
3. Temporal Logics and Model Checking

3.1 (of 47)

Temporal Logics
Linear Temporal Logic (PLTL)
Branching Time Temporal Logic (BTTL)
Computation Tree Logic (CTL)
Linear vs. Branching Time TL
Structure of Model Checker
Notion of Fixpoint
Fixpoint Characterization of CTL
CTL Model Checking Algorithm
Symbolic Model Checking
Model Checking Tools
References

Page

3.2
3.4
3.8
3.9
3.16
3.19
3.20
3.25
3.30
3.34
3.42
3.46

Temporal Logics

3.2 (of 47)

Temporal Logics

• Temporal logic is a type of modal logic that was originally developed by philosophers to
study different modes of “truth”

• Temporal logic provides a formal system for qualitatively describing and reasoning about
how the truth values of assertions change over time

• It is appropriate for describing the time-varying behavior of systems (or programs)

Classification of Temporal Logics

• The underlying nature of time:
Linear: at any time there is only one possible future moment, linear behavioral trace
Branching: at any time, there are different possible futures, tree-like trace structure

• Other considerations:

Propositional vs. first-order
Point vs. intervals

Discrete vs. continuous time
Past vs. future

Linear Temporal Logic

• Time lines
Underlying structure of time is a totally ordered set (S,<), isomorphic to (N,<):

Discrete, an initial moment without predecessors, infinite into the future.

• Let AP be set of atomic propositions, a linear time structure M=(S, x, L)
S: a set of states
x: NS an infinite sequence of states, (x=s0,s1,...)

L: S2AP labeling each state with the set of atomic propositions in AP true at the state.
• Example:

x:
s0

3.3 (of 47)

s1 s2 s3

p p q r u v

AP = {p, q, r, u, v}

L(s0) = {p}, L(s1) = {p, q}, L(s2) = {r}, L(s3) = {u, v},.......

Propositional Linear Temporal Logic (PLTL)

• Classical propositional logic + temporal operators

Basic temporal operators

Fp (“eventually p”, “sometime p”)

Gp (“always p”, “henceforth p”)

Xp (“next time p”)

pUq (“p until q”)

X =• Other common notation: G = F =

• Examples:

Fp

Xp pUq
p

Gp
p p p p p

p p p q

3.4 (of 47)

Propositional Linear Temporal Logic (cont’d)

3.5 (of 47)

Syntax

• The set of formulas of PLTL is the least set of formulas generated by the following rules:
(1) Atomic propositions are formulas,
(2) p and q formulas: p  q, ¬p , p U q, and Xp are formulas.

• The other formulas can then be introduced as abbreviations:
p  q abbreviates
p  q abbreviates
p  q abbreviates
true abbreviates
false abbreviates
Fp abbreviates

Gp abbreviates

¬(¬p  ¬q),
¬p  q,
(p  q)  (q  p),
p  ¬p
¬true,
(true U p),

¬F¬p.

Examples: p  Fq: “if p is true now then at some future moment q will be true.”
G(p  Fq): “whenever p is true, q will be true at some subsequent moment.”

Propositional Linear Temporal Logic (cont’d)

Semantics of a formula p of PLTL with respect to a linear-time structure M=(S, x, L)

• (M, x) p means that “in structure M, formula p is true of timeline x.”

• xi : suffix of x starting at si, xi = si, si+1, ...

• Semantics
p iff p L(s0), for atomic proposition p
pq iff (M, x) p and (M, x) q
¬p iff it is not the case that (M, x) p

(M, x)
(M, x)
(M, x)
(M, x)
(M, x)
(M, x)
(M, x)

Xp iff x1 p
Fp iff j.(xj p)
Gp iff j.(xj p)
p U q iff j.(xj q and k, 0k<j (xk p))

• Duality between linear temporal operators G¬p  ¬Fp, F¬p  ¬Gp, X¬p  ¬Xp

p• PLTL formula p is satisfiable iff there exists M=(S, x, L) such that (M, x)
(any such structure defines a model of p).

3.6 (of 47)

Propositional Linear Temporal Logic (cont’d)

Example: A simple interface protocol, pulses one clock period wide

System

Ready

Accepted

Validated

Environment
(User)

...

