3. Temporal Logics and Model Checking

	Page
Temporal Logics	3.2
Linear Temporal Logic (PLTL)	3.4
Branching Time Temporal Logic (BTTL)	3.8
Computation Tree Logic (CTL)	3.9
Linear vs. Branching Time TL	3.16
Structure of Model Checker	3.19
Notion of Fixpoint	3.20
Fixpoint Characterization of CTL	3.25
CTL Model Checking Algorithm	3.30
Symbolic Model Checking	3.34
Model Checking Tools	3.42
References	3.46

Temporal Logics

Temporal Logics

- Temporal logic is a type of modal logic that was originally developed by philosophers to study different *modes* of "truth"
- Temporal logic provides a formal system for qualitatively describing and reasoning about how the truth values of assertions change *over time*
- It is appropriate for describing the time-varying behavior of systems (or programs)

Classification of Temporal Logics

• The underlying nature of time:

Linear: at any time there is only one possible future moment, linear behavioral trace *Branching*: at any time, there are different possible futures, tree-like trace structure

• Other considerations:

Propositional vs. first-order

Point vs. intervals

Discrete vs. continuous time

Past vs. **future**

Linear Temporal Logic

• Time lines

Underlying structure of time is a totally ordered set (S,<), isomorphic to (N,<): Discrete, an initial moment without predecessors, infinite into the future.

• Let AP be set of atomic propositions, a *linear time structure* M=(S, x, L)

S: a set of states

x: N \rightarrow S an infinite sequence of states, (x=s₀,s₁,...)

L: $S \rightarrow 2^{AP}$ labeling each state with the set of atomic propositions in AP true at the state.

• Example:

Propositional Linear Temporal Logic (PLTL)

• Classical propositional logic + temporal operators

Basic temporal operators

Fp ("eventually p", "sometime p")
Gp ("always p", "henceforth p")
Xp ("next time p")
pUq ("p until q")

- Other common notation: $G = \Box$ $F = \diamond$ X = O
- Examples:

Propositional Linear Temporal Logic (cont'd)

Syntax

The set of formulas of PLTL is the least set of formulas generated by the following rules:
(1) Atomic propositions are formulas,

(2) p and q formulas: $p \land q, \neg p$, $p \lor q$, and Xp are formulas.

• The other formulas can then be introduced as abbreviations:

 $p \lor q$ abbreviates $\neg(\neg p \land \neg q),$ $p \Rightarrow q$ abbreviates $\neg p \lor q,$ $p \equiv q$ abbreviates $(p \Rightarrow q) \land (q \Rightarrow p),$ trueabbreviates $p \lor \neg p,$ falseabbreviates $\neg true,$ Fpabbreviates $\neg F \neg p.$

Examples: $p \Rightarrow Fq$: "if p is true now then at some future moment q will be true." $G(p \Rightarrow Fq)$: "whenever p is true, q will be true at some subsequent moment."

Propositional Linear Temporal Logic (cont'd)

Semantics of a formula p of PLTL with respect to a linear-time structure M=(S, x, L)

- $(M, x) \models p$ means that "in structure M, formula p is true of timeline x."
- x^i : suffix of x starting at s_i , $x^i = s_i$, s_{i+1} , ...
- Semantics

 $(M, x) \models p \text{ iff } p \in L(s_0), \text{ for atomic proposition } p$ $(M, x) \models p \land q \text{ iff } (M, x) \models p \text{ and } (M, x) \models q$ $(M, x) \models \neg p \text{ iff it is not the case that } (M, x) \models p$ $(M, x) \models Xp \text{ iff } x^1 \models p$ $(M, x) \models Fp \text{ iff } \exists j.(x^j \models p)$ $(M, x) \models Gp \text{ iff } \forall j.(x^j \models p)$ $(M, x) \models p \cup q \text{ iff } \exists j.(x^j \models q \text{ and } \forall k, 0 \le k < j (x^k \models p))$

- Duality between linear temporal operators $\models G \neg p \equiv \neg Fp$, $\models F \neg p \equiv \neg Gp$, $\models X \neg p \equiv \neg Xp$
- PLTL formula *p* is *satisfiable* iff there exists M=(S, x, L) such that (M, x) $\models p$ (any such structure defines a *model* of *p*).

