
Digital Logic Synthesis and Equivalence Checking Tools
Tutorial

Hardware Verification Group

Department of Electrical and Computer Engineering,
Concordia University, Montreal, Canada

{n ab, h aridh, lahiouel}@encs.concordia.ca

CAD Tool Tutorial

May, 2016

Abstract

This document contains a brief introduction to Synopsys Design Vision, Synopsys Formality, and Cadence

Conformal tools. You would need approximately three hours to finish this tutorial.

1

Revision History
Version Authors Modification Section Date
1.0 Naeem Abbasi Document Creation - April 16, 2010
2.0 Naeem Abbasi Section on Synopsys Formality added 3 April 18, 2010

An additional appendix added B
Title modified -

2.1 Naeem Abbasi Added Figures 1 and 2 1, 2.1 April 19, 2010
and their descriptions

3.0 Naeem Abbasi One’s counter example added May 3, 2010
(provided by Ted Obuchowicz)

3.1 Naeem Abbasi Screen Captures Updated May 3, 2010
Remote Access Commands
added to the appendix

3.2 Naeem Abbasi Updated paths to various documentation, June 8, 2011
links and other useful information

3.3 Henda Aridhi Updated paths to various documentation, April 30, 2012
updated section 2 GUI design vision
instead of GUI design analyzer.
updated all the paths to
the documentation and the libraries.

3.4 Ons Lahiouel Updated paths to various documentation, May 2, 2016
and libraries.

2

Table of Contents

1 Introduction 6
1.1 Synopsys Design Compiler . 7
1.2 Synopsys Formality . 7
1.3 Cadence Conformal . 7

2 Synopsys Design Compiler 7
2.1 Introduction . 7
2.2 Design example used in this tutorial . 8
2.3 Setting up the Environment and Important Libraries and File 9
2.4 Setting the Design Attributes . 11

2.4.1 Clock Attributes . 11
2.4.2 Specifying the Output Load . 12

2.5 Specifying the Design Constraints . 12
2.5.1 The Area Constraints . 12
2.5.2 The Timing Constraints . 13

2.6 Synthesis and Optimization . 14
2.7 Analysis Report . 15
2.8 Exporting the Design Files . 15

3 Synopsys Formality 16
3.1 Introduction . 16
3.2 Setting up the Environment . 16

3.2.1 Required Libraries and Files . 17
3.3 Starting Formality . 17
3.4 Design Input . 17

3.4.1 Reading the Reference Design . 17
3.4.2 Reading the Implemented Design . 18

3.5 Setup . 18
3.6 Match . 18
3.7 Verify . 19
3.8 Debug . 20
3.9 How to create a command script . 20

4 Cadence Conformal 21
4.1 Introduction . 21
4.2 Setting up the Environment . 21

4.2.1 Required Libraries and Files . 22
4.3 Starting Conformal . 22
4.4 Design Input . 22

4.4.1 Reading the RTL netlist . 22
4.4.2 Reading the Gate-level Netlist . 23

4.5 Design Preparation and Key point Mapping 23
4.6 Reporting Results . 24

3

4.6.1 Schematic and Source Views . 24
4.7 How to create a command script . 24

A Synopsys Design Vision 26
A.1 Design Vision Setup Files . 26
A.2 Design Example Files . 26

B Synopsys Formality 27
B.1 The reference . 27
B.2 The implementation . 27
B.3 The command script . 27
B.4 Other useful information . 27

C Cadence Conformal 28
C.1 The golden design . 28
C.2 The revised design . 28
C.3 The command script . 28
C.4 ¬ (Rarely Asked Questions) . 28
C.5 Remote access . 28
C.6 Commonly used UNIX commands . 29
C.7 Have you ever wondered? . 29
C.8 Screen Capture . 29
C.9 Tutorial Files . 29
C.10 Getting started - May 12, 2010 in class tool demonstration 29
C.11 Unix Tutorial . 29
C.12 Unix Commands . 30
C.13 How to force 2004 version of formality to start instead of 2011 version of

