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Abstract
MDG-HDL is the hardware description language

accepted by the Multiway Decision Graphs (MDGs) pack-
age. Linear Temporal Logic (LTL) is a widely used formal
language for specifying design properties. To develop an
LTL model checking algorithm on MDGs, we first need to
translate the LTL specification into an automaton
described in MDG-HDL. In this paper, we present and
compare two methods for translating LTL specifications to
MDG-HDL using two existing tools Wring and LTL2AUT.
Experimental results based on a set of benchmark LTL for-
mulas show that the Wring based approach is better than
the LTL2AUT implementation with respect to the size of
the generated automata but is worse in terms of CPU time
used.

1. INTRODUCTION

Multiway Decision Graphs (MDGs) [1] are a relatively
new class of decision diagrams which subsume traditional
Reduced Ordered Binary Decision Diagrams (ROBDDs)
[1] and extend them with abstract data sorts and uninter-
preted functions. In an MDG, a data signal can be
described as an abstract variable instead of a boolean vec-
tor in ROBDDs [3], a data operation can be described by
an un-interpreted function and cross-operators are useful
to model feedback signals from the datapath to the control
circuitry. Thus, MDGs are more compact than ROBDDs
for describing circuits with datapaths. The MDG tools pro-
vide several formal verification applications including
equivalence checking, invariant checking, sequential
equivalence checking and branching time temporal logic
model checking.

This paper is part of a project to extend the MDG tools
with a Linear Temporal Logic (LTL) model checking algo-
rithm [9]. LTL is a widely used formal language for speci-
fying design specification. LTL model checking uses -
automata as the unifying models for a system and its spec-
ification, and checks whether the language of the system is
contained in the language of its specification [7]. There are
two main steps in these methods: translating the LTL spec-

ification into -automaton and checking the language
containment. The size of the automaton generated is criti-
cal to the capability of this method due to the possible
state space explosion problem [9]. The hardware descrip-
tion language that the MDG tools accept is MDL-HDL.
Thus, for the realization of an MDG-based LTL model
checking tool, we first need to generate a translator from
LTL specification to MDG-HGL. 

Constructing an -automata from LTL formulas is
well developed and many excellent tools are freely avail-
able in the public domain areas of formal methods [10]. In
this paper, we make use of two such tools, namely Wring
[8] and LTL2AUT [4]. We implemented for each a trans-
formation approach to generate HDG-HDL code from
LTL formulas. We also tested our implementation with the
MDG tools to make sure the syntax is correct and also
compared these two approaches with respect to the trans-
lation performance.

This paper is organized as follow. In Section 2, we
overview the notion of MDGs and the MDG package. In
Section 3, we review the basics of LTL transformation
techniques, and introduce the tools Wring and LTL2AUT.
We discuss our LTL to MDG transformation methods and
experimental results in Section 4. Finally, in Section 5, we
conclude the paper and point to some future work.

2. MULTIWAY DECISION GRAPHS

Multiway Decision Graphs (MDG) are decision dia-
grams based on a subset of many-sorted first-order logic,
augmented with a distinction between concrete and
abstract sorts [2]. Concrete sorts have an enumeration
while abstract sorts do not. The distinction is motivated by
the natural division between the control circuitry and data-
path in digital hardware designs. The distinction between
concrete and abstract sort leads to three kinds of function
symbols: abstract functions, concrete functions, and cross-
operators. Abstract functions are used to describe data
operations, while cross-operators are useful for modeling
feedbacks from the datapath to the control circuits. Both
cross-operators and abstract functions are uninterpreted.
Concrete functions on the other hand are fully interpreted.

An MDG is a finite directed acyclic graph [3]. An inter-
nal node of an MDG can be a variable of concrete sort
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with its edge labels being the individual constants in the
enumeration of the sort; or it can be a variable of abstract
sort and its edges are labeled by abstract terms of the same
sort; or it can be a cross-term. An MDG may have only
one leaf node denoted as T, which means all paths in an
MDG are true formula. MDGs represent relations as well
as sets of states [3].

The MDG package contains a set of basic operators
including disjunction, relation product ( image operation),
pruning-by-subsumption (for test of set inclusion); and a
reachability analysis procedure based on implicit abstract
enumeration [3]. Thereafter, a set of MDG tools have been
developed providing applications for hardware verifica-
tion such as combinational circuits verification, equiva-
lence checking for two state machines, invariant property
checking and model checking. The MDG hardware
description language (MDG-HDL) [10] that the MDG
tools accept allows the use of abstract variables and unin-
terpreted function symbols. MDG-HDL supports struc-
tural descriptions, behavioral descriptions, or the mixture
of structural and behavioral descriptions. A structural
description is usually a netlist of components (predefined
in MDG-HDL) connected by signals. A behavioral
description is given by a tabular representation of the tran-
sition/output relation or a truth table [10].

