
Formal Hardware Verification

COEN6551

1.1 (of 43)

Professor Sofiène Tahar

Department of Electrical and Computer

Engineering

Concordia University

Montreal, Quebec, Canada

Course Flow
Introduction

Theorem Proving

Temporal Logics

Predicate, Higher
Order Logics

Sequential Equ.
Checking

Propositional
Logic, ROBDD

Model Checking

Case Study - ATM Switch

Case Study - Pipelined
Processor

1.2 (of 43)

Combinational
Equ. Checking

1. Introduction to Formal Verification

1.3 (of 43)

Introduction and Terminology
Verification by Simulation
Formal Verification
Hierarchical Verification
Formal Specification
State of the Art in Formal Verification
Formal Logic
Formal Verification Methods
Formal Verification Tools
Formal Verification & Design Flow
References

Page

1.4

1.8
1.12
1.17
1.18
1.22
1.24
1.29
1.40
1.42
1.43

Introduction

1.4 (of 43)

• Digital systems continuously grow in scale and functionality
Performance of integrated circuits (IC) doubling every year

Microprocessors containing 500M gates, doubling of frequency per generation,
transistor scale by 30% per generation
Telecommunication chips are deep submicron application-specific integrated circuits
(ASICs) with more than 1M gates
I/O pins limit observability and controllability, likelihood of design errors increasing
In 1994, problems with Intel Pentium and Pentium Pro microprocessors. Cost of
correction about $250 M
In 1995, problem with TI 320C32 floating point digital signal processor
Failure of Ariane 6 due to bad specification of SW module for reuse

• Our goal: develop awareness of formal verification methods as complement to
simulation to improve design quality.

• Formal Methods: mathematically-based languages, techniques, and tools for specifying
and verifying systems

• Increase understanding of a system by revealing inconsistencies, ambiguities, and
incompleteness
.... often even by just going through the process of rigorous specification...

Terminology

1.5 (of 43)

Formal Methods is the application of logic to the development of “correct” systems

Correctness is classically viewed as two separate problems, validation and verification

Validation: answers “are we building the right system?”

Verification: answers “are we building the system right?”

Formal Validation: Can we use logic to help ensuring that the specification is complete.
consistent, and accurately captures the customer’s requirements

Formal Verification: Can we use logic to help ensuring that the system built faithfully
implements its specification

Formal methods are used today in many applications including:
- Microprocessor Design
- Cache Coherency Protocols
- Telecommunications Protocols
- Rail and Track Signaling
- Security Protocols
- Automotive Companies

1.6 (of 43)

VLSI Design Flow

SYNOPSYS

SYNOPSYS

CADENCE

Concept

Human Designer

Behavioral Specification

Behavioral Synthesis

RTL Design

Logic Synthesis

Netlist (Logic Gates)

Design
Validation

RTL
Verification

Logic
Verification

Layout SynthesisLayout
Verification

Layout (Masks)

Manufacturing

Finished Product

Production
Verification

System Design and Verification

• Typical levels of abstraction in design:

• Behavioral synthesis: behavioral description into RTL description
• RTL synthesis: RTL description into logic description
• Logic synthesis: logic description into netlist of primitive gates for a target technology
• Layout synthesis: gate netlist to mask geometry

Idea

Behavioral Model

Register Transfer Model

Logic Gates Model

Layout

= ?

= ?

= ?

= ?
Transistor Model

= ?

??
Manual
and
Automatic
Transformations
and
Local
Modifications

Correctness of
Synthesis
Tools??

1.7 (of 43)

Validation & Verification by Simulation

• Traditionally used to check for correct operation of systems

• Use of test benches (set of input vectors, expected outputs, environment constraints, etc.).

Behavioral Specification

Register Transfer Description

Logic Gates Description

Layout

Simulation

Simulation

Simulation

Extraction

Compare Results

Verify (validate)
some properties

of the “concept”

Compare Results

Compare Results

1.8 (of 43)

Verification by Simulation (cont’d)

The “standard” verification technique is testing (simulation), but
Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.

Edsgar W. Dijkstra

Bottom line: Not feasible to simulate all input sequences to completely verify a design.

Example 1: Suppose you want to test a 64-bit floating-point division routine. There are2128

combinations. At 1 test/s, it will take 1025 years

Example 2: How long does it take to exhaustively simulate a 256 bit RAM?