formality . 31
C.14 Other useful information . 31

4

List of Figures

1 Equivalence Checking . 6
2 Digital logic synthesis . 7
3 Directory structure and Design Vision graphical user interface 9
4 Symbolic and schematic views . 10
5 Defining clock . 11
6 Specifying capacitive load . 12
7 Area constraints . 13
8 Timing constraints . 13
9 Design optimization . 14
10 Formality equivalence checking flow . 16
11 Starting formality . 17
12 Reference and implemented designs loaded and ready for equivalence checking 19
13 Match command execution results . 19
14 Equivalence successfully verified . 20
15 Debug schematic and source views . 21
16 Confomral LEC . 22
17 Conformal map points and equivalence results 23
18 Conformal schematic and source view . 24

5

1 Introduction

Logic synthesis usually refers to the process of translation of RTL design into an optimized
gate level description. Logic equivalence checking refers to a technique that mathematically
(i.e. with out simulation) verifies that the two design descriptions are functionally equivalent.

Section 2 of this tutorial describes how to setup and synthesize an RTL description into a
structural netlist of gates using Synopsys Design Compiler. During this process, the design
is read in, analyzed and elaborated. After that, the designer identifies critical nets in the
design such as the clock signal. Then area and timing constraints are specified for guiding
the design optimization. Once the design is optimized, it is exported to a gate level netlist.
This completes the synthesis step.

Section 3 and 4 of this tutorial describe use of equivalence checking tools. An equivalence
checking tool takes two descriptions of a design and verifies if they are functionally equivalent
(see Fig. 1). In case if the two descriptions are not equivalent, a counter example is produced.

RTL
Gate Level

Netlist

Counter Example

YESNO

=?

Counter Example

Fig. 1: Equivalence Checking

Section 3 of this tutorial describes how to check if the synthesized design is equivalent
to the RTL design using Synopsys tool Formality. This new version of the tool supports
SystemVerilog. The process begins by first reading in the two design descriptions. Then
those ports and nets are selected for which we wish to verify functional equivalence. The
equivalence checker is then run which either verifies the equivalence of the two designs or
helps in debugging by identifying the failing points, ports, and nets. Failing points in the
reference and implemented design can be viewed side by side in a schematic browser.

Cadence Conformal suite of tools contains a tool called Logic Equivalence Checker or
LEC. Section 4 of this tutorial describes how to formally verify that the synthesized design
is functionally equivalent to the RTL description using LEC. This section can be skipped
if one chooses to use Formality for equivalence checking. During the equivalence checking
process, the two design descriptions are first read in, then key mapping points in the two
design descriptions are selected, and finally the equivalence checker is run. The generated
reports show if the the two designs are equivalent. Similar to Formality, Conformal LEC
also has Schematic and Netlist browser features, which are extremely helpful in debugging.

Appendix A, B and C contain the source code for the examples used in this tutorial along
with some other useful information regarding these tools.

6

1.1 Synopsys Design Compiler

Synopsys Design Compiler (DC) is a logic synthesis and design optimization tool. The
synthesis and optimization steps, described in this tutorial, can be easily converted to a
script, which can later be modified and run from the command line interface.

More information about Synopsys design compiler (DC) can be found in
[/CMC/tools/synopsys/syn/doc/syn/tutorial] and
[/CMC/tools/synopsys/syn/doc/syn/examples]

1.2 Synopsys Formality

Formality is an equivalence checking tool. More information about Synopsys Formality can
be found in
[/CMC/tools/synopsys/fm/doc/fm/quick ref.pdf]and
[/CMC/tools/synopsys/fm/doc/fm/user.pdf]

1.3 Cadence Conformal

Cadence Conformal Logic Equivalence Checker (LEC) is a formal logic equivalence checking
tool. More information about LEC can be found in
[/CMC/tools/cadence.2011a/CONFRML/doc]

2 Synopsys Design Compiler

2.1 Introduction

Logic synthesis is a process that translates an RTL description of a circuit into an optimized
netlist consisting of flipflops, latches, and logic gates. Design engineers provide HDL descrip-
tions and various constraints and bounds on the design to synthesis tools. These constraints
reflect the needs that the design must meet. For example maximum area, minimum speed
and maximum power dissipation.