3. LTL AND BUCHI AUTOAMTA 

In this section, we first review the basic concepts of
LTL and -automata, then describe the algorithms of con-

struction -automata from LTL formulas.

3.1  Linear Temporal Logic 

Linear time temporal logic formulas are composed of a
set of atomic propositions, the standard Boolean connec-
tives, and the temporal operators X (next time), U(until). In
following, we describe the general syntax and semantics
of LTL.

 Syntax. Given a set of propositions P, LTL formulas
are defined inductively as follows.

1. Every member of P is a formula,

2. If p and q are formulas, then so are , , 

, X p, p U q.
Semantics. The semantics is defined on a linear struc-

ture M = (S, x, L), where S is the set of states, x: is

an infinite sequence of state, and L:  is a function
that labels each state with the set of atomic propositions in

P. We use  to denote the infinite sequence of state

(  and M, x |= p to mean that in structure M

formula p in true on the sequence x starting at .

1.M, x |= p iff for 

2.M, x |=  iff not the case M, x |= p

3.M, x |=  iff M, x |= p and M, x |= q

4.M, x |=  iff M, x |= p or M, x |= q

5.M, x |=  iff M,  |= p

6.M, x |=  iff there is an , M,  |= p and M,  |= q

Other temporal operators, such as G (always) and F
(eventually), as well as the constants True and False are
defined abbreviations as follows respectively:

, , and

.

3.2 Büchi Automaton

An automaton is a finite state transition with accep-

tance condition. An -automaton is an automaton on infi-

nite words and Büchi Automaton (BA) [2] is a type of -
automaton with the acceptance condition consists of sev-
eral sets of accepting states. An BA is defined as a tuple

A= (S, S0, , F), where S is a finite set of states, S0 is the

set of initial states,  is the transition relation and F is the
set of accepting states. A run is accepted if it contains at
least one state in every fair set infinitely often.

The language of an BA is defined by the labels on the
states. A labeled BA is a triple (A, D, L), where A is the
BA, D is some finite domain and L is a labeling function
mapping from the states of BA to the subset of the domain
D. A labeled BA accepts a word from the D regular lan-
guage corresponding to the acceptance run.

3.3  From LTL to Büchi Automaton

A construction algorithm from LTL to Büchi automa-
ton generates an automaton recognizing all infinite
sequences that satisfy a given LTL formula. The central
part of the algorithm is a tableau-like procedure for build-
ing a graph [7], which decomposes a formula according to
its Boolean structure. Temporal operators of the formula
are expanded by the expansion rule

. The procedure continues until
the original formula becomes a propositional in terms of
constants, atomic propositions, and sub-formulas starting
with X. States are obtained from the nodes of the graph
returned by the algorithm and labeled by sets of subformu-
las. Initial states are the states directly connecting to the
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node labeled by the original formula. Translation relations
are derived from connecting what has to be true immedi-
ately to what has to be from the next state on. Acceptance
conditions are added to each state with the formula

 in its label.
An efficient algorithm based on the above tableau con-

struction was proposed in [7] for the construction of BA
on the fly. An improvement of this algorithm, based on
syntactic simplification, is discussed in [4]. An extended
algorithm of [7] [4], based on rewriting of LTL formulas
and simplifying the resulting BA, was presented in [8].
Based on the above algorithms, there are many construc-
tion tools, such as LTL2AUT [4], EQLTL and Wring [8].
In next section, we will discuss the translation of BA to
MDG-HDL using Wring and LTL2AUT.

4. FROM LTL TO MDG-HDL

In this section, we present both tools LTL2AUT and
Wring. LTL2AUT is developed in C while Wring is devel-
oped in Perl; LTL2AUT outputs a text description for the
generated automata while Wring is in a Verilog.

4.1  The Wring method

Wring1 was developed by Somenzi and Bloem [8] at
UC Berkeley using the Perl language. The implementation
is based on a medular-block structure and outputs an BA
as Verilog module (monitor). Figure 1 (a) shows the Ver-
ilog code for the LTL formula p1 U p2. The correspond-
ing MDG-HDL code is given in Figure 1 (b).

The BA Verilog description can be transformed into an
MDG-HDL program using concrete variables. To translate
the generated automaton into MDG-HDL, we modify the
Verilog monitor as follows. We declare a new concrete
sort bstateSort enumerating all states of the automaton.
Next, we define a variable bstate of this sort and a set of
Boolean variables  to represent the acceptance condi-

tions. The number of the set is equivalent to the number of
the acceptance sets. If there is only one set, we simply
declare it as acc. Then we generate an MDG table with
bstate, and the formula presentations input variables, and
n_bstate to represent the transition relation. The value is
assigned according to the transition relation of the automa-
ton. Similarly, we get the table for the acceptance condi-
tion with the bstate and .

