
2. Verification by Equivalence Checking

2.1 (of 78)

Page

Combinational Circuits Verification 2.2
Propositional Logic (Calculus) 2.5
Propositional Resolution 2.11
Stålmarck’s Procedure 2.19
Reduced Ordered Binary Decision Diagrams (ROBDDs) 2.23
Sequential Circuits Verification 2.56
Relational Representation of FSMs 2.61
Relational Product of FSMs 2.65
Reachability Analysis on FSMs 2.67
Equivalence Checking Tools 2.76
References 2.78

Combinational Circuits Verification

2.2 (of 78)

• Consist of an interconnection of logic gates — AND, OR, NOT, NAND, NOR, XOR,
XNOR, and blocks implementing more complex logic (Boolean) functions.

• No logical loops, i.e., topologically there may be loops, but they are not sensitizable under
any (valid) input combination, even such loops may be prohibited / not produced by
automated analysis / synthesis tools

Goal
Given two Boolean netlists, check if the corresponding outputs of the two circuits are equal
for all possible inputs
• Two circuits are equivalent iff the Boolean function representing the outputs of the

networks are logically equivalent
• Identify equivalence points and implications between the two circuits to simplify

equivalence checking
• Since a typical design proceeds by a series of local changes, in most cases there are many

implications / equivalent subcircuits in the two circuits to be compared
• Various tautology/satisfiability checking algorithms based on heuristics (problem is NP-

complete, but many work well on “real” applications ...)
• In this course we consider three main combinational equivalence checking methods:

- Propositional resolution method (tautology/satisfiability checking)
- Stålmarck’s method (recent patented algorithm, very efficient and popular)
- ROBDD-based method (Boolean function converted into ROBDD’s representation)

Combinational Equivalence Checking
Explicit Proof

• Propositional resolution

• Stålmarck’s procedure

• ROBDDs

= flag: T/F
Tautology Check

(f1 = f2) = T

f1

2.3 (of 78)

f2

Combinational Equivalence Checking (con’t)

Implicit Proof

• ROBDDs

a

b

c

d

out 1

f1 (a,b,c)

out 2
f2(x,y,z)

q

p

x
y

z

0 1

b c

a

0 1

y z

x
check!

2.4 (of 78)

Propositional Logic (Calculus)

2.5 (of 78)

Syntax
P, Q, R,... — propositional symbols (atomic propositions)
t: true; f: false — constants
P: not P P  Q: P and Q P  Q: P or Q;
P  Q: if P then Q (proposition equivalent toPQ)
P  Q: P if and only if Q, i.e., P equivalent to Q

(proposition equivalent to (PQ)PQ))

Semantics
Given through the Truth Table:

An interpretation is a function from the propositional symbols to {t, f}

P Q P PQ PQ PQ PQ
t t f t t t t
t f f f t f f
f t t f t t f
f f t f f t t

Propositional Logic (cont’d)

• To determine if F is satisfiable or valid, test finite number (2n) of interpretations of the n
atomic propositions occurring in F
... but it is an exponential method... satisfiability is an NP-complete problem

• Formula F is satisfiable (consistent) iff it is true under at least one interpretation

• Formula F is unsatisfiable (inconsistent) iff it is false under all interpretations

• Formula F is valid iff it is true (consistent) under all interpretations
• Interpretation I satisfies a formula F (I is a model of F) iff F is true under I.

Notation: I F

• Theorem: A formula F is valid (a tautology) iff F is unsatisfiable. Notation: F

• The relationship between F to F can be visualized by “mirror principle”:

All formulas in propositional logic

Valid formulas Satisfiable,
but non-valid formulas Unsatisfiable formulas

G
F F

G

2.6 (of 78)

Propositional Logic (cont’d)
Proofs
• A proof of a proposition is derived using axioms, theorems, and inference rules (an

inference rule permits deducing conclusions based on the truth of certain premises)

• A logic formula F is deducible from the set S of statements if there is a finite proof of F
Fstarting from elements of S. Notation: S

Example: A simple proof system

• Axioms: K: A  (B A)
S: (A  (B  C))  ((A  B)  (A C))
DN: A A

• Inference rule (Modus Ponens): {AB, A} B

• A proof of AA

(1)

(2)

(3)

(4)

(5)

(A((DA)A))((A(DA))(AA))

A((DA)A)

(A(DA))(AA)

A(DA)

AA

by S ([B\DA], [C\A])
by K ([B\DA])

by MP, (1), (2)

by K

by MP, (3), (4).

2.7 (of 78)

Propositional Logic (cont’d)

Relation between syntax and semantics

• Truth tables provide a means of deciding truth

• Propositional logic is:

- complete: everything that is true may be proven, i.e., if S A then S A

- consistent (sound): nothing that is false may be proven. i.e., if S A then S A

- decidable: there is an algorithm for deciding the truth of any proposition, i.e., test a finite
(exponential) number of truth assignments

2.8 (of 78)

False Negative & False Positive

2.9 (of 78)

Let P be a proposition (a property) and A a verification method (algorithm).

• False Negative: (similar to incompleteness)

A(P) reports true  interpretation , (P) = true

A(P) reports false ( interpretation , (P) = true) ! ( , (P) = false)

• False Positive: (similar to inconsistency, unsoundness)

A(P) reports false  interpretation , (P) = false

A(P) reports true ( interpretation , (P) = false) ! ( , (P) = true)

Combinational Equivalence Checking

2.10 (of 78)

• Determine if two expressions f1 and f2 denote the same truth table

• Application: Determine if two combinational logic circuit designs C1 and C2 implement
the same truth table (logic (Boolean) function)

- Extract representation of logic expressions f1 and f2

- Verify if

(f1  f2) is a valid formula, i.e., f1  f2 is unsatisfiable
using satisfiability algorithms (Propositional Resolution methods), or

(f1  f2) and (f2  f1) hold (where f1 and f2 are transformed to
implication form using Stålmarck’s procedure), or

f1 and f2 have the same canonical form
using, e.g., Reduced Binary Decision Diagrams

Propositional Resolution
• A Literal L is an atomic proposition A or its negation A
• A Clause C is a finite set of disjunctive literals (C = L1  L2  L3  

C is true iff one of its elements is true. The empty clause { }is always false.

