – 32 – 2 = 221 

 
Bits and bytes and words 
 Each binary digit is known as a bit. A grouping of 8 binary 
digits or bits is known as a byte. Given a fixed number of n bits, 
known as a word, which the arithmetic unit of a computer is 
designed to handle, then there are 2n separate binary numbers 
that can be accommodated. For example, in 8 bits, one can 
accommodate the binary numbers corresponding to decimal 0 to 
255 (256 different numbers).  
 Current computers have word lengths of 32 or 64 bits. 
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Fractions 
Numbers smaller than 1 are represented using negative powers 
of 2. For reference, the first few negative powers of 2 are: 
 
2-1  = ½ = 0.5 = %0.1 
2-2  = ¼  = 0.25 = %0.01 
2-3  = 1/8  = 0.125 = %0.001 
2-4  = 1/16 = 0.0625 = %0.0001 
2-5  = 1/32 = 0.03125 = %0.00001 
2-6  = 1/64 = 0.015625 = %0.000001 
2-7  = 1/128 = 0.0078125 = %0.0000001 
2-8  = 1/256 = 0.00390625 = %0.00000001 

 
 Note that the number of places to the right of the decimal 
point is equal to the absolute value of the negative exponent (and is 
equal to the number of places to the right of the binary point.) 
 

Ex. 5: The decimal number 3.375 is represented in binary as: 
 
3.375 = 2 + 1 + 0.25 + 0.125  
  = 1*21 + 1*20 +0*2-1 + 1*2-2 + 1*2-3  
  = %11.011 

  
The fractions 1/3 or 3/7 cannot be represented as terminating 
decimal numbers, A little thought will lead one to realize that 
only those fractions whose denominator can be expressed as a 
power of 2 can be written as a terminating binary number. The 
binary number representations for ½, ¼, 3/8, 9/16, etc. all 
terminate. However, the binary number representations for 1/3, 
1/5, 3/10 etc. need an infinite number of binary digits. The least-
significant (right-most) bits of these representations must be 
truncated. As is the case of decimal numbers, we must decide 
how many digits beyond the binary point we wish to retain. 
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Division by twos method for decimal to binary conversion 
A simple way to convert decimal integers to binary numbers is 
through repeated division by 2 and the saving of remaining 1’s 
and 0’s. For example: 
 
Ex. 6: 11 = 2*5+1, 5 = 2*2+1, 2 = 2*1+0, 1 = 2*0+1. Stringing the 
remainders in reverse order, we get 11 = %1011.  
This works since:  
11 = 2*5+1 and 5 = 2*2+1 so that 11 = 2*(2*2+1)+1.  
Now 2 = 2*1+0 so that 11 = 2*(2*[2*1+0]+1)+1. 
Finally, 1 = 2*0+1, so that 11 = 2*(2*[2*{2*0+1}+0]+1)+1  
   = 23*1+22*0+21*1+20*1. 

 
Ex. 7:  Convert 353 to binary format using division by twos.  
Number Remainder  Number Remainder 
353   11 0 
176 1  5 1 
88 0  2 1 
44 0  1 0 
22 0  0 1 

Taking remainders in reverse order, we get 353 = %101100001. 
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A similar method can be used to convert the fractional part of a non-
integer – repeated multiplication by 2: 
 
Ex. 8:  Convert decimal 0.3 into binary. Since 0.3 is not a power of 
2, the binary representation will not terminate. Therefore, we 
must decide how many binary digits will be used. Say we want 
to use 3 bits, we will do three multiplications by 2, to obtain a 3-
bit approximation of 0.3: 
 
multiply 0.3*2 = 0.6 = 0 + 0.6  first bit  = 0  %0.0 
multiply 0.6*2 = 1.2 = 1 + 0.2  second bit = 1  %0.01 
multiply 0.2*2 = 0.4 = 0 + 0.4  third bit  = 0  %0.010 
 
In this case, we would be approximating 0.3 by 0.25.  
Since this is not a very precise approximation, we might want to 
use more bits, say a total of 6 bits, for a 6-bit approximation. We 
could simply continue the procedure: 
 
multiply 0.4*2 = 0.8 = 0 + 0.8  fourth bit  = 0  %0.0100 
multiply 0.8*2 = 1.6 = 1 + 0.6  fifth bit  = 1  %0.01001 
multiply 0.6*2 = 1.2 = 1 + 0.2  sixth bit  = 1  %0.010011 
Thus %0.010011 = 0.296875 is our 6-bit approximation of 0.3.  
 
You might notice that the pattern will now repeat: 
%0.010011001100110011 … for a better and better approximation 
of 0.3. 
 
Suggestion  for practice, try using more bits for the fractional 
part, such as 8 bits or 9 bits. The answer will be a better and 
better approximation to 0.3. 
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If one has a calculator at one’s disposal, one can do the above procedure 
more rapidly: 
 
One must first decide how many digits1 we want beyond the 
binary point, 6 in this case:  
We want to represent 0.3 in 6 places in binary:  0 . _ _ _ _ _ _  

 
 So we convert this fraction-conversion problem to an 

integer-conversion problem by shifting2 the contents of the 
register by the needed number of places (6), to the left. This is 
the same as shifting the binary point itself 6 places to the right, 
and corresponds to multiplying by 26. 

 
0.3 0. _ _ _ _ _ _ | _ _ _ _ … 
 
multiply by 26 = 19.2  0  _ _ _ _ _ _ . _ _ _ _ … 
corresponds to shifting the binary point 6 places to the right 
 
round: 19.2  19    0  _ _ _ _ _ _ .  
 
convert 19 into binary   0  0 1 0 0 1 1 . 
 
divide by 26 = 0.296875  0. 0 1 0 0 1 1 
corresponds to shifting the binary point 6 places to the left 
 
0.296875 ≈ 0.3    6-bit approximation3 of 0.3  =  %0.010011 

 
In general, suppose we have decided to use r digits to represent 
or approximate the fraction portion of the number. We multiply 
the fractional portion of the decimal number by 2r, round the 
result to the nearest integer and convert the remaining integer.  

                                                 
1 This decision is based on other factors, such as processor design, software conventions, beyond the scope 
of this text. 
2 See Appendix 2 for a more-detailed explanation of the correspondence of shifting to multiplication and 
division. 
3 Note that the 0 immediately to the right of the binary point in the fractional part, 010011, is very 
important, since we decided to use 6 bits. 
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Binary Number Registers: 
In a computer, a number is represented physically in a register, 
which has a fixed length. For example, a register having 16 
binary digits (“bits”) limits the amount of information that can be 
represented.  

• Note also that each bit must have a value of either 0 or 1 
(there is no “blank” in a physical register).  

• Note also that there is no provision for a binary point in a 
physical register. The position of the binary point must be 
inferred based on convention or other information. 
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1.3 Hexadecimal numbers 

 
In order to avoid the writing of long strings of 1’s and 0’s, other 
number systems based on powers of 2 are used, the most 
common being the base 16 or hexadecimal system. Powers of two 
are used to enable easy conversion back and forth from binary.  