Propositional Linear Temporal Logic (cont'd)

Example: A simple interface protocol, pulses one clock period wide

Safety property — nothing bad will ever happen: $\forall t.(Validated(t) \rightarrow \neg Validated(t+1))$ $\Box(Validated \rightarrow O \neg Validated)$ $G(Validated \rightarrow X \neg Validated)$

Liveness property — something good will eventually happen: $\forall t.(Ready(t) \rightarrow \exists (t' \ge t + 1).Accepted(t'))$ $\Box (Ready \rightarrow \Diamond Accepted)$ $G(Ready \rightarrow FAccepted)$

- Fairness constraint: $G(Accepted \Rightarrow F Ready)$ (it models a live environment for System)
- Behavior of environment (constraint): **G** (*Ready* \Rightarrow **X**(\neg *Ready* **U** *Accepted*))
- What about other properties of *Accepted* (initial state, periodic behavior), etc.?
 - \Rightarrow Prove the system property under the assumption of valid environment constraints

Branching Time Temporal Logic (BTTL)

- Structure of time: an infinite tree, each instant may have many successor instants Along each path in the tree, the corresponding timeline is isomorphic to N
- State quantifiers: Xp, Fp, Gp, pUq (like in linear temporal logic)
- Path quantifiers: for All paths (A) and there Exists a path (E) from a given state

Other frequent notation: $G = \square$ $F = \Diamond$ X = O $A = \forall$ $E = \exists$

- In linear time logic, temporal operators are provided for describing events along a single future, however, when a linear formula is used for specification, there is usually an *implicit universal quantification* over all possible futures (linear traces)
- In contrast, in branching time logic the operators usually reflect the branching nature of time by allowing *explicit quantification* over possible futures in any state
- One supporting argument for branching time logic is that it offers the ability to reason about *existential* properties in addition to *universal* properties
- But, it requires some knowledge of internal state for branching, closer to implementation than LTL that describes properties of observable traces and has simpler fairness assumptions

CTL: a BTTL

- CTL = Computation Tree Logic
- Example of Computation Tree

• Paths in the tree = possible computations or behaviors of the system

Syntax

- 1. Every atomic proposition is a CTL formula
- 2. If f and g are CTL formulas, then so are $\neg f$, $f \land g$, AXf, EXf, A(f U g), E(f U g)
- Other operators:

AFg = A(true U g)EFg = E(true U g) $AGf = \neg E(true U \neg f)$ $EGf = \neg A(true U \neg f)$

 EX, E(... U ...), EG are sufficient to characterize the entire logic: EFp = E(true U p) AXp = ¬EX¬p AGp = ¬EF¬p A(qUp) = ¬(E((¬p U ¬q) ∧ ¬p) ∨ EG¬p)

Intuitive Semantics of Temporal Operators

Semantics

- A *Kripke structure*: triple M = <S, R, L>
 - S: set of states $R \subseteq S \times S$: transition relation
 - L: S $\rightarrow 2^{AP}$: (Truth valuation) set of atomic propositions true in each state
- R is *total*: $\forall s \in S$ there exists a state $s' \in S$ such that $(s, s') \in R$
- *Path* in M: infinite sequence of states, $x = s_0, s_1, ..., i \ge 0, (s_i, s_{i+1}) \in R$.
- x_i denotes the suffix of x starting at s_i : $x_i = s_i$, s_{i+1} , ...
- Truth of a CTL formula is defined inductively:

 $(M, s_0) \models p \text{ iff } p \in L(s_0)$, where p is an atomic proposition

$$(\mathbf{M}, \mathbf{s}_0) \models \neg \mathbf{f} \operatorname{iff} (\mathbf{M}, \mathbf{s}_0) \not\models \mathbf{f}$$

$$(M, s_0) \models f \land g \text{ iff } (M, s_0) \models f \text{ and } (M, s_0) \models g$$

$$(M, s_0) \models AX f \text{ iff } \forall \text{ states } t, (s_0, t) \in R, (M, t) \models f$$

$$(M, s_0) \models EX \text{ f iff } \exists \text{ state } t, (s_0, t) \in R, (M, t) \models f$$

 $(M, s_0) \models A(f \cup g) \text{ iff } \forall x = s_0, s_1, s_2, ..., \exists j \ge 0, (M, s_j) \models g \text{ and } \forall k, 0 \le k < j, (M, s_k) \models f$ $(M, s_0) \models E(f \cup g) \text{ iff } \exists x = s_0, s_1, s_2, ..., \exists j \ge 0, (M, s_j) \models g, \text{ and } \forall k, 0 \le k < j, (M, s_k) \models f$

Example Structure M <S,R,L>

$$S = \{1,2,3,4,5\}, AP = \{a,b,c\},\$$

$$R = \{(1,2), (2,3), (5,3), (5,5), (5,1), (2,4), (4,2), (1,4), (3,4)\}\$$

$$L(1) = \{b\}, L(2) = \{a\}, L(3) = \{a,b,c\}, L(4) = \{b,c\}, L(5) = \{c\}\$$

Example CTL formulas

 $EF(started \land \neg ready)$: possible to get to a state where *started* holds but *ready* does not

 $AG(req \rightarrow AF \ ack)$: if a *request* occurs, then there is eventually an *acknowledgment* (does not ensure that the number of *req* is the same as that of *ack* !)