2256=10 80 combinations of initial states and inputs
Assume
- Use all the matter in our galaxy (10 17kg) to build computers
- Each computer is of the size of single electron (10 -30 kg)
- Each computer simulates 10 12 per second

 10 10 years will reach 0.05% of test cases!

1.9 (of 43)

Verification by Simulation (cont’d)
General Problems

• Generation of input sequences
- Exercise a small fraction of system operations
- Patterns developed manually
- Weighted Random sequences to test certain functionality

• Generation of expected outputs

• Long simulation runs, effective input sequences hard to generate
- Design coverage? Corner cases?

• Input patterns biased towards anticipated sources of errors
- Errors often occur where not anticipated
- Bugs typically introduced at locations to which designers did not pay attention

• Result comparison often incomplete: difficult to compare results from different models
and simulators

• Systems growing larger: Number of possible states grows exponentially with increased
number of possible event combinations

• Design teams growing larger: More sources of misunderstandings and inconsistencies

1.10 (of 43)

Automated Synthesis: an Alternative to Simulation?

• An alternative to post-design verification is the use of automated synthesis techniques —
correct-by-construction

• Logic synthesis techniques successful in automating low-level (gate-level) logic design

• Progress needed to automate the design process at higher levels.

• Until synthesis technology matures high-level design done manually
- Requires post-design verification.

• Top-level specification/design must always be checked against properties of the “idea”
- No golden reference at that level

1.11 (of 43)

Formal Verification: Another Alternative to Simulation!

Formal Verification is the process of constructing a proof that a target system will behave in
accordance with its specification.

• Use of mathematical reasoning to prove that an implementation satisfies a specification
• Like a mathematical proof: correctness of a formally verified hardware design holds

regardless of input values.

• Consideration of all cases is implicit in formal verification.

• Must establish:
- A formal specification (properties or high-level behavior).
- A formal description of the implementation (design at higher level of abstraction —

model (observationally) equivalent to implementation or implied by implementation).

[IEEE Spectrum, January 1996]

“As designs grow ever more complex, formal verifiers have left the research lab for the
production arena.”

“Formal methods have already proven themselves, and have a bright future in electronic
design automation.”

1.12 (of 43)

Formal Verification

• Complete with respect to a given property (!)

• Correctness guaranteed mathematically, regardless the input values

• No need to generate expected output sequences

• Can generate an error trace if a property fails: better understand, confirm by simulation

• Formal verification useful to detect and locate errors in designs

• Consideration of all cases is implicit in formal verification

System Model System Specification

Verifier

correct! not correct!
(error trace)

1.13 (of 43)

Simulation vs. Formal Verification

Simulation Values:

Example:  x+ 12 = x2 + 2x + 1

x  x +12 x2 + 2x + 1

0 1 1
1 4 4
2 9 9
3 16 16
9 100 100
67 4624 4624
  

1.14 (of 43)

Simulation vs. Formal Verification (cont’d)

Formal Proof

1.  x + 12 = x2 + 2 x +1 definition of square
2. x + 1 x + 1 = x + 1x + x + 11 distributivity
3. x + 12 = x + 1x + x + 11 substitution of 2. in 1.
4.  x + 11 = x + 1 neutral element 1
5. x + 1x = xx + 1x distributivity
6.  x + 12 = xx + 1 x + x +1 substitution of 4. and 5. in 3.
7. 1 x = x neutral element 1
8.  x + 12 = xx + x + x + 1 substitution of 7. in 6.
9. xx = x2 definition of square
10. x + x = 2 x definition of 2x
11.  x + 12 = x2 + 2 x +1 substitution of 9. and 10. in 8.

1.15 (of 43)

Simulation vs. Formal Verification

• Simulation: complete (real) model, partial verification
Verification: partial (abstract) model, complete verification

• Simulation still needed to tune specifications; for large complete designs

• Verification can generate counter-examples (error traces); possibly false negatives!

• Techniques are complementary — formal verification gives additional confidence, e.g.,
1. Apply formal verification of abstract model
2. Obtain error trace if bug found (may be false negative!)
3. Simulate error trace on the real model

• Common difficulty in all verification methods:

- lack of “golden” reference

- what properties to verify?

[IEEE Spectrum, January 1996]

“Simulation and formal verification have to play together.”

1.16 (of 43)

Hierarchical Verification

• Specification (Spec):
Properties: enumeration of assumptions and requirements,
Functions: desired behavior or design descriptions,
State machines: desired behavior or design descriptions,
Timing requirements, etc.