In hexadecimal, we need 
six more symbols to take 
us beyond 0 to 9. These 
are A := 10, B := 11, C := 
12, D := 13, E := 14, F := 
15. In tabular form, the 
listing is: 

 

Dec Bin Hex Dec Bin Hex
0 0000 0 8 1000 8
1 0001 1 9 1001 9
2 0010 2 10 1010 A
3 0011 3 11 1011 B
4 0100 4 12 1100 C
5 0101 5 13 1101 D
6 0110 6 14 1110 E
7 0111 7 15 1111 F  

 
The conversion between binary and hexadecimal is simple. To go 
from binary to hexadecimal, we start at the binary point, making 
sure that the number of digits to the left and right of the point are 
multiples of four. If not, simply add leading 0’s in the first case 
and trailing 0’s in the second. We then divide up the binary 
number into groups of four and replace each group by its 
hexadecimal equivalent. To go from hexadecimal to binary, we 
simply reverse the process. 
 
Ex 1: To convert %1001011100.011001 to hexadecimal, we first 
pad with 0’s as appropriate on both the left and the right, and 
rewrite it as:  
0010|0101|1100.0110|0100. Then convert using the table to 
$25C.64. The $ indicates that the number is in hexadecimal 
format. Each hexadecimal symbol represents a power of 16 
In decimal, this would be: 
= 2*162 + 5*161 + 12*160 + 6*16-1 + 4*16-2 
= 2*256 + 5*16 + 12 + 6/16 + 4/256 
= 512 + 80 + 12 + 0.375 + 0.015625       = 604.390625 
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1.4 Binary Arithmetic 
  
 Addition: The addition of two binary numbers is carried out in 

much the same fashion as in the case of decimal numbers. To add 
1003 and 501, we carry out the operation shown in the table 
below.  
 
Addition
11 10 9 8 7 6 5 4 3 2 1 0 Column number
0 1 1 1 1 1 1 1 1 1 1 0 Carry digit - C
0 0 1 1 1 1 1 0 1 0 1 1 First number - A 1003
0 0 0 1 1 1 1 1 0 1 0 1 Second number - B 501
0 1 0 1 1 1 1 0 0 0 0 0 Sum - S 1504

 
It is important to analyze the process, as this will be crucial when 
it comes to the design of logic circuits (COEN 312) to carry out 
addition. To do this, we first label the columns proceeding from 
left to right from 0 to 11 as shown above. These column numbers 
will correspond to the index “i” in the terms below. Next, we 
note how the digit Si (where i goes from 0 to 11) is obtained.        
Si = 1 whenever the triple (Ci, Ai, Bi) contains a single 1 or three 
1’s. Otherwise Si = 0. Finally we note that the carry digit Ci+1 = 1 
whenever at least two of the triple (Ci, Ai, Bi) are 1’s. When we do 
Boolean Algebra (in the next chapter) we will see how to write 
these as logical expressions which can then be designed as a logic 
circuit known as a “full-adder”. 
 
Subtraction: Here again we can duplicate in binary, the technique 
learned for decimal numbers in elementary school.  
For example:  
 
    20  borrow       1  10  
   -11        -1   1 
      =   0   9  = 9 
 
   10100  borrow  10  0    10  0    borrow  10  0  1  10 
  -  1011               -  1  0     1    1                          -  1  0  1    1 
                      =  1 0   0    1              

(i) 
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However, the implementation of such a borrowing scheme 
would require the design of a separate logic circuit to do 
subtraction. What we will introduce instead is a technique for 
representing negative numbers, which will allow us to use 
addition to perform subtraction.  
 
Negative numbers without negative signs: There are several 
mechanisms available to represent negative numbers so as to 
avoid the use of the ‘-‘ sign. The simplest is to add a leading digit 
where 0 stands for a positive number and 1 for a negative 
number. While this method is used for the storage of numbers, it 
is not very useful for arithmetic operations, as it would be 
necessary to treat the leading digit differently from the others. 
The two main techniques are first, the “two’s complement”, and 
second, “biasing”. Two’s complement permits logic circuits 
designed for addition to be used for subtraction or the addition 
of negative numbers. Biasing is used for storing negative 
exponents as part of the IEEE 754 format (later in this chapter). 
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The key concept, which enables the use of two’s complement, is 
the existence of a fixed register length. To illustrate, we will 
assume in base 10 arithmetic, a register that has a length of two. 
We now perform 44 + 56 = 100. 

 4 4 
+ 5 6 
1 0 0 

 
Since our register only has a length of 2, we will have lost the 
leading digit, 1, through a phenomenon known as carry-out. If we 
read what remains, we have an answer of 0. This might suggest 
to us that, although the range of numbers is limited, we might 
use it to our advantage: let the number 56, (which is 100 minus 
44) represent the number –44.  

 4 4 
- 4 4 
 0 0 

 
Extending this idea, and keeping in mind that we have a total of 
10*10 = 100 numbers we can represent using the two place base 
ten register, we set up the following scheme: 

• The numbers 0 to 49 are represented naturally. In so doing, 
we are using 50 of the available 100 numbers 

• The negative numbers –49 through –1 are represented by 
the positive numbers 51 through 99, by the simple 
operation of subtracting from 100 (e.g 100 - 49 = 51, and 100 
– 1 = 99). We have used a further 49 of the available 
numbers.  

 
Note that we have not represented the number 50, since –50 
would have the same representation and this would be an 
opportunity for error. Hence the total range of numbers extends 
from –49 to 49. We have used 99 of the possible 100 numbers.  
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To illustrate that the scheme works, we carry out the operation 
34 – 46 = -12. We replace –46 by 100 – 46 = 54.  
 

 3 4 
+ 5 4 
 8 8 

 
Thus 34 - 46 is rewritten as 34 + 54 = 88. In this scheme 
(convention), the number 88 is the representation for –12, since 
88 = 100 – 12. 
 

 
We now introduce the same scheme for binary. For the purposes 
of illustration, we will assume a register length of n = eight bits, 
which will provide us with 2n = 28 = 256 possible numbers.  

• We use the natural binary representation for the numbers 0 
through 127.  

• (number) + (it’s 2’s complement) = 28 = 2n, therefore  
 (2’s complement of a number) = 2n – (the number) 

• Thus, we represent the numbers –127 through –1, by the 
range (256 –127 = 129) through (256 – 1 = 255).  

We do not use the number 128 since its representation would be 
the same as that for the number –128. In all we have used 255 of 
the possible 256 numbers. Note that the leading digit of this 
representation of a negative number will always be a 1. Again to 
show that the scheme works, we will carry out in binary, the 
operation 34 – 46 = -12. Recall that the representations of –46 and 
–12 are 210 = 256 – 46 and 244 = 256 – 12. 

