
Case Study: Formal Verification of an ATM
Switch Fabric using VIS

5.1 (of 29)

Page

Introduction 5.2
VIS Tool 5.3
Fairisle ATM Switch Fabric 5.5
Verification Strategy 5.7
Verification by Model Checking 5.9
Enhancement Techniques for Model Checking 5.18
Verification by Equivalence Checking 5.24
Conclusions 5.27
References 5.29

Introduction

5.2 (of 29)

The Problem:
• The need to produce high integrity communications systems

• ATM (Asynchronous Transfer Mode) switches are basic elements of
state-of-the-art networks.

• Need a suitable technology to verify a whole ATM switch

Conventional Approaches:
• Post-design Simulation, and Testing
 Cannot guarantee complete correctness

The Proposed Approach:

• Use Formal Verification based on Model Checking and Equivalence
Checking in the VIS tool.

• Develop techniques to avoid state space explosion

VIS

VL2MV

Verification
- model checking
- equivalence checking
- simulation

Synthesis
- state minimization
- state encoding
- restruct, hierarchy

VIS Verification Tool

VIS: Verification Interacting with Synthesis

SIS: Sequential Interactive Synthesis

CTL: Computational Tree Logic

CTL SIS

Verilog

5.3 (of 29)

+ nondeterminism
+ symbolic variable

5.4 (of 29)

Simulation in Verilog-XL

AWK program

Seq. equ. checking in VIS

Analyze counterexample in XL

Analyze counterexample in XL

Analyze counterexample in XL

Verilog RTL description

Synopsys-Verilog netlist description

VIS/XL-Verilog netlist description

Model checking in VIS

Model checking in VIS

Synthesize in Synopsys

EDIF generated by Synopsys

Design Flow and Formal Verification (VIS)

Fairisle ATM Switch Fabric

0

1

2

3

output port
controllers

0

1

2

3

ATM
Switch

Fabric

dOut0
ackIn0
dOut1
ackIn1
dOut2
ackIn2
dOut3
ackIn3

8

1
8

1
8

1
8

1

8

8

8

8

1

1

1

1

dIn0
ackOut0
dIn1
ackOut1
dIn2
ackOut2
dIn3
ackOut3

input port
controllers

transmission
lines

transmission
lines

1

frameStart

Unused Route Priority Active

5.5 (of 29)

Bit 67 5 4 3 2 1 0

Switch Fabric Behavior

receive frame-
start signal

wait for cells
to arrive

wait for frame-
start signal

pass acknowledgment signal and
send data cells to outputs

process header
(arbitration)

5.6 (of 29)

1 frame cycle

Switch Fabric Implementation

D
ecoder

Priority
Filter

ACK

DATASWITCH

Arbiters

Timing

Data
Out

Data
In

Frame
Start

AckAck
Out In

Latches

ARBITRATION

5.7 (of 29)

Latches

Latches

R
egisters

Verification Strategy

5.8 (of 29)

• Objective: Impl. satisfies Spec. (property and equ. checking)
- RTL description in Verilog (Specification)
- Netlist description in Verilog (Implementation)
- Properties in CTL (safety & liveness properties)

• Problems:
- Verification cannot handle large circuits
- Hard to consider all initial states of a circuit

• Strategy:
- Model checking on abstracted models augmented with several

enhancement techniques
- Equivalence checking of submodules of the circuit

Model Checking — Basic Idea

or

5.9 (of 29)

Model Checker

True / Counterexample

Property

Structure

Hardware
Design

Behavior
Model

Model Checking on the Fabric

 Problem in property checking: state space explosion

- 210 latches in the design 2 210 states (assuming no state reduction
skill by the tool)

 Solutions:

• Environment abstraction: restrict the possible inputs according to the
expected behavior (e.g. frames of 64 clock cycles)

• Component abstraction: abstract the target component by some rules
(e.g. reduce the dataswitch paths from 8 bits to 1 bit)