Let A1, A2, ... be atomic propositions and Li, j literals

• Conjunctive Normal Form (CNF): a conjunction of disjunctions of literals

F=((Li, j)), where Li, j {A1,A2, ...}{A1,A2, ...}

• Disjunctive Normal Form (DNF): a disjunction of conjunctions of literals

F=((Li, j)), where Li, j{A1,A2,...}{A1,A2,...}

Each Li, j {A1,A2, ...}{A1,A2, ...} appears in each disjunct (conjunct) at most once!

Theorem: For every logic formula F, there is an equivalent CNF and an equivalent DNF

• Canonical Conjunctive Form (CCF): CNF in which each L appears exactly once

• Canonical Disjunctive Form (DCF): DNF in which each L appears exactly once

i=1

n

j=1

mi

i=1

n

j=1

mi

2.11 (of 78)

Propositional Resolution (cont’d)

2.12 (of 78)

• Resolution is a proof method underlying some automatic theorem provers based on
simple syntactic transformation and refutation.

• Refutation is a procedure to show that a given formula is unsatisfiable

Resolution procedure:
- To prove F, we translate F into a set of clauses, each a disjunction of atomic formulae

or their negations.

- Each resolution step takes two clauses and yields a new one.

- The method succeeds if it produces the empty clause (a contradiction), thus refutingF.

Propositional Resolution (cont’d)

• Let F=(L1,1...L1,n1)...(Lk,1...Lk,nk) where literals Li, j {A1,A2,...}{A1,A2,...}
F can be viewed as a set of clauses: F={{L1,1,..., L1,n1},..., {Lk,1..., Lk,nk}}, where

- Comma separating two literals within a clause corresponds to 

- Comma separating two clauses corresponds to 

• Let L be a literal in clause C1 (LC1) and its complement L in clause C2 (L  C2),
Clause R is a resolvent of C1 and C2 if: R = (C1  {L})  (C2  {L})

• Example: F = {{p, r}, {q, r}, {q}, {p, v}, {s}, {s, v}}.

{p, r} {q, r p, v {s,v

{p, q} {p, s {s

{p}

{q}

{p}
{ }

2.13 (of 78)

Propositional Resolution (cont’d)

Theorem. F is unsatisfiable iff Res*(F)
• Algorithm: to decide satisfiability of formula F in CNF (clause set):

repeat
G:=F;
F:=Res(F)

until (( F) or (F = G);

if  F then “F is unsatisfiable” else “F is satisfiable”.

• A (resolution) deduction of C from F is a finite sequence C1, C2, ..., Cn of clauses such
that each Ci is either in F or a resolvent of Cj, Ck , (j, k < i)

• Res(F) = F  R where R is a resolvent of two clauses in F

Lemma. F and F  R are equivalent
• Define

Res0(F) = F,

Resn+1(F) = Res(Resn(F)), n  0

• Let Res*(F) =  Resn(F)
n  0

2.14 (of 78)

Propositional Resolution (cont’d)

Summary of basic idea:

G in DNF is valid?Goal:

2.15 (of 78)

G is unsatisfiable

F = G

in CNF: F = (L1,1..  L1,n1)  ...  (Lk,1 ...  Lk,nk)

Resolution

F = { }

F = {{L1,1, ... , L1,n1}, ..., {Lk,1 ..., Lk,nk}}

Refutation procedure

(contradiction)

Propositinal Resolution - Example

Two circuits C1 and C2

Propositional Resolution

C1: out1 = a  b

C2: out2 = ( a  b)  (a  a)

(Mux: out2 = ( s  b)  (s  a))

G = (out1  out2)

a

b
out1

a
b out2

C1

C2
= ?

1

0

2.16 (of 78)

(DNF)G = (out 1  out 2)  (out1  out 2)

= true?

F =  G =  out 1  out 2)  (out1  out 2))

= False? (unsatifiable!)

CNF

F = out 1  out 2)  (out1  out 2)
= (a  b)    a  b)  a  a)])  (a  b)   a  b)  a  a)])

=

= (a)  b)  a  b)

Literals: {{a}, {b}, {a, b}}

{b} {a, b

{a} {a}
 derive empty clause { }

{ }

2.17 (of 78)

Theorem Proving

out2 = a  bout1 = ( s  b)  (s  a)

= ( a  b)  a  a)

= ( a  b)  a

= ( a  a)  b a)

= 1  b  a)

= b  a = a  b

 out2 = out1

out1
a
b

s

1
0

out2
a
b

2.18 (of 78)

Stålmarck’s Procedure

2.19 (of 78)

• Transform propositional formula G (in linear time) in a nested implication form,
e.g.: G = (p  (q  r))  s

• G is now represented using a set of triplets {bi, x, y}, meaning “bi  (x  y)”,
e.g.: (p  (q  r))  s becomes {(b1, q, r), (b2, p, b1), (b3, b2, s)}; G = b3

• To prove a formula valid, assume that it is false and try to find a contradiction
(use 0 for false and 1 for true, as in switching (Boolean) algebra)

• Derivation rules: (a/b means “replace a by b”)
r1 (0, y, z)  y/1, z/0 meaning false  (y  z) implies y = true and z = false
r2 (x, y, 1)  x/1 meaning x  (y  true) implies x = true
r3 (x, 0, z)  x/1 meaning x  (false  z) implies x = true
r4 (x, 1, z)  x/z meaning x  (true  z) implies x = z
r5 (x, y, 0)  x/y meaning x  (y  0) implies x =y
r6 (x, x, z)  x/1, z/1 meaning x  (x  z) implies x = true and z = true
r7 (x, y, y)  x/1 meaning x  (y  y) implies x = true

Example: G = (p  (q  p)) : {(b1, q, p), (b2, p, b1)}, assume G = b2 = 0, i.e., (0, p, b1)
By r1 : p = 1 and b1 = 0, substitute for b1 and get (0, q, 1) (which is a terminal triplet)
Again by r1 this is a contradiction since 1/0 is derived for z in r1, hence b2 = G = 1 (true)

Stålmarck’s Procedure (cont’d)

• Not all formulas can be proved with these rules, need a form of branching: Dilemmarule
T = a set of triplets, Di, i = 1, 2, are derivations, results U[S1] and V[S2], conclusion T[S]

T
T[x/1]

D1
U[S1]

T[x/0]
D2

V[S2]
T[S]

Assume x = 0 derive a result, then assume x = 1 and also derive a result.