AG(AF *enabled*): *enabled* holds infinitely often on every computation path

AG(EF restart): from any state it is possible to get to the restart state

CTL*

- Computational tree logic CTL* combines branching-time and linear-time operators
- CTL* is sometimes referred to as **full branching-time logic**
- In CTL each linear-time operators G, F, X, and U must be immediately preceded by a path quantifier
- In CTL* a path quantifier can prefix an assertion composed of **arbitrary combinations** of the usual linear-time operators (F, G, X and U)
- Example: EFp is a basic modality of CTL; $E(Fp \land Fq)$ is a basic modality of CTL*

Example: Two input Muller C-element (assuming finite discrete delays):

Specification in CTL:

- Liveness: If inputs remain equal, then eventually the output will change to this value. AG(A((a=0 ^ b=0)U(out=0 < a=1 < b=1))) AG(A((a=1 ^ b=1)U(out=1 < a=0 < b=0)))
- **Safety**: *If all inputs and the output have the same value then the output should not change until all inputs change their values.*

$$AG((a=0 \land b=0 \land out=0) \Rightarrow A(out=0 \cup (a=1 \land b=1)))$$
$$AG((a=1 \land b=1 \land out=1) \Rightarrow A(out=1 \cup (a=0 \land b=0)))$$

• What about the environment? It may have to be constrained to satisfy some fairness!

Linear vs. Branching Time TL

Trace set is the same in both M1 and M2: { ab... c, ab... d }

Characterization by LTL: $[a \land X (b \land F c)] \lor [a \land X (b \land F d)] =$ $a \land X (b \land (F (c \lor d))) =$ $a \land X (b \land (F (c) \lor F (d)))$

Characterization by CTL: M1 and M2: $a \land AX (b \land (AF (c \lor d)))$ M2 only: $a \land AX (b \land (AF (c) \lor AF (d)))$

Linear vs. Branching Time TL (cont'd)

- In LTL the property F(G p) holds ((on all paths) eventually always p), but
- In CTL this cannot be expressed: AF(AG p) does not hold as there is no time instant where AG p holds,

i.e., in state 1 the next state is either 1 or 2, the selfloop satisfies G p, but the transition to 2 (and then to 3) does not satisfy G p, hence AG p does not hold

- LTL: easier inclusion of fairness constraints as preconditions in the same LTL language
 AG EF p cannot be expressed
 - complexity of model checking: *exponential* in the length of the formula
- CTL: fairness properties GF $p \Rightarrow$ GF q not expressible
 - fairness constraints often specified using exception conditions H_i
 - complexity of model checking: deterministic polynomial

Model Checking Problem for Temporal Logic

- Given an FSM M (equivalent Kripke structure) and a temporal logic formula p, does M define a model of p?
 - Determine the truth of a formula with respect to a given (initial) state in M
 - Find all states s of M such that $(M, s) \models p$
- For any **propositional** temporal logic, the model checking problem is **decidable**: exhaustive search of all paths through the finite input structure

Some Theoretical Results

- Theorem [Wolper, 1986]: The model checking for CTL is in deterministic polynomial time
- Theorem [Sistla & Clark, 1985]: *The model checking problem for PLTL is PSPACE-complete*
- Theorem [Emerson & Lei, 1987]: *Given any model-checking algorithm for a linear logic LTL, there is a model checking algorithm for the corresponding branching logic BTL, whose basic modalities are defined by the LTL, of the same order of complexity*
- Theorem [Clark, Emerson & Sistla, 1986]: *The model checking problem for CTL* is PSPACE-complete*

Structure of Model Checker

Basic Idea:

- Specification Language: CTL
- Model of Computation: Finite-state systems modeled by labeled state-transition graphs (*Finite Kripke Structures*)
- If a state is designated as the *initial state*, the structure can be unfolded into an infinite tree with that state as the root: *Computation Tree*

Fixpoints

Model Checking Algorithms

- Original algorithm described in terms of *labeling* the CTL structure (Clark83) Required explicit representation of the whole state space
- Better algorithm based on *fixed point* calculations
- Algorithm amenable to *symbolic* formulation
 Symbolic evaluation allows implicit enumeration of states
 Significant improvement in maximum size of systems that can be verified

