
Digital Logic Synthesis and Equivalence Checking Tools

Hardware Verification Group

Department of Electrical and Computer Engineering,
Concordia University, Montreal, Canada

CAD Tool Tutorial

May, 2010

Abstract

This document contains a brief introduction to Synopsys Design Analyzer, Sysnopsys Formality, and

Cadence Conformal tools. You would need approximately three hours to finish this tutorial.

1

Revision History
Version Authors Modification Section Date
1.0 Naeem Abbasi Document Creation - April 16, 2010
2.0 Naeem Abbasi Section on Synopsys Formality added 3 April 18, 2010

An additional appendix added B
Title modified -

2.1 Naeem Abbasi Added Figures 1 and 2 1, 2.1 April 19, 2010
and their descriptions

3.0 Naeem Abbasi One’s counter example added May 3, 2010
(provided by Ted Obuchowicz)

3.1 Naeem Abbasi Screen Captures Updated May 3, 2010
Remote Access Commands
added to the appendix
Minor changes in the
Appendices

2

Table of Contents

1 Introduction 6
1.1 Synopsys Design Analyzer . 7
1.2 Synopsys Formality . 7
1.3 Cadence Conformal . 7

2 Synopsys Design Compiler 7
2.1 Introduction . 7
2.2 Design example used in this tutorial . 8
2.3 Setting up the Environment and Important Libraries and File 9
2.4 Setting the Design Attributes . 10

2.4.1 Clock Attributes . 10
2.4.2 Specifying the Output Load . 11

2.5 Specifying the Design Constraints . 12
2.5.1 The Area Constraints . 12
2.5.2 The Timing Constraints . 12

2.6 Synthesis and Optimization . 13
2.7 Analysis Report . 14
2.8 Exporting the Design Files . 14

3 Synopsys Formality 16
3.1 Introduction . 16
3.2 Setting up the Environment . 16

3.2.1 Required Libraries and Files . 17
3.3 Starting Formality . 17
3.4 Design Input . 18

3.4.1 Reading the Reference Design . 18
3.4.2 Reading the Implemented Design . 18

3.5 Setup . 18
3.6 Match . 19
3.7 Verify . 19
3.8 Debug . 20
3.9 How to create a command script . 21

4 Cadence Conformal 22
4.1 Introduction . 22
4.2 Setting up the Environment . 23

4.2.1 Required Libraries and Files . 23
4.3 Starting Conformal . 23
4.4 Design Input . 23

4.4.1 Reading the RTL netlist . 23
4.4.2 Reading the Gate-level Netlist . 24

4.5 Design Preparation and Key point Mapping 24
4.6 Reporting Results . 25

3

4.6.1 Schematic and Source Views . 25
4.7 How to create a command script . 27

A Synopsys Design Analyzer 29
A.1 Design Analyzer Setup Files . 29
A.2 Design example files . 30
A.3 Documentation . 30

B Synopsys Formality 31
B.1 The reference and Implementation designs 31
B.2 Other useful information . 31

C Cadence Conformal 32
C.1 The golden and revised design files . 32
C.2 The command script . 32
C.3 Remote access . 32
C.4 Commonly used UNIX commands . 33
C.5 Other useful information . 33

4

List of Figures

1 Equivalence Checking . 6
2 Digital logic synthesis . 7
3 Directory structure and design analyzer graphical user interface 9
4 Symbolic and schematic views . 10
5 Defining clock . 11
6 Specifying capacitive load . 11
7 Area constraints . 12
8 Timing constraints . 13
9 Design optimization . 13
10 Analysis report . 14
11 Formality equivalence checking flow . 16
12 Starting formality . 17
13 Reference and implemented designs loaded and ready for equivalence checking 19
14 Match command execution results . 19
15 Equivalence successfully verified . 20
16 Reference and Implemented design netlists 21
17 Error candidates . 22
18 Logic cones and patterns . 22
19 Confomral LEC . 24
20 Conformal map points and equivalence results 25
21 Conformal mapping manager window . 26
22 Conformal diagnosis manager . 26
23 Conformal schematic and source view . 27

5

1 Introduction

Logic synthesis usually refers to the process of translation of RTL design into an optimized
gate level description. Logic equivalence checking refers to a technique that mathematically
(i.e. with out simulation) verifies that the two design descriptions are functionally equivalent.