- If either derivation gives a contradiction, the result is the other derivation

- If both are contradictions, then T contains a contradiction

- Otherwise return the intersection of the result of the two derivations, since any
information gained from x = 0 and x = 1 must be independent of that value

Example: T = { (1, p, p), (1, p, p) } cannot be resolved using r1 - r7
T[p/1] = {(1, 0, 1), (1, 1, 0)} where (1, 1, 0) is a contradiction
T[p/0] = {(1, 1, 0), (1, 0, 1)} where (1, 1, 0) is again a contradiction
Hence T[S] results in a contradiction.

2.20 (of 78)

Stålmarck’s Procedure (cont’d)

Transformation from and-or-not logic to implication form:

not: G = , G = x

, G = xor: G =

and: G = , G = x

Example of equivalence checking:

y  t: Form C1  C2  {(0, y, t)} which by r1 yields [y/1, t/0] and after substitution

{(1, e, x), (e, b, 0), (x, f, 0), (f, a, g), (g, b, 0), (0, h, s), (h, b, 0), (s, u, 0), (u, r, v), (v, c, 0),
(r, w, 0), (w, a, p), (p, b, 0)} giving by r1 again [h/1, s/0] and...

A  A  0  (x, A, 0)

A  B A  B  x, y, B (y, A, 0)

A  B A B  x, y, 0 (y, A, z), (z, B, 0)

x ya
b .

2.21 (of 78)

.
a
b
c

r s t

C2 = {(t, h, s), (h, b, 0), (s, u, 0), (u, r, v), (v, c, 0),
(r, w, 0), (w, a, p), (p, b, 0)}

C1 = {(y, e, x), (e, b, 0), (x, f, 0),
(f, a, g), (g, b, 0)}

Check y  t and t  y

Stålmarck’s Procedure (cont’d)

2.22 (of 78)

Example of equivalence checking (cont’d):

{(1, e, x), (e, b, 0), (x, f, 0), (f, a, g), (g, b, 0), (1, b, 0), (0, u, 0), (u, r, v), (v, c, 0), (r, w, 0),
(w, a, p), (p, b, 0)} apply r1 and r5 and get [u/1, e/b, x/f, g/b, v/c, r/w, p/b] which
yields

{(1, b, f), (f, a, b), (b, b, 0), (1, w, c), (w, a, b)}

Application of Dilemma rule to, say, “b” yields:

b = 0: {(1, 1, f), (f, a, 1), (1, 0, 0), (1, w, c), (w, a, 1)} apply r2 and get [f/1, w/1] yields
{(1,1, 0), (1, a, 1), (1, 0, c), (1, a, 1)}, where (1,1, 0) is a contradiction

b = 1: {(1, , f), (f, a, ), (0, 1, 0), (1, w, c), (w, a, )} yields [f/a, w/a] by r5, thus
{(1, , a), (a, a, ), (0, 1, 0), (1, a, c), (a, a, )}, then applying the Dilema rule
again on “a” leads to a contradiction again

Conclusion: y  t holds.
Similarly for t  y

The two circuits are equivalent.

Binary Decision Diagrams (BDDs)

2.23 (of 78)

Classical representation of logic functions: Truth Table, Karnaugh Maps, Sum-of-Products,
critical complexes, etc.

• Critical drawbacks:
- May not be a canonical form or is too large (exponential) for “useful” functions,

 Equivalence and tautology checking is hard

- Operations like complementation may yield a representation of exponential size

Reduced Ordered Binary Decision Diagrams (ROBDDs)

• A canonical form for Boolean functions

• Often substantially more compact than traditional normal forms

• Can be efficiently manipulated

• Introduced mainly by R. E. Bryant (1986).

• Various extensions exist that can be adapted to the situation at hand (e.g., the type of
circuit to be verified)

Binary Decision Trees

• A Binary decision Tree (BDT) is a rooted, directed graph with terminal and nonterminal
vertices

• Each nonterminal vertex v is labeled by a variable var(v) and has two successors:
- low(v) corresponds to the case where the variable v is assigned 0

- high(v) corresponds to the case where the variable v is assigned 1

• Each terminal vertex v is labeled by value(v) {0, 1}
• Example: BDT for a two-bit comparator, f(a1,a2,b1,b2) = (a1  b1)  (a2  b2)

a1

b2 b1

a2 b2

b1 a2

0

0 0

a2
0

1

1

1

a2
1

0

1

1

1

1 0 1 0 1 0

b1 b1 b1 b2 b2 a2

1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0

Unordered
variables

2.24 (of 78)

Binary Decision Trees (cont’d)

2.25 (of 78)

• We can decide if a truth assignment x = (x1, ..., xn) satisfies a formula in BDT in linear
time in the number of variables by traversing the tree from the root to a terminal vertex:
- If var(v)  x is 0, the next vertex on the path is low(v)
- If var(v)  x is 1, the next vertex on the path is high(v)
- If v is a terminal vertex then f(x) = fv(x1, ..., xn) = value(v)

- If v is a nonterminal vertex with var(v)=xi , then the structure of the tree is obtained by
Shanon’s expansion

fv(x1, ..., xn) = xi  flow(v)(x1, ..., xn)]  [xi  fhigh(v)(x1, ..., xn)]

• For the comparator, (a11, a20, b11, b21) leads to a terminal vertex labeled by 0,
i.e., f(1, 0, 1, 1) = 0

• Binary decision trees are redundant:
- In the comparator, there are 6 subtrees with roots labeled by b2, but not all are distinct

• Merge isomorphic subtrees:
- Results in a directed acyclic graph (DAG), a binary decision diagram (BDD)

Reduced Ordered BDD

2.26 (of 78)

Canonical Form property
• A canonical representation for Boolean functions is desirable:

two Boolean functions are logically equivalent iff they have isomorphic representations

• This simplifies checking equivalence of two formulas and deciding if a formula is
satisfiable