Some Notions on Fixpoint

- (*Poset*) <P, ≤> is a partially ordered set: P is a set and ≤ is a binary relation on P which is *reflexive*, *anti-symmetric* and *transitive*
- Let $\leq P, \leq >$ be a Poset and $S \subseteq P$
- (*lub*) $y \in P$ is a *least upper bound* of S in P means y is an upper bound of S and $\forall z \in P$ which is an upper bound of S, $y \le z$
- (*glb*) $y \in P$ is a *greatest lower bound* of S in P means y is a lower bound of S and $\forall z \in P$ which is a lower bound of S, $z \le y$
- If *lub*(S) (or *glb*(S)) exists, it is unique

Fixpoints (cont'd)

- A poset $\langle P, \leq \rangle$ has a universal lower bound $\bot \in P$ iff for all $y \in P$, $\bot \leq y$
- A poset $\langle P, \leq \rangle$ has a universal upper bound $T \in P$ iff for all $y \in P$, $y \leq T$
- A poset $\langle P, \leq \rangle$ is a *complete lattice* if *lub*(S) and *glb*(S) exist for every subset S \subseteq P
- Let 2^{S} be the power set of S (the set of all subsets of S)
- Poset $(2^{S}, \subseteq)$ is a complete lattice
- Example: S={1, 2, 3}

Fixpoints (cont'd)

- Let $<2^{S}, \subseteq >$ be complete lattice on S. Let f be a function: $2^{S} \rightarrow 2^{S}$
- f is *monotonic* $\Leftrightarrow \forall x, y \in 2^{S}$. $x \subseteq y \Rightarrow f(x) \subseteq f(y)$
- f is \cup -continuous if $P_1 \subseteq P_2 \subseteq P_3 \subseteq ... \Rightarrow f(\cup_i P_i) = \cup_i f(P_i), P_i \subseteq S$
- f is \cap -continuous if $P_1 \supseteq P_2 \supseteq P_3 \supseteq ... \Rightarrow f(\cap_i P_i) = \cap_i f(P_i), P_i \subseteq S$

Lemma: If S is finite, then any monotonic f is necessarily \cup -continuous and \cap -continuous (Monotonicity + Finiteness \Rightarrow Continuity)

Proof. Any sequence of subsets $P_1 \subseteq P_2 \subseteq P_3 \subseteq ...$ of a finite set S must have a maximum element, say P_{max} , where $P_{max}=\cup_i P_i$. Since f is monotonic, we have $f(P_1) \subseteq f(P_2) \subseteq f(P_3) \subseteq ... \subseteq f(P_{max})$ such that $f(P_{max})=\cup_i f(P_i)$. On the other hand, $f(P_{max})=f(\cup_i P_i)$, thus $\cup_i f(P_i)=f(\cup_i P_i)$. \cap -continuous can be proven similarly.

- x is a fixpoint of f means f(x) = x
- *x* is a least fixpoint of f means f(x) = x and $\forall y$ a fixpoint of f, $x \subseteq y$
- *x* is a greatest fixpoint of f means f(x) = x and $\forall y$ a fixpoint of f, $y \subseteq x$

Fixpoints (cont'd)

Basic Fixpoint Theorems

Theorem 1. (Tarski & Knaster, 1955)

If f is monotonic, then it has a least fixpoint, $\mu Z.[f(Z)] = \bigcap \{Z \mid f(Z)=Z\}$, and a greatest fixpoint, $\upsilon Z.[f(Z)] = \bigcup \{Z \mid f(Z)=Z\}$.

• If f is monotonic, f has the least (greatest) fixpoint which is the intersection (union) of all the fixpoints.

Theorem 2. (Tarski & Knaster, 1955) If f is \bigcirc -continuous, $\mu Z.[f(Z)] = \bigcup_{i=1}^{\infty} f^i$ (False), and if f is \bigcirc -continuous, $\upsilon Z.[f(Z)] = \bigcap_{i=1}^{\infty} f^i$ (True)

• Each fixpoint can be characterized as the limit of a series of approximations

Fixpoint Algorithm

- For a monotonic f and finite S:
 - 1. f is \cup -continuous and \cap -continuous
 - 2. $\forall i, f^{i}(False) \subseteq f^{i+1}(False) \text{ and } f^{i}(True) \supseteq f^{i+1}(True)$
 - 3. $\exists i_0$ such that $f^i(False) = f^{i_0}(False)$ for $i \ge i_0$
 - 4. $\exists j_0$ such that $f^j(\text{True}) = f^{j_0}(\text{True})$ for $j \ge j_0$
 - 5. $\exists i_0$ such that $\mu Z.[f(Z)] = f^{i_0}(False)$
 - 6. $\exists j_0$ such that $\upsilon Z.[f(Z)] = f^{j_0}(True)$
- Standard Least (Greatest) Fixpoint Algorithm

Y := Ø; {or **Y** := **S**} repeat Y' := Y; Y := f(Y) until Y' = Y; return Y;

• Terminates in at most |S| + 1 iterations with the least (greatest) fixpoint of f(Y).