...

...

Safety property — nothing bad will ever happen:
t.Validatedt  Validatedt + 1
Validated  O Validated

G Validated  XValidated

Liveness property — something good will eventually happen:
t.Readyt  t'  t + 1.Acceptedt'
Ready  Accepted

GReady  FAccepted

• Fairness constraint: G(Accepted  F Ready) (it models a live environment for System)
• Behavior of environment (constraint): G (Ready  X(¬Ready U Accepted))
• What about other properties of Accepted (initial state, periodic behavior), etc.?
 Prove the system property under the assumption of valid environment constraints

3.7 (of 47)

Branching Time Temporal Logic (BTTL)

• Structure of time: an infinite tree, each instant may have many successor instants
Along each path in the tree, the corresponding timeline is isomorphic to N

• State quantifiers: Xp, Fp, Gp, pUq (like in linear temporal logic)

• Path quantifiers: for All paths (A) and there Exists a path (E) from a given state

Other frequent notation: G = F = X =
A = E  

• In linear time logic, temporal operators are provided for describing events along a single
future, however, when a linear formula is used for specification, there is usually an
implicit universal quantification over all possible futures (linear traces)

• In contrast, in branching time logic the operators usually reflect the branching nature of
time by allowing explicit quantification over possible futures in any state

• One supporting argument for branching time logic is that it offers the ability to reason
about existential properties in addition to universal properties

• But, it requires some knowledge of internal state for branching, closer to implementation
than LTL that describes properties of observable traces and has simpler fairness
assumptions

3.8 (of 47)

CTL: a BTTL

• CTL = Computation Tree Logic

• Example of Computation Tree

• Paths in the tree = possible computations or behaviors of the system

x

y z

x

y z

zx z

State Transition graph (Kripke Model) Infinite Computation Tree

3.9 (of 47)

CTL (cont’d)

3.10 (of 47)

Syntax
1. Every atomic proposition is a CTL formula
2. If f and g are CTL formulas, then so are f, f  g, AXf, EXf, A(f U g), E(f U g)

• Other operators:
AFg = A(true U g) AGf = E(true Uf)EFg = E(true U g)

EGf = A(true Uf)

• EX, E(... U ...), EG are sufficient to characterize the entire logic:
EFp = E(true U p)

AXp =EXp AGp =EFp

A(qUp) = (E((p U q)  p) EGp)

CTL (cont’d)

Intuitive Semantics of Temporal Operators

EG f EF ff

f

f

f

AG f

AF f

f

f f f

f

f

f

f f

f f f f

AXf

3.11 (of 47)

EXf

f f f f

CTL (cont’d)
Semantics

• A Kripke structure: triple M = <S, R, L>
S: set of states R  S  S: transition relation
L: S  2AP : (Truth valuation) set of atomic propositions true in each state

• R is total: s  S there exists a state s’S such that (s, s’)  R
• Path in M: infinite sequence of states, x = s0, s1, ... , i  0, (si, si+1)  R.

• xi denotes the suffix of x starting at si: xi = si, si+1, ...

• Truth of a CTL formula is defined inductively:

p iff p  L(s0), where p is an atomic proposition

¬f iff  s0 | f

fg iff  s0 f and  s0 g
AX f iff  states t, (s0, t)  R, (M, t) f

EX f iff  state t, (s0, t)  R, (M, t) f

 s0

 s0

 s0

 s0

 s0

(M, s0)

(M, s0)

A(f U g) iff  x = s0, s1, s2, ..., j  0, (M, sj)

E(f U g) iff  x = s0, s1, s2, ..., j  0, (M, sj)

g and k, 0k<j, (M, sk) f

g, and k, 0k<j, (M, sk) f

3.12 (of 47)

CTL (cont’d)

Example Structure M <S,R,L>

S = {1,2,3,4,5}, AP = {a,b,c},
R = {(1,2), (2,3), (5,3), (5,5), (5,1), (2,4), (4,2), (1,4), (3,4)}
L(1) = {b}, L(2) = {a}, L(3) = {a,b,c}, L(4) = {b,c}, L(5) = {c}

b a c1 2 3 a,b,c 5

b,c 4

3.13 (of 47)

CTL (cont’d)

3.14 (of 47)

Example CTL formulas

EF(started  ready): possible to get to a state where started holds but ready does not

AG(req AF ack): if a request occurs, then there is eventually an acknowledgment
(does not ensure that the number of req is the same as that of ack !)