 

7 6 5 4 3 2 1 0
0 0 1 0 0 0 1 0 (34)
1 1 0 1 0 0 1 0 (-46 written as 210)
1 1 1 1 0 1 0 0 (Sum is 244 which represents -12)
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While what we have done above for getting the representation of 
negative numbers and vice-versa will always work, we want to 
simplify it and come up with something that could be 
implemented using logic circuitry. What we use is “one’s 
complement” followed by two’s complement. One’s complement 
can be carried out using logic gates known as inverters (which 
simply switch each bit, from 0 to 1, or from 1 to 0), after which 
addition circuitry is used to convert one’s complement to two’s 
complement. We then simplify yet further and present a method, 
which, allows humans to carry out the conversion by inspection. 
This second method could also be implemented by even simpler 
logic circuitry. 

 
One’s complement:  One obtains 1’s complement4 of a binary 
number by subtracting the number from the binary number 
consisting of the same number of bits, with all 1’s. This is the 
same as switching all of the bits (substituting every 0 by a 1 and 
vice-versa).    
For example, the binary representation of 43, in an 8-bit register, 
is %00101011. Its 1’s complement is: %11111111 - %00101011 = 
%11010100.  
 
The problem with 1’s complement is that the addition of a 
number with its complement gives all 1’s (e.g. %11111111), 
instead of 0 (e.g. %00000000), which would be much more 
desirable. 

                                                 
4 Similar to 9’s complement in the decimal number system: one obtains 9’s complement of a decimal 
number by subtracting each digit from 9. 
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Two’s complement:  Similar to the 10’s complement in decimal 
arithmetic, one obtains 2’s complement of a binary number by 
first taking 1’s complement, then adding 1. For example, the 2’s 
complement of %0010 1011 is %1101 0100 + %0000 0001, which  
is %1101 0101.  
This is the representation for –43 using 2’s complement in an 8-
bit word (the 2’s complement representation for –43). 
 
In this case, the addition of a number and its 2’s complement 
gives 0 as follows: 

Binary  
    % 0010 1011 Representation for decimal +43 

% 1101 0101 Representation for decimal –43 
% 1| 0000 0000 Sum = 0 

Note that the carry into the 9th bit is discarded, since we started 
with only 8 bits, (and since the addition proceeds from right to 
left), leaving our desired answer of 0. 
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In using the 2’s complement technique, it is very important to 
understand the impact of the fixed number of bits, which 
needs to be decided at the beginning. For example, in 8 bits, one 
can represent a total of 256 different binary arrangements. If 
there were no provision (convention) for negative numbers, 
these 256 arrangements would logically represent the decimal 
numbers 0 to 255 (%00000000 to %11111111). However, if the 2’s 
complement convention is specified, the 256 arrangements have 
the following meanings: 
 
Binary (range) Decimal (range) 
%0000 0000 0 
%0000 0001 to %0111 1111 +1 to +127 
%1000 0001 to %1111 1111 -127 to –1 
%1000 0000 -128 (special case) 
 
Special case: The last row of this table is a special case commonly 
used in computing. In an n-bit register, the pattern of a 1 
followed by n-1 0’s represents the largest negative number, -(2n-

1). Notice that the 2’s complement of this bit-pattern is the same 
bit-pattern (the 2’s complement of %1000 0000 is again %1000 
0000). Also, this bit-pattern satisfies the desired constraint of 2’s 
complement, in that addition of the number and its two’s 
complement gives 0 (in this case %0000 0000, as shown below). 
 

Binary  
    % 1000 0000 Representation for decimal -128 

% 1000 0000 Two’s complement of -128 
% 1| 0000 0000 Sum = 0 

Note that the carry into the 9th bit is discarded, since we started 
with only 8 bits, (and since the addition proceeds from right to 
left), leaving our desired answer of 0. 

 
In general, in an n-bit register, one can represent numbers 
between +(2n-1-1) and –(2n-1), using the above system based on 
2’s complement. 



 

COEN 231 Class Notes  p 1.18 Number Systems 
J.C.Giguère & L.M.Landsberger  Autumn 2001-2002 

 
Ex. Assuming 8-bit words, use two’s complement to compute 112 
– 61 = 51, and 61-112 = -51 
 First, we have that 112 = %0111 0000 and 61 = %0011 1101. 
The one’s complement of 61 =  %00111101 is %11000010 and 
its two’s complement is %1100 0011. We now add the two 
numbers to get, after discarding the 9th left-most digit, %0011 
0011 = 51. 
 The two’s complement representation for –112 is %10010000. 
The representation for 61 is %00111101. Adding the two 
numbers gives:  

Binary   
    % 0011 1101 Representation for decimal +61 

% 1001 0000 Representation for decimal –112 
% 1100 1101 Sum = -51 

Note that, since the left-most (8th) bit of the result is a 1, 
there is no carry-out, and the result represents a negative 
number (in this 2’s complement system). The result, % 
11001101, is the 2’s complement of %00110011=51, which 
means that it represents –51.  
Note also that this binary arrangement, %11001101,    would 
correspond to 255-32-16-2 = 255-50 = 205, without 2’s 
complement. 
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A Quick Way to Convert to 2’s Complement: 

In doing 2’s Complement conversions from (+) to (-) or from 
(-) to (+): 
• start from the right (least-significant) bit, 
• keep the same binary digits as in the original number, up 

to and including the first “1” that you reach, 
• for all subsequent binary digits, replace “0” with “1” and 

“1” with “0”.  
For example: 01101010 is considered as 011010|10: the rightmost 
2 digits are kept, while the remaining 6 are switched, giving 
10010110. 
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 Some Notes:   

Two’s complement of a (-) binary number gives a (+) 
binary number, so the above technique works for conversions 
in both directions, (-) to (+) and (+) to (-). One way to see why 
this works:   

The operation (flip all bits then add 1) is the same as the 
operation (subtract 1 then flip all bits), and both are 
equivalent to the quick technique described above. 

 
Note also that simply adding the 2’s complement 

representations for two negative binary numbers gives the 
correct answer, provided that there are enough bits to handle the 2’s 
complement representation of the resulting negative number. 

For example, consider this subtraction using 6 bits:   
(-7) + (-6) = -13:  %111001 + %111010 = 1|110011, which equals 
%110011 after truncating the carry-bit, which is the 2’s 
complement of 13. This would not have worked if the result had 
been limited to 4 bits, since in 4 bits we only have 16 different 
arrangements, which can only represent the range of +7 to –7 in 
the 2’s complement system, (not the full range of +15 to –15, 
which would be needed to represent –13 in 2’s complement). In 
this case of adding (-7) + (-6) in 4 bits, we have the phenomenon 
called overflow.  
Overflow: When the carry into the last (left-most) carry-bit is 
different from the carry-out, then we have overflow, and the 
result is erroneous. 
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Multiplication 
This proceeds in a fashion analogous to base 10. For example if 
we wish to multiply 23 by 46, we use the following procedure or 
algorithm. 

Multiplication in base 10
2 3

* 4 6
1 3 8 6*23
9 2 0 40*23 

1 0 5 8 Sum

Note that 40*23 = 920 can be 
represented by shifting 4*23 =92 one 
position left and inserting a 0 in the 
vacated position

 
In decimal, the procedure relies on the fact that shifting the digits 
one place to the left (with respect to the decimal point), 
corresponds to multiplying by 10. In binary, we will carry out a 
similar series of multiply, shift and add operations. In binary, 
shifting the bits one place to the left (with respect to the binary 
point), corresponds to multiplying by 2. We will illustrate this by 
multiplying 19 by 13. 
 