Fixpoint Characterization of CTL

- M=(S,R,L) : a finite Kripke structure.
 - Identify each CTL formula f with a set of states $S_f = \{s \mid f \text{ is } true \text{ on } s \in S\}$.

Any formula $f \Leftrightarrow a \text{ set } S_f \text{ of states}$

False \Leftrightarrow the empty set \varnothing True \Leftrightarrow the complete set of states S

- 2^{S} forms a lattice under union and intersection, ordered by set inclusion \subseteq
- A functional $\tau: 2^S \rightarrow 2^S$ can be seen as *predicate transformer* on M e.g., $\tau(Z) = p \lor EX Z$

Theorem (Clark&Emerson, 1981): Given a finite structure M=(S,R,L) $AFp = p \lor AX AFp = \mu \mathbb{Z}.[p \lor AX Z]$ $EFp = p \lor EX EFp = \mu \mathbb{Z}.[p \lor EX Z]$ $AGp = p \land AX AGp = \upsilon \mathbb{Z}.[p \land AX Z]$ $EGp = p \land EX EGp = \upsilon \mathbb{Z}.[p \land EX Z]$ $A(pUq) = q \lor (p \land AX A(pUq)) = \mu \mathbb{Z}.[q \lor (p \land AX Z)]$ $E(pUq) = q \lor (p \land EX E(pUq)) = \mu \mathbb{Z}.[q \lor (p \land EX Z)]$

Example for EFp

• EFp in the following model: |S| = 4 and $\tau(Y) = p \lor EX(Y)$

• False does not hold in any states, since False represents the empty set of states (\emptyset)

- EX(False): set of states such that False holds in at least one of their next states
- Use Y to mark the states where the current τ^1 (False) holds

Example for EFp (cont'd)

Iteration 4: τ^4 (False) = τ^3 (False)

- Each iteration propagates the formula EFp **backward** in the graph by **one step**
- When fixpoint reached, Y labels exactly the set of states on a path to a state labeled with p
- To check if EFp holds in a certain state s, check if $s \in EFp$

Properties characterized as least fixpoints correspond to Eventualities

Example for EGp

- EGp in the following model: |S| = 4 and $\tau(Y) = p \wedge EX(Y)$
- True holds in all states (True represents the set of all states), marked by Y

Example for EGp (cont'd)

- Iteration-4: τ^4 (True) = τ^3 (True)
- At iteration i, Y labels the set of states such that there is a path of length i where every state satisfies p
- In fixpoint, every state in the set has a successor in the set satisfying p
- For any state in the set, there exists an infinite path where p is always true
- To verify if EGp holds in a certain state s, check if $s \in EGp$

Properties characterized as greatest fixpoints correspond to Invariants

CTL Model Checking Algorithm

Given a Kripke Structure M = <S,R,L> and a CTL formula f, the following recursive algorithm computes the set of states H(f) ⊆ S that satisfies f:

 $H(a) = \{s \mid s \text{ is labeled with } a\}$ for atomic formula a $H(\neg f) = S - H(f)$ $H(f \land g) = H(f) \cap H(g)$ $H(AXf) = \{s \mid \forall t. (s,t) \in R \Longrightarrow t \in H(f)\}$ $H(EXf) = \{s \mid \exists t. (s,t) \in R \implies t \in H(f)\}$ $H(AGf) = \upsilon Z [f \land AXZ] = \upsilon Z (H(f) \cap \{s \mid \forall t. (s,t) \in R \Longrightarrow t \in Z\})$ $H(EGf) = \upsilon Z [f \land EXZ] = \upsilon Z (H(f) \cap \{s \mid \exists t. (s,t) \in R \implies t \in Z\})$ $H(AFf) = \mu Z [f \lor AXZ] = \mu Z (H(f) \lor \{s \mid \forall t. (s,t) \in R \implies t \in Z\})$ $H(EFf) = \mu Z.[f \lor EXZ] = \mu Z. (H(f) \cup \{s \mid \exists t. (s,t) \in R \Longrightarrow t \in Z\})$ $H(A(fUg)) = \mu Z [g \lor (f \land AXZ)] = \mu Z (H(g) \lor (H(f) \cap \{s \mid \forall t. (s,t) \in R \Longrightarrow t \in Z\}))$ $H(E(fUg)) = \mu Z [g \lor (f \land EXZ)] = \mu Z (H(g) \lor (H(f) \cap \{s \mid \exists t. (s,t) \in R \Longrightarrow t \in Z\}))$

CTL Model Checking Algorithm (cont'd)