Section 2 of this tutorial describes how to setup and synthesize an RTL description into
a structural netlist of gates using Synopsys design analyzer. During this process, the design
is read in, analyzed and elaborated. After that, the designer identifies critical nets in the
design such as the clock signal. Then area and timing constraints are specified for guiding
the design optimization. Once the design is optimized, it is exported to a gate level netlist.
This completes the synthesis step.

Section 3 and 4 of this tutorial describe use of equivalence checking tools. An equivalence
checking tool takes two descriptions of a design and verifies if they are functionally equivalent
(see Fig. 1). In case if the two descriptions are not equivalent, a counter example is produced.������� �����	���
�������� ������� ���	� �������� �������

Fig. 1: Equivalence Checking

Section 3 of this tutorial describes how to check if the synthesized design is equivalent
to the RTL design using Sysnopsys tool Formality. The process begins by first reading in
the two design descriptions. Then those ports and nets are selected for which we wish to
verify functional equivalence. The equivalence checker is then run which either verifies the
equivalence of the two designs or helps in debugging by identifying the failing points, ports,
and nets. Failing points in the reference and implemented design can be viewed side by side
in a schematic browser.

Cadence Conformal suite of tools contains a tool called Logic Equivalence Checker or
LEC. Section 4 of this tutorial describes how to formally verify that the synthesized design
is functionally equivalent to the RTL description using LEC. This section can be skipped
if one chooses to use Formality for equivalence checking. During the equivalence checking
process, the two design descriptions are first read in, then key mapping points in the two
design descriptions are selected, and finally the equivalence checker is run. The generated
reports show if the the two designs are equivalent. Similar to Formality, Conformal LEC
also has Schematic and Netlist browser features, which are extremely helpful in debugging.

Appendix A, B and C contain the source code for the examples used in this tutorial along
with some other useful information regarding these tools.

6

1.1 Synopsys Design Analyzer

Synopsys Design Compiler (DC) is a logic synthesis and design optimization tool. The
synthesis and optimization steps, described in this tutorial, can be easily converted to a
script, which can later be modified and run from the command line interface.

More information about Synopsys design compiler (DC) can be found in
[/CMC/tools/synopsys.2005a/syn/doc/syn/tutorial],
[/CMC/tools/synopsys/syn/doc/online/top.pdf], and
[/CMC/tools/synopsys.2005a/syn/doc/syn/examples]

1.2 Synopsys Formality

Formality is an equivalence checking tool. More information about Synopsys Formality can
be found in [/CMC/tools/synopsys/fm/doc/fm]

1.3 Cadence Conformal

Cadence Conformal Logic Equivalence Checker (LEC) is a formal logic equivalence checking
tool. More information about LEC can be found in
[/CMC/tools/cadence.2007a/CONFRML/doc]

2 Synopsys Design Compiler

2.1 Introduction

Logic synthesis is a process that translates an RTL description of a circuit into an optimized
netlist consisting of flipflops, latches, and logic gates. Design engineers provide HDL descrip-
tions and various constraints and bounds on the design to synthesis tools. These constraints
reflect the needs that the design must meet. For example minimum area, minimum speed
and maximum power dissipation.�������������	�
������	�
� ���� �������
����
��	���	� �����
�
�����������������	������	���������		�
���	��� 	�
� �� !�������	��� �� "	� ��#�� $�	���	

Fig. 2: Digital logic synthesis

7

Figure 2 shows a typical high level flow used in most logic synthesis tools. Logic synthesis
is usually done in three steps. First the RTL description is translated to an unoptimized
boolean description. HDL Constructs such as IF, CASE, LOOPs and conditional assignments
are converted to their equivalent boolean equivalents consisting of primitive gates such as
NAND and NOR gates, flipflops and latches etc.

Such descriptions are functionally correct but are completely unoptimized. This step is
followed by the logical optimization step. The boolean optimization algorithms are used to
produce an optimized equivalent description. These algorithms utilize logic flattening and
logic factoring operations together with fanout and loading constraints to optimize the logic.
During flattening operations remove structure while the factoring operations introduce new
structure. These operations when applied in conjunction with each other help optimize the
logic.