HDLHDL

Description

Translation

Area, Speed,

Power

Constraints

Technology

Library

(Cells)

Intermediate

Representation

Optimization and Mapping

Optimized Gate Level Netlist

Fig. 2: Digital logic synthesis

7

Figure 2 shows a typical high level flow used in most logic synthesis tools. Logic synthesis
is usually done in three steps. First the RTL description is translated to an un optimized
boolean description. HDL Constructs such as IF, CASE, LOOPs and conditional assignments
are converted to their equivalent boolean equivalents consisting of primitive gates such as
NAND and NOR gates, flip flops and latches etc.

Such descriptions are functionally correct but are completely un optimized. This step is
followed by the logical optimization step. The boolean optimization algorithms are used to
produce an optimized equivalent description. These algorithms utilize logic flattening and
logic factoring operations together with fan out and loading constraints to optimize the logic.
During flattening operations remove structure while the factoring operations introduce new
structure. These operations when applied in conjunction with each other help optimize the
logic.

Finally, the optimized boolean equivalent description is mapped to actual logic gates by
making use of a technology library of the target process. This step uses logical and timing
information from the technology library to build a netlist. The generated netlist meets the
area and speed needs of the user.

At the end of this process several techniques are used to ensure that the optimized netlist
is functionally equivalent to the RTL design and also does not violate any of the rules of the
technology.

2.2 Design example used in this tutorial

In this tutorial, we will utilize the following design example. This design implements a purely
combinational circuit that counts the number of 1s in the 4 bit input vector(ones.vhd).

-- T. Obuchowicz

-- counts the number of 1s in the 4 bit input vector

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity ones_counter is

port(

a : in std_logic_vector(3 downto 0);

f : out std_logic_vector(2 downto 0));

end;

architecture rtl of ones_counter is

begin

process(a)

variable ones : std_logic_vector(2 downto 0);

begin

ones := (others => ’0’);

for index in a’range loop

if a(index) = ’1’ then

8

ones := ones + "1";

end if;

end loop;

case ones is

when "000" => f <= not("000");

when "001" => f <= not("001");

when "010" => f <= not("010");

when "011" => f <= not("011");

when others => f <= not("100");

end case;

end process;

end;

In the next section, we will synthesize this behavioral description of the design using
Synopsys Design compiler.

2.3 Setting up the Environment and Important Libraries and File

In this tutorial, we will be using standard cell library ”class.db”. The following steps set-up
the Design Compiler (DC) environment:

Fig. 3: Directory structure and Design Vision graphical user interface

1. Create a separate directory. mkdir synopsys. Change directory to synopsys. cd

synopsys

9

2. Source the environment script. source /CMC/ENVIRONMENT/synopsys.env

3. Copy the environment setup file and the HDL source files into the synopsys directory:

1- http://users.encs.concordia.ca/ lahiouel/coen6551/.synopsys dc.setup

2- http://users.encs.concordia.ca/ lahiouel/coen6551/ones.vhd

4. Start DC GUI interface by typing design vision at the unix prompt. You may run
the design vision in command mode by entering: dc shell -f ScriptFileName

5. Observe DC generated messages carefully to make sure that correct libraries are loaded
or via File ⇒ Setup. Or you may type in command mode: get design lib path work

to check that the work path is within your current directory.

6. Load top-level RTL file via File ⇒ Read menu (ones.vhd). Then press OK.

7. Select the top-level design module (ones counter) via File ⇒ Analyze ⇒ Add. Then
press OK. Or you may type in command mode: analyze -library work -format

vhdl {./ones.vhd}

8. Elaborate the design via File ⇒ Elaborate. Then press OK. Or you may type in
command mode: elaborate ones counter -architecture rtl -library default

9. Check your design by selecting Design ⇒ Check Design. Or you may type in command
mode: check design -multiple designs.

If a value of 1 is returned it means that the design check command executed successfully
and that there were no errors in the design. Most warnings can usually be ignored.
Design Vision user interface allows one to navigate up and down through the design
hierarchy. It is also possible to switch between symbol and schematic views (see Fig. 4).

