
-001-

Proceedings of the 2002 IEEE Canadian Conference
on Electrical & Computer Engineering
0-7802-xxxx-x/02/$10 © 2002 IEEE

FORMAL MODELLING OF THE ADSP-2100 PROCESSOR
USING HOL

Ali Habibi1, Sofiène Tahar1 and Adel Ghazel2

1Concordia University, ECE Dept., Montreal, Quebec, H3G 1M8 Canada
2Ecole Supérieure des Communications de Tunis, 2083 Ariana, Tunisia

1{habibi,tahar}@ece.concordia.ca
2{adel.ghazel}@supcom.rnu.tn

Abstract
In this paper, we describe formal modelling of the digi-

tal signal processors of the family ADSP-2100 using the
HOL (Higher Order Logic) theorem prover. While specify-
ing the behavior and implementation of the processor, we
solved the problem of complexity related to the large num-
ber of parameters by using a structured method based on
our knowledge about the processor architecture. We show
details of the specification strategy used and display few
illustrative examples.

1. INTRODUCTION

Hardware and software systems are growing everyday
in scale and functionality. This increase in complexity
increases the number of subtle errors. Moreover, some of
these errors may cause catastrophic loss of money, time, or
even in many cases human life. A major goal of system
design is to enable developers to construct systems that
operate reliably despite this complexity. One way of
achieving this goal is by using formal methods, which are
mathematically-based languages, techniques, and tools for
specifying and verifying such systems [9].

Only recently have we begun to see a more promising
picture for the future of formal methods. For hardware
verification, industry is adopting techniques like model
checking and theorem proving to complement the more
traditional one of simulation. Researchers and practitio-
ners are performing more and more industrial-sized case
studies, and thereby gaining the benefits of using formal
methods. Actually there are many tools performing hard-
ware verification. Principally the two approaches model
checking and theorem proving are getting more interest.

Notable examples about using formal methods for pro-
cessors specification and verification are described in the
literature. The most related to our study is the Motorola

CAP [5]. During 1992-1996 Brock of Computational
Logic, Inc., working in collaboration with Motorola
designers, developed an ACL2 specification of the entire
Motorola Complex Arithmetic Processor (CAP), a micro-
processor for digital signal processing (DSP). The CAP is
one of the most complicated microprocessor yet formal-
ized (with instruction set allowing the simultaneous modi-
fication of well over 100 registers in a single instruction).
The formal specification tracked the evolving design and
included a simpler non-pipelined view that was proved
equivalent on a certain class of programs [4].

The verification of the processor ADSP-2100 is very
similar in complexity to the Motorola CAP. However, our
objective is to specify and later verify the full instruction
set of the processor using the theorem prover HOL [6] .
The ADSP-2100 family is a collection of programmable
single-chip microprocessors that share a common base
architecture optimized for digital signal processing (DSP)
and other high-speed numeric processing applications.
The various family processors differ principally in the type
of on-chip peripherals they add to the base architecture.
On-chip memory, a timer, serial port(s), and parallel ports
are available in different members of the family.

The HOL system is an interactive environment for
machine-assisted theorem-proving in higher-order logic
[6]. The HOL logic is simple but expressive, incorporating
higher-order functions and Milner-style polymorphism
[3]. HOL uses the programming language ML [11] to pro-
gram proof strategies. Theorems are encoded via an
abstract type whose only constructors are the primitive
inference rules of the logic. The strength of HOL comes
from two principles proprieties. First backward (goal-
directed) proof is supported, and may be freely mixed with
forward proof. Second, adherence to definitional extension
guarantees that the consistency of the logic is not compro-
mised [1].

The rest of the paper is organized as follows. In Section
2, we describe the ADSP-2100 processor architecture. In

-002-

Section 3, we present the methodology used in the specifi-
cation process. This latter will be detailed in Section 4.
Finally, in Section 5, we outline the general conclusions
and point out to future work.