Abstraction Techniques

InputsInputs

ComponentAbstraction

Target CircuitsAbstracted Circuits

Environment State Machine
(Environment Abstraction)

Abstracted Fabric

4
4
4

1
1
1
1
1

1
1
1
1

1

1
1

1
1
1
1
1

ackOut0
ackOut1
ackOut2
ackOut3

dIn0[0:3]

dIn3[0:3]

dIn0[0]
dIn1[0]

dIn3[0]

4

dIn1[0:3] 4
dIn2[0:3] 4

4

161632

R
eg

is
te

rs

R
eg

is
te

rs

4

2

12

frameStart

ackIn0
ackIn1
ackIn2
ackIn3

dIn2[0]

1 dOut0[0]
1 dOut1[0]
1 dOut2[0]
1 dOut3[0]

outputDisable[0:3]
xGrant[0:3]
yGrant[0:3]

R
eg

is
te

rs
R

eg
is

te
rs

DATASWITCH

ARBITRATION

Pr
io

ri
ty

Fi

lte
r

D
ec

od
er

T
im

in
g

A
rb

ite
r

ACK

8 bits to 4 bits (arbitration)

8 bits to 1 bit (dataswitch)

Why do we need an environment machine?

1.Explicit input values required in CTL we use nondeterministic register
variables to express inputs

2.No description of explicit time points in CTL we use explicit states to
express timing information

3.Imitates the behavior of port controllers and hence constraints the
number of possible inputs of the fabric

 We use 8 state environment machine to ease the CTL expressions

8-state Environment Machine

S1 S7S5S4S3State

ackOut

ackIn

Frame
Start

dIn

dOut

S0
ts

S2
th

S6
te

How do we extract properties from Spec?

Example: Timing block

RUN WAIT

ROUTE

frameStart = 1 / routeEnable = 0

How do we extract properties from Spec?

 Generally, properties are based on FSM specification

• Liveness (something good will eventually happen)
Example: If framStart = 0 in “wait” state, the fabric will eventuallymove

to “route” state.
CTL: AG (A (frameStart = 0 state = wait) U (state = route))

• Safety (nothing bad will ever happen)
Example: If (frameStart = 0 and anyActive = 1) in “wait” state, its next

state must be “route”.
CTL: AG (state = wait frameStart = 0 anyActive = 1

 AX (state = route))

Properties CPU time
(seconds)

Memory
usage (MB)

Nodes allocated

Property 1 3933.9 40.3 84,199,139

Property 2 4550.7 4.3 90,371,031

Property 3 14.8 2.8 368,749

Property 4 3593.4 32.4 93,073,140

Property 5 833.0 4.5 28,560,871

Property 6 3679.7 40.9 79,687,784

Property 7 414.8 5.3 4,180,124

Property 8 1037.9 11.6 29,755,252

 Unreasonable CPU time (1 to 2 hours machine time)

 Develop enhancement techniques

Results of Model Checking

Enhancement Techniques of Model Checking

1.Cascade Property Division
• Divide a property into several seq. related sub-properties
• Penalty: Environment machines are required

2.Parallel Property Division
• Split a property into several parallel sub-properties checked on

abstracted models stripped from the design
• Penalty: Disassemble circuits at some specific locations

3.Latch Reduction
• Reduce the primary inputs and outputs of state holding elements (i.e.

latches)
• Penalty: Re-evaluate the timing behavior of circuits

Cascade Property Division (Example)

5.19 (of 29)

Property 7: If input port 0 chooses output port 0 with priority, the value on
ackOut0 will be the input of ackIn0.