Fig. 4: Symbolic and schematic views

10

2.4 Setting the Design Attributes

2.4.1 Clock Attributes

Following steps can be used to define the clock signal attributes such as the clock period
and skew etc. (You can skip this section as the design used in this tutorial is purely combi-
national)

1. Select CLK pin in the Symbol View

2. Select Attributes ⇒ Clocks ⇒ Specify (see Fig. 5). Enter clock period in nanoseconds.
Un check Don’t Touch Network. This will force DC to insert clock tree buffers if needed
to meet the design optimization requirements.

3. Click Apply and then close the dialog window.

Or you may use the followings in command mode:
create clock -name "clk" -period 50 -waveform 0.000 25.000 clk name

set clock uncertainty 0.1 clk

set clock latency 0.2 clk

set clock transition 0.1 clk

set dont touch network clk

Fig. 5: Defining clock

11

2.4.2 Specifying the Output Load

Capacitive load on the design outputs can be specified as follows:

1. Select the desired input or output pin

2. Select Attributes ⇒ Operating Environment ⇒ Load (see Fig. 6)

3. Enter capacitive load in pF (e.g., 10pF)

4. Click Apply and close the dialog window.

Or you may use the followings in command mode:
set load 10 [get ports "output name"]

Fig. 6: Specifying capacitive load

2.5 Specifying the Design Constraints

2.5.1 The Area Constraints

The Area constraints guide the area optimization process during design synthesis.(you can
skip this section as we are not interested in area optimization at this time)

1. Select top level module in Symbol View. Select Attributes ⇒ Optimization constraints
⇒ Design constraints (see Fig. 7)

2. Set Max Area to 0 (µm2). This will force the design compiler to optimize for smallest
possible area.

3. Apply the area constraints and then close the dialog window.

Or you may use the followings in command mode:
set max area 0

12

Fig. 7: Area constraints

Fig. 8: Timing constraints

2.5.2 The Timing Constraints

Following steps can be used to specify the rise/fall and delay times constraints for the design.

13

1. Select the top-level module in Symbol View. Select Attributes ⇒ Optimization Con-
straints ⇒ Timing Constraints (see Fig. 8)

2. Specify the timing constraints by selecting appropriate Input/Output ports in the
schematic view

3. Set the Rise and Fall time option as desired. Equal rise and fall times option is most
commonly used.

4. Click Apply and update the timing constraints and then close the dialog window.

By default, Design Compiler optimizes for timing first and then for the area when presented
with conflicting goals.

2.6 Synthesis and Optimization

The steps for synthesizing and optimizing the design are as follows:

1. Click Design ⇒ Compile Design (see Fig. 9)

2. Select Map Effort level (Low, Medium, High) and then click OK.

3. Observe the log file for errors and warnings. If the synthesis and optimization process
completes successfully a value of 1 is returned. Most warnings can usually be ignored.

4. If there were no errors then close the dialog window.

The synthesis and optimization steps can take a long time to finish if high map and verify
effort options are selected.

Fig. 9: Design optimization

14

2.7 Analysis Report

To produce analysis report for the design:

1. Select the appropriate report from the list on Design ⇒ Report.

2. Analysis report can be saved to a file by selecting the “File” option in “Send Output
To” field.

3. Finally, click on Apply to generate the synthesis and optimization report.

4. The critical path can be viewed by selecting Analysis ⇒ Highlight ⇒ Critical Path, in
the Schematic View.

2.8 Exporting the Design Files

The results of DC synthesis and analysis can be saved as a VHDL or a verilog netlist:

1. Select File ⇒ Save As. Enter file name. Select VHDL or Verilog under File Format
and then press OK. [Lets save the synthesized design in VHDL format. Name the
synthesized design as ”ones syn.vhd”]

2. To export timing constraints, click on Files ⇒ Save Info ⇒ Constraints. Select a
filename, and then press OK. Further explore the Setup Menu. (1) Open a Command
Window (Setup ⇒ Command Window). Go through the synthesis example once again
and observe the commands being executed. (2) Explore Setup ⇒ Defaults, Setup ⇒
Variables, and Setup ⇒ Execute Scripts.