AG(AF enabled): enabled holds infinitely often on every computation path

AG(EF restart): from any state it is possible to get to the restart state

CTL*

• Computational tree logic CTL* combines branching-time and linear-time operators

• CTL* is sometimes referred to as full branching-time logic

• In CTL each linear-time operators G, F, X, and U must be immediately preceded by a path
quantifier

• In CTL* a path quantifier can prefix an assertion composed of arbitrary combinations
of the usual linear-time operators (F, G, X and U)

• Example: EFp is a basic modality of CTL; E(Fp  Fq) is a basic modality of CTL*

CTL (cont’d)

Example: Two input Muller C-element (assuming finite discrete delays):

out

a
b (ab  00)

3.15 (of 47)

(ab  11)

Specification in CTL:
• Liveness: If inputs remain equal, then eventually the output will change to this

value. AG(A((a=0  b=0) U (out=0  a=1  b=1)))
AG(A((a=1  b=1) U (out=1  a=0  b=0)))

• Safety: If all inputs and the output have the same value then the output should not change
until all inputs change their values.

AG((a=0  b=0  out=0)  A(out=0 U (a=1  b=1)))
AG((a=1  b=1  out=1)  A(out=1 U (a=0  b=0)))

• What about the environment? It may have to be constrained to satisfy some fairness!

ab=00
out=0 out=1

ab=11

Linear vs. Branching Time TL

a

3.16 (of 47)

b b b

c cd d

M1 a M2 Trace set is the same in both M1 and M2:
{ ab... c, ab... d }

Characterization by LTL:
[a  X (b  F c)]  a  X (b  F d)] =
a  X (b  (F (c  d))) =
a  X (b  (F (c)  F(d)))

Characterization by CTL:
M1 and M2: a  AX (b  (AF (c d)))
M2 only: a  AX (b  (AF (c)  AF (d)))

Linear vs. Branching Time TL (cont’d)

p

3.17 (of 47)

p

p

• LTL: - easier inclusion of fairness constraints as preconditions in the same LTL language
- AG EF p cannot be expressed
- complexity of model checking: exponential in the length of the formula

• CTL: - fairness properties GF p  GF q not expressible
- fairness constraints often specified using exception conditions Hi
- complexity of model checking: deterministic polynomial

• In LTL the property F(G p) holds ((on all paths) eventually alwaysp),
but

• In CTL this cannot be expressed: AF(AG p) does not hold as there is
no time instant where AG p holds,
i.e., in state 1 the next state is either 1 or 2, the selfloop satisfies
G p, but the transition to 2 (and then to 3) does not satisfy G p, hence
AG p does not hold

1

2

3

Model Checking Problem for Temporal Logic

• Given an FSM M (equivalent Kripke structure) and a temporal logic formula p, does M
define a model of p?
- Determine the truth of a formula with respect to a given (initial) state in M
- Find all states s of M such that (M, s) p

• For any propositional temporal logic, the model checking problem is decidable:
exhaustive search of all paths through the finite input structure

Some Theoretical Results

• Theorem [Wolper, 1986]: The model checking for CTL is in deterministic polynomial time

• Theorem [Sistla & Clark, 1985]: The model checking problem for PLTL is PSPACE-
complete

• Theorem [Emerson & Lei, 1987]: Given any model-checking algorithm for a linear logic
LTL, there is a model checking algorithm for the corresponding branching logic BTL,
whose basic modalities are defined by the LTL, of the same order of complexity

• Theorem [Clark, Emerson & Sistla, 1986]: The model checking problem for CTL* is
PSPACE-complete

3.18 (of 47)

Structure of Model Checker

Basic Idea:

Behavioral
ModelorHardware

Design Property

Structure

Model Checker

True / Counterexample

• Specification Language: CTL

• Model of Computation: Finite-state systems modeled by labeled state-transition
graphs (Finite Kripke Structures)

• If a state is designated as the initial state, the structure can be unfolded into an infinite
tree with that state as the root: Computation Tree

3.19 (of 47)

Fixpoints

3.20 (of 47)

Model Checking Algorithms
• Original algorithm described in terms of labeling the CTL structure (Clark83)

Required explicit representation of the whole state space

• Better algorithm based on fixed point calculations

• Algorithm amenable to symbolic formulation
Symbolic evaluation allows implicit enumeration of states
Significant improvement in maximum size of systems that can be verified

Some Notions on Fixpoint
• (Poset) <P, > is a partially ordered set: P is a set and  is a binary relation on P which is

reflexive, anti-symmetric and transitive

• Let <P, > be a Poset and S  P

• (lub) y P is a least upper bound of S in P means y is an upper bound of S and z  P
which is an upper bound of S, y  z

• (glb) y P is a greatest lower bound of S in P means y is a lower bound of S and z  P
which is a lower bound of S, z  y

• If lub(S) (or glb(S)) exists, it is unique

Fixpoints (cont’d)

• A poset <P, > has a universal lower bound

• A poset <P, > has a universal upper bound

 P iff for all y P,  y

 P iff for all y P, y 

• A poset <P, > is a complete lattice if lub(S) and glb(S) exist for every subset SP

• Let 2S be the power set of S (the set of all subsets of S)

• Poset (2S, ) is a complete lattice
• Example: S={1, 2, 3}

3.21 (of 47)

{1,2}

{1}

{1,3}

{2}

{2,3}

{3}

{1,2,3} =

 =

= True

= False

Fixpoints (cont’d)

3.22 (of 47)

• Let <2S, > be complete lattice on S. Let f be a function: 2S  2S

• f is monotonic  x, y  2S  x  y  f(x)  f(y)

• f is continuous if P1  P2  P3  ...  f(iPi)  if(Pi),

• f is continuous if P1  P2  P3  ...  f(iPi)  if(Pi),

Pi  S

Pi S

Lemma: If S is finite, then any monotonic f is necessarily continuous and continuous
(Monotonicity + Finiteness Continuity)

Proof. Any sequence of subsets P1  P2  P3  ... of a finite set S must have a maximum
element, say Pmax, where Pmax=iPi. Since f is monotonic, we have f(P1)  f(P2)  f(P3) 
...  f(Pmax) such that f(Pmax)=if(Pi). On the other hand, f(Pmax)=f(iPi), thus
if(Pi)=f(iPi). -continuous can be proven similarly.

• x is a fixpoint of f means f(x) = x

• x is a least fixpoint of f means f(x) = x and y a fixpoint of f, x  y

• x is a greatest fixpoint of f means f(x) = x and y a fixpoint of f, y  x

Fixpoints (cont’d)

3.23 (of 47)

Basic Fixpoint Theorems

Theorem 1. (Tarski & Knaster, 1955)

If f is monotonic, then it has a least fixpoint, Z.[f(Z)] = {Z | f(Z)=Z}, and a greatest
fixpoint, Z.[f(Z)] = {Z | f(Z)=Z}.

• If f is monotonic f has the least (greatest) fixpoint which is the intersection (union) of all
the fixpoints.

Theorem 2. (Tarski & Knaster, 1955)

i=1
If f is -continuous Z.[f(Z)] = fiFalse), and

i=1

• Each fixpoint can be characterized as the limit of a series of approximations

if f is -continuous Z.[f(Z)] = 


fi(True)

Fixpoint Algorithm

3.24 (of 47)

• For a monotonic f and finite S:
1. f is -continuous and -continuous

 i, fiFalse)  fi+1False) and fiTrue)  fi+1True)

 i0 such that fiFalse)  fi0False) for i  i 0

 j0 such that fjTrue)  fj0True) for j  j0

 i0 such that Z.[f(Z)] = fi0False)

 j0 such that Z.[f(Z)] = fj0True)

• Standard Least (Greatest) Fixpoint Algorithm

Y := ; {or Y := S}
repeat

Y’ := Y; Y := f(Y)
until Y’ = Y;
return Y;

• Terminates in at most |S| + 1 iterations with the least (greatest) fixpoint of f(Y).