• Implementation (Imp) refers to the design to be verified.
Corresponds to a description at any level of abstraction, not just the final physical level.
Can serve as a specification for the next lower level.

Properties to validate

Top Level Specification

Level i Implementation
Level i+1 Specification
Level i+1 Implementation
Level i+2 Specification

Bottom Level Implementation

1.17 (of 43)

Formal Specification
• A specification is a description of a system and its desired properties

• Useful as a communication device:
- between customer and designer,
- between designer and implementor, and
- between implementors and tester

• Companion document to the system’s source code, but at a higher level of abstraction

• Properties relate to function, interfaces, timing, performance, power, layout, etc.

• Formal specification:
- Use of formal methods (a language with mathematically-defined syntax and semantics)

to describe the intended behavior of the system:
- The language of logic provides an unambiguous method of recording the specification
- We can reason about a formal specification to check that the system specified will

possess other desired properties

• The process of writing a formal specification helps uncover ambiguity and incompleteness

• Formal specifications most successful for functional behavior, also interface & timing

• Trend to integrate different specification languages, each for a different aspect (e.g.
VERA, SystemC, VHDL+)

1.18 (of 43)

Formal Specification (cont’d)
Specification Validation
• Whether the specification means what it is intended to mean
• Whether it expresses the required properties
• Whether it completely characterizes correct operation, etc.

(Validation methods: simulation or formal techniques)

Formalisms for representing specifications:
• Logic: propositional, first-order predicate, higher-order, modal (temporal), etc.
• Automata/language theory: finite state, omega automata, etc.

Types of properties:
• Functional correctness properties;
• Safety (invariant) and Liveness properties

E.g.: in a mutual exclusion system with two processes A and B
Safety property (nothing bad will ever happen): e.g. simultaneous access will never be
granted to both A and B. If false, can be detected by finite sequences
Liveness property (something good will eventually happen): e.g. if A wants to enter its
critical section, it will eventually do so. Can only be proved false by infinite sequences
(any finite sequence can be extended to satisfy the eventuality condition)

1.19 (of 43)

Limitations of Formal Verification

Just because we have proved something correct does not mean it will work!

There are gaps where formal verification connects with the real world.

• Does the specification actually captures the designer’s intentions?
- Specification must be simple and abstract
- Example of a good specification for a half-adder: out = (in1 + in2) mod 2

• Does the implementation in the real world behave like the model?
- Can in1 drive three inputs

- What happens if the wires are fabricated too close together?
- Do we need to model quantum effects on the silicon surface?

1.20 (of 43)

Formal Verification — an Interdisciplinary Activity

• Formal methods cut across almost all areas in Computer Science and Engineering

• Foundation in mathematics

• Formal verification requires
- A formal language for describing both specifications and implementations
- A deductive calculus for providing propositions in this language

Logic AlgorithmSystem Design

Formal Verification

1.21 (of 43)

State of the Art

• In the 1960-70’s, high expectations for “software verification”, but hopes gradually
fizzled out by the late 1970’s

• Theorem proving approaches have “cultural roots” in software verification in 1970’s
(Hoare, Owicki, Gries)

• The use of formal methods did not seem practical
- notations too obscure
- techniques did not scale with problem size
- tool support inadequate or too hard to use
- Only a few non-trivial case studies available
- Few people had the necessary training

• Why formal methods might work well for “hardware verification”?
- Hardware is often regular and hierarchical
- Re-use of design is common practice
- Hardware specification is more common, e.g., VHDL models
- Primitives are simpler, e.g., behavior of an NAND-Gate easier to describe than the

semantics of a while-loop
- Cost of design error can mean a 6 months delay and a costly set of lithography masks

1.22 (of 43)

State of the Art (cont’d)

• Recently more promising picture

- Software specification: industry trying out notations like SDL or Z to document
system’s properties

- Protocol verification successful

- Hardware verification: industry adopting model checking and some theorem proving
to complement simulation

- Industrial case studies increasing confidence in using formal methods

- Verification groups: IBM, Intel, Motorola, Apple, Google, Fujitsu, Cadence,
Siemens, Synopsys,

- Commercial tools from: Cadence, Synopsys, IBM,

• In this course, we focus on formal verification methods of digital hardware

• ... but model checking is making inroads into software verification of real-time reactive
systems and protocols

1.23 (of 43)

Formal Logic
What Does “Formal” mean?