Finally, the optimzed boolean equivalent description is mapped to actual logic gates by
making use of a technology library of the target process. This step uses logical and timing
information from the technology library to build a netlist. The generated netlist meets the
area and speed needs of the user.

At the end of this process several techniques are used to ensure that the optimized netlist
is functionally equivalent to the RTL design and also does not violate any of the rules of the
technology.

2.2 Design example used in this tutorial

In this tutorial, we will utilize the following design example. This design implements a purely
combinational circuit that counts the number of 1s in the 4 bit input vector.

-- T. Obuchowicz

-- counts the number of 1s in the 4 bit input vector

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity ones_counter is

port(

a : in std_logic_vector(3 downto 0);

f : out std_logic_vector(2 downto 0));

end;

architecture rtl of ones_counter is

begin

process(a)

variable ones : std_logic_vector(2 downto 0);

begin

ones := (others => ’0’);

for index in a’range loop

if a(index) = ’1’ then

8

ones := ones + "1";

end if;

end loop;

case ones is

when "000" => f <= not("000");

when "001" => f <= not("001");

when "010" => f <= not("010");

when "011" => f <= not("011");

when others => f <= not("100");

end case;

end process;

end;

In the next section, we will synthesize this behavioral description of the design using
Synopsys Design compiler.

2.3 Setting up the Environment and Important Libraries and File

In this tutorial, we will be using standard cell library ”class.db”. The following steps set-up
the Design Compiler (DC) environment:

������������	
	���
	

	���
	
���
�����������
 ����
Fig. 3: Directory structure and design analyzer graphical user interface

1. Create a separate directory. mkdir synopsys. Change directory to synopsys. cd

synopsys

2. Source the environment script. source /CMC/ENVIRONMENT/synopsys.env

3. Copy the .synopsys dc.setup file into the synopsys directory. Copy the HDL files
(ones.vhd) to the synopsys directory.

9

4. Start DC interface by typing design analyzer at the unix prompt. You may run the
design analyzer in command mode by entering: dc shell -f ScriptFileName

5. Analyze RTL descriptions of the design. File ⇒ Analyze. Select Create New Library if
it doesn’t already exist. Then click OK

6. Load top-level RTL file via File ⇒ Read menu (ones.vhd). Then press OK.

7. Observe DC generated messages carefully to make sure that correct libraries are loaded

8. Select the top-level design module (one counter) and click on Analysis, and then on
Link Design. Observe and make sure that the correct link libraries are loaded. Then
press OK.

9. Check your design by selecting Analysis ⇒ Check Design menu. If a value of 1 is
returned it means that the design check command executed successfully and that there
were no errors in the design. Most warnings can usually be ignored. Design Analyzer
user interface allows one to navigate up and down through the design hierarchy. It is
also possible to switch between symbol and schematic views (see Fig. 4).

Fig. 4: Symbolic and schematic views

2.4 Setting the Design Attributes

2.4.1 Clock Attributes

Following steps can be used to define the clock signal attributes such as the clock period
and skew etc. (You can skip this section as the design used in this tutorial is purely combi-
national)

1. Select CLK pin in the Symbol View

2. Select Attributes ⇒ Clocks ⇒ Specify (see Fig. 5). Enter clock period in nanoseconds.
Un check Don’t Touch Network. This will force DC to insert clock tree buffers if needed
to meet the design optimization requirements.

10

3. Click Apply and then close the dialog window.

Fig. 5: Defining clock

2.4.2 Specifying the Output Load

Capacitive load on the design outputs can be specified as follows:

1. Select the desired input or output pin

2. Select Attributes ⇒ Operating Environment ⇒ Load (see Fig. 6)

3. Enter capacitive load in pF (e.g., 10pF)

4. Click Apply and close the dialog window.

Fig. 6: Specifying capacitive load

11

Fig. 7: Area constraints

2.5 Specifying the Design Constraints

2.5.1 The Area Constraints

The Area constraints guide the area optimization process during design synthesis.(you can
skip this section as we are not interested in area optimization at this time).