Example

Structure M <S,R,L>:

$$S = \{1,2,3,4,5\}, AP = \{a,b,c\},\$$

$$R = \{(1,2), (2,3), (5,3), (5,5), (5,1), (2,4), (4,2), (1,4), (3,4)\}\$$

$$L(1) = \{b\}, L(2) = \{a\}, L(3) = \{a,b,c\}, L(4) = \{b,c\}, L(5) = \{c\}\$$

Property: $AG(a \lor c)$

CTL Model Checking Algorithm (cont'd)

Example AG(avc) (cont'd)

• $H(a \lor c) = H(a) \cup H(c) = \{2,3\} \cup \{3,4,5\} = \{2,3,4,5\}$

- $H(AG(a\lor c)) = \upsilon Z.\{2,3,4,5\} \cap \{s \mid \forall t. (s,t) \in R \Longrightarrow t \in Z\}$
- The greatest fixpoint calculation:

$$Z_{0} = S = \{1,2,3,4,5\}$$

$$Z_{1} = \{2,3,4,5\} \cap \{s \mid \forall t. (s,t) \in R \implies t \in Z_{0}\} = \{2,3,4,5\} \cap \{1,2,3,4,5\} = \{2,3,4,5\}$$

$$Z_{2} = \{2,3,4,5\} \cap \{s \mid \forall t. (s,t) \in R \implies t \in Z_{1}\} = \{2,3,4,5\} \cap \{1,2,3,4\} = \{2,3,4\}$$

$$Z_{3} = \{2,3,4,5\} \cap \{s \mid \forall t. (s,t) \in R \implies t \in Z_{2}\} = \{2,3,4,5\} \cap \{1,2,3,4\} = \{2,3,4\}$$

$$Z_{3} = Z_{2}$$

CTL Model Checking Algorithm (cont'd)

Example AG(avc) (cont'd)

• To verify that f holds in state s, check if $s \in H(f)$

Symbolic Model Checking

- Explicit State Representation \Rightarrow State Explosion Problem (about 10⁸ states maximum)
- Breakthrough: Implicit State Representation using ROBDD (about 10²⁰ states).
- Use Boolean characteristic functions represented by ROBDDs to encode sets of states and transition relations.

• Let p be a set of states and p its Boolean encoding (ROBDD), then

$$p = \lambda(v_1, v_2, ..., v_n) \mathbf{p}$$

• For a relation R on states, there is a unique representation **R** such that

$$R = \lambda(v_1, v_2, ..., v_n, v_1', v_2', ..., v_n'). \mathbf{R}$$

Computing EXp

• EXp= $\lambda v. \exists v'(R(v, v') \land p(v'))$, where v=(v₁, v₂, ..., v_n), v'=(v₁', v₂', ..., v_n') R(v, v') (relation) = **R** p(v') (logic expression) = **p**', where **p**' = **p**[v_i \leftarrow v_i']

 $\Longrightarrow EXp = \lambda v. \exists v' (\mathbf{R} \land \mathbf{p'})$

- Algorithm: Given **p** for p;
 - 1. $\mathbf{p}' := \mathbf{p}[\mathbf{v}_i \leftarrow \mathbf{v}_i'];$
 - 2. $S(v) := \exists v' (\mathbf{R} \land \mathbf{p'});$
 - 3. Check if initial state $s_0 \in S(v)$.

Example 1: EX¬b

• EX¬b in a model with v = (b), v' = (b'), $R = b \lor b'$ and $R = R(b, b') = b \lor b'$:

• EX¬b

$$= \exists b'(\mathbf{R} \land \mathbf{p'})$$

= $\exists b'((b \lor b') \land ((\neg b) [b \leftarrow b']))$
= $\exists b'((b \lor b') \land \neg b')$
= $\exists b'(b \land \neg b')$
= $(b \land \neg 0) \lor (b \land \neg 1)$
= b (state s₂ makes EX¬b true)

Example 1: EFb

EFb = μ y. (b \vee EXy) on R = b \vee b' as before.

• Use least fixed point algorithm:

$$\tau^{1}[0] = b \lor EX[0] = b$$

$$\tau^{2}[0] = b \lor EXb$$

$$= b \lor \exists b'. ((b \lor b') \land b') \quad \{\text{go backward along transitions}\}$$

$$= b \lor (b \lor 1) \qquad \{\text{existentially quantify away b'}\}$$

$$= 1$$

$$\tau^{3}[0] = b \lor EX1 = 1$$

• EFb = $\{s_1, s_2\}$: for any state of the model, there is a state in the future in which b is true.