CTL: AG ((dIn0[3:0] = 0011 dIn1[1] = 0 dIn2[1] = 0 dIn3[3]= 0
state= S2) AX AX AX (ackOut0== ackIn0));

• sub-prop. 1: AG ((.....) AX AX AX (state = S5 xGrant[0] = 0
yGrant[0] = 0 outputDisable[0] = 0));

• sub-prop. 2:AG ((....) ackOut0 == ackIn0);

 Easy proof: (sub-property 1 sub-property Property 7

(+) enhance model checking by 41 times

(-) environment machine with outputs for intermediate signals
(i.e., xGrant, yGrant, outputDisable)

Parallel Property Division (Example)

Property 3: From th+1 (state S3) to th+4 (state S6), the default value
(zero) is put on the data output ports.

CTL: AG (state = S3 state = S4 state = S5 state = S6)
 dOut0 = 0 dOut1 = 0 dOut2 = 0 dOut3 = 0);

• sub-prop. i : AG (state = S3 state = S4 state = S5 state = S6)
(i=1,2,3,4) dOut0[i] = 0);

 Easy to prove: (sub-property1 sub-property2 sub-property 3
sub-property 4) Property 3

(+) enhance model checking by 73 times
(-) decompose the fabric circuit in 4 units

Parallel Property Division (cont’d)

1

1

1

1

fabric unit0

fabric unit1

fabric unit2

fabric unit3

dOut0[0]

dOut1[0]

dOut2[0]4
x

O
R

ackOut0 0
ackOut1 0
ackOut2 0
ackOut3 0

ackOut0 1
ackOut1 1
ackOut2 1
ackOut3 1

ackOut0 2
ackOut1 2
ackOut2 2
ackOut3 2

ackOut0 3
ackOut1 3
ackOut2 3
ackOut3 3

ackOut0 1

ackOut1 1

ackOut3

ackOut2 1

dOut3[0]

1

1

frameStart

dIn2[0:3]
dIn3[0:3]

dIn0[0:3]
dIn1[0:3]

4
4

4
4

ackIn0

ackIn1

ackIn2

ackIn3

1

Pr
io

ri
t

y fil
te

r

4
4
4

1
1
1
1
1

1
1
1
1

1

1
1

1
1
1
1

1 dOut3[0]

ackOut0
ackOut1

ackOut2
ackOut3

1

4
4
4
4

4
4
4

Arbitration

dIn0[0:3] 4
dIn1[0:3]
dIn2[0:3]
dIn3[0:3]

dIn0[0]

dIn2[0]
dIn3[0]

Ti
m

in
g

A
rb

ite
r

R
eg

is
te

rs

Pr
io

rit
y fil

te
r

outputDisable[0:3]
xGrant[0:3]
yGrant[0:3]

1
1dIn1[0] 1

1
1

D
ec

od
er

1 dOut3[0]

2

12

8 4 4

R
eg

is
te

rs

R
eg

is
te

rs

R
eg

is
te

rs

ackIn31ackOut1 1
ackOut03

3

ackOut23 1 Acknowledgment
ackOut33 1

frameStart

Dataswitch

dIn0[0]
dIn1[0]

dIn3[0]

xGrant[0:3]

yGrant[0:3]dIn0[0:3] 4

dIn1[0:3] 4
dIn2[0:3] 4

dIn3[0:3] 4

Arbitration

161632

D
ec

od
er

R
eg

is
te

rs
R

eg
is

te
rs

R
eg

is
te

rs

T
im

in
g

A
rb

ite
r

R
eg

is
te

rs

4

2

12 outputDisable[0:3]

frameStart

Dataswitch

ackIn0
ackIn1
ackIn2
ackIn3

dIn2[0]

1 dOut0[0]
1 dOut1[0]
1 dOut2[0]

Acknowledgment

Latch Reduction

• Influence of latches on model checking
- Original fabric (210 latches impossible to check
- Abstracted fabric (85 latches): up to 4000 seconds
- Abstracted fabric unit (54 latches) 50 seconds

• Example — Property 2: Data bytes in a cell are transferred from input
port 0 to output port 0 sequentially with 4 clock cycle delay.