• Webster’s dictionary gives the following as one of the definitions of “formal”:
“related to, concerned with, or constituting the outward form of something as
distinguished from its content”

• A method is formal if its rules for manipulation are based on form (syntax) and not on
content (semantics)

• Majority of existing formal techniques are based on some flavor of formal (symbolic)
logic: Propositional logic, Predicate logic, other logics.

Formal logic

• Every logic comprises a formal language for making statements about objects and
reasoning about properties of these objects.

• Statements in a logic language are constructed according to a predefined set of formation
rules (depending on the language) called syntax rules.

• A logic language can be used in different ways.

1.24 (of 43)

Types of Logic
• Propositional logic: traditional Boolean algebra, variables {0,1}

• First-order logic (Predicate logic): quantifies for all ( and there exists ( over variables
• Higher-order logic: adds reasoning about (quantifying over) sets and functions(predicates)

• Modal/temporal logics: reason about what must or may happen

• Propositional logic: decidable and complete

• First-order logic: decidable but not complete

• Higher-order logic: not decidable nor complete

Less expressive (-)

Propositional logic First-order logic

Decidable (+)

Complete (+)

Higher-order logic

Very expressive (+)

Undecidable (-)

Incomplete (-)

1.25 (of 43)

Formal Logic (cont’d)
Proof Theory

• A formal logic system consists of:
- a notation (syntax)
- a set of axioms (facts)
- a set of inference (deduction) rules

• A formal proof is a sequence of statements where every statement follows from a
preceding one by a rule of inference

• Purely syntactic (mechanical) activity; not concerned with the meaning of statements, but
with the arrangement of these statements, and whether proofs can be constructed

Model Theory

• The second use of a logic language is for expressing statements that receive a meaning
when given an interpretation

• The language of logic is used here to formalize properties of structures, to determine
when a statement is true on a structure

• This use of a logic language is called model theory

• Forces a precise and rigorous definition of the concept of truth on a structure

1.26 (of 43)

Formal Logic (cont’d)
Logic = Syntax + Semantics

• Syntax and semantics of logic are not independent

• A logic language has a syntax, and the meaning of statements by an interpretation on a
structure

• The interaction between model theory and proof theory makes logic an interesting and
effective tool

Proof System

• Given a logic (syntax and semantics), there can be one or more proof systems, e.g. HOL
and PVS are two proof systems based on higher-order logic.

Issues of proof systems

• Consistency (Soundness): all provable formulas (theorems) are logically (semantically)
true

• Completeness: all valid formulas (semantically true) are provable (theorems)

• Decidability: there is an algorithm for deciding the (semantical) truth of any formula
(theorems)

A proof system is acceptable only if it is consistent (may not be complete nor decidable)

1.27 (of 43)

Formal Logic (cont’d)

Application of logic to verification

• Specification represented as a formula

• Implementation represented as a formula or as a semantic model

• Formula Formula:
Verification as theorem proving, i.e., relationship (implication or equivalence) between
the specification and the implementation is a theorem to be proven.

• Model Formula:
Both theorem proving and model checking can be used
Model checking deals with the semantic relationship: shows that the implementation is a
model for the specification formula (property).

Relation between Spec and Imp:
• Imp  Spec: the implementation is equivalent to the specification

• Imp  Spec: the implementation logically implies the specification

• Imp Spec: the implementation is a semantic model in which the specification is true

1.28 (of 43)

Formal Verification Methods

Formal verification methods can be categorized in following main groups:

Interactive (deductive) Methods:

• Theorem Proving: relationship between a specification and an implementation is a
theorem in a logic, to be proven within the context of a proof calculus

Automated Methods:

• Combinational Equivalence Checking: proof of structural equivalence of logic designs

• Sequential Equivalence Checking: proof of behavioral equivalence of FSMs

• Model Checking: proof of (temporal) logic property (safety & liveness) against a
semantic model of the design

• Invariant Checking (safety property)

• Language Containment (model checking of w-automata)

1.29 (of 43)

Issues in Verification methods

• Soundness: every statement that is provable is actually true.

• Completeness: every statement that is actually true is provable.

• Automation: proof generation process automatic, semi-automatic or user driven

• Can it handle:
Compositional proofs: constructed syntactically from proofs of component parts
Hierarchical proofs: for system organized hierarchically at various levels of abstraction
Inductive proofs: reason inductively about parameterized descriptions

1.30 (of 43)

Theorem Proving

Implementation and specification expressed as formulas in a formal logic.
Relationship (logical equivalence/logical implication) described as a theorem to be
proven.

A proof system:
A set of axioms and inference rules (simplification, rewriting, induction, etc.)