2. THE ADSP-2100 FAMILY

2.1 Basic Units

The processors of the ADSP-2100 has three separated
computational units: Arithmetic and Logic Unit (ALU),
Multiplier/Accumulator (MAC) and the Barrel Shifter
(Figure 1). These units treat 16 bits fixed point data [3].

The two Address Generators and the Program
Sequencer are responsible of the addressing management.
The use of two address generators allow the execution of
two data reading (fetch) from the external memory. The
program sequencer has some embedded units allowing the
execution of internal loops which increases the efficiency
of the processor [12].

The principal characteristic of this family of processors
is that it is based on a modified Harvard architecture [8]. In
fact, data is stored in both the data and the program memo-
ries. This is very important because it allows the execution
of two instructions in the same clock cycle.

Fig. 1. ADSP 2100 Processor Architecture [2].

2.2 Instruction Set of the ADSP-2100 Family

The instruction set of the ADSP-2100 family are char-
acterized by the classification of the instructions and the
multiplicity of instructions per command [2]. In fact, the
instructions are classified by the concerned unit. In other
words, the instructions of the ALU have the same format
that is different form that of the program sequencer for
example. On the other hand, the majority of the instruc-

tions are composed of two parts: the first is a memory
access (for reading or writing) and the second is an oper-
and execution (ADD operand for example).

The general format of the instructions is given in Fig-
ure 2. It is composed of two principal parts: the identifier
of the instruction and its parameters. An example of an
instruction is given in Figure 3.

Fig. 2. General format of the instructions of the ADSP-2100 family [2].

CLKIN

Program Memory Address

Program Memory Data

TRAP

PROGRAM
MEMORY 24

14

RESET HALT

Clock
Data Address
Genrator #1

Data Address
Genrator #1

Program
Sequencer

ALU

Input Regs

Output Regs

MAC

Input Regs

Output Regs

Shifter

Input Regs

Output Regs

PMA BUS

DMA BUS

PMD BUS

DMD BUS

R BUS16

16

14

24

14
CLKOUT

Data Memory Address

Data Memory Data

IRQ BR BG

14

16

DATA
MEMORY
Data

ADDR

PERIPHER
ALS

Data

ADDR

General Format:

Opcode Identifier Opcode Parameters

-003-

Fig. 3. ALU instruction with data and program memory read [2].

3. GENERAL METHODOLOGY

We propose to define a methodology for the specifica-
tion and verification of the ADSP-2100 processor. This
methodology will satisfy certain characteristics to guaran-
tee its capability to deal with the processor features, to
take advantage from the processor architecture and to pre-
pare the proof goal in the simplest way to the HOL system.
In fact, the complexity of a DSP processor in terms of
number of variables, variable types and the variety of
instrucions makes it impossible the use of the direct way
[5].

The methodology that we defined includes four princi-
ple steps:

(1) Simplification of the processor units specifications.
(2) Construction of the specification of the implementa-

tion of the processor.
(3) Writing the specification of the behavior of the pro-

cessor.
(4) Making the proof of the goal “Processor Implemen-

tation ⇒ Processor Specification” for every instruc-
tion.

In this paper, we will focus on the first three specifica-
tion steps. The verification step is described elsewhere [7]

4. FORMAL SPECIFICATION

In our case the formal specification concerns two parts:
the specification of the hardware and the specification of
the behavior. The final goal is to simplify the proofs as
much as possible. For this reason, we started by specifying
the units of the processor. Then we wrote a functional
specification of these units. Our first task was then to make
the proof of the following implication: “hardware repre-
sentation⇒ functional representation for every unit.”

This will allow us to manipulate simpler representa-
tions of the units during the verification phase. In fact, this
will give us a high level representation of the units omit-
ting the internal signals and therefore minimizing the
number of parameters.