CTL: EG (state = S3 -> AX AX AX AX (dOut0 = dIn0S3));

 Reduce a set of primary output latches and check the property:
CTL: EG (state = S3 -> AX AX AX (dOut0 = dIn0S3));

(+) Enhance model checking by 200 times using latch reduction
(-) Re-evaluate the timing behavior

Enhanced Results of Model Checking

Properties CPU time w/o
enhancement(s)

Enhancement
techniques

CPU time with
enhancement (s)

Speed- up

Property 1 3933.9 latch red. 27.8 142

Property 2 4550.7 latch red. 23.1 197

Property 3 14.8 - - -

Property 4 3593.4 parallel div. 48.9 74

Property 5 833.0 parallel div. 72.5 11

Property 6 3679.7 latch red. 34.1 51

Property 7 414.8 cascade div. 10.0 41

Property 8 1037.9 latch red. 46.1 23

Principle of Sequential Equivalence Checking

- Combinational circuit: straightforward
- Sequential circuit: must consider all initial states

 Hard to handle large circuits

EQU ?

No

Counter-
example

YesInputs Outputs

RTL Spec.

Netlist Imp.

Equivalence Checking

... ...

Arbiter0 ... Arbiter3 Dataswitch0 ... Dataswitch3

Timing Arbiters Priority_decode Dataswitch Pause

Arbitration In_latches Out_latches Pause_dataswitch

• Objective: Impl. (Netlist) equivalent to Spec. (RTL)

Apply equivalence checking hierarchically on submodules of the switch
fabric in a bottom-up fashion

Switch_fabric

Acknowledg.

Results of Equivalence Checking

Component CPU time
(seconds)

Number of
latches

Acknowledgment 1.4 0
In_latches 4.2 32
Out_latches 4.2 32
Pause 4.0 32
Arbiter_i 1.4 3
Arbiters 13.3 12
Priority_decode 26.9 16
Timing 0.3 2
Dataswitch_i 1855.8 16
Arbitration 67860.0 30
Dataswitch failed 64
Pause_dataswitch failed 96
Switch_fabric failed 190

Conclusions

• Simulation is still a powerful verification tool, but it is not sufficient

• Model checking efficiently used in the verification of high-level RTL
design and control circuity

• Environment abstraction and component abstraction play an important
role in easing model checking

• Property cascade division, property parallel division and latch reduction
are efficient enhancement techniques to model checking

• Equivalence checking applied efficiently in the verification of synthesized
submodules

Conclusions (cont‘d)

Human effort (not including time for learning the tool and development of
abstraction/enhancement techniques):

 The human time for formal verification is almost the same as that for
simulation in a design.

Project phases Time
(man-days) Code (# lines)

RTL description 10 580 (Verilog)

Netslist description 3 647 (Verilog)

Simulation 3 102 (testbench)

Model checking 3 200 (env. mach.)

Equivalence checking 1 0

Total 20 1529

References

5.29(of 29)

1. J. Lu and S. Tahar: Practical Approaches to the Automatic Verification of an ATM Switch
Fabric using VIS; Proc. IEEE 8th Great Lakes Symposium on VLSI (GLS-VLSI'98),
Lafayette, Louisiana, USA, February 1998, IEEE Computer Society Press, pp. 368-373.

2. J. Lu and S. Tahar: On the Formal Verification and Reimplementation of an ATM Switch
Fabric Using VIS; Technical Report No. 401, Concordia University, Department of
Electrical and Computer Engineering, September 1997.

3. Jianping Lu: On the Formal Verification of ATM Switches; MaSc Thesis, Concordia
University, Department of Electrical and Computer Engineering, May 1999.

Technical report with source code available on-line at:
http://hvg.ece.concordia.ca/Publications/TECH_REP/VIS_TR97/VIS_TR97.html

other papers on ATM switch verification can be found at:
http://hvg.ece.concordia.ca/Research/APPL/atmsv.php

