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Introduction
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The Problem:
• The need to produce high integrity communications systems

• ATM (Asynchronous Transfer Mode) switches are basic elements of  
state-of-the-art networks.

• Need a suitable technology to verify a whole ATM switch

Conventional Approaches:
• Post-design Simulation, and Testing
 Cannot guarantee complete correctness

The Proposed Approach:

• Use Formal Verification based on Model Checking and Equivalence  
Checking in the VIS tool.

• Develop techniques to avoid state space explosion



VIS

VL2MV

Verification
- model checking
- equivalence checking
- simulation

Synthesis
- state minimization
- state encoding
- restruct, hierarchy

VIS Verification Tool

VIS: Verification Interacting with Synthesis  

SIS: Sequential Interactive Synthesis

CTL: Computational Tree Logic

CTL SIS

Verilog
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+ nondeterminism
+ symbolic variable
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Simulation in Verilog-XL

AWK program

Seq. equ. checking in VIS

Analyze counterexample in XL

Analyze counterexample in XL

Analyze counterexample in XL

Verilog RTL description

Synopsys-Verilog netlist description

VIS/XL-Verilog netlist description

Model checking in VIS

Model checking in VIS

Synthesize in Synopsys

EDIF generated by Synopsys

Design Flow and Formal Verification (VIS)



Fairisle ATM Switch Fabric
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Bit 67 5 4 3 2 1 0



Switch Fabric Behavior

receive frame-
start signal

wait for cells  
to arrive

wait for frame-
start signal

pass acknowledgment signal and  
send data cells to outputs

process header  
(arbitration)
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1 frame cycle



Switch Fabric Implementation
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Verification Strategy
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• Objective: Impl. satisfies Spec. (property and equ. checking)
- RTL description in Verilog (Specification)
- Netlist description in Verilog (Implementation)
- Properties in CTL (safety & liveness properties)

• Problems:
- Verification cannot handle large circuits
- Hard to consider all initial states of a circuit

• Strategy:
- Model checking on abstracted models augmented with several  

enhancement techniques
- Equivalence checking of submodules of the circuit



Model Checking — Basic Idea

or
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Model Checker

True / Counterexample

Property

Structure

Hardware  
Design

Behavior  
Model



Model Checking on the Fabric

 Problem in property checking: state space explosion

- 210 latches in the design  2 210 states (assuming no state reduction  
skill by the tool)

 Solutions:

• Environment abstraction: restrict the possible inputs according to the  
expected behavior (e.g. frames of 64 clock cycles)

• Component abstraction: abstract the target component by some rules  
(e.g. reduce the dataswitch paths from 8 bits to 1 bit)



Abstraction Techniques

InputsInputs

ComponentAbstraction

Target CircuitsAbstracted Circuits

Environment State Machine
(Environment Abstraction)



Abstracted Fabric
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Why do we need an environment machine?

1.Explicit input values required in CTL we use nondeterministic register  
variables to express inputs

2.No description of explicit time points in CTL  we use explicit states to  
express timing information

3.Imitates the behavior of port controllers and hence constraints the  
number of possible inputs of the fabric

 We use 8 state environment machine to ease the CTL expressions



8-state Environment Machine
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How do we extract properties from Spec?

Example: Timing block

RUN WAIT

ROUTE

frameStart = 1 / routeEnable = 0



How do we extract properties from Spec?

 Generally, properties are based on FSM specification

• Liveness (something good will eventually happen)
Example: If framStart = 0 in “wait” state, the fabric will eventuallymove  

to “route” state.
CTL: AG (A (frameStart = 0  state = wait) U (state = route))

• Safety (nothing bad will ever happen)
Example: If (frameStart = 0 and anyActive = 1) in “wait” state, its next  

state must be “route”.
CTL: AG (state = wait  frameStart = 0  anyActive = 1

 AX (state = route))



Properties CPU time  
(seconds)

Memory  
usage (MB)

Nodes allocated

Property 1 3933.9 40.3 84,199,139

Property 2 4550.7 4.3 90,371,031

Property 3 14.8 2.8 368,749

Property 4 3593.4 32.4 93,073,140

Property 5 833.0 4.5 28,560,871

Property 6 3679.7 40.9 79,687,784

Property 7 414.8 5.3 4,180,124

Property 8 1037.9 11.6 29,755,252

 Unreasonable CPU time (1 to 2 hours machine time)

 Develop enhancement techniques

Results of Model Checking



Enhancement Techniques of Model Checking

1.Cascade Property Division
• Divide a property into several seq. related sub-properties
• Penalty: Environment machines are required

2.Parallel Property Division
• Split a property into several parallel sub-properties checked on  

abstracted models stripped from the design
• Penalty: Disassemble circuits at some specific locations

3.Latch Reduction
• Reduce the primary inputs and outputs of state holding elements (i.e.  

latches)
• Penalty: Re-evaluate the timing behavior of circuits



Cascade Property Division (Example)
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Property 7: If input port 0 chooses output port 0 with priority, the value on  
ackOut0 will be the input of ackIn0.