4.1 Components Specification

The first step in the specification of the processor is to
specify the basic components that will serve in the con-

struction of the specification of the units of the processor.
The basic components that we specified are the multiplex-
ers, registers, buses and memories.

The following specification presents the case of one
multiplexer which has two inputs the first of typeWord8(8
bits) and the second of typeWord16(16 bits), and one out-
put of typeWord8(8 bits). The selection between the two
inputs is done according to the value of the boolean
parameterinput_selectwhich, when set to true (T) gives
the first input to the output and when set to false (F) gives
the second input to the output:

4.2 Iterative Units Specification

For every unit of the processor, we also defined a
behavioral specification and a hardware specification of
the unit. This is done to simplify the instruction verifica-
tion task by manipulating a simple representation of the
processor. Next, we use the ALU unit as example to
describe our approach.

The ALU is the unit responsible for the arithmetic and
logic operations. It is composed of a group of input regis-
ters, a group of output registers, many multiplexers and
one base unit making the arithmetic and logic operations.

In the functional specification of the ALU we tried to
represent this unit in a simple and optimized way. Our rep-
resentation is composed of three parts: the selection of the
inputs, the selection of the appropriate function and the
storage of the result.

An important remark is that all the types used within
the ALU are the same (Word16: 16 bits in this case).
Therefore, it is possible to use a single abstract type to rep-
resent all parameters of this unit. This is very important
because it allows us to do generic proofs that are indepen-
dent from the sizes of the buses or the registers. This way
our proofs are true even for systems considering data types
either thanWord16.

4.2.1. Functional Specification of the ALU.In the func-
tional specification of the ALU we tried to represent this
unit in a simple and optimized way. Our representation is

MUX_8_16_8(input1 input2 output inptSelect)=, , ,
t. inputSelect t() T=() output t() input1 t()=()∧()∀

∨ inputSelect t() F=() output t() input2 t()=()∧()

-004-

composed of three parts: the selection of the inputs, the
selection of the appropriate function and the storage of the
result.

Inputs Identification: The inputs of the base unit of the
ALU depend on the multiplexers at the input of the regis-
tersAX andAYand on the two inputsX andY (see Figure
4). In our representation we selected the value of input of
this unit directly from the values of control of the multi-
plexers. These commands are in our case:ALUMUXXin-
put, ALUMUXYinput, AXinputselect andAYinputselect.

Selection of the Appropriate Function: The function
that will be executed by the ALU comes from the instruc-
tion by means of the Program Sequencer. The parameter
FunctionCodeidentifies the actual operation. This param-
eter is read from theAMF field in case of the ALU
instructions (see Figure 3).

Data Storage: At the end of the operation of the ALU,
the result has to be stored either in the registerAF only or
in both registersAF andAR. This result can be either writ-
ten in the program or data memories by means of the R
bus.

4.2.2. ALU Specification Construction. The ALU is
formed by many components provided in a multi-pages
hardware description. If we consider that the processor
core contains 8 other units more complex than the ALU,
we can easily deduce that the problem of verification of
the instruction set will be impossible if we will not sim-

plify the units specifications. In fact, we will deal with
thousands of parameters and a very long specification.

Table 1 describes the steps that we used to make the
proof of the implication between the hardware specifica-
tion of the ALU and its behavioral specification. In the
first step, we considered a sub-system of the ALU contain-
ing the base unit of the arithmetic and logic operations and
the selection of the first input Y. Then in the second step,
we considered the registers AY and AR. By adding to each
iteration a new set of components we ended by represent-
ing the full ALU unit.

The ALU specification construction is detailed in Fig-
ure 4. We start by specifying the basic ALU unit only.
Then progressively we add the other components (regis-
ters, multiplexers...) one by one. In each iteration we elim-
inate some internal signals from the ALU specification.
For example, in the “iteration 2” the new specification of
the ALU will not contain any connection between the reg-
ister AF and the basic ALU unit. This register will be rep-
resented as a parameter of the new specification and not as
a component. In the final iteration, we will get the func-
tional specification of the ALU as a single box. Therefore,
it is proved that the ALU can be specified as a short yet
simple unit that can be easily manipulating while con-
structing the full processor specification and during the
proofs of the full instruction set.