Multiplication in binary
7 6 5 4 3 2 1 0 Column number

A 0 0 0 1 0 0 1 1 First number = 19
B 0 0 0 0 1 1 0 1 Second number = 13

0 0 0 1 0 0 1 1 Number A times B0
0 0 0 0 0 0 0 0 Number A times B1 shifted left by 1
0 0 0 1 0 0 1 1 Sum
0 1 0 0 1 1 0 0 Number A times B2 shifted left by 2
0 1 0 1 1 1 1 1 Sum
1 0 0 1 1 0 0 0 Number A times B3 shifted left by 3
1 1 1 1 0 1 1 1 Sum

- - - - - - - - Process continues. Not shown as all other Bi = 0
1 1 1 1 0 1 1 1 Final result = 247  

 
The multiplication operation requires only one new operation 
beyond the full adder, namely to recognize that 1*1 = 1 and that 
0*1 = 1*0 = 0*0 = 0. We will see in the next two sections that this 
is nothing more than the logical or Boolean AND operation. As 
such, multiplication can be performed with two logic circuits that 
implement these two operations and software to control the 
sequence of operations. Faster multipliers are achieved by 
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having a series of interconnected full adders, multipliers and 
shifters thus reducing the amount of software. Note that our 8-bit 
word does not allow the multiplication of numbers whose result 
is greater than 255. In general, to house the product of two binary 
numbers having i bits, and j bits, respectively, one needs a result 
register of at least (i+j) bits. 

• %111 x %111 = %110001 (3 bits x 3 bits  6 bits) 
• %11111 x %11111 = %1111000001 (5 bits x 5 bits  10 bits) 
• (8 bits x 4 bits  12 bits) 

 
Multiplication of Negative Integers5: The above examples treat only 
unsigned (positive) binary numbers. In computers, multiplication of 
integers where one or both of the numbers is/are negative, is handled by 
using 2’s-complement. (In other words, multiplication also works for 
negative numbers represented in 2’s-complement). However, some special 
handling is required for it to work properly. 
 
We will show this by an example: In a 4-bit register using 2’s-complement, 
one can represent integers between +7 and –8, inclusive. The result of the 
multiplication will fit into 8 bits (two 4-bit registers), where numbers 
between +127 and –128 can be represented. This range is enough to fit the 
largest positive and negative results of the multiplication: (-8)*(-8) = +64 and 
(+7)*(-8) = -56. However, the two four-bit registers used as input must each 
be “sign-extended” to the pre-determined size of the result (8 bits): 

 
 
 
 
-7  = %1001 (4-bits)        %1111|1001  
+6 = %0110 (4-bits)            *      %0000|0110  
        1|1111|0010   
      11|1110|0100   
        1|1101|0110  (result truncated to 8-bits) 
 
 
 
 
Note that %11010110 is the 2’s complement representation for –42, 

                                                 
5 This development only applies to integers. Multiplication of numbers represented in floating-point 
(scientific) notation does not use 2’s complement. Instead (positive) magnitudes are multiplied and the sign 
of the result is determined by a simple logic procedure. 

4-bit sign 
extensions

4-bit storage 
registers

Result 
Register #2 

Result 
Register #1 
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and %00101010 is the representation for +42. 
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Division 
The procedure for division in binary is analogous to the common 
procedure of long-division in decimal. In base 10, we note that 
253.5/13 = 19.5 can be written as 253.5 = 13*1*101 + 13*9*100 + 
13*5*10-1. When we carry out long-division, we first obtain the 
number 1 by ascertaining that it is the largest multiple of 130 
which when subtracted from 253.5, yields a non-negative 
number. Having done this we subtract 130 from 253.5 to obtain 
123.5. We repeat the operation and obtain 9 as the largest 
multiple of 13 which when subtracted from 123.5, yields a non-
negative number, 6.5 in this case. Finally, repeat the operation 
again, to obtain 5 as the largest multiple of 1.3 which when 
subtracted from 6.5 yields a non-negative number, 0 in this case. 

 
In binary we follow an analogous procedure to obtain: 
 253.5 = 13*1*24 + 13*0*23 + 13*0*22 + 13*1*21 + 13*1*20 + 13*1*2-1. 
In this case, we only have to determine whether a subtraction of 
13*1*2k for a given value of k yields a non-negative number or 
not. 

 
Divisor = 13     1 0 0 1 1 .1 Result of division = 19.5 
1 1 0 1 ) 1 1 1 1 1 1 0 1 .1 Number to be divided = 253.5 
     1 1 0 1      Divisor * 1 
       1 0      Remainder after subtraction 
       1 0 1 1 0   After dropping three more bits 
        1 1 0 1   Divisor * 1 
        1 0 0 1 1  Remainder after subtraction 
        1 0 0 1 1  After dropping another bit 
         1 1 0 1  Divisor * 1 
          1 1 0  Remainder after subtraction 
          1 1 0 1 After dropping another bit 
          1 1 0 1 Divisor * 1 
          0 0 0 0 Remainder after subtraction 

 
Division can be viewed as the inverse of multiplication. Shifts to 
the left are replaced by shifts to the right and additions are 
replaced by subtractions (carried out as additions using two’s 
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complement. The only new operation is a comparison of the 
result of a subtraction with 0 to see if it is negative or not. 
 
Note that, in binary, shifting the bits one place to the right (with 
respect to the binary point), corresponds to dividing by 2. 
 
If the result was not a terminating binary number, we would 
simply keep going, like we do in decimal long-division, 
dropping 0’s until we had reached the desired precision in the 
result. 

 
Another view of a similar long-division procedure: 247/13 =19. 

 
Division in binary
Divisor = 13 7 6 5 4 3 2 1 0 Column number

1 0 0 1 1 Result of division
1 1 0 1 1 1 1 1 0 1 1 1 Number to be divided = 247

1 1 0 1 0 0 0 0 1 *13*16 = 208
0 0 1 0 0 1 1 1 Result of subtraction = 39 (non-negative)
0 0 0 0 0 0 0 0 0 *13*8 = 0 since 1*13*8 = 104 when subtracted from 39 would give a negative

b0 0 1 0 0 1 1 1 Result of subtraction = 39 (non-negative)
0 0 0 0 0 0 0 0 0 *13*4 = 0 since 1*13*4 = 52 when subtracted from 39 would give a negative

b0 0 1 0 0 1 1 1 Result of subtraction = 39 (non-negative)
0 0 0 1 1 0 1 0 1 *13*2 =26
0 0 0 0 1 1 0 1 Result of subtraction = 13 (non-negative)
0 0 0 0 1 1 0 1 1 *13*1 =13
0 0 0 0 0 0 0 0 Result of subtraction = 0 (non-negative)  
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1.5  Scientific Notation and the IEEE 754 Floating-Point Standard 

 
Conversion of integers and fractions, and binary arithmetic are 
fundamental skills. Beyond that, there are many available 
systems for storing and manipulating numbers represented in 
binary. In these systems, the meaning of the specific bits changes, 
according to specific conventions. In this section we explore one 
general type of such convention, binary scientific notation, with 
focus on one specific system, the IEEE 754 Floating-Point 
Standard. 