1. Select top level module in Symbol View. Select Attributes ⇒ Optimization constraints
⇒ Design constraints (see Fig. 7)

2. Set Max Area to 0 (µm2). This will force the design compiler to optimize for smallest
possible area.

3. Apply the area constraints and then close the dialog window.

2.5.2 The Timing Constraints

Following steps can be used to specify the rise and fall delay time constraints for the design.
(you may skip this step as well, as we are not interested in timing optimization.)

1. Select the top-level module in Symbol View. Select Attributes ⇒ Optimization Con-
straints ⇒ Timing Constraints (see Fig. 8)

2. Specify the timing constraints by selecting appropriate Input/Output ports in the
schematic view

3. Set the Rise and Fall time option as desired. Equal rise and fall times option is most
commonly used.

4. Click Apply and update the timing constraints and then close the dialog window.

12

Fig. 8: Timing constraints

By default, Design Compiler optimizes for timing first and then for the area when presented
with conflicting goals.

2.6 Synthesis and Optimization

The steps for synthesizing and optimizing the design are as follows:

1. Click Tools ⇒ Design Optimization (see Fig. 9)

2. Select Map Effort level (Low, Medium, High) and then click OK.

3. Observe the log file for errors and warnings. If the synthesis and optimization process
completes successfully a value of 1 is returned. Most warnings can usually be ignored.

4. If there were no errors then close the dialog window.

The synthesis and optimization steps can take a long time to finish if high map and verify
effort options are selected.

Fig. 9: Design optimization

13

2.7 Analysis Report

To produce analysis report for the design:

1. Select Analysis ⇒ Report (see Fig. 10). Customize the report by choosing the desired
options.

2. Analysis report can be saved to a file by selecting the “File” option in “Send Output
To” field (see Fig. 10)

3. Finally, click on Apply to generate the synthesis and optimization report.

4. The critical path can be viewed by selecting Analysis ⇒ Highlight ⇒ Critical Path, in
the Schematic View.

Fig. 10: Analysis report

2.8 Exporting the Design Files

The results of DC synthesis and analysis can be saved as a VHDL or a verilog netlist:

1. Select File ⇒ Save As. Enter file name. Select VHDL or Verilog under File Format
and then press OK. [Lets save the synthesized design in VHDL format. Name the
synthesized design as ”ones syn.vhd”]

2. To export timing constraints, click on Files ⇒ Save Info ⇒ Constraints. Select a
filename, and then press OK.

Further explore the Setup menu. (1) Open a command window (Setup ⇒ Command
Window) and go through the synthesis steps one more time. This time observe more
carefully different design analyzer commands being executed. (2) Also explore (Setup
⇒ Defaults), (Setup ⇒ Variables) and (Setup ⇒ Execute Script)

3. Close the dialog window and exit Design Analyzer.

14

Main steps involved in the synthesis and optimization of RTL designs were described in
this section. For more information, please see
[/CMC/tools/synopsys.2005a/syn/doc/syn/tutorial],
[/CMC/tools/synopsys/syn/doc/online/top.pdf], and
[/CMC/tools/synopsys.2005a/syn/doc/syn/examples]

Next two sections of this tutorial will describe two equivalence checking tools, namely,
the Cadence Conformal Logic Equivalence Checker, and the Synopsys Formality.

15

3 Synopsys Formality

3.1 Introduction

Formality is a functional equivalence checking tool from Synopsys. The equivalence checking
process flow is shown in Fig. 11. After initial environment setup, separate containers for the
reference and implemented design are created. Libraries and the design files are then loaded.
Verification is run after top level design modules and compare points have been identified. In
case the two designs are not equivalent, Formality identifies the problem areas and displays
them in both schematic and HDL source views. Formality can be run in both command line
and gui modes.