Fixpoint Characterization of CTL

3.25 (of 47)

• M=(S,R,L) : a finite Kripke structure.
• Identify each CTL formula f with a set of states Sf = {s | f is true on sS}.

Any formula f  a set Sf of states

False  the empty set  True the complete set of states S

• 2S forms a lattice under union and intersection, ordered by set inclusion

• A functional : 2S2S can be seen as predicate transformer on M
e.g., (Z) = p  EX Z

Theorem (Clark&Emerson, 1981): Given a finite structure M=(S,R,L)
AFp = p AX AFp = Z.[p AX Z]
AGp = p AX AGp = Z.[p AX Z]

EFp = p  EX EFp = Z.[p  EX Z]
EGp = p  EX EGp = Z.[p  EX Z]

A(pUq) = q  (p AX A(pUq)) = Z.[q  (p AX Z)]
E(pUq) = q  (p  EX E(pUq)) = Z.[q  (p  EX Z)]

Fixpoint Characterization of CTL (cont’d)

Example for EFp

• EFp in the following model: |S| = 4 and Y)  p  EX(Y)

• False does not hold in any states, since False represents the empty set of states (

• EX(False): set of states such that False holds in at least one of their next states

• Use Y to mark the states where the current 1False) holds

p

Y
p

Iteration 1:
1False)  p  EX(False) =p

3.26 (of 47)

Fixpoint Characterization of CTL (cont’d)

Example for EFp (cont’d)

Iteration 4: 4False)  3False)

• Each iteration propagates the formula EFp backward in the graph by one step

• When fixpoint reached, Y labels exactly the set of states on a path to a state labeled with p

• To check if EFp holds in a certain state s, check if sEFp

Properties characterized as least fixpoints correspond to Eventualities

Y
p

Y
Iteration 2:
2False)  False))

= p) = p  EXp

Y
p

Y Y
Iteration 3:
3False)  False)))
= p  EXp) = p  EXp  EXp)

3.27 (of 47)

Fixpoint Characterization of CTL (cont’d)

Example for EGp

• EGp in the following model: |S| = 4 and Y)  p  EX(Y)

• True holds in all states (True represents the set of all states), marked by Y

Y
p

Y
p

Y
p

Y

Y
p

Y
p

Y
p

Iteration-1:
1True)  p  EX(True) = p

p
Y
p

Y
p

Iteration-2:
2True)  True))

= p  EXp

3.28 (of 47)

Fixpoint Characterization of CTL (cont’d)

Example for EGp (cont’d)

• Iteration-4: 4True)  3True)

• At iteration i, Y labels the set of states such that there is a path of length i where every
state satisfies p

• In fixpoint, every state in the set has a successor in the set satisfying p

• For any state in the set, there exists an infinite path where p is always true

• To verify if EGp holds in a certain state s, check if sEGp

Properties characterized as greatest fixpoints correspond to Invariants

p p
Y
p

Iteration-3:
3True)  True)))
= p  EXp) = p  EX(p  EXp)

3.29 (of 47)

CTL Model Checking Algorithm

3.30 (of 47)

• Given a Kripke Structure M = <S,R,L> and a CTL formula f, the following recursive algorithm
computes the set of states H(f)  S that satisfies f:

H(a) = {s | s is labeled with a} for atomic formula a

H(f) = S H(f)

H(fg) = H(f)  H(g)

H(AXf) = {s | t. (s,t)  R  tH(f)}

H(EXf) = {s | t. (s,t)  R  tH(f)}

H(AGf) = Z.[f AXZ] = Z. (H(f)  {s | t. (s,t)  R  tZ})

H(EGf) = Z.[f  EXZ] = Z. (H(f)  {s | t. (s,t)  R  tZ})

H(AFf) = Z.[f  AXZ] = Z. (H(f)  {s | t. (s,t)  R  tZ})