3. Close the dialog window and exit Design Vision.

Main steps involved in the synthesis and optimization of RTL designs were described in
this section. For more information, please see
[/CMC/tools/synopsys/syn/doc/syn/tutorial] and
[/CMC/tools/synopsys/syn/doc/syn/examples]

Next two sections of this tutorial will describe two equivalence checking tools, namely,
Cadence Conformal Logic Equivalence Checker, and Synopsys Formality.

15

3 Synopsys Formality

3.1 Introduction

Formality is a functional equivalence checking tool from Synopsys. The equivalence checking
process flow is shown in Fig. 10. After initial environment setup, separate containers for the
reference and implemented design are created. Libraries and the design files are then loaded.
Verification is run after top level design modules and compare points have been identified. In
case the two designs are not equivalent, Formality identifies the problem areas and displays
them in both schematic and HDL source views. Formality can be run in both command line
and gui modes.

More information can be found in [/CMC/tools/synopsys/fm/doc/fm]

START

Environment SetupEnvironment Setup

Create Container

Read Libraries and

Designs

Specify Reference

and Implementation

D

E

B

Run Verify

View Results

U

G

View Results

Success?
NO

END

YES

Fig. 10: Formality equivalence checking flow

3.2 Setting up the Environment

Before you begin, setup the environment as follows:

1. Create a separate work directory. mkdir formality. Change directory to formality.
cd formality

2. Source the formality environment script. source /CMC/ENVIRONMENT/formality.env

3. Copy the HDL files into the formality directory. The files used in this tutorial can be
found here: [http://users.ece.concordia.ca/∼tahar/coen6551/coen6551.proj.html].

16

3.2.1 Required Libraries and Files

We will be using following files in this tutorial:

1. The reference design (RTL design): ones.vhd

2. The implemented design (gate level design): ones syn.vhd

3. The primitive cells library: class.lib

3.3 Starting Formality

To start formality, type formality & at the unix prompt. The main formality window will
appear after a few second (see Fig. 11). Formality can be run in command mode by entering:
fm shell

Fig. 11: Starting formality

Please see the Formality Users Guide (user.pdf) for a detailed description of the graphical
user interface [/CMC/tools/synopsys/fm/doc/fm].

3.4 Design Input

3.4.1 Reading the Reference Design

Click on the ”1. Reference” button.

17

1. Read Design Files: In VHDL tab, click on VHDL button. Select ones.vhd, then click
open. Select the ones.vhd file and then click on Load Files button to load the reference
design file. Repeat the same steps until all reference design files are loaded.

2. Read DB Files: Observe that GTECH library is selected by default. Read in the
”class.db” file.

3. Set Top Design: Choose ones counter and click on Set Top Design. You will now see
a green check mark on ”1. Reference” button. In the formality window, observe the
log of executed commands. Click on Set Reference button to add the design files to the
reference container.

3.4.2 Reading the Implemented Design

Click on the ”2. Implementation” button.

1. Read Design Files: In VHDL tab, click on VHDL button. Select ones syn.vhd, then
click open. Select the ones syn.vhd file and then click on Load Files button to load the
reference design files. Repeat the same steps until all reference design files are loaded.

2. Read DB Files: Observe that GTECH library is selected by default. Read in the
”class.db” file.

3. Set Top Design: Choose ones counter and click on Set Top Design. You will now see
a green check mark on ”2. Implementation” button. In the formality window, observe
the log of executed commands. Click on Set Reference button to add the design file to
implementation container.

Note: You may have to read in certain libraries and packages, in some cases, before you read
the reference and/or implemented design netlists.

Figure 12 shows Formality window when reference and implemented designs have been
successfully loaded into two separate containers and are ready for equivalence checking.

3.5 Setup

Click on ”3. Setup” button. Constants, design parameters, and equivalences between ports
and nets can be set here. In this tutorial, we will skip this step. By default Formality will
check for port equivalence. For more information about this step please consult Formality
users guide (user.pdf) [/CMC/tools/synopsys/fm/doc/fm].