• Two BDDs are isomorphic if there exists a bijection h between the graphs such that
- Terminals are mapped to terminals and nonterminals are mapped to nonterminals
- For every terminal vertex v, value(v) = value(h(v)), and
- For every nonterminal vertex v:

var(v) = var(h(v)), h(low(v)) = low(h(v)), and h(high(v)) = high(h(v))

• Bryant (1986) showed that BDDs are a canonical representation for Boolean
functions under two restrictions:
(1) the variables appear in the same order along each path from the root to a terminal
(2) there are no isomorphic subtrees or redundant vertices

 Reduced Ordered Binary Decision Diagrams (ROBDDs)

Canonical Form Property

• Requirement (1): Impose total order “<” on the variables in the formula:
if vertex u has a nonterminal successor v, then var(u) < var(v)

• Requirement (2): repeatedly apply three transformation rules (or implicitly in operations
such as disjunction or conjunction)

1.Remove duplicate terminals: eliminate all but one terminal vertex with a given
label and redirect all arcs to the eliminated vertices to the remaining one

1 1 0

a

0 11 0

0 0 1

a

0 b
0

0 1 0 1

b b 1b
1

2.27 (of 78)

Canonical Form Property (cont’d)
2. Remove duplicate nonterminals: if nonterminals u and v have var(u) = var(v),
low(u) = low(v) and high(u) = high(v), eliminate one of the two vertices and
redirect all incoming arcs to the other vertex

a a a
0

1 0
1 0

share

1

3. Remove redundant tests: if nonterminal vertex v has low(v) = high(v),
eliminate v and redirect all incoming arcs to low(v)

a

2.28 (of 78)

Creating the ROBDD for x  y z

x
0 1

1 y 0

z
1 0

0 y 1

z
0 1

0 1

(c)

x

y

000 1 1 0 1 1

0 1

0 1
y

0 1

z
0 1

z
0 1

z
0 1

z
0 1

x x
0 1

0
1

becomes

0 1
xx x

0 1

becomes

x
(b)

2.29 (of 78)

(a)

Canonical Form Property (cont’d)

• A canonical form is obtained by applying the transformation rules until no further
application is possible

• Bryant showed how this can be done by a procedure called Reduce in linear time
• Applications:

- checking equivalence: verify isomorphism between ROBDDs
- non-satisfiability: verify if ROBDD has only one terminal node, labeled by 0
- tautology: verify if ROBDD has only one terminal node, labeled by 1

Example:
ROBDD of 2-bit comparator f(a1,a2,b1,b2) = (a1  b1)  (a2  b2) with variable
order a1 < b1 < a2 <b2:

a1

b1 b1

a2

b2

0

0

0

b2

1

1

1

1 0

0
1

1
1

0

0

2.30 (of 78)

ROBDD Examples

a
b out = f (a,b) = a  b

a b out
0 0 0
0 1 1
1 0 1
1 1 1

a

b b

0 1 1 1

0 1

0 1 0 1

a

b

0 1

0 1

0 1

1

a

b

0

0 1

1

2.31 (of 78)

10

ROBDDBDD

OR

0 1 0 1

0 0 0 1 0 1

ROBDD Examples (con’t)

out = f (a,b) = a  b

b0
1

10

a

b b

a
1

2.32 (of 78)

0

a
b

ROBDDBDD

AND

ROBDD Examples (con’t)

XOR a
b out = f(a,b) = a b

bb

0 1

0 1

a

b b
0 1

00
1

1

a

1 0

2.33 (of 78)

0 01 1 0 1

ROBDDBDD

ROBDD Examples (con’t)

a
sb out = f(a,b) =  (a  b)

a b out

0 0 1 b 0
0 1 1 1 0
1 0 1
1 1 0 0 1

1 a b out
0 - 1
- 0 1
1 1 0

red
T.T.

a

b b b

a

1 1 0

a

b

1 0

ROBDD

2.34 (of 78)

a

1 1 1 0

BDD

NAND

1

1

1 1

1 11

0

0

0
0

00

Variable Ordering Problem

• The size of an ROBDD depends critically on the variable order

• For order a1 < a2 < b1 < b2, the 2-bit comparator f(a1,a2,b1,b2) = (a1  b1)  (a2  b2)
ROBDDbecomes:

• For an n-bit comparator:
a1 < b1 < ... < an < bn gives 3n+2 vertices (linearcomplexity)

a1 < ... < an < b1 ... < bn, gives 3x2n 1 vertices (exponentialcomplexity!)

a1

a2 a2

b2

0

0

b1
0

b1
0

1

1

1

1
0

1

1 b1

0

b2

1

1 0

0

b1 0
1

0
1

2.35 (of 78)

Variable Ordering Problem - Example

y1 y1 y1 y1 y1 y1

y2 y2 y2 y2

y3

0 1

x2
0 1

x2
0 1

x3
0 1

x3
0 1

x3
0 1

x3
0 1

0 1
0

0

0 1 0 1 0 1 0 1

y3
0 1 0 1

1 0 1 0 1
y1

0 1 0
1 0

1
y1

1 y2

2.36 (of 78)

y2

1

x10 1

x2
0 1

11

y3 1y3 1

0

x3
0 1

y1
0 1

y1
0 1

00

0 0

x1  y1  x2  y2  x3 y3

x10 1

Variable Ordering Problem (cont’d)

2.37 (of 78)

• The problem of finding the optimal variable order is NP-complete

• Some Boolean functions have exponential size ROBDDs for any order (e.g., multiplier)

Heuristics for Variable Ordering

• Heuristics developed for finding a good variable order (if it exists)

• Intuition for these heuristics comes from the observation that ROBDDs tend to be smaller
when related variables are close together in the order (e.g., ripple-carry adder)

• Variables appearing in a subcircuit are related: they determine the subcircuit’s output

 should usually be close together in the order

Dynamic Variable Ordering

• Useful if no obvious static ordering heuristic applies

• During verification operations (e.g., reachability analysis) functions change, hence initial
order is not good later on

• Good ROBDD packages periodically internally reorder variables to reduce ROBDD size

• Basic approach based on neighboring variable exchange ... < a < b < ...  ...< b < a < ...
Among a number of trials the best is taken, and the exchange is repeated

Logic Operations on ROBDDs

• Residual function (cofactor): b  {0, 1}

f xib (x1,...,xn) = f(x1, ...,xi-1, b, xi+1, ..., xn)

• ROBDD of f xib computed by a depth-first traversal of the ROBDD of f:

For any vertex v which has a pointer to a vertex w such that var(w) = xi, replace the
pointer by low(w) if b is 0 and by high(w) if b is 1.