Example 2: Counter

- State variables: $v_0, v_1, \{v = (v_0, v_1)\}$
- Next state variables: $v_0', v_1', \{v' = (v_0', v_1')\}$
- Transition relation: $\mathbf{R} = (v_0 \Leftrightarrow \neg v_0) \land (v_1 \Leftrightarrow (v_0 \oplus v_1))$

Example 2: Counter (cont'd)

• EX(
$$v_0 \wedge v_1$$
)
= $\exists v'. (\mathbf{R} \wedge \mathbf{p'})$
= $\exists (v_0', v_1'). (\mathbf{R} \wedge (v_0' \wedge v_1'))$
= $\exists (v_0', v_1'). ([(v_0' \Leftrightarrow \neg v_0) \wedge (v_1' \Leftrightarrow (v_0 \oplus v_1))] \wedge (v_0' \wedge v_1'))$
= $\exists v_0'. ((v_0' \Leftrightarrow \neg v_0) \wedge (v_0 \oplus v_1) \wedge v_0')$
= $\neg v_0 \wedge (v_0 \oplus v_1)$
= $\neg v_0 \wedge ((\neg v_0 \wedge v_1) \vee (v_0 \wedge \neg v_1))$
= $\neg v_0 \wedge v_1$

• Meaning: state (0, 1) satisfies $EX(v_0 \wedge v_1)$

Example 2: Counter (cont'd)
$$EF(v_0 \land v_1) = \mu y. ((v_0 \land v_1) \lor EXy)$$

 $\tau^1[0] = (v_0 \land v_1) \lor EX0 = (v_0 \land v_1)$
 $\tau^2[0] = (v_0 \land v_1) \lor EX(v_0 \land v_1)$
 $= (v_0 \land v_1) \lor (\neg v_0 \land v_1)$ {from the result of $EX(v_0 \land v_1)$ }
 $= v_1$
 $\tau^3[0] = (v_0 \land v_1) \lor EX(v_1)$
 $= (v_0 \land v_1) \lor [\exists (v_0', v_1'). (\mathbf{R} \land v_1')]$
 $= (v_0 \land v_1) \lor [\exists (v_0', v_1'). ((v_0' \Leftrightarrow \neg v_0) \land (v_1' \Leftrightarrow (v_0 \oplus v_1)) \land v_1')]$
 $= (v_0 \land v_1) \lor [\exists v_0'. ((v_0' \Leftrightarrow \neg v_0) \land (v_0 \oplus v_1)) \land v_1')]$
 $= (v_0 \land v_1) \lor [\exists v_0'. ((v_0 \Leftrightarrow \neg v_0) \land (v_0 \oplus v_1))]$
 $= (v_0 \land v_1) \lor [\exists v_0'. (v_0 \land \neg v_1) = v_0 \lor v_1$
 $\tau^4[0] = (v_0 \land v_1) \lor EX(v_0 \lor v_1)$
 $= (v_0 \land v_1) \lor [\exists (v_0', v_1'). (\mathbf{R} \land (v_0' \lor v_1'))]$
 $= (v_0 \land v_1) \lor (\neg v_0 \land v_1) \lor (v_0 \land \neg v_1) = 1$
• $EF(v_0 \land v_1) = \{(0, 0), (0, 1), (1, 0), (1, 1)\} \rightarrow All states satisfy $EF(v_0 \land v_1)$$

3.40 (of 47)

Symbolic Model Checking Algorithm

- *eval* takes a CTL formula as its argument and returns the ROBDD for the set of states that satisfy the formula
- function eval(f)

case

f an atomic proposition: **return** f;

 $\begin{array}{ll} f = \neg p: & \texttt{return} \neg eval(p); \\ f = p \lor q: & \texttt{return} eval(p) \lor eval(q); \\ f = EXp: & \texttt{return} evalEX(eval(p)); \\ f = E(pUq): & \texttt{return} evalEU(eval(p), eval(q), False); \\ f = EGp: & \texttt{return} evalEG(eval(p), True) \\ \end{array}$

end function;

- function $evalEX(p) = \exists v'(R \land p')$
- function evalEU(p, q, y) y' = q ∨ (p ∧ evalEX(y)) if y' = y then return y else return evalEU(p, q, y') end function

function evalEG(p, y)
 y' = p \wedge evalEX(y)
 if y' = y
 then return y
 else return evalEG(p, y')
 end function

Model Checking Tools

SMV (Symbolic Model Verifier)

- A tool for checking finite state systems against specifications in the temporal logic CTL.
- Developed at Carnegie Mellon University by E. Clarke, K. McMillan et. al.
- Supports a simple input language: SMV
- For more information: <u>http://www.cs.cmu.edu/~modelcheck/smv.html</u>