More information can be found in [/CMC/tools/synopsys/fm/doc/fm]����������	�
��� ���������	�
��� ���������� �	����������� ��������� ����������������� ������������ �
���
������	� ����� ���������� ������ � ���� ������������! "#�"� $��
Fig. 11: Formality equivalence checking flow

3.2 Setting up the Environment

Before you begin, setup the environment as follows:

1. Create a separate work directory. mkdir formality. Change directory to formality.
cd formality

2. Source the formality environment script. source /CMC/ENVIRONMENT/formality.env

3. Copy the HDL files (”ones syn.vhd” and ”ones syn1.vhd”) into the formality directory.
The files used in this tutorial can be found here:

16

[http://users.ece.concordia.ca/∼tahar/coen7501/coen7501.proj.html].

4. Also copy the ”class.db” primitive cell library into the formality directory. It can be
found here:

[/CMC/tools/synopsys/syn/libraries/syn/class.db]

3.2.1 Required Libraries and Files

We will be using following files in this tutorial:

1. The reference design (RTL design): ones syn.vhd

2. The implemented design (gate level design): ones syn1.vhd

3. The primitive cells library: class.db

3.3 Starting Formality

To start formality, type formality & at the unix prompt. The main formality window will
appear after a few second (see Fig. 12). Formality can be run in command mode by entering:
fm shell

Fig. 12: Starting formality

Please see the Formality Users Guide (user.pdf) for a detailed description of the graphical
user interface [/CMC/tools/synopsys/fm/doc/fm].

17

3.4 Design Input

3.4.1 Reading the Reference Design

Click on the ”1. Reference” button.

1. Read Design Files: In VHDL tab, click on VHDL button. Select ones.vhd, then click
open. Select the ones.vhd file and then click on Load Files button to load the reference
design file. Repeat the same steps until all reference design files are loaded.

2. Read DB Files: Observe that GTECH library is selected by default. Read in the
”class.db” file.

3. Set Top Design: Choose ones counter and click on Set Top Design. You will now see
a green check mark on ”1. Reference” button. In the formality window, observe the
log of executed commands. Click on Set Reference button to add the design files to the
reference container.

3.4.2 Reading the Implemented Design

Click on the ”2. Implementation” button.

1. Read Design Files: In VHDL tab, click on VHDL button. Select ones syn.vhd, then
click open. Select the ones syn.vhd file and then click on Load Files button to load the
reference design files. Repeat the same steps until all reference design files are loaded.

2. Read DB Files: Observe that GTECH library is selected by default. Read in the
”class.db” file.

3. Set Top Design: Choose ones counter and click on Set Top Design. You will now see
a green check mark on ”2. Implementation” button. In the formality window, observe
the log of executed commands. Click on Set Reference button to add the design file to
implementation container.

Note: You may have to read in certain libraries and packages, in some cases, before you read
the reference and/or implemented design netlists.

Figure 13 shows Formality window when reference and implemented designs have been
successfully loaded into two separate containers and are ready for equivalence checking.

3.5 Setup

Click on ”3. Setup” button. Constants, design parameters, and equivalences between ports
and nets can be set here. In this tutorial, we will skip this step. By default Formality will
check for port equivalence. For more information about this step please consult Formality
users guide (user.pdf) [/CMC/tools/synopsys/fm/doc/fm].

18

��������� ����	�

��������� ����	�

Fig. 13: Reference and implemented designs loaded and ready for equivalence checking

3.6 Match

Click on ”4. Match” button. Click on Run Matching button. You will see match command
execution and its results in the Formality console (see Fig. 14).

Fig. 14: Match command execution results

3.7 Verify

Click on ”5. Verify” button. As the verification process runs you will see its progress and
when it finishes the verification results are printed in the Formality console window (see
Fig. 15).

19

Fig. 15: Equivalence successfully verified

3.8 Debug

In case if equivalence checking fails, one can run the ”diagnose” command to locate points
which did not match. To trace the possible problem, we first determine possible error
candidate ports or nets. We then select one of many possible options for debugging. These
options contain viewing logic cones, signal patterns, schematic and source views etc.

Now lets take an example where we debug an equivalence problem. You will require the
following design (see Fig. 16) and library files for this example.