H(EFf) = Z.[f  EXZ] = Z. (H(f)  {s | t. (s,t)  R  tZ})

H(A(fUg)) = Z.[g  (f AXZ)] = Z. (H(g)   H(f)  {s | t. (s,t)  R  tZ}))

H(E(fUg)) = Z.[g  (f  EXZ)] = Z. (H(g)   H(f)  {s | t. (s,t)  R  tZ}))

CTL Model Checking Algorithm (cont’d)

Example

Structure M <S,R,L>:

S = {1,2,3,4,5}, AP = {a,b,c},
R = {(1,2), (2,3), (5,3), (5,5), (5,1), (2,4), (4,2), (1,4), (3,4)}
L(1) = {b}, L(2) = {a}, L(3) = {a,b,c}, L(4) = {b,c}, L(5) = {c}

Property: AG(a  c)

b a c1 2 3 a,b,c 5

b,c 4

3.31 (of 47)

CTL Model Checking Algorithm (cont’d)

Example AG(ac) (cont’d)

• H(ac) = H(a)  H(c) ={2,3}  {3,4,5} = {2,3,4,5}

b a c1 2 3 a,b,c 5

b,c 4

• H(AG(ac)) = Z.{2,3,4,5}  {s | t. (s,t)R  tZ}
• The greatest fixpoint calculation:

Z0 = S = {1,2,3,4,5}
Z1 = {2,3,4,5}  {s | t. (s,t)R  tZ0} = {2,3,4,5}  {1,2,3,4,5} = {2,3,4,5}
Z2 = {2,3,4,5}  {s | t. (s,t)R  tZ1} = {2,3,4,5}  {1,2,3,4} = {2,3,4}
Z3 = {2,3,4,5}  {s | t. (s,t)R  tZ2} = {2,3,4,5}  {1,2,3,4} = {2,3,4}
Z3 = Z2

3.32 (of 47)

CTL Model Checking Algorithm (cont’d)

Example AG(ac) (cont’d)

• To verify that f holds in state s, check if sH(f)

b a c1 2 3 a,b,c 5

b,c 4
H(AG(a  c)) ={2,3,4}

3.33 (of 47)

Symbolic Model Checking

• Explicit State Representation  State ExplosionProblem (about 108 states maximum)

• Breakthrough: Implicit State Representation using ROBDD (about 1020 states).

• Use Boolean characteristic functions represented by ROBDDs to encode sets of states and
transition relations.

SpecificationDesign

Finite State Machine CTL Formula

Model Checker

OK / Counter-example

ROBDD

3.34 (of 47)

Symbolic Model Checking (cont’d)

3.35 (of 47)

• Let p be a set of states and p its Boolean encoding (ROBDD), then

p=(v1, v2,..., vn) p

• For a relation R on states, there is a unique representation R such that

R=(v1, v2, ..., vn, v1’ ,v2’ , ..., vn’). R

Computing EXp

• EXp=v. v’(R(v, v’)  p(v’)), where v=(v1, v2, ..., vn), v’=(v1’, v2’, ..., vn’)

R(v, v’) (relation) = R
p(v’) (logic expression) = p’, where p’ = p[vivi’]

 EXp = v. v’(R p’)

• Algorithm: Given p for p;

1. p’:= p[vivi’];

2. S(v) := v’ (R  p’);
3. Check if initial state s0 S(v).

Symbolic Model Checking (cont’d)

Example 1: EXb

• EXb in a model with v = (b), v’ = (b’), R = b  b’ and R = R(b, b’) = b  b’:

• EXb
= b’(R  p’)
= b’ ((b  b’)  ((b) [bb’]))
= b’ ((b  b’) b'
= b’ (b b'
= (b  0  (b 1
= b (state s2 makes EXb true)

s1

b

s2

b

3.36 (of 47)

Symbolic Model Checking (cont’d)

3.37 (of 47)

Example 1: EFb

EFb = y. (b  EXy) on R = b  b’ as before.

• Use least fixed point algorithm:

1[0] = b  EX[0]=b

2[0] = b  EXb
{go backward along transitions}
{existentially quantify away b’}

= b  b’. ((b  b’)  b'
= b  (b  1)
= 1

3[0] = b  EX1 = 1

• EFb = {s1, s2}: for any state of the model, there is a state in the future in which b is true.