If not in canonical form, apply Reduce to obtain ROBDD of f xib .

• All 16 two-argument logic operations on Boolean function implemented efficiently on
ROBDDs in linear time in the size of the argument ROBDDs.

2.38 (of 78)

Logic Operations on ROBDDs (cont’d)

• Based on Shannon’s expansion

f = [x  f x0]  [x f x1]

• Bryant (1986) gave a uniform algorithm, Apply, for computing all 16 operations:
f * f ’: an arbitrary logic operation on Boolean functions f and f ’

v and v’: the roots of the ROBDDs for f and f’, x = var(v) and x’ = var(v’)

• Consider several cases depending on v and v’
(1) v and v’ are both terminal vertices: f * f ’ = value(v) * value(v’)

(2) x = x’: use Shannon’s expansion

f * f’= [x (f x0 * f’ x0)]  x (f x1 * f’ x1)]

to break the problem into two subproblems, each is solved recursively
The root is v with var(v) = x

Low(v) is (f x0 * f’ x0)

High(v) is (f x1 * f’ x1)

2.39 (of 78)

Logic Operations on ROBDDs (cont’d)

ITE(F, G, H) =

=

=

v.(F.G + F’.H)v + v’.(F.G + F’.H)v’

v.(Fv.Gv + F’v.Hv) + v’.(Fv’.Gv’ + F’v’.Hv’)

(v, ITE(Fv, Gv, Hv), ITE(Fv’, Gv’, Hv’))

With terminal cases being: F = ITE(1, F, G) = ITE(0, G, F) = ITE(F, 1, 0) = ITE(G, F, F)
we define NOT(F) = ITE(F, 0, 1)

OR(F, G) = ITE(F, 1, G)
AND(F, G) = ITE(F, G, 0)
XOR(F, G) = ITE(F, G, G)

LEQ(F, G) = ITE(F, G, 1) etc.

(3) x < x’: f’ x0 = f’ x1 = f’ since f’ does not depend on x
In this case the Shannon’s expansion simplifies to

f * f’= [x (f x0 * f’)]  x  (f x1 * f’)], similar to (2)

and compute subproblems recursively,

(4) x’ < x: similar to the case above

Improvement using the if-then-else (ITE) operator:
ITE(F, G, H) = F . G + F’. H where F, G and H are functions

Recursive algorithm based on the following, v is the top variable (lowest index):

2.40 (of 78)

Logic Operations on ROBDDs (cont’d)

• By using dynamic programming, it is possible to make the ITE algorithm polynomial:
(1) The result must be reduced to ensure that it is in canonical form;

- record constructed nodes (unique table);
- before creating a new node, check if it already exists in this unique hash table

(2) Record all previously computed functions in a hash table (computed table);
- must be implemented efficiently as it may grow very quickly in size;
- before computing any function, check table for solution already obtained

• Complement edges can reduce the size of an ROBDD by a factor of 2
- Only one terminal node is labeled 1
- Edges have an attribute (dot) to indicate if they are inverting or not
- To maintain canonicity, a dot can appear only on low(v) edges

b1

2.41 (of 78)

b1

a2

b2

0

0

0

1

1

1 0

1

10

F
a1

Comparator:- Complementation achieved in O(1)
time by placing a dot on the function
edge

- F and F’ can share entry in computed
table

- Adaptation of ITE easy

• Test for F  G can be computed by a
specialized ITE_CONSTANT algorithm

BDD Operators - Example

Task: compute ROBDD for f (a,b)

out = f (a,b)

y

a
b

x

1) f = x  y = (a  b)  (a b) order a,b.

a b out
0 0 0
0 1 0
1 0 0
1 1 1

a b out
0 - 0
- 0 0
1 1 1

a

b
1

2.42 (of 78)

1 0

0

1 0

BDD Operators - Examples (con’t)

2) f = x y

BDDf = “BDDx BDDy”

= Conj (BDDx, BDDy)

a

b 1

0

0
1

0

BDDx

0
0 1

1

a

b
x  0 = 0

x  1 = x

BDDy

a
1

a = 1: 1  b = b
a = 0: b  0 = 0 0 b

b = 1: 1  1 = 1 1

b = 0: 0  0 = 0 0 1

2.43 (of 78)

11 0

Other Decision Diagrams

2.44 (of 78)

• Multiterminal BDD (MTBDD): Pseudo-Boolean functions Bn  N, terminal nodes are
integers

• Binary Moment Diagrams (BMD): for representing and verifying arithmetic operations,
word-level representation

• Ordered Kronecker Functional BDDs (OKFBDD): Based on XOR operations and OBDD

• Free BDDs (FBDD): Different variable order along different paths in the graph

• Zero suppressed BDDs (ZBDD)

• Combination of various forms of DDs integrated in DD software packages: Drechsler et
al (U. Freiburg, Germany), Clarke et al (Carnegie Mellon U., USA)

• Extension to represent systems of linear and Boolean constraints (DTU)

• Multiway Decision Diagrams (MDG): Representation for a subset of equational first-
order logic for modeling state machines with abstract and concrete data (U. of Montreal)

Well known ROBDD packages:
• CMU (as used in SMV from Carnegie Mellon U.)

• CUDD, U. of Colorado at Boulder (as used in VIS from UC at Berkeley)

• Industrial packages: Intel, Lucent, Cadence, Synopsys, Bull Systems, etc.