CTL: AG ((dIn0[3:0] = 0011  dIn1[1] = 0  dIn2[1] = 0  dIn3[3]= 0 
state= S2) AX AX AX (ackOut0== ackIn0));

• sub-prop. 1: AG ((.....) AX AX AX (state = S5  xGrant[0] = 0 
yGrant[0] = 0  outputDisable[0] = 0));

• sub-prop. 2:AG ((....)  ackOut0 == ackIn0);

 Easy proof: (sub-property 1  sub-property   Property 7

(+) enhance model checking by 41 times

(-) environment machine with outputs for intermediate signals
(i.e., xGrant, yGrant, outputDisable)



Parallel Property Division (Example)

Property 3: From th+1 (state S3) to th+4 (state S6), the default value  
(zero) is put on the data output ports.

CTL: AG (state = S3  state = S4 state = S5 state = S6)
  dOut0 = 0  dOut1 = 0  dOut2 = 0  dOut3 = 0 );

• sub-prop. i : AG (state = S3  state = S4  state = S5  state = S6) 
(i=1,2,3,4)         dOut0[i] = 0);

 Easy to prove: (sub-property1  sub-property2  sub-property 3 
sub-property 4)  Property 3

(+) enhance model checking by 73 times  
(-) decompose the fabric circuit in 4 units



Parallel Property Division (cont’d)
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Latch Reduction

• Influence of latches on model checking
- Original fabric (210 latches impossible to check
- Abstracted fabric (85 latches): up to 4000 seconds
- Abstracted fabric unit (54 latches)  50 seconds

• Example — Property 2: Data bytes in a cell are transferred from input  
port 0 to output port 0 sequentially with 4 clock cycle delay.

CTL: EG (state = S3 -> AX AX AX AX (dOut0 = dIn0S3));

 Reduce a set of primary output latches and check the property:
CTL: EG (state = S3 -> AX AX AX (dOut0 = dIn0S3));

(+) Enhance model checking by 200 times using latch reduction  
(-) Re-evaluate the timing behavior



Enhanced Results of Model Checking

Properties CPU time w/o  
enhancement(s)

Enhancement  
techniques

CPU time with  
enhancement (s)

Speed- up

Property 1 3933.9 latch red. 27.8 142

Property 2 4550.7 latch red. 23.1 197

Property 3 14.8 - - -

Property 4 3593.4 parallel div. 48.9 74

Property 5 833.0 parallel div. 72.5 11

Property 6 3679.7 latch red. 34.1 51

Property 7 414.8 cascade div. 10.0 41

Property 8 1037.9 latch red. 46.1 23



Principle of Sequential Equivalence Checking

- Combinational circuit: straightforward
- Sequential circuit: must consider all initial states

 Hard to handle large circuits

EQU ?

No

Counter-
example

YesInputs Outputs

RTL Spec.

Netlist Imp.



Equivalence Checking

... ...

Arbiter0 ... Arbiter3 Dataswitch0 ... Dataswitch3

Timing Arbiters Priority_decode Dataswitch Pause

Arbitration In_latches Out_latches Pause_dataswitch

• Objective: Impl. (Netlist) equivalent to Spec. (RTL)

Apply equivalence checking hierarchically on submodules of the switch  
fabric in a bottom-up fashion

Switch_fabric

Acknowledg.



Results of Equivalence Checking

Component CPU time  
(seconds)

Number of  
latches

Acknowledgment 1.4 0
In_latches 4.2 32
Out_latches 4.2 32
Pause 4.0 32
Arbiter_i 1.4 3
Arbiters 13.3 12
Priority_decode 26.9 16
Timing 0.3 2
Dataswitch_i 1855.8 16
Arbitration 67860.0 30
Dataswitch failed 64
Pause_dataswitch failed 96
Switch_fabric failed 190



Conclusions

• Simulation is still a powerful verification tool, but it is not sufficient

• Model checking efficiently used in the verification of high-level RTL  
design and control circuity

• Environment abstraction and component abstraction play an important  
role in easing model checking

• Property cascade division, property parallel division and latch reduction  
are efficient enhancement techniques to model checking

• Equivalence checking applied efficiently in the verification of synthesized  
submodules



Conclusions (cont‘d)

Human effort (not including time for learning the tool and development of  
abstraction/enhancement techniques):

 The human time for formal verification is almost the same as that for  
simulation in a design.

Project phases Time
(man-days) Code (# lines)

RTL description 10 580 (Verilog)

Netslist description 3 647 (Verilog)

Simulation 3 102 (testbench)

Model checking 3 200 (env. mach.)

Equivalence checking 1 0

Total 20 1529
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Technical report with source code available on-line at:
http://hvg.ece.concordia.ca/Publications/TECH_REP/VIS_TR97/VIS_TR97.html

other papers on ATM switch verification can be found at:
http://hvg.ece.concordia.ca/Research/APPL/atmsv.php