Symbolic Model Checking (cont’d)

Example 2: Counter

• State variables: v0, v1, {v = (v0, v1)}

• Next state variables: v0’, v1’, {v’ = (v0’, v1’)}

• Transition relation: R = (v0’ v0)  (v1’  (v0  v1))

v1

v0 (0, 0) (1, 0)

(1, 1) (0, 1)

3.38 (of 47)

Symbolic Model Checking (cont’d)

3.39 (of 47)

Example 2: Counter (cont’d)

• EX(v0  v1)

= v’. (R  p’)
= (v0’, v1’). (R  (v0’  v1’))

= (v0’, v1’). ([(v0’ v0)  (v1’  (v0  v1))]  (v0’  v1’))

= v0’ . ((v0’ v0)  (v0  v1) v0’)

= v0  (v0 v1)

= v0 ((v0 v1)  (v0 v1))

=v0  v1

• Meaning: state (0, 1) satisfies EX(v0  v1)

Symbolic Model Checking (cont’d)

3.40 (of 47)

Example 2: Counter (cont’d) EF(v0  v1) = y. ((v0  v1) EXy)
1[0]

2[0]
{from the result of EX(v0  v1)}

3[0]

= (v0  v1)  EX0 = (v0 v1)
= (v0  v1)  EX(v0 v1)
= (v0  v1)  v0 v1)
= v1

= (v0  v1) EX(v1)
= (v0  v1)  (v0’, v1’). (R  v1’)
= (v0 v1)  (v0’, v1’). ((v0’v0)  (v1’ (v0 v1))  v1’)
= (v0  v1)  v0’. ((v0’ v0) (v0  v1))

4[0]

= (v0 v1)  [(v0 v1)]
= (v0 v1)  (v0 v1)  (v0 v1) = v0 v1

= (v0  v1)  EX(v0 v1)
= (v0  v1)  (v0’, v1’). (R  (v0’ v1’))
= (v0  v1)  v0 (v0  v1)
= (v0 v1)  v0 (v0 v1)  (v0 v1) =1

• EF(v0  v1) ={(0, 0), (0, 1), (1, 0), (1, 1)} All states satisfy EF(v0  v1)

Symbolic Model Checking Algorithm

3.41 (of 47)

• eval takes a CTL formula as its argument and returns the ROBDD for the set of states that
satisfy the formula

• function eval(f)
case

f an atomic proposition: return f;
returneval(p);
return eval(p)  eval(q);

f = p:
f = pq:
f = EXp: return evalEX(eval(p));
f = E(pUq): return evalEU(eval(p), eval(q), False);
f = EGp: return evalEG(eval(p), True)

end case
end function;

• function evalEX(p) = v’(Rp’)

• function evalEG(p, y)
y’ = p  evalEX(y)
if y’ = y
then return y
else return evalEG(p, y’)

end function

• function evalEU(p, q, y)
y’ = q  (p  evalEX(y))
if y’ = y
then return y
else return evalEU(p, q, y’)

end function

Model Checking Tools

3.42 (of 47)

SMV (Symbolic Model Verifier)

• A tool for checking finite state systems against specifications in the temporal logic CTL.

• Developed at Carnegie Mellon University by E. Clarke, K. McMillan et. al.

• Supports a simple input language: SMV
• For more information: http://www.cs.cmu.edu/~modelcheck/smv.html

Cadence SMV

• Updated version of SMV by K. McMillan at Berkeley Cadence Labs

• Input languages: extended SMV and synchronous Verilog

• Supports temporal logics CTL and LTL, finite automata, embedded assertions, and
refinement specifications.

• Features compositional reasoning, link with a simple theorem prover, an easy-to-use
graphical user interface and source level debugging capabilities

• For more information: http://www.kenmcmil.com/smv.html

Model Checking Tools (cont’d)

3.43 (of 47)

VIS (Verification Interacting with Synthesis)

• A system for formal verification, synthesis, and simulation of finite state systems.