3.6 Match

Click on ”4. Match” button. Click on Run Matching button. You will see match command
execution and its results in the Formality console (see Fig. 13).

18

Reference Design

Implementated Design

Fig. 12: Reference and implemented designs loaded and ready for equivalence checking

Fig. 13: Match command execution results

3.7 Verify

Click on ”5. Verify” button. As the verification process runs you will see its progress and
when it finishes the verification results are printed in the Formality console window (see
Fig. 14).

19

Fig. 14: Equivalence successfully verified

3.8 Debug

In case if equivalence checking fails, one can run the diagnose command to locate points which
did not match. To trace the possible problem, select a port or a net. Right click and then se-
lect a desired option from many available options. These options contain, viewing logic cones,
schematic and source views. Figure 15 shows the schematic and source views. For more de-
tails consult chapter 8 of the Formality users guide (user.pdf) [/CMC/tools/synopsys/fm/doc/fm].

At this point you can close Formality GUI. It is possible to save the state of the session
at any point in the verification process and reload it at a later stage (File ⇒ Save Session,
File ⇒ Restore Session).

3.9 How to create a command script

1. A list of all the commands executed in any session is kept in the fm shell command.log

file. This script file can later be modified and re run from fm shell.

2. A transcript of the session can be saved as a Tcl script (File ⇒ Save Transcript).

20

Fig. 15: Debug schematic and source views

4 Cadence Conformal

4.1 Introduction

Conformal LEC is a powerful equivalence checking tool. It can provide a formal proof that
the output from Synthesis matches the original RTL code. It can do all of that without
having to run a single simulation. In this section of the tutorial, we will learn how to read in
a RTL and a synthesized design and how to prove that they are functionally equivalent. The
original RTL netlist is usually referred to as the ”golden” design. It serves as the reference
for the comparison. The synthesized gate-level netlist is also called the ”Revised” design.

4.2 Setting up the Environment

Before you begin, setup the environment as follows:

1. Create a separate work directory. mkdir conformal. Change directory to conformal.
cd conformal

2. Source the conformal environment script. source /CMC/ENVIRONMENT/conformal.env

3. Copy the HDL files (both golden and revised) into the conformal directory. The files
used in this tutorial can be found here:

[http://users.ece.concordia.ca/∼tahar/coen6551/coen6551.proj.html].

21

4.2.1 Required Libraries and Files

Following files are used in this tutorial:

1. The RTL design: ones.vhd

2. The gate level design: ones syn.vhd

3. The primitive cells library: class.lib

4. The conformal script: lec.do

4.3 Starting Conformal

To start the tool, type lec -XL & at the unix prompt. The main Conformal LEC window
will appear (see Fig. 16). Conformal can be run in command mode by entering: lec -nogui

Fig. 16: Confomral LEC

4.4 Design Input

4.4.1 Reading the RTL netlist

Read the RTL design: Click on ”File ⇒ Read Design”. In the Design option: Select VHDL
format. Click on ”ones.vhd”. Set the ”Type” to ”Golden”. Click on Add Selected. Then
load the file by clicking ”OK” (see Fig. 16)

22

4.4.2 Reading the Gate-level Netlist

If your gate level design uses a standard cell library, you may have to load the library files
before you load the design files. File Rightarrow Library. Select “class.lib”. Read the
synthesized design: Click on File ⇒ Read Design. In the Design option: Select VHDL
format. Select ”ones syn.vhd”. Set the ”Type” to ”Revised”. Click on Add Selected. Then
load the file by clicking OK (see Fig. 16).
Note: You may have to read in certain libraries and packages in some cases, before you read
the golden and/or revised netlists.

4.5 Design Preparation and Key point Mapping

Since both the designs have been successfully loaded, we can now start the verification
process. Conformal has 2 operating modes, the ”Setup” and the ”LEC” mode. Switch to
the LEC mode by Clicking on the ”LEC” icon in the upper right hand corner of the window
(see Fig. 17).