1. Reference design (ones syn.vhd)

2. Implemented design (ones syn1.vhd)

3. primitive cell library (class.db)

Now using the steps described in previous sections, load the reference (ones syn.vhd) and
implemented (ones syn1.vhd) designs. Next run the verification as before. The verification
will fail this time (Fig. 17). (1) Now select a failing point. Right click on the failing point and
click ”diagnose”. You will notice that the ”Analyses” tab is enabled. Click on the ”Analyses”
tab. (3) Select an error candidate. Right click on ”Show Logic Cones”. A schematic window
(Fig. 18) containing logic cones starting from the compare points all the way back to the
inputs will appear. You will see the reference design in the top window and the implemented
design in the bottom window. (4) Click on the ”Isolate Error Candidates” button in the tool

20

bar or press F8 function key. You will see a cone appear in the implemented design schematic
window. Notice that the output f[1] is not equivalent because the implemented design
contains a two-input XOR gate, whereas, the reference design has a two-input NOR gate.
(5) Fix the implemented design and re run the verification. (6) You may also use the Apply
Pattern feature to further diagnose the compare points. Select an error candidate. Right
click ⇒ Show Patterns. The show patterns window shows the reference and implemented
design inputs side by side, together with input patterns which cause the outputs under
investigation to be unequal. Click on columns numbered 1 through 5 one by one and observe
the reference and implemented compare point values. You will see that they are not equal.

For more details consult chapter 8 of the Formality users guide (user.pdf)
[/CMC/tools/synopsys/fm/doc/fm].

Fig. 16: Reference and Implemented design netlists

At this point you can close Formality GUI. It is possible to save the state of the session
at any point in the verification process and reload it at a later stage (File ⇒ Save Session,
File ⇒ Restore Session).

3.9 How to create a command script

1. A list of all the commands executed in any session is kept in the fm shell command.log

file. This script file can later be modified and re run from fm shell.

2. A transcript of the session can be saved as a Tcl script (File ⇒ Save Transcript).

21

Fig. 17: Error candidates

Fig. 18: Logic cones and patterns

4 Cadence Conformal

4.1 Introduction

Conformal LEC is a powerful equivalence checking tool. It can provide a formal proof that
the output from Synthesis matches the original RTL code. It can do all of that without
having to run a single simulation. In this section of the tutorial, we will learn how to read in
a RTL and a synthesized design and how to prove that they are functionally equivalent. The
original RTL netlist is usually referred to as the ”golden” design. It serves as the reference

22

for the comparison. The synthesized gate-level netlist is also called the ”Revised” design.

4.2 Setting up the Environment

Before you begin, setup the environment as follows:

1. Create a separate work directory. mkdir conformal. Change directory to conformal.
cd conformal

2. Source the conformal environment script. source /CMC/ENVIRONMENT/conformal.env

3. Copy the HDL files (both golden and revised) and the primitive cell library file into the
conformal directory.

The files used in this tutorial can be found here:
[http://users.ece.concordia.ca/∼tahar/coen7501/ones syn.vhd], and
[http://users.ece.concordia.ca/∼tahar/coen7501/ones syn1.vhd] Also copy the ”class.db” prim-
itive cell library into the formality directory. It can be found here:
[/CMC/tools/synopsys/syn/libraries/syn/class.db]

4.2.1 Required Libraries and Files

Following files are used in this tutorial:

1. The RTL design: ones.vhd

2. The gate level design: ones syn.vhd

3. The primitive cells library: class.lib

4. The conformal script: lec.do

4.3 Starting Conformal

To start the tool, type lec -XL & at the unix prompt. The main Conformal LEC window
will appear (see Fig. 19). Conformal can be run in command mode by entering: lec -nogui

4.4 Design Input

4.4.1 Reading the RTL netlist

Read the RTL design: Click on ”File ⇒ Read Design”. In the Design option: Select VHDL
format. Click on ”ones.vhd”. Set the ”Type” to ”Golden”. Click on Add Selected. Then
load the file by clicking ”OK” (see Fig. 19)

23

Fig. 19: Confomral LEC

4.4.2 Reading the Gate-level Netlist

If your gate level design uses a standard cell library, you may have to load the library files
before you load the design files. In case of hierarchical designs, the rule is to always load
from bottom up. File ⇒ Library. Select “class.lib”. Read the synthesized design: Click on
File ⇒ Read Design. In the Design option: Select VHDL format. Select ”ones syn.vhd”.
Set the ”Type” to ”Revised”. Click on Add Selected. Then load the file by clicking OK (see
Fig. 19).
Note: You may have to read in certain libraries and packages in some cases, before you read
the golden and/or revised netlists.