 
Scientific (Floating Point) Notation 
Scientific notation follows the conventions of decimal notation 
and is used in computing to carry out “floating point” arithmetic. 
In decimal notation, a number such as 226.25 is expressed in 
scientific notation as 2.2625*102.  The portion 2.2625 is known as 
the significand and the power of 10 as the exponent. To express 
this number in binary scientific notation we first convert it to 
normal binary. 

 226.25 = 128 + 64 + 32 + 2 + ¼ = 
= 1*27+1*26+1*25+0*24+0*23+0*22+1*21+0*20+0*2-1+1*2-2  
= %11100010.01 

 
To put this into scientific notation, we move the “binary (no 
longer decimal) point” seven spaces to the left to obtain 226.25 = 
%1.110001001*27, or %1.110001001*2%111. The significand is 
1.110001001 and the exponent is 7 = %111. The significand, the 
exponent and an additional bit to designate the sign together 
constitute the floating-point representation of a number.  
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Ex: In 16 bits, one could reserve: 1 bit - sign bit 
        4 bits - exponent 
        11 bits - significand 

 The 16 bits could then be of the form: s| xxxxxxxxxxx | eeee 
  

 If one were trying to represent 173.4 in binary, this scheme 
would give: 
 
=  1*27 +0*26 +1*25 +0*24 +1*23 +1*22 +0*21 +1*20  

  +0*2-1 +1*2-2 +1*2-3 +0*2-4 +0*2-5 +1*2-6 + … 
= %10101101.011001… 
This is a non-terminating binary number. 
 
Transforming to the above-described scientific notation, for 
representation in the 16-bit register, formatted as we show 
above: 
s = 0  (positive number) 
xxxxxxxxxxx = 10101101011 (eleven binary digits, with the      

point assumed to be after the left-most “1”) 
eeee = 0111  (representing binary 7, since the point was shifted  

by 7) 
 
The 16-bit register would then contain: 0101011010110111 

   which means:  0|10101101011|0111 
           sign|  significand|  exponent 
 
Handling of Negative Exponents: 
While the above example has a positive exponent, note that one 
might need to represent a negative exponent. There are several 
ways to represent negative numbers, introduced later in this 
section. These schemes usually involve the use of the left-most 
bit as an indicator of the sign (for example, 2’s complement or a 
biasing scheme, described later in this section). If we assumed 
the use of 2’s complement, we would be able to represent 
exponents between +7 and –8 in the 4 bits that we have reserved 
in our example above. 
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The IEEE 754 Floating-Point Standard 
 
The Institute of Electrical and Electronic Engineers (IEEE) has 
introduced a standard method for storing (only) floating point 
numbers, which has been used for virtually all computers 
manufactured since 1980.  
 
Single Precision The standard word length used (for “single 
precision”) is 32 bits. One bit is used for the sign, s,  (0 for 
positive numbers and 1 for negative numbers), 8 bits for the 
exponent, E, and 23 bits for the significand (or mantissa). 
 
The significand or mantissa: Since in scientific binary notation the 
significand always begins with a 1, this number is made implicit 
and not stored at all. We thus represent the significand as 1.M, 
where M is the mantissa, and where the 1 is not stored. This 
allows a precision in the representation of the number to be 1 part in 
2^23 = 8,388,608 or roughly an error of ±1.2 in the seventh decimal 
digit. 
 
The exponent: We have 8 digits available or 256 places. The 
procedure used for storing negative and positive exponents is 
called biasing. This is achieved by adding 127 (the maximum 
number which can be represented in 8-1=7 bits) to the exponent 
of 2. (Note: this is not the same as 1’s complement.) The biased 
exponents 255 = %11111111 and 0 = %00000000 are reserved for 
special purposes as given below. As such: 
 
The exponent –126 maps into the exponent 1, represented as 00000001, 
--------- 
The exponent 0 maps into the exponent 127, represented as 01111111,  
The exponent 1 maps into the exponent 128, represented as 10000000,  
--------- 
The exponent 127 maps into the exponent 254, represented as 11111110. 
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The following table outlines the impact of the biasing scheme: 
 
 

System for using an 8-bit exponent with Bias = 127 
Desired 
Exponent 

+ 127 = Converted 
to binary 

Comment  

+∞ n/a 11111111 Reserved special case 
(Case 2 of IEEE754) 

 

+127 +254 11111110 Highest natural 
exponent available 

 

+126 +253 11111101   
… … …   
+60 +187 10111011   
… … …   
+2 +129 10000001   
+1 +128 10000000   
0 +127 01111111 The middle of the 

range of exponents 
 

-1 +126 01111110   
-2 +125 01111101   
… … …   
-60 +67 01000011   
… … …   
-124 +3 00000011   
-125 +2 00000010   
-126 +1 00000001 Lowest natural 

exponent available 
 

lower n/a  00000000 Reserved special case 
(Case 4 of IEEE754) 

 

The “natural” range of exponents is called “Case 3” in the full 
IEEE754 floating-point system. (see later in this chapter) 
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Ex. Find the IEEE 754 single precision floating-point representation of  
-0.21875. 
 
 Following a procedure set out earlier in this chapter, we find that 

 -0.21875 = - 0.125 – 0.0625 – 0.03125 = -%0.00111 = -%1.11*2-3.  
 We now represent this in the IEEE 754 format. The sign bit is %1. 

The significand is %1100...0. (Remember that we have discarded the 
leading 1) 
The exponent is –3 + 127 = 124 = %01111100. The representation is 
thus: 
1|01111100|11000000000000000000000. 
 

 
 

 
The above-described range of exponents allows for 
representation of numbers as small as ~2-126 ≈ 1.18*10-38 or as 
large as (2 – 2-23)*2127 ≈3.4*1038.  
Note that %1.111 1111 1111 1111 1111 1111 = (2 – 2-23). 
 
The designers of this IEEE standard noticed that one doesn’t 
often need numbers in vicinity of 2-126 ≈ 10-38 with 23-bit 
precision. More common is the need to represent smaller 
numbers, albeit with less precision. So another special case was 
devised within the convention, to extend the range by many 
negative powers of 2. This is accomplished by removing the 
assumed “1” in the significand, assuming a “0”. This allows the 
representation of much smaller numbers, down to 2-149 . 