• Developed jointly at the University of California at Berkeley and the University of
Colorado at Boulder.

• VIS provides the following features:
- Fast simulation of logic circuits
- Formal “implementation” verification (equivalence checking) of combinational and

sequential circuits

- Formal “design” verification using fair CTL model checking and language emptiness

• For more information: https://embedded.eecs.berkeley.edu/research/vis

Model Choking Tools (cont’d)

3.44 (of 47)

CheckOff-M

• Commercial product by Abstract Hardware Ltd. (UK) and Siemens AG (Germany)

• Performs verification of properties stated in a temporal logic on an FSM

• Input EDIF netlist + library or superset of synthesizable synchronous VHDL and Verilog

• Converts to Macro FSM by merging transition (represented by ROBDDs)

• Temporal logic: subset of Computation Tree Logic (CTL) + Intervals = CIL
- VHDL-like syntax for predicates, temporal operators always, possibly, within, during, ...
- Property = theorem = assumption on valid sequences + consequence

• Tool does not exist anymore

Model Checking Tools (cont’d)

3.45 (of 47)

FormalCheck

• Developed at Bell Labs. Now commercial product of Cadence

• Performs model checking of properties stated in temporal logic

• Supports the synthesizable subsets of Verilog and VHDL hardware design languages.

• User supplies FormalCheck with a set of queries (properties and constraints)

• Each property is defined using semantics of the class of omega automata.

• Tool provides powerful model reduction options.
• Tool replaced by JasperGold® Formal Verification Platform

References

3.46 (of 47)

Temporal Logics:
1. E. A. Emerson. Temporal Logics in Handbook of Theoretical Computer Science. Elsevier

Science Publishers B.V., 1990
2. Z. Manna, A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer-

Verlag, 1991.

CTL:
3. E.M. Clarke, E. A. Emerson, and A.P. Sistla. Automatic verification of finite state

concurrent systems using temporal logic specifications. ACM transactions on
Programming Languages and Systems, 8(2):244-263 (April 1986).

4. E. A. Emerson, C.L. Lei. Modalities for model checking: Branching time strikes back. In
Proc. ACM Symposium on Principles of Programming Language, ACM, New York,
1985, pp. 84-96.

5. A. P. Sistla, E. M. Clarke. The complexity of propositional linear temporal logics.JACM,
32(3), 1985, pp. 733-749.

6. E. A. Emerson, E.M. Clarke. “Sometimes” and “Not Never” revisited: on branching
versus linear time temporal logic. JACM, 33(1), 1986, pp. 151-178.

Model Checking:
7. C. Baier, J.-P. Katoen: Principles of Model Checking, MIT Press, 2008.
8. K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.

References (cont’d)

3.47 (of 47)

9. E.M. Clarke, E. A. Emerson, and A.P. Sistla. Automatic verification of finite state
concurrent systems using temporal logic specifications. ACM transactions on
Programming Languages and Systems, 8(2), 1986, pp. 244-263.

10.E. A. Emerson and C.L. Lei. Modalities for model checking: Branching time
strikes back. In Proceedings of the Twelfth Annual ACM Symposium on
Principles of Programming Language, ACM, New York, 1985, pp. 84-96.

11.M.C. Browne, E. M. Clarke, D.L. Dill. Automatic verification of sequential circuits using
temporal logic. IEEE Transactions on Computers, C-35(12), 1986, pp. 1035-1044.

12.E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and abstraction”, Proc.
ACM Symp. on Principles of Programming Languages, January 1992.

13.J. R. Burch, E. M. Clarke, D. Long, K. L. McMillan, D. L. Dill. Symbolic model
checking for sequential circuit verification. IEEE Transactions on CAD, 13(4), 1994, pp.
401-424.

14.O. Coudert, I.C. Madre, and C. Berthet. Verifying temporal properties of sequential
machines without building their date diagrams. In Proc. Computer-Aided Verification,
Springer-Verlag, New York, NY, 1991.

15.H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit
state enumeration of finite state machines using BDDs. Proc. International Conference on
Computer-Aided Design, 1990.

16.J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98(2), 1992.