Prove that an implementation satisfies a specification by mathematical reasoning.

implication
Implementation

equivalence

Specification

1.31 (of 43)

Theorem Proving (cont’d)

Some known theorem proving systems:
Boyer-Moore/ACL2 (first-order logic)
HOL (higher-order logic)
PVS (higher-order logic)
Lambda (higher-order logic)

Advantages:

• High abstraction and powerful logic expressiveness

• Unrestricted applications

• Useful for verifying parameterized datapath-dominated circuits

Limitations:

• Interactive (under user guidance)

• Requires expertise for efficient use

• Automated for narrow classes of designs

1.32 (of 43)

FSM-based Methods
Finite State Machines (FSM)
• Well-developed theory for analyzing FSMs (e.g., reachable states, equivalence)

• An FSM (I, O, S, , , S0)
I : input alphabet,
O: output alphabet,
S: set of states,
: next-state relation,   SIS,
: output relation,   SIO (Mealy),   SO (Moore)
S0: set of initial states.

• Deterministic machines:  SI  S and  SI   are functions, S0 = {s0}.

FSM Equivalence Verification

• Basic method:

- If same state variables — Combinational Equivalence of  and 
- If state space different - State Enumeration by Reachability Analysis

Two FSMs are equivalent if they produce the same output for every possible input
sequence — Sequential Equivalence Checking

1.33 (of 43)

Equivalence Checking
Equivalence by reachability analysis of the Product Machine

Reachability Analysis:
Start from initial state

repeat
Apply transition relation to determine next state
In each reached state, check equivalence of corresponding outputs of M1, M2

until all reachable states visited
• Involves building a state transition graph (Finite Kripke structure)

• Problem: “State explosion” - e.g., 32-bit  register 232 states
• Partial solution: Implicit State Enumeration with

- Reduced Ordered Binary Decision Diagrams(ROBDD)
Represent transition/output relations and sets of states symbolically using ROBDD

M1

M2

= ?

output-1

output-2

yes/no

Product Machine M = (M1, M2)

deterministic

1.34 (of 43)

input

Equivalence Checking (cont’d)

Combinational equivalence:
• possible if one-to-one state mapping do exit
• relatively straightforward (equivalence of sets of functions (BDDs))
• tools already part of verification flow

Sequential equivalence:
• no state mapping required (building of product machine)
• hard to handle large circuits (also must consider all initial states)
• no tools for industrial use

Application example:

RTL Design

Gate Netlist

= ?input
output-1

output-2
yes

no
Counter-
example

1.35 (of 43)

Model Checking

Behavioral
ModelorGate or RT

Design
Property

FSM

Model Checker

True / Counterexamples

• Property described by temporal logic formula.

• System modeled by Labeled Transition Graph (LTG, LTS, Finite Kripke structure).

• Exhaustive search through the state space of the system (Reachability Analysis) to
determine if the property holds (provides counterexamples for identifying design errors).

• Problem: “State explosion”

• Partial Solution: Symbolic Model Checking
Represent transition/output relations and sets of states symbolically using ROBDD

1.36 (of 43)

Symbolic Model Checking

• Problem: again “State explosion” (max ~ 400 Boolean variables), low abstraction level.

SpecificationDesign

Finite State Machine CTL Formula

Model Checker

OK / Counter-example

ROBDD

1.37 (of 43)

Model Checking vs. Simulation

Environment
Constraints

Beh./RTL
Description

Model Checker Simulator

Test Bench

Simulation output
(e.g. waveform)True/Counterexample

Properties
Beh./RTL

Description

1.38 (of 43)

Theorem Proving vs. Model Checking

Theorem Proving: useful for architectural design and verification
Process: Implementation description: Formal logic

Specification description: Formal logic
Correctness: Imp  Spec (implication) or Imp  Spec (equivalence)

• High abstraction level possible, expressive notation, powerful logic and reasoning
• Interactive and deep understanding of design and higher-order logic required
• Need to develop rules (lemmas) and tactics for class of designs
• Need a refinement method to synthesizable VHDL / Verilog

Model Checking: at RT-level (or below) with at most ~400 Boolean state variables
• Process: Implementation description: Model as FSM

Specification description: Properties in temporal logic
Correctness: Impl Spec (property holds in the FSMmodel)

• Easy to learn and apply (completely automatic), properties must be carefully prepared
• Integrated with design process, refinement from skeletal model
• State space explosion problem (not scalable to large circuits)
• Increase confidence, better verification coverage