Sign Exponent Significand 
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We now list the complete IEEE 754 code where case 3 below is 
the normal situation described above (where the “1” is assumed), 
and case 4 assumes a leading “0”. In what follows, the numbers 
N and E are in normal base-10 notations. S is either 0 (positive) or 
1 (negative). The symbol %M stands for the mantissa (the 23-bit 
fractional part of the significand). The base-10 number M is the 
corresponding base-10 fraction. 
 
s | eeeeeeee | mmmmmmmmmmmmmmmmmmmmmmm 
  %E  %M 
 E is the decimal equivalent of %E  
 M is the decimal equivalent of %M 
 
To inpterpret a 32-bit binary arrangement as a decimal number 
using the full IEEE 754 convention, examine the bits 
corresponding to exponent and mantissa according to the 
following 5 cases: 
1. If E = 255 and %M ≠ 0, then this means that N is not a number, 

abbreviated as NaN. 
2. If E = 255 and %M = 0, then N is ±∞, depending on the value 

of the sign bit. 
3. If 0 < E  < 255, then in binary notation, the mantissa is 1.%M 

and in base 10 notation, is 1.M. This is the situation described 
above and N = (-1)S * (2E-127) *(1.M). 

4. If E = 0 and %M ≠ 0, then we assume that the leading 1 of the 
significand has not been stored. As such, in binary notation, 
the mantissa is 0.%M, and in base 10, is 0.M = M.                     N 
= (-1)S * (2-126) *M. Although we lose precision as the number 
becomes smaller and smaller, we can store numbers as small 
as ±2-149. 

5. If E = 0 and %M = 0, then N = 0, regardless of the value of the 
sign bit. 

 
Examples of the use of these cases are presented below.
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Examples and special cases of  the IEEE 754 Standard (32-bit) format: 
 

Case 
# 

Decimal and/or Binary Format IEEE 754 Format 
1| 8        |   23     
(bits) 

5 0   =%0.0  0|00000000|00000 …00000 
1|00000000|00000 …00000 

4 Smallest non-zero positive number in this 
format =  2-149  = 0.00000…00001*2-126 

0|00000000|00000 …00001 

4 2-130  =%0.0001*2-126 0|00000000|00010 …00000 
4 2-128  =%0.01*2-126 0|00000000|01000 …00000 
4 2-127  =%0.1*2-126 0|00000000|10000 …00000 
4 2-127 + 2-129 =%0.101*2-126 0|00000000|10100 …00000 
 
4 

Largest number in Case 4: 
2-126 - 2-149 =%0.111…111*2-126 

 
0|00000000|11111 …11111 

 
3 

Smallest number in Case 3: 
2-126  =%1.0*2-126 

 
0|00000001|00000 …00000 

3 0.5   =2-1  =%1.0*2-1 0|01111110|00000 …00000 
3 0.75 =2-1 +2-2 =%1.1*2-1 0|01111110|10000 …00000 
3 1 =20  =%1.0*20 0|01111111|00000 …00000 
3 1.5 =20 +2-1 =%1.1*20 0|01111111|10000 …00000 
3 2 =2+1 =%1.0*2+1 0|10000000|00000 …00000 
3 4096 =2+12  =%1.0*2+12 0|10001011|00000 …00000 
3 5120 =2+12 + 2+10 =%1.01*2+12 0|10001011|01000 …00000 
3 Largest possible number in this format = 

%1.11111…11111*2+127 
0|11111110|11111 …11111 

2 +∞ 0|11111111|00000 …00000 
1 Not a number (NaN) - Example 0|11111111|00010 …00100 

 
 

Without case #4, the smallest possible non-zero number would be, 
 2-127+2-150 =%1.000…001*2-127 0|00000000|00000 …00001 
assuming 0|00000000|00000 …00000  would be reserved for 0. 
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Ex: Represent the following decimal numbers in the IEEE 754 format: 
8.5*2-128 , 4.375* 2-137. 
 
In representing very small numbers such as these in the IEEE754 
system, one must pay close attention to whether the converted result 
will be in Case 3 (greater than or equal to 1.0*2-126) vs. Case 4 (less 
than 1.0*2-126).  
 

 so the first step is to convert the decimal numbers into binary such 
that there is a simple leading “1” to the left of the binary point in the 
significand. 
 
8.5*2-128  = %1000.1*2-128 = %1.0001*2-125 
Since the resulting  number is greater than 1.0*2-126, we are in Case 3, 
and the conversion proceeds as shown before: 
0|00000010|00010000…000 
 
On the other hand, 
4.375* 2-137 = %100.011* 2-137 = %1.00011* 2-135 which is < 1.0* 2-126. 
This will be Case 4, where we need to further convert the number such that 
the exponent becomes –126: 
 
%1.00011* 2-135 = %0.00000000100011* 2-126 = 
0|00000000|00000000100011000…000 
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Double Precision 
Here we use two 32-bit words or a single 64-bit word, distributed 
as follows: 
Sign bit: 1-bit,  
Exponent: 11 bits (bias is 1023, represented by 10 bits),  
Significand: 52 bits.  
This significantly increases the range of numbers which can be 
considered to the order of 10±308 and the accuracy of the 
significand which can now be trusted up to the 15th decimal 
place. 

 
 
 
 
 
 

Advantage and disadvantage of the IEEE 754 format  
Advantage: The exponent-biasing scheme allows easy sorting of 
numbers by size. 
Disadvantage: Numbers must be converted before arithmetic 
operations can be carried out. 
Why did IEEE choose this format? Probably because most calls 
on the arithmetic unit involve sorting as opposed to arithmetic 
operations. 
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Arithmetic with the IEEE 754 standard: 
 
Addition of any two numbers requires that the decimal or binary 
points of the two numbers be aligned. For example, in order to add 
2.78*100 + 4.219*102 = 2.78 + 421.9, one must shift the numbers as 
follows: 
 
   2 . 7 8 
+ 4 2 1 . 9 0 
= 4 2 4 . 6 8 
 
 
Similarly, addition of two numbers stored in the floating-point 
involves alignment of the exponents. This means that one of the 
binary arrangements must be shifted so that the exponents of the two 
numbers are the same. For example: 
 
Two numbers are represented below in the binary 32-bit IEEE 754 floating-point format. 
Add the two numbers (using any method), and convert your binary answer to the same 
32-bit IEEE 754 floating-point format. Show your reasoning.  
 
 0 01111111 01000000000000000000000  
 0 10000000 01000000000000000000000 
 

 The first number is %1.01* 20, while the second number is %1.01*21. 
One could use either exponent as the reference for this addition.  
In this case, the reference 0 is most convenient: %1.01* 20 + %10.1* 20  

= %11.11* 20 = %1.111* 21   
 0 10000000 11100000000000000000000 

 
Multiplication of two numbers in scientific notation involves 
multiplying the two significands, adding the two exponents, and, if 
necessary, accounting for the resulting significand being ≥ %10.00. 
For example, multiplying the following numbers: 
 0 10000000 11100000000000000000000  
 0 10000001 11000000000000000000000 

 The first number is %1.111* 21, while the second number is %1.11*22. 
Multiplying the significands:  1.111 * 1.11 = 11.01001. 
Adding the exponents: 1 + 2 = 3 = %11. Since 11.01001 ≥ 10.0, we need to shift the 
significand to the right, (1.101001), and add 1 to the exponent: 3+1 = 4 

 in IEEE format: = 10000011  
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  0  10000011  10100100000000000000000 
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Appendix 1: Summary of Conventions  
Introduced  for Negative Binary Numbers 
 
Below are 5 different binary representations for ( –29).  
Note that the binary representation for +29 in an 8-bit register is  
%00011101. 
 