Table 1. Steps of the construction of the ALU specification.

Step
Proof

 Hardware Specification ⇒ Behavioral Specification

1
The multiplexer at the output of the register AY.

The base unit of the ALU.
⇒ Sub-system 1 of the ALU.

2
Sub-system 1 of the ALU.

The multiplexer at the input of the register AY.
The register AY.
The register AF.

⇒ Sub-system 2 of the ALU.

3
Sub-system 2 of the ALU.

The multiplexer at the input of the register AX.
The register AX.

⇒ Sub-system 3 of the ALU.

4
Sub-system 3 of the ALU.

The multiplexer at the input of the register AR.
The register AR.

⇒ Functional Specification of the
ALU.

-005-

4.3 Processor Specification Construction

After simplifying all the processor units, we were able
to construct the full processor specification. However,
keeping in mind that the simpler is processor specification,
the easier is the instruction set verification, we add another
step to the specification process.

Fig. 4. ALU unit specification.

In place of a unique representation of the processor, we
formed an instruction-dependent processor specification
(Figure 5). In other words, the processor is described as a
set of representations. Each of these representations is

related to one of the opcodes. This way, we simplify the
processor representation without modifying its behavior
since each opcode concerns only a subset of units of the
processor.

Global Representation of the Processor: This repre-
sentation contains a full description of the processor. It
contains all the inputs and outputs.

Instruction Specific Representation of the Processor:
This representation takes into account the knowledge of
the way the processor is working. In fact, we only take into
account the units related the instruction being executed.
For example, if an instruction concerns only the ALU,
there is no need to add the specification of the MAC. This
way, we are looking to the system differently depending
on each instruction.

If we consider the example of the opcode represented in
Figure 3, then the representation of the processor is the
one given in Figure 6 for the case of the ALU operation
with program and data memory read. In comparison to the
global representation of the processor given previously in
Figure 1, the new representation includes only the ALU,
the Program Sequencer and the first Data Address Genera-
tor. So the internal size of the processor is reduced by the
half since the MAC, the Shifter, the second address gener-
ator and the inter-bus transfer units are not included. We
have to notice that this reduction of the size of the proces-
sor do not affect its behavior since the “ALU operation
with data and program memory read” does not concern the
other units.

Currently, the construction of the instruction specific
representation of the processor is done manually. How-
ever, we plan to automate this procedure in future work. In
fact, the construction of this specification requires only the
definition of the table of correspondence between the
instructions and the units that are involved in the instruc-
tion.

Fig. 5. Simplification of the processor specifica-
tion.

ALU

X Y

R

CI

AZ
AN
AC

AV
AS
AQ

Implementation

ALU

X Y

R

CI

AZ
AN
AC

AV
AS
AQ

MUX MUX

ALU

R

AZ
AN
AC

AV
AS
AQ

CI

AF
REGISTER

MUX

ALU

AZ
AN
AC

AV
AS
AQ

CI

A
F

R
E

G
IS

T
E

R

AX
REGISTER

AY
REGISTER

AR
REGISTER

AZ
AN
AC

AV
AS
AQ

CI

MUX

DMD BUS

PMD BUS

R - BUS

ALU

A
F

R
E

G
IS

T
E

R

AX
REGISTER

AY
REGISTER

AR
REGISTER

Specification

ALU

R

AZ
AN
AC

AV
AS
AQ

CI

ALU

AZ
AN
AC

AV
AS
AQ

CI

A
F

R
E

G
IS

T
E

R

AZ
AN
AC

AV
AS
AQ

CIALU

A
F

R
E

G
IS

T
E

R

AX
REGISTER

AY
REGISTER

AR
REGISTER

ALU
AZ
AN
AC

AV
AS
AQ

CI

DMD BUS

PMD BUS

R - BUS

A
F

R
E

G
IS

T
E

R

AX
REGISTER

AY
REGISTER

AR
REGISTER

Iteration 2

Iteration 1

Iteration 3

Iteration 4

Global
Representation of

the processor

Instruction Specific
Representation of

the processor

Opcode 1 Opcode 31

Representation 1 of
the Processor

Representation 31 of
the Processor

. . .