1.39 (of 43)

Supplier Tool Name Class of Tool HDL Design Level
COMMERCIAL TOOLS
Chrystalis Design Verifier Equiv. Checking VHDL/Verilog RTL/Gate
Synopsys Formality Equiv. Checking VHDL/Verilog RTL/Gate
Cadence Conformal Equiv. Checking VHDL/Verilog RTL/Gate
Siemens (Mentor Graphics) Questa SLEC Equiv. Checking VHDL/Verilog RTL/Gate
Compass VFormal Equiv. Checking VHDL/Verilog RTL/Gate
Verysys Tornado Equiv. Checking VHDL/Verilog RTL/Gate
Abstract Hardware Ltd. Checkoff-E Equiv. Checking VHDL/Verilog RTL/Gate
IBM BoolsEye Equiv. Checking VHDL/Verilog RTL/Gate
Synopsys VC Formal Apps Model Checking VHDL/Verilog RTL
Cadence JasperGold Model Checking VHDL/Verilog RTL
Siemens (Mentor Graphics) ProFormal Model Checking VHDL/Verilog RTL
Abstract Hardware Ltd. Checkoff-M Model Checking VHDL/Verilog RTL/Gate
IBM RuleBase Model Checking VHDL RTL
Abstract Hardware Ltd. Lambda Theorem Proving VHDL/Verilog RTL/Gate
PUBLIC DOMAINTOOLS
CMU NuSMV Model Checking own language RTL
Cadence Cadence SMV Model Checking Verilog RTL
UC Berkeley VIS Model/Equ. Check. Verilog RTL/Gate
Stanford U. Murphy Model Checking own language RTL
Cambridge U. HOL Theorem Proving (SML) universal
SRI PVS Theorem Proving (LISP) universal
UT Austin/CLI ACL2 Theorem Proving (LISP) universal

1.40 (of 43)

Simulation in Verilog-XL

AWK program

Seq. equ. checking in VIS

Analyze counterexample in XL

Analyze counterexample in XL

Analyze counterexample in XL

Verilog RTL description

Synopsys-Verilog netlist description

VIS/XL-Verilog netlist description

Model checking in VIS

Model checking in VIS

Synthesize in Synopsys

EDIF generated by Synopsys

Design Flow and Formal Verification (VIS)

1.41 (of 43)

Design Flow and Formal Verification

• RT level

 Simulation of RTL
(+) efficient for less interacting concurrent components
(-) incomplete for complicated control parts and difficult error trace

 Model checking of RTL
(+) efficient for complicated interacting concurrent components
(+) counter-examples can trace design errors

• Netlist (Gate level)

 Equivalence checking of netlist vs. RTL
(+) check the equivalence of submodules to ensure the correctness of synthesis
(+) trace synthesis errors using counter-examples

 Model checking of netlist
(+) correctness of the entire gate-level implementation
(-) unpractical: state space explosion

1.42 (of 43)

References
1. W.K. Lam: Hardware Design Verification: Simulation and Formal Method-Based

Approaches. Prentice Hall, 2005. (ISBN: 0131433474, 624 pages)
2. T. Kropf. Introduction to Formal Hardware Verification, Springer Verlag, 1999.
3. O. Hasan and S. Tahar, Formal Verification Methods, Encyclopedia of Information

Science and Technology, pp. 7162-7170, IGI Global Pub., 2015.
4. C. Kern and M. Greenstreet. “Formal Verification in Hardware Design: A Survey”, ACM

Transactions on Design Automation of E. Systems, Vol. 4, April 1999, pp. 123-193.
5. R. P. Kurshan, “Formal Verification in a Commercial Setting”, Proc. Design Automation

Conference, Anaheim, California, June 9-13, 1997, pp 258-262.
6. Various Contributors, “Survey of Formal Verification”, IEEE Spectrum, June 1996, pp. 61-

67.
7. E. M. Clarke and J. M. Wing. “Formal Methods: State of the Art and Future Directions”.

ACM Computing Surveys, December 1996.
8. M.C. McFerland. “Formal Verification of Sequential Hardware: a Tutorial”. IEEE

Transactions on CAD, 12(5), May 1993.
9. A. Gupta. “Formal hardware verification methods: a Survey”. Formal Methods in System

Designs, Vol. 1, pp. 151-238, 1992.
10. M. Yoeli. “Formal Verification of Hardware Design”, IEEE Computer Society Press,

1991.
1.43 (of 43)