Convention Example Comments 
Minus sign -%11101 Use only on paper. 
Sign bit in 8-bit register
  

1|0011101 This would require separate logic 
circuitry for subtraction. 
Magnitude must fit in n-1=8-1=7 
bits. 

1’s complement in 8-bit 
register 
[Number + its negative] 
= 11111111 

11100010 Magnitude must fit in 8-1=7 bits. 
Left-most bit is still like a sign bit. 
Not convenient for subtraction 

2’s complement in 8-bit 
register 
[Number + its negative] 
=        00000000  
=  1’s complement +1 

11100011 Magnitude must fit in 8-1=7 bits. 
Left-most bit is still like a sign bit. 
 (convenient for subtraction) 
Not convenient for sorting 

Biasing in 8-bit register 
Add 27-1=127 to all 
numbers. 29+127=156,  
-29+127=98 

-29 = 
 %01100010 
29 = 
 %10011100 

Magnitude must fit in 8-1=7 bits. 
Left-most bit is like reversed sign 
bit.         [Number + its (-)] ≠ 0  
Used to code exponents in IEEE 
754 format. 
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Appendix 2: Shifting Binary Arrangements to Left/Right: 
Correspondence to Multiplication/Division by 2 
 
In understanding multiplication and division, it is important to 
see that shifting a binary arrangement to the left/right with 
respect to the binary point corresponds to multiplying/dividing 
by 2. 
 
From our basic knowledge of binary numbers, any binary 
arrangement represents a number, N, which is the sum of powers 
of 2. In general: 

∑
+∞

−∞=

=
i

i
iaN 2  

 
where each ai is a “1” or “0”, and the sequential arrangement of 
all the ai constitute the binary number. The binary point would 
be located between the a0 and a-1 . 
 
Consider the action of multiplying by 2: This corresponds to 

∑
+∞

−∞=

+=
i

i
iaN 122 . Since the range of the summation index is infinite, 

this is equivalent to: ∑
+∞

−∞=
−=

i

i
iaN 22 1   , which corresponds to shifting 

all bits to the left by 1 bit with respect to the binary point. 
 
The same type of analysis can be applied to division by two, 
corresponding to shifts to the right with respect to the binary 
point. 
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Number Systems: Summary of Important Skills 
 

• Conversion from decimal to binary and binary to decimal. 
There are several acceptable ways to do these conversions. 

• Conversion of fractional and decimal numbers. 
• Physical binary registers 
• Hexadecimal numbers and binary/hexadecimal 

conversion: start from the binary point. 
• Binary addition and how a full adder works 
• Systems for representation of negative binary numbers 
• Subtraction of binary numbers 
• The 2’s complement system 
• Binary multiplication and division 
• Decimal and binary floating-point representation 
• IEEE 754 floating-point standard 
• Arithmetic with numbers represented in IEEE754 standard 

 
 
 
Summary of Scientific Notation Formats in this Section: 
 
Normal:   1.xxxx * 2y  s|ee…e|1xxx…xxx 
IEEE754 Case 3:  1.xxxx * 2 y  s|eeeeeeee|xxx…xxx 
IEEE754 Case 4:  0.xxxx * 2 -126 s|00000000|xxx…xxx 
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Problems – Number Systems 
 
(1) Express each of the following binary numbers in decimal: 

(a) %10, %0010, %10000000 
(b) %0.10,%0.000001,%0.00000100 
(c) %1010.101, %00011011101.1011 
(d) %0.00110011001100110011…. 
(e) %0.11001100110011001100…. 

 
(2)  What is the base-10 equivalent of %1101010010.101? 
 
(3)    Express each of the following decimal numbers in binary: 

(a) 1, 2, 4, 8, 16 
(b) 3, 5, 6, 7, 9 
(c) 10, 15, 20 
(d) 512, 1024, 1048576 
(e) 100, 1000, 971, 555, 222, 444 

 
(4) Express each of the following decimal numbers in binary using 10 bits: 

(a)  0.5, 0.25, 0.125 
(b) 6.875, 10.03125 
(c) 6.6, 2.8, 0.1 

 
(5)       Express each of the following fractions in binary: 

 (Note: (b) and (c) will be repeating patterns.) 
(a) 1/16, 1/64 
(b) 1/100 
(c) 1/3, 3/7 

 
(6)   Express the following decimal numbers in decimal scientific notation: 

Use 5 digits for the significand. 
(a) 185.3 
(b) 1/3 
(c) 10*106 
(d) 144*10-4 

 
(7)   For each of the numbers in (6) above, convert to binary, 

and express it in binary scientific notation, using 14 bits for the significand. 
 
(8) (a) For each of the numbers in (1) above, express it in binary scientific notation. 
 (b) For each of the numbers in (4) above, convert to binary, and express it in 
 binary scientific notation, using 14 bits for the significand. 
 (use 2’s complement to represent the exponent) 
 
(9)  For each of the binary numbers in (1) above, express it in hexadecimal. 
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(10) Express the following hexadecimal numbers in binary: 
 $ABC, $FFFF, $F0E1, $1A, $A1.0F 
 
(11)  (a) What are the decimal equivalents of $FF.F, $10.1, $9A.B ? 

(suggestion: in any problem involving hexadecimal representations, 
convert to binary first) 

(b) What are the hexadecimal representations of the decimal numbers:  
512,  827,  238,  5000,  5000.375? 

 
(12) Express in decimal the same hexadecimal numbers as in (10) above. 
 
(13) Express the following decimal numbers in hexadecimal: 

1000, 1024, 1.05, 5.01, 16, 0.375 
(Use up to 3 hex characters for the fractional parts.) 

 
(14) Represent the decimal number 0.238 as a binary number in a 16-bit register. 

Consider the binary point to be at the center of the register. 
 
(15) Express 327 in binary, assuming that you have available a word length of 

12 bits. First do the conversion by expressing 327 as a sum of powers of 2. 
Redo the conversion using the division by twos method. Answer: 327 = 
%000101000111. 

 
(16) a)  Express decimal 42.8 as a binary number in scientific format where you have 

available eleven digits for the significand and three digits for the exponent.  
b) How about if there are five digits for the exponent? 

 
(17) Approximate 327.21 in binary using a 16-bit word. There will be 7 bits 

available to approximate 0.21. (Why?). What is the value of the 16-bit 
approximation? Answers: 101000111.0011011, 327.2109375 

 
(18) a)  Express 327.21 in floating point notation, assuming that in addition 

to the 16 bits used to express the significand, we have four additional bits 
to code the exponent. Answer: 10001010001110011011 
b) What are the smallest and largest positive numbers that can be 

expressed with a 4-bit exponent and a 16-bit significand?  
 

(19) Convert the answer to 18a) floating point hexadecimal notation.  
Answer: 8A39B 

 
(20) Using binary notation, and 12-bit words, add 721 and 638.  
 