Applications of ROBDDs

2.45 (of 78)

ROBDD:
• Construction DD from circuit description:

- Depth-first vs. breadth-first construction (keep only few levels in memory, rest on disk;
problem with dynamic reordering)

- Partitioning of Boolean space, each partition represented by a separate graph
- Bottom-up vs. top-down, introducing decomposition points

• Internal correspondences in the two circuits — equivalent functions, or complex relations

ATPG-based:
• Combine circuits with an XOR gate on the outputs, show inexistence of test for a fault s-

a-0 on the output (i.e., the output would have to be driven to 1 meaning that there is a
difference in the two circuits)

• Use ATPG and learning to determine equivalent circuit nodes

Fast random simulation:
• Detect quickly easy differences

Real tools:
• Use a combination of techniques, fast and less powerful first, slow but exact later

Combinational Equivalence Chequing - Example

Two circuits C1 and C2

C2

C1
= ?

a
b out 1

1
0 out 2a

b

b

0 1

0 1

0 1

a

b

0

0
0

1

1

a

b a

0 1

0 1

10

1 0

c

C1: a  b C2: if a then a else b MUX: if c then a else b

isomorph

2.46 (of 78)

1

Combinational Equivalence Checking –
Multiplexor Example

Specification: if c = 1 then out = a
else out = b

Build ROBBD for Spec:

ROBDD1:
order: c, a, b

0
b

1
a

0 1

0 1

1
0

cc a b out
1 1 - 1
1 0 - 0
0 - 1 1
0 - 0 0

Implementation:

c
a

b

out = (c  a)  (c  b)

out
c a b out
1 1 0 1
1 1 1 1
1 0 0 0
1 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0
0 0 1 1

2.47 (of 78)

Multiplexor Example (con’t)

Build ROBDD for Imp:

c
a
b

y

out

x: c  a c
1

a 0
1

1 0

0

disjunction (or)

c

1

0

b

1 0

1

a b

1 0

001 1

isomorph to ROBDD1 !

2.48 (of 78)

x

ROBDD2
order: c, a, b

c
1 0

y: c  b

0

Multiplexor Example (con’t)

Alternative way to build ROBDD2:

out =

b
out

c  a  c b

1 00

0 0

1 00

0 1

1

0 1

1

1 1

b b b b

a a

cBBD

0

0

01 1

1

0
ab

c
1

1 10

0 1

ROBBD
0

order: c, a, b

isomorph to ROBDD1

2.49 (of 78)

a
c

Comparator Example

b̂
f a b 

2

2

1

Spec: ˆ ˆ ˆ ˆfa b= 1 if a = b

b1b

b2 b2

01

1

1

0

1
1 0
a21

1
0

0

0

a1
1 0

Refinement: f (a1, a2,b1,b2) = 1 if (a1 = b1)  a2 = b2)
â = a1a2

b̂ = b1b2

Implicit:

=

=
f (......)

2.50 (of 78)

a1
b1

a2
b2

ˆ ˆâ

Comparator Example (cont’d)

a1
b1

a2
b2

f ()

f =

x
y

x
y z

= z : z = x  y  x  y

2.51 (of 78)

T1 T2

a1  b1  a1  b1 

a2  b2  a2 b2
T4 T3

Comparator Example (cont’d)

1

0

x  0= xdisj: T1, T2, T12 a1

1 1

0

disj: T3, T4, T34

a2

1 0

1
0 0
b2 b2

a1

1 0

1

0

b1
0 1

T2:

a2

0

0

b2
1

1

1
0

T4:

a1

b1

1
0

0 1

0

T1:

a2

b2

1

0

0

0

T3:

x  1= 1b1 b1

2.52 (of 78)

0

0

1

1

101

1

1

Comparator Example (cont’d)

b1b1

a2

0

2.53 (of 78)

1

0

0

0

0

0

0
1

1

1

0 1

1
b2 b2

a1

conj. T12,T34, a1, a2
b1,b2

) independent

order: a1, b1, a2,b2

Isomorph to the spec

1

Equivalence Checking in Practice

2.54 (of 78)

• Usually, combinational circuits implement arithmetic and logic operations, and next-state
and output functions of finite-state machines (sequential circuits)

• Verifying the behavior of the gate-level implementation against the RTL design of digital
systems can often be reduced to verifying the combinational circuits
- Equivalence comparison between the next-state and output functions (combinational

circuits)
- Requires that both have the same state space (and of course inputs and outputs),

knowing the mapping between states helps...
- Can also be used to verify gate-level implementation against gate-level model extracted

from layout
- This kind of verification is useful for confirming the correctness of manual changes or

synthesis tools

• If the state space is not the same, sequential (behavioral equivalence) of FSM must be
considered ...

Cutpoint-based Equivalence Checking

2.55 (of 78)

0?

f1

f2

f3

v1

v2

0?

0?

f1

f2

f3

v2

v1

x

Cutpoint guessing:
• Compute net signature with random simulator
• Sort signatures + select cutpoints
• Iteratively verify and refine cutpoints
• Verify outputs

Cutpoints are used to
partition the Design

Sequential Equivalence Checking

2.56 (of 78)

• If combinational verification paradigm fails (e.g. we have no name matching)

• Two options:
– Try to match registers automatically

• functional register correspondence
• structural register correspondence

– Run full sequential verification based on state traversal
• very expensive but most general

Basic Model Finite State Machines

2.57 (of 78)

X=(x1,x2,…,xn) Y=(y1,y2,…,yn)


S=(s1,s2,…,sn) S’=(s’1,s’2,…,s’n)

D

M(X,Y,S,S0,,):
X: Inputs
Y: Outputs
S: Current State
S0: Initial State(s)
: X  S  S (next state function)
: X  S Y (output function)

Delay element:
• Clocked: synchronous
 single-phase clock, multiple-phase clocks

• Unclocked: asynchronous

Finite State Machines Equivalence

2.58 (of 78)




D




D

{X1,X2,…,Xn} {0,0,...,0}

y1

y2

Build Product Machine M1 M2:

M1

M2

Definition:
M1 and M2 are functionally equivalent iff the product machine
M1  M2 produces a constant 0 for all valid input sequences {X1,…,Xn}.