-006-

Fig. 6. Instruction specific representation of the processor.

5. CONCLUDING REMARKS

In this paper, we investigated the formal specification
of the DSP ADSP-2100 processor using the HOL theorem
prover. The main contributions of this work are: (1) the
specification of both the behavioral and structural repre-
sentation of a commercial DSP chip; (2) the specification
of any other DSP processor will be a matter of adapting
and reusing the specification that we made; and (3) the
behavioral and the structural specification of the processor
are reduced enough to allow the verification of the full
instruction set. For instance, without making a simplifica-
tion of the units specifications, it will be impossible to
make the verification of the ADSP-2100 processor using
HOL. In fact, the specification of such a complex system
took more than 100 pages.

References
[1] P. Andrews. “An Introduction to Higher Order Logic:

To Truth through Proof,” Academic Press, New York,
1986.

[2] Applications Engineering Staff of Analog Devices,
DSP Division. “Digital Signal Processing Applica-
tions Using the ADSP-2100 Family,”Prentice Hall,
Englewood Cliffs, NJ 07632, 1996.

[3] G. Birtwistle, B. Graham, and S.- K. Chin, “new_ the-
ory ‘HOL‘; An Introduction to Hardware Verification
in Higher Order Logic,”August 1994.

[4] B. Brock, M. Kaufman, and J.S. Moore, “Heavy infer-
ence: Theorems about commercial microprocessors,”
Formal Methods in Computer-Aided Design, Springer-
Verlag, November 1996.

[5] E. M. Clarke and J. M. Wing. “Formal Methods: State
of the Art and Future Directions,” ACM Computing
Surveys, December 1996.

[6] M. Gordon, and T. Melham, “ Introduction to HOL: A
theorem Proving Environment for Higher-Order
Logic,” Cambridge University Press: Cambridge, UK,
1993.

[7] A. Habibi, S. Tahar and A. ghazel, “Formal Verifica-
tion of the ADSP-2100 Processor Using the HOL The-
orem Prover,” Technical Report, Department of
Electrical and Computer Engineering, Concordia Uni-
versity, March 2002.

[8] R. J. Higgins, “Digital Signal Processing in VLSI.
Englewood Cliffs,”NJ: Prentice-Hall, 1990.

[9] C. Kern and M. Greenstreet, “Formal Verification in
Hardware Design: A Survey”,ACM Transactions on
Design Automation of E. Systems, Vol. 4, April 1999,
pp. 123-193.

[10] T.F. Melham, “Higher Order Logic and Hardware
Verification,” Cambridge Tacts in Theoretical Com-
puter Science 31, Cambridge University Press, 1993.

[11] R. Milner and. M. Tofte. “The definition of Standard
ML,” The MIT Press, Cambridge, Massachusetts and
London, England, 1991.

[12] W. S. Steven, “The Scientist and Engineer's Guide to
Digital Signal Processing,” Second Edition. Califor-
nia Technical Publishing, 1999.

CLKIN

Program Memory Address

Program Memory Data

PROGRAM
MEMORY 24

14

Clock
Data Address
Genrator #1

Program
Sequencer

ALU

Input Regs

Output Regs

PMA BUS

DMA BUS

PMD BUS

DMD BUS

R BUS16

16

14

24

14

Data Memory Address

Data Memory Data

14

16

DATA
MEMORY
Data

ADDR