Fig. 17: Conformal map points and equivalence results

A table is now printed in the conformal LEC window. It lists the primary inputs (PI) and
primary outputs (PO) in both the revised and golden designs. They are equal if the golden
and revised designs have the same number of inputs and outputs. To run the equivalence
checker, select ”Run ⇒ Compare” and click ”OK” (see Fig. 17). The equivalence checker
now reduces the two designs into canonical representations and then checks to see if they
are equal. In the example shown in Fig. 17, all 3 outputs are equivalent. Or in other words,
the RTL and the synthesized designs are functionally equivalent.

23

4.6 Reporting Results

4.6.1 Schematic and Source Views

This feature is very helpful in debugging the design. In the ”Golden” or ”Revised” column
of the main conformal LEC window, right click on a file name or a cell name and then select
either ”Schematic” or ”Source” as desired. The schematic or source view will be displayed
in a separate window (see Fig. 18).

Fig. 18: Conformal schematic and source view

4.7 How to create a command script

1. The DO file script can be generated from the LEC GUI by:
File ⇒ Save dofile

2. The DO file script can be run from the LEC GUI by:
File ⇒ Do dofile

3. The DO scripts can also be run directly from the unix prompt by:
lec -nogui -do lec.do

24

References

[1] M. Moris Mano, C. R. Kime, Logic and Computer Design Funcdamentals, Second Edi-
tion, ISBN 0-12-012468-0

[2] D. R. Perry, VHDL, McGraw-Hill series in Computer Engineering, Second Edition,
ISBN 0-07-049434-7, TK 7885.7.P47 1993

25

A Synopsys Design Vision

A.1 Design Vision Setup Files

This is the .synopsys_dc.setup file required

for use with the class.db synthesis technology library

This library is used by Synopsys for synthesis training

courses.

#

Henda ARIDHI

April 22, 2012

set search_path [concat $search_path ./ ./CMC/tools/synopsys/syn/libraries/syn]

#if your src files are in a diffrent folder update the search path for example:

#set search_path [concat $search_path ./vhdl_source/ ./CMC/tools/synopsys/syn/libraries/syn]

set target_library class.db

set link_library class.db

set symbol_library class.sdb

set compile_fix_multiple_port_nets true

define_design_lib WORK -path ./work

the bus naming syle determines how one refers to elements of

a bus in a dc_shell script such as count<2> if "%s<%d>" is the style

or count_2 if "%s_%d" is used as the style

the <%d> causes SDF problems since the SDF file refers to buses as count_reg_0

and does not use <>

set bus_naming_style "%s<%d>"

if you want to back annotate Synopsys SDF files onto Synopsys gate-level netlists

use the %s_%d bus naming style... but make sure that in your script

you refer to elements of buses as count_2, count_1 , etc !!!

For Xilinx generated netlists and SDF files there is no problem

can use the standard %s<%d> style */

bus_naming_style = "%s_%d"

set bus_inference_style "%s<%d>"

set bus_dimension_separator_style "><"

to write out EDI netlists, this must be set to "true"

set edifout_netlist_only "true"

The class.db library file used in this tutorial is located in:
[/CMC/tools/synopsys/syn/libraries/syn/class.db

A.2 Design Example Files

See [/CMC/tools/synopsys.2005a/syn/doc/syn/tutorial]
and [/CMC/tools/synopsys.2005a/syn/doc/syn/examples]

26

B Synopsys Formality

B.1 The reference

See [/CMC/tools/cadence.2011a/CONFRML/share/cfm/lec/demo/gate gate]
Also see [/CMC/tools/cadence.2011a/CONFRML/share/cfm/lec/demo]

B.2 The implementation

See [/CMC/tools/cadence.2007a/CONFRML/share/cfm/lec/demo/gate gate]
Also see [/CMC/tools/cadence.2011a/CONFRML/share/cfm/lec/demo]

Note: we will be using the same design files for verification with Cadence LEC in this tutorial.

B.3 The command script

B.4 Other useful information

See user and reference documents in [/CMC/tools/synopsys/fm/doc/fm]

If you are interested in reading more about the tool, a good starting point is the user.pdf
document.