4.5 Design Preparation and Key point Mapping

Since both the designs have been successfully loaded, we can now start the verification
process. Conformal has 2 operating modes, the ”Setup” and the ”LEC” mode. Switch to
the LEC mode by Clicking on the ”LEC” icon in the upper right hand corner of the window
(see Fig. 20).

A table is now printed in the conformal LEC window. It lists the primary inputs (PI) and
primary outputs (PO) in both the revised and golden designs. They are equal if the golden
and revised designs have the same number of inputs and outputs. To run the equivalence
checker, select ”Run ⇒ Compare” and click ”OK” (see Fig. 20). The equivalence checker

24

Fig. 20: Conformal map points and equivalence results

now reduces the two designs into canonical representations and then checks to see if they
are equal. In the example shown in Fig. 20, all 3 outputs are equivalent. Or in other words,
the RTL and the synthesized designs are functionally equivalent.

4.6 Reporting Results

4.6.1 Schematic and Source Views

This feature is very helpful in debugging the design. In the ”Golden” or ”Revised” column
of the main conformal LEC window, right click on a file name or a cell name and then select
either ”Schematic” or ”Source” as desired.

Lets take the same example that we used in the previous section and debug it with
Conformal LEC. You will require the following files in this example.

1. The golden design: ones syn.vhd

2. The revised design: ones syn1.vhd

3. The primitive cells library: class.lib

First load the golden (ones syn.vhd) and revised (ones syn1.vhd) designs as described
in the earlier sections. Then run verification as before. The verification will be partially

25

Fig. 21: Conformal mapping manager window

Fig. 22: Conformal diagnosis manager

successful. To see the details of the equivalence checking results, click Report ⇒ Compared
Points. Now we see that there is one non equivalent point (red circle, See Fig. 21). Select the
unequal compare points, right click and then select ”Diagnosis”. In the Diagnosis Manager
window (Fig. 22) click on the ”Refresh” button. Then in the ”Schematic” pull down menu,
select the ”Show Inverted Buffer Inverter Gate” and ”Show Schematic Full Fanin Core”
options. Then open the golden and diagnosed revised designs (Schematic ⇒ open). You will
now see the golden and revised schematics (See Fig. 23). The problem gates and nets will be
highlighted in red. Select the problem gate (the XOR gate) in the revised design schematic
window, right click and then select ”source code”. Fix the source code in the revised design.
Save the revised design, and re run the verification.

26

Fig. 23: Conformal schematic and source view

4.7 How to create a command script

1. The DO file script can be generated from the LEC GUI by:
File ⇒ Save dofile

2. The DO file script can be run from the LEC GUI by:
File ⇒ Do dofile

3. The DO scripts can also be run directly from the unix prompt by:
lec -nogui -do lec.do

In this tutorial, we learned the basic steps involved in the digital logical synthesis. We also
learned how to use two industry standard equivalence checking tools, namely, the Synopsys
Formality and the Cadence Conformal Logical Equivalence Checker or LEC.

27

References

[1] M. Moris Mano, C. R. Kime, Logic and Computer Design Funcdamentals, Second Edi-
tion, ISBN 0-12-012468-0

[2] D. R. Perry, VHDL, McGraw-Hill series in Computer Engineering, Second Edition,
ISBN 0-07-049434-7, TK 7885.7.P47 1993

28

A Synopsys Design Analyzer

A.1 Design Analyzer Setup Files

/* This is the .synopsys_dc.setup file required */

/* for use with the class.db synthesis technology library */

/* This library is used by Synopsys for synthesis training */

/* courses. */

/* */

/* Ted Obuchowicz */

/* June 11, 2003 */

search_path = {. /CMC/tools/synopsys/syn/libraries/syn } ;