(21) Using 12-bit words 

a) Express –638 and –721 in two’s complement notation 
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b) Carry out as a binary addition, 721 – 638 
c) Carry out as a binary addition, -721 + 638 

 
(22) Using 12-bit words, multiply 21 by 53. What maximum product can be 

handled by the 12-bit word? 
 

(23) Repeat question 7, where now the 12-bit word is subdivided to handle 
floating point multiplication of positive numbers. The first four bits contain 
the exponent and the second four the significand. 

 
(24) In binary divide 1113 by 53. 
 
(25) Express –123.456 in IEEE 754 single precision format. 
 
(26)  Express decimal 971 and 555 as binary numbers and then add the two binary 

numbers. Check your work by converting 1526 (=971+555) to binary. 
 
(27)  Convert the following decimal numbers to binary, and multiply (in binary):  

1000 by 100. Verify that your binary answer is equivalent to 100000. 
 
(28)  Find the binary representation of decimal 238/512. Do this in three ways: 

(a) Divide 238 by 512 to obtain a decimal number, then convert to binary. 
(b) Convert 238 and 512 to binary, and divide in binary. 
(c) Find the binary representation of 238, then multiply by 2-9. In your answer, 

show why multiplying by 2-9 is the same as shifting the binary point by nine 
places to the left. 

(Obviously, you should obtain the same answer in all three ways!) 
 
(29)  (a) Using two’s complement, convert –333 to binary, using a 10-bit word. 

(b) Subtract 333 from 444 using two’s complement and binary 16-bit words. 
 
 (30)   (a) Convert to binary and divide (in binary) 38 by 23, using 10 bits for your answer. 

(b) Then convert your answer back to decimal. 
(c) Divide 38 by 23 using your electronic calculator, and compare to your answer in (b). 

 
(31)  Translate the following binary numbers into the IEEE 754 Standard: 

%11100101000110,  %-11101.101,  %-0.0001110101,  %0.11111 
 
(32)  Represent the following decimal numbers in binary using the IEEE 754 Standard: 

0,  1,  5*106,  -3*2-37. 
 

(33) For all possible cases in a 4-bit binary arrangement, demonstrate that the operation 
(flip all bits then add 1) is the same as the operation (subtract 1 then flip all bits). 
Note: for the special case of 0000, when subtracting 1 from 0000, you must borrow 
from a “virtual” 1, situated to the left of the 4-bit register. 
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(34) Do the subtraction +12.875 –13.000 using 2’s complement. Keep the binary point 
3 bits from the right of the 8-bit register. 
 
(35)  The following six strings of binary digits are 32-bit representations of six 
different decimal numbers in IEEE 754 format.  
(a) Select any two of the six, and convert each of the two to decimal format. Make sure 

you indicate which ones you are converting.  
(b) Sort the six decimal numbers in increasing order. For example, one possible (wrong) 

order is (n1,n2,n3,n4,n5,n6). (Be careful: You are not sorting raw 32-bit binary 
numbers. You are sorting the decimal numbers which the binary arrangements 
represent.)  

 
n1:  0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     
n2:  0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
n3:  0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
n4:  1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
n5:  1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
n6:  0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
 

(36) Consider this 32-bit binary string: 
                        01000001101100000000000000000000  
 
(a) Convert the represented binary number to hexadecimal, 

assuming that the binary point is at the right side of the 
sequence. 

(b) Assume that the 32-bit string is a representation of a binary 
number in the IEEE754 format. Find the decimal equivalent of 
the represented binary number. 

 

 
   
(37) Using binary 2’s complement and 12-bit registers, subtract 221 

from 112. Leave your answer in binary 2’s complement, and verify 
that your answer is equivalent to the decimal number (-109). 

 

 
(38) Express the number 23.4 in binary scientific notation where you will use 9 bits to 

display the number, namely, it should be of the form "1.xxxxxxxx" and 3 bits to 
display the exponent, namely it should be of the form "yyy". Note that in order to 
fit the number into 9 bits, it will be necessary to truncate trailing bits. 

 
(39) Divide 178 by 16 (using any method), and leave your answer in binary. 
 Your answer must be exact, without any approximation or truncation. 
 Show your reasoning. (Suggestion: First convert 178 and 16 to binary.) 
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(40) Two numbers are represented below in the binary 32-bit IEEE 754 floating-point 
format. Add the two numbers (using any method), and convert your binary answer to the 
same 32-bit IEEE 754 floating-point format. Show your reasoning.  
 
 00111111101000000000000000000000  
 01000000001000000000000000000000 
 
Do the same for the following pair of numbers: 
 
 01111011101010100000000000000000 
 01111011001010100000000000000000 
 
 
 
(41) Consider the two decimal numbers 77.5 and 38.75.        

(a)    Convert both numbers to binary (no restriction on number of bits). 
(b)    Convert both numbers to hexadecimal. 
(c)     In binary, multiply 38.75 by 2. Show your work. 

       (d)  Perform the subtraction 38 – 77 using 2’s complement  
and 16-bit words, leaving your answer in binary. 

 (e)     Show that your answer (d) is the 2’s complement representation for –39. 
(f)    Convert -38.75 into the IEEE floating-point standard format. 

 
 
(42) The following two strings of binary digits are 32-bit representations of 

two different decimal numbers in IEEE 754 format. Multiply the two 
decimal numbers (using any method), write down the decimal number, 
and convert your answer into the same 32-bit IEEE floating-point format. 
Show your reasoning. 
 
n1:  1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     
n2:  0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

 

 
(43) How many different negative decimal numbers can be represented in a 5-bit register 
using the 2’s complement system? (Be careful: you also need to be able to represent positive 
numbers in the same scheme.) 
 



 

COEN 231 Class Notes  p 1.45 Number Systems 
J.C.Giguère & L.M.Landsberger  Autumn 2001-2002 

 
(44) Convert the following decimal numbers into binary, and then into hexadecimal. 
For the fractional parts of the numbers, use up to 12 bits (3 hex symbols). 
1000, 1024, 16, 0.875, 1023.01625, 1.05, 5.01 
 
(45) Find the binary representation of decimal 163/512. Do this in three ways: 

(a) Divide 163 by 512 to obtain a decimal number, then convert to binary. 
(b) Convert 163 and 512 to binary, and divide in binary. 
(c)Find the binary representation of 163, then multiply by 2-9. In your answer, show 
why multiplying by 2-9 is the same as shifting the binary point by nine places to the 
left. 

(Obviously, you should obtain the same answer in all three ways!) 
 
 
(46) What are the smallest and largest positive, non-zero decimal numbers that can be represented 
with an unsigned 16-bit significand, and a 4-bit exponent which uses the 2’s complement system? 
 
(47) Consider the sequence of binary numbers, each consisting of alternating 1’s and 0’s, 
beginning and ending with 1’s: 1, 101, 10101, 1010101 … 
Specify the sequence of arithmetic operations needed to create the next one from the 
preceding one. (e.g. how to create 10101 from 101 by simple arithmetic operations?) 
 
(48) Represent the following decimal numbers in the IEEE 754 format: 
4.375* 2-137, 8.5*2-128,  36.25*2-129, 36.25*2-137. 
 