One can also find many good tool tutorials on the web. For example,
see [http://www.chiptalk.org]

27

C Cadence Conformal

C.1 The golden design

See [/CMC/tools/cadence.2007a/CONFRML/share/cfm/lec/demo/gate gate]
Also see [/CMC/tools/cadence.2007a/CONFRML/share/cfm/lec/demo]

C.2 The revised design

See [/CMC/tools/cadence.2007a/CONFRML/share/cfm/lec/demo/gate gate]
Also see [/CMC/tools/cadence.2007a/CONFRML/share/cfm/lec/demo]

C.3 The command script

//***

// design input

//***

Read Design -golden gold.v

Read Design -revised revi.v

report design data -both

//***

// design preparation and key points mapping

//***

set system mode lec

//***

// compare mapped key points

//***

add compare point -all

compare

//***

// reporting result

//***

report compare data -summary

C.4 ¬ (Rarely Asked Questions)

C.5 Remote access

Following information was kindly provided by our CAD tool GURU (Ted Obuchowicz).
If you are connecting remotely using ’ssh’ take note of the following:

1. On a solaris host use : /usr/bin/ssh to connect to a solaris 10 remote host

2. On a solaris host use : /common/bin/ssh -X to connect to a solaris 10 remote host

3. On a Linux host use : /usr/bin/ssh -X to connect to a solaris 10 remote host

28

C.6 Commonly used UNIX commands

C.7 Have you ever wondered?

1. Checking memory usage?

2. How to list active processes and how to kill a process?

3. How to check workstation information?

4. what is emacs? and what is nEdit?

C.8 Screen Capture

1. Type xv & in an xterm on solaris workstations.

2. Right click on the main window to get a menu.

3. Use GRAB button to capture the screen and SAVE button to save the file.

C.9 Tutorial Files

http://users.encs.concordia.ca/~n_ab/coen7501files/tut_files/

C.10 Getting started - May 12, 2010 in class tool demonstration

http://users.encs.concordia.ca/~n_ab/coen7501files/information_from_may_12_demo.txt

C.11 Unix Tutorial

[http://www.ee.surrey.ac.uk/Teaching/Unix/]

Unix Commands

ls

dir

cp

mv

man

apropos

chmod

rm

pwd

cd

ps

kill -9 pid

top

29

prtdiag

ssh

sftp

file redirection using ">"

A simple example:

Create a few files.

create a directory structure

copy files back and forth

change permissions of the files

look up more information about the files

rm some of the files

move files

some useful commands for printing and converting file formats.

ps2pdf

pdf2ps

also see http://users.encs.concordia.ca/~n_ab/coen7501files/fmradio/fmradio.txt for more information.

lpr -Pprintername filename

qpr -d -Pprintername filename

Printing multiple pages on a single page:

psnup -pa4 -d -nup 2 test.ps test1.ps

open both test.ps and test1.psin gv and see the difference. use man psnup for more information.

Writing a simple script using basic unix commands

clean script: removes files

rm -rf FM*

rm -rf *.lck

rm -rf *.log

C.12 Unix Commands

1. tee

2. PS to PDF: ps2pdf fulltext.pdf fulltext.ps

3. PDF 2 PS: psnup -pa4 -d -nup 2 fulltext.ps fulltext1.ps

30

4. ASCII to PS: a2ps test.txt -o test.ps ps2pdf test.ps test.pdf pdf2ps test.pdf test.ps

5. Printing multiple pages on a single page: psnup -pa4 -d -nup 2 test.ps test1.ps

6. Printing on both sides of a page: qpr -d -Plint test1.ps

7. Check the man pages for more details

8. You can also write custom scripts to meet your needs

C.13 How to force 2004 version of formality to start instead of 2011 version of
formality

Source synopsys.env first and then formality.env to force use of 2004 version of formality.

C.14 Other useful information

See user and reference documents in [/CMC/tools/cadence.2007a/CONFRML/doc/]

Complete documentation is found in [/CMC/tools/cadence/CONFRML/doc]

If you are interested in reading more about the tool, a good starting point is the
Conformal User.pdf document.

Currently we have Version 6.1 of conformal installed on our workstations.

One can also find many good tool tutorials on the web. For example,
see [http://www.chiptalk.org]

31