Illustrative Example

2.59 (of 78)

(s1)’ = s1  x

Product Machine:
{s1,s2,s3} U {s4,s5}s1

1 11

1 1

s2 s3

s4
s5

x

Transition Relations:

(s2)’ =  (s1  s3)

(s3)’ = s1  s2

(s4)’ = s4 x
(s5)’ =  (s4  s5)

Sequential Circuits and Finite State Machines

• To verify the behavior of such circuits we need efficient representation for the
manipulation of next-state and output functions and sets of states

• Using characteristic functions of relations and sets

Comb.
Logic
f(x, y)

Comb.
Logic
g(x, y)

r1

rs

x

z

y’y

r = (r1, ..., rs) a vector of memory bits
— state variables, memorize encoded states

y = (y1, ..., ys) a vector of present state values
y’ = (y’1, ..., y’s) a vector of next state values
x = (x1, ..., xm) a vector of input bits

— encode input symbols
z = (z1, ..., zn) a vector of output bits

— encode output symbols
f = output function, f(x, y) = Mealy, f(y) = Moore
g = next-state function
Here we consider FSM synchronized on clock tran-
sitions — synchronous sequential circuitsClock

2.60 (of 78)

Relational Representation of FSM

Representation of Relations and Sets
• If R is n-ary relation over {0,1} then R can be represented by (the ROBDD of) its

characteristic function: fR(v1,...,vn) = 1 iff (v1,...,vn) R
- Same technique can be used to represent sets of states

• Transition relation N of a sequential circuit is represented by its Boolean characteristic
function over inputs and state variables:

N(x, y1, ..., ys,y1’, ..., ys’)

• Example: synchronous modulo 8 counter, N(y, y’) = N0(y, y0’)N1(y, y1’)N2(y, y2’)

y1

y0

Next state y’:
y0’ = y0

y1’ = y0  y1

y2’ = (y0  y1  y2
Transition relation N(y,y’):

N0(y,y’) = (y0’ y0)

N1(y,y’) = (y1’  y0  y1)
N2(y,y’) = (y2’ (y0y1y2)

R
eg

is
te

r (
3

bi
ts

)

2.61 (of 78)

y2’ y2

y1’

y0’

Relational Representation of FSM (cont’d)

Quantified Boolean Formulas (QBF)

• Needed to construct complex relations and manipulate FSMs

• V={v1,v2,..., vn} = set of Boolean (propositional) variables

• QBF(V) is the smallest set of formulas such that
- every variable in V is a formula
- if f and g are formulas, then f, f  g, f  g are formulas
- if f is a formula and vV, then v.f and v.f are formulas

• A truth assignment for QBF(V) is a function : V  {0,1}
If a  {0,1}, then [va] represents

[va](w) = a if v = w
[va](w) = (w) if v  w

• f is a formula in QBF(V) and  is a truth assignment:  f if f is true under .

2.62 (of 78)

Relational Representation of FSM (cont’d)

Quantified Boolean Formulas (cont’d)

• QBF formulas have the same expressive power as ordinary propositional formulas;
however, they may be more concise

• QBF Semantics: relation is defined recursively:

f or  g;
f and  g;

 v iff (v)=1;

 f iff  | f;

 f  g iff 

 f  g iff 





v.f iff [v0]

v.f iff [v0]

f or [v1] f;

f and [v1] f.

• Every QBF formula can represent an n-ary Boolean relation consisting of those truth
assignments for the variables in V that makes the formula true: Boolean characteristic
function of the relation

• x. f = f |x0  f |x1, x. f = f |x0  f |x1

In practice, special algorithms needed to handle quantifiers efficiently (e.g., on ROBDD)

2.63 (of 78)

Sequential Equivalence Checking

Basic Idea:
To prove the equivalence of two FSMs M1 and M2 (with the same input and output
alphabet), a product machine is formed which tests the equality of outputs of the two
individual machines in every state

M1 and M2 are equivalent iff the product machine produces Flag = true output in every
state reachable from the initial state

• Coudert et al. were first to recognize the advantage of representing set of states with
ROBDD’s: Symbolic Breadth-First Search of the transition graph of the product machine

• Their technique was initially applied to checking machine equivalence and later extended
by McMillan, et al. to symbolic model checking of temporal logic formulas (in CTL)

M1

M2

x

z

z
Flag

2.64 (of 78)

Product Machine

Relational Product of FSMs

2.65 (of 78)

Relational Products — implementation using ROBDD

• A typical task in verification: compute relational products with abstraction of variables:
 v.[f(v)  g(v)]

• Algorithm RelProd computes it in one pass over ROBDDs f(v) and g(v), instead of
constructing f(v)g(v)

• RelProd uses a computed table (result cache), and is based on Shannon’s expansion

• Entries in the cache have the form (f, g, E, h), where E is a set of variables that are
existentially qualified out and f, g and h are (pointers to) ROBDDs

• If an entry indexed by f, g and E is in the cache, then a previous call to RelProd (f, g, E)
has returned h, it is not recomputed

• Algorithm works well in practice, even if it has theoretical exponential complexity

Relational Representation of FSMs (cont’d)

2.66 (of 78)

Relational Product Algorithm
RelProd (f, g: ROBDD, E: set of variables)
if f=false  g=false then return false
else if f=true  g=true

then return true
else if (f, g, E, h) is cached

then return h
else let x and y be the top variables of f and g, respectively

let z be the topmost of x and y,
h0:=RelProd(f|z=0, g|z=0, E)
h1:=RelProd(f|z=1, g|z=1, E)
if z E
then h:=Or(h0, h1) {ROBDD: h0h1}
else h:=IFThenElse(z, h1, h0)

endif
insert (f, g, E, h) in cache
return h
endif

Reachability Analysis on FSMs
Computing Set of Reachable States

• Reachable state computation (state enumeration) is needed for FSM equivalence and
model checking

• S0 = a set of states, represented by the ROBDD S0(V)

S1=S0  { s’  s [s  S0  (s, s’) N]}

S1(y’)=S0(y’) yi [S0(y) N(y,y’)]
yi  y

Find those states S1 reachable
in at most one transition from S0:

ROBDD’s S0(y) and N(y, y’),
compute an ROBDD representing S:1

S0
S1

S2
S2 = S0{s’ | s [s  S1  (s, s’)  N]}

S2(y’)=S0(y’) yi [S1(y) N(y,y’)]
yi  y

2.67 (of 78)

Reachability Analysis on FSMs (cont’d)

2.68 (of 78)

Reachability Analysis (cont’d)

• In general, the states reachable in at most k+1 steps are represented by:

• As each set of states is a superset of the previous one, and the total number of states is
finite, at some point, we must have Sk+1 = Sk, k  2s the number of states

• Reachability computation can be viewed as finding “least fixpoint”

• What about inputs x ? Existentially quantify them out in the relational product
(equivalent to closing the system with a non-deterministic source of values for x)

Sk+1(y’) = S0(y’) yi [Sk(y) N(y.y’)]
yi  y

BDD Encoding

=
M1

Flag

Product Machine

Basic idea:
1) connect both machines to equality check of outputs
2) compute set of reachable states

2a) representing set of states using ROBDD
2b) computing “images” of BDDs of all next states (using transition relations)
2c) reachability iteration (using images starting from one initial state until sequence converges)

R0 = initial BDD

Ri + 1 = Ri  ImageRi  convergence;

2.69 (of 78)

…..