/* assumes that the link /CMC/tools/synopsys/syn exists and points */

/* to the most recent Synopsys synthesis install */

target_library = class.db

link_library = class.db

symbol_library = class.sdb

compile_fix_multiple_port_nets = true

/* the bus naming syle determines how one refers to elements of */

/* a bus in a dc_shell script such as count<2> if "%s<%d>" is the style */

/* or count_2 if "%s_%d" is used as the style */

/* the <%d> causes SDF problems since the SDF file refers to buses as count_reg_0 */

/* and does not use <> */

bus_naming_style = "%s<%d>"

/* if you want to back annotate Synopsys SDF files onto Synopsys gate-level netlists */

/* use the %s_%d bus naming style... but make sure that in your script */

/* you refer to elements of buses as count_2, count_1 , etc !!! */

/* For Xilinx generated netlists and SDF files there is no problem */

/* can use the standard %s<%d> style */

/* bus_naming_style = "%s_%d" */

bus_inference_style = "%s<%d>"

bus_dimension_separator_style = "><"

/* to write out EDI netlists, this must be set to "true" */

edifout_netlist_only = "true"

29

The ”class.db” library file used in this tutorial is located in:
[/CMC/tools/synopsys/syn/libraries/syn/class.db]

A.2 Design example files

”ones.vhd” can be found here [http://users.encs.concordia.ca/∼tahar/coen7501/ones.vhd]

A.3 Documentation

The Synopsys tool documentation is here: [/CMC/tools/synopsys/syn/doc/online/top.pdf]

30

B Synopsys Formality

B.1 The reference and Implementation designs

”ones syn.vhd” and ”ones syn1.vhd” are here:
[http://users.encs.concordia.ca/∼tahar/coen7501/ones syn.vhd], and
[http://users.encs.concordia.ca/∼tahar/coen7501/ones syn1.vhd]

B.2 Other useful information

The Synopsys tool documentation is here: [/CMC/tools/synopsys/syn/doc/online/top.pdf]
Some of the Formality user and reference documents are here: [/CMC/tools/synopsys/fm/doc/fm]
If you are interested in reading more about the tool, a good starting point is the user.pdf
document.

One can also find many good tool tutorials on the web. For example,
see [http://www.chiptalk.org]

31

C Cadence Conformal

C.1 The golden and revised design files

”ones syn.vhd” and ”ones syn1.vhd” are here:
[http://users.encs.concordia.ca/∼tahar/coen7501/ones syn.vhd], and
[http://users.encs.concordia.ca/∼tahar/coen7501/ones syn1.vhd]
The ”class.db” and ”class.lib” library files used in this tutorial are located in:
[/CMC/tools/synopsys/syn/libraries/syn/] directory.

C.2 The command script

//***

// design input

//***

Read Design -golden ones_syn.vhd

Read Library -both class.lib

Read Design -revised ones_syn1.vhd

report design data -both

//***

// design preparation and key points mapping

//***

set system mode lec

//***

// compare mapped key points

//***

add compare point -all

compare

//***

// reporting result

//***

report compare data -summary

C.3 Remote access

Following information was very kindly provided by our CAD tool GURU (Ted Obuchowicz).
If you are connecting remotely using ’ssh’ take note of the following:

1. On a solaris host use : /usr/bin/ssh to connect to a solaris 10 remote host

2. On a solaris host use : /common/bin/ssh -X to connect to a solaris 10 remote host

3. On a Linux host use : /usr/bin/ssh -X to connect to a solaris 10 remote host

32

C.4 Commonly used UNIX commands

A good unix tutorial is here: [http://www.ee.surrey.ac.uk/Teaching/Unix/]
Have you ever used these UNIX commands?

Description UNIX command

Memory use top
Process list ps
Kill process kill -9 pid
Workstation information prtdiag

where pid is the process identification number.

C.5 Other useful information

User and reference documents are in [/CMC/tools/cadence.2007a/CONFRML/doc/]

Complete documentation is here [/CMC/tools/cadence/CONFRML/doc]

If you are interested in reading more about the tool, a good starting point is the
Conformal User.pdf document.

Currently we have Version 6.1 of conformal installed on our workstations.

One can also find many good tool tutorials on the web. For example,
see [http://www.chiptalk.org]

33