Cadence SMV

- Updated version of SMV by K. McMillan at Berkeley Cadence Labs
- Input languages: extended SMV and synchronous Verilog
- Supports temporal logics CTL and LTL, finite automata, embedded assertions, and refinement specifications.
- Features compositional reasoning, link with a simple theorem prover, an easy-to-use graphical user interface and source level debugging capabilities
- For more information: <u>http://www.kenmcmil.com/smv.html</u>

Model Checking Tools (cont'd)

VIS (Verification Interacting with Synthesis)

- A system for formal verification, synthesis, and simulation of finite state systems.
- Developed jointly at the University of California at Berkeley and the University of Colorado at Boulder.
- VIS provides the following features:
 - Fast simulation of logic circuits
 - Formal "implementation" verification (equivalence checking) of combinational and sequential circuits
 - Formal "design" verification using fair CTL model checking and language emptiness
- For more information: <u>https://embedded.eecs.berkeley.edu/research/vis</u>

Model Choking Tools (cont'd)

CheckOff-M

- Commercial product by Abstract Hardware Ltd. (UK) and Siemens AG (Germany)
- Performs verification of properties stated in a temporal logic on an FSM
- Input EDIF netlist + library or superset of synthesizable synchronous VHDL and Verilog
- Converts to *Macro FSM* by merging transition (represented by ROBDDs)
- Temporal logic: subset of Computation Tree Logic (CTL) + Intervals = CIL
 - VHDL-like syntax for predicates, temporal operators always, possibly, within, during, ...
 - Property = theorem = assumption on valid sequences + consequence
- Tool does not exist anymore

Model Checking Tools (cont'd)

FormalCheck

- Developed at Bell Labs. Now commercial product of Cadence
- Performs model checking of properties stated in temporal logic
- Supports the synthesizable subsets of Verilog and VHDL hardware design languages.
- User supplies FormalCheck with a set of queries (properties and constraints)
- Each property is defined using semantics of the class of omega automata.
- Tool provides powerful *model reduction* options.
- Tool replaced by JasperGold® Formal Verification Platform

References

Temporal Logics:

- 1. E. A. Emerson. Temporal Logics in *Handbook of Theoretical Computer Science*. Elsevier Science Publishers B.V., 1990
- 2. Z. Manna, A. Pnueli. *The Temporal Logic of Reactive and Concurrent Systems*. Springer-Verlag, 1991.

CTL:

- 3. E.M. Clarke, E. A. Emerson, and A.P. Sistla. Automatic verification of finite state concurrent systems using temporal logic specifications. *ACM transactions on Programming Languages and Systems*, 8(2):244-263 (April 1986).
- E. A. Emerson, C.L. Lei. Modalities for model checking: Branching time strikes back. In Proc. ACM Symposium on Principles of Programming Language, ACM, New York, 1985, pp. 84-96.
- 5. A. P. Sistla, E. M. Clarke. The complexity of propositional linear temporal logics. *JACM*, 32(3), 1985, pp. 733-749.
- 6. E. A. Emerson, E.M. Clarke. "Sometimes" and "Not Never" revisited: on branching versus linear time temporal logic. *JACM*, 33(1), 1986, pp. 151-178.

Model Checking:

- 7. C. Baier, J.-P. Katoen: Principles of Model Checking, MIT Press, 2008.
- 8. K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.

References (cont'd)

- 9. E.M. Clarke, E. A. Emerson, and A.P. Sistla. Automatic verification of finite state concurrent systems using temporal logic specifications. *ACM transactions on Programming Languages and Systems*, 8(2), 1986, pp. 244-263.
- 10.E. A. Emerson and C.L. Lei. Modalities for model checking: Branching time strikes back. In Proceedings of the Twelfth Annual ACM Symposium on Principles of Programming Language, ACM, New York, 1985, pp. 84-96.
- 11.M.C. Browne, E. M. Clarke, D.L. Dill. Automatic verification of sequential circuits using temporal logic. *IEEE Transactions on Computers*, C-35(12), 1986, pp. 1035-1044.
- 12.E. M. Clarke, O. Grumberg, and D. E. Long, "Model checking and abstraction", *Proc.* ACM Symp. on Principles of Programming Languages, January 1992.
- 13.J. R. Burch, E. M. Clarke, D. Long, K. L. McMillan, D. L. Dill. Symbolic model checking for sequential circuit verification. *IEEE Transactions on CAD*, 13(4), 1994, pp. 401-424.
- 14.O. Coudert, I.C. Madre, and C. Berthet. Verifying temporal properties of sequential machines without building their date diagrams. In *Proc. Computer-Aided Verification*, Springer-Verlag, New York, NY, 1991.
- 15.H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit state enumeration of finite state machines using BDDs. *Proc. International Conference on Computer-Aided Design*, 1990.
- 16.J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking: 10²⁰ states and beyond. *Information and Computation*, 98(2), 1992.