M2

ROBDD Encoding (cont’d)

Representing set of states using ROBDDs

x1

x0

x2

1

0

1

00 1

1

0 1

{110} {010}

x0  x1 x2 x0  x1 x2

1

x0
x1

1

x2
0

0

Set

Formula

ROBDD

2.70 (of 78)

x2

x1

{110, 010}

(x0  x1 x2)  x0  x1 x2)

1

0
1

0

10

0

x1 x2

0

1

ROBDD Encoding (cont’d)

Representing set of states using ROBDDs

Set

Formula

ROBDD

2.71 (of 78)

(x0  x1 x2)  x0  x1  x2)  x0  x1 x2)
 x0  x1  x2)  x0  x1 x2) x0  x1  x2)

0

x1

x0

{100, 101, 110, 111, 010, 011}

= x0  x1

0

0 1

1

1

Sequential Equivalence Checking Example

mux

0
mux

1
0

1

x1 y1
x0 y0

out1

out0

i0

flag

1) Connect both machines to equality check of outputs

i
i1

x2

2.72 (of 78)

y2

clk

Q D
0

clk

Q D
0

clk

Q D
1

clk

Sequential Equivalence Checking Example (con’t)

2a) Representing set of states using ROBDD

Initial State: x0 = 0
x1 = 1
x2 = 0

{0 1 0}
set

x0  x1 x2

2.73 (of 78)

ROBDD
formula

0 1

1

x0
x1

1

x2
0

0

0

1

Sequential Equivalence Checking Example (cont’d)

2b) Compute images of set {0 1 0}
= 0 (i = 0)
= 1 (i = 1)
= 1 (i = 0)
= 0 i = 1)
= 0 i = 0)
= 1 i = 1)

y0 = x0  i

y1 = i  x1  i  x2

y2 = i  x2  i x1

Tansition
Relation

x0: 0
x1: 1
x2: 0

i = 0 0 i = 1 1
1 0
0 1

{010 , 101}

BDD1 BDD2

ROBDD

2.74 (of 78)

x0=0

x1=1
x2=0

x1=1
x2=0

image: x0  x1  x2  x0  x1  x2
i = 0 i = 1

BDD1  BDD0

disj. (BDD1, BDD2)

(
()

)

)(

0

x0
0

1

1

1

x1

x2

x1

0

0
0

0

1

1

1
x2

Example (cont’d)

2.75 (of 78)

2c) Reachability iteration

R0= x0  x1 x2

R1= x0  x1  x2  x0  x1  x2  R0 = 1
R2=  R0 = 1

→ R2= R1

In terms of sets:

R0 = {010}

R1 = {010, 101}

R2 = {010,101}

→ R2 = R1

Converged

 all states reached!

Equivalence Checking Tools

2.76 (of 78)

Commercial tools:
• Chrysalis: Design Verifier

• Synopsys: Formality

• Cadence: Conformal

• Verysys: Tornado

• AHL: ChekOff-E

Application:
• Used to prove equivalence of two sequential circuits that have the same state variables

(or at least the same state space and a known mapping between states) by verifying that
they have the same next-state and output functions

• Used in place of gate vs. RTL verification by simulation

Recommendations:
• Use modular design, relatively small modules, 10k - 20k gates

• Maintain hierarchy during synthesis (not flattening) and before layout: equivalence can
be proven hierarchically much faster, especially for arithmetic circuits

Equivalence Checking Tools (cont’d)

2.77 (of 78)

CheckOff-E

• Commercial product by Abstract Hardware Ltd. (UK) and Siemens AG (Germany)

• Performs behavioral comparison of two Finite State Machines

• Input EDIF netlist + library or VHDL

• VHDL subset (superset of synthesizable synchronous VHDL)
- no real time clauses (after, wait for), no conditional loop statements

• Interprets VHDL simulation semantics to build a Micro FSM

• Converts to Macro FSM by merging transition until stabilization at each time t

• Macro FSM is starting point for any verification; representation in ROBDD
• Product discontinued!

References

2.78 (of 78)

1. V. Sperschneider, G. Antoniou. Logic: A Foundation for Computer Science. Addison-
Wesley, 1991.

2. S. Reeves, M. Clarke. Logic for Computer Science. Addison-Wesley, 1991.
3. Alan J. Hu, Formal Hardware Verification with BDDs: An Introduction, IEEE Pacific Rim

Conference on Communications, Computers, and Signal Processing, pp.677-682, 1997.
4. J. Jain, A. Narayan, M. Fujita, and A. Sangiovanni-Vincentelli, Formal Verification of

Combinational Circuits, VLSI Design, 1997.
5. R.E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers, C-35(8), pp. 677-691, August 1986.
6. R.E. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams.

ACM Computing Surveys, 24(3), 1992, pp. 293-318.
7. R.E. Bryant. Binary Decision Diagrams and Beyond: Enabling Technologies for Formal

Verification. International Conference on Computer-Aided Design, pp. 236-243, 1995.
8. S. Minato. Binary Decision Diagrams and Applications for VLSI CAD. Kluwer Academic

Publishers, 1996.
9. M. Sheeran, G. Stålmarck. A tutorial on Stålmarck’s proof procedure for propositional

logic. Formal Methods in Systems Design, Kluwer, 1999.
10.O. Coudert and J.C. Madre, A Unified Framework for the Formal Verification of

Sequential Circuits, Int. Conference on Computer-Aided Design, pp. 126-129, 1990.
11.H. Touati, H. Savoj, B. Lin, R.K. Brayton, and A. Sangiovanni-Vincentelli, Implicit State

Enumeration of Finite State Machines Using BDD’s, Int. Conference on Computer-Aided
Design, pp. 130-133, 1990.