 

Fig. 1.  Verilog and MDG-HDL Models for p1 U p2

4.2  The LTL2AUT method

LTL2AUT 2 is a software package for generating Büchi
automata from LTL formulas, developed by Daniele et. al.
at Rice univerisity using the C language[4]. LTL2AUT
generates an automaton graph model in text form with a
set of nodes labeling five items: State, Old, Nxt, Succ, and
Acc. Initial states are marked separately. 

In the transformation from automaton to MDG-HDL
description, we first get the respective states from the
nodes. Initial states are as listed in the text, and transition
relation are derived from Succ. Labels of states are derived
from the atomic propositions with or without negation
appearing in Old. Finally, the acceptance conditions are
acquired from the Acc. Different accepting sets are labeled
by different numbers such as the states in condition 0 are
labeled by Acc: 0. Similarly to the Wring based approach,
we describe the automaton transition using MDG tables. 

Figure 2 shows an BA model for the same LTL formula
of Figure 1. Figure 2 (a) is the LTL2AUT model, while
Figure 2 (b) gives the corresponding MDG-HDL model.

4.3 Experimental Results

To test the two implementations, we used a set of
benchmark formulas [8], which we translated to automa-
ton modeled in the MDG-HDL and verified them using

1. http://www-cad.eecs.berkeley.edu/Respep/
Research/vis/index.html

X pUq( )

accn

accn

2. http://www.cs.rice.edu/CS/Verification/Soft-
ware/software.html

 
 module Buechi(clock,p1,p2,fair);
 input clock,p1,p2;
 output fair;
 states reg state;
 states wire ND_n1_n2;
 assign ND_n1_n2 = $ND(n1,n2);
 assign fair = (state == n3);
 initial state = n1;
 always @ (posedge clock) begin
  case (state)
    n1: 
      case ({p1,p2})
         2’b00: state = Trap;
         2’b01: state = n2;
         2’b10: state = n1;
         2’b11: state = ND_n1_n2;
      endcase
    Trap:
          state = Trap;
    n2,n3:
          state = n3;
  endcase
 end
endmodule

typedef enum {n1,n2,n3,Trap} states;  

 
signal(acc, bool). 
signal(bstate, bstateSort). 
component(bcomp, table([

                     [n2,*, *, n3],
                     [n3,*, *, n3],
                     [n1,*, 1, n2],
                   [n1,1, *, n1],

             [n1, 0, 0, trap],
              [trap, *,*, trap]                 ])).

component(bc_comp0, table([

      [n3,1]|0])).

init_val(bstate, n3).

next_state_partition([ 

     [bstate, p1,p2, n_bstate],

      [bstate, acc],

st_nxst(bstate,n_bstate).

[[n_bstate]] ]).

conc_sort(bstateSort, [n1, n2, 
n3, trap]).
signal (p1, bool).
signal (p2, bool).

(a) (b)
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MDG tools. We tested the obtained MDG-HDL descrip-
tions with two MDG applications: State exploration to test
the generated automaton and ensure syntax correctness,
and sequential equivalence checking to test that the
automata generated by both methods are indeed equivalent
for every formula.

Fig. 2.  LTL2AUT and MDG-HDL Models for p1U p2

Table 1 summarizes obtained experimental results on a
296 MHz Sun station with of 768MB memory including
the CPU time used in sec., the size of the automaton in
terms of number of states, the number of transactions , and
the number of accepting conditions. From Table 1, we can
see that the implementation with Wring is worse in terms
of CPU time, This is due to the fact that first, Wring is
implemented in Perl while LTL2AUT is in C; second,
Wring itself includes more algorithms in order to simplify
the output automaton than LTL2AUT. Thus, the Wring
implementation produces smaller automaton size then the
LTL2AUT one. 

5. CONCLUSION AND FUTURE WORK

In this paper, we described two methods to translate
LTL specifications into MDG-HDL. The first one is an
adaption of the Wring tool, while the second one is based
on the LTL2AUT tool. Both implementations were tested
on a set of benchmarks formulas. Experimental results
show that the implementation with Wring is better than
LTL2AUT with respect to the size of the automaton but is
worse in terms of the CPU time used. 

Since the generation of automata from LTL is the
immediate form needed for the intend MDG LTL model

checking, the size is more important than the CPU time.
We hence conclude to use the Wring based method in our
next work step. As we mentioned in the introduction, this
translation is the first part of a large project to develop
LTL model checking with MDGs. The MDG abstract
description capability accepts more abstract description of
specification. The alternative goal is to build a first-order
LTL model checking tool which checks abstract design
models described in MDG-HDL with respect to first-order
specifications that use abstract variables and uninterpreted
functions.
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Initial states: 5, 3
State [13]: 
Old     : 
Nxt     : 
Succ    : 13 
Acc     : 0 
State [5]: 
Old     : p1, p1 U p2
Nxt     : p1 U p2
Succ    : 5, 3 
Acc     :
State [3]:
Old     : p2, p1 U p2
Nxt     :
Succ    : 13
Acc     : 0

signal (init, bool).
signal(Acc, bool).

component(state1_comp,table([
    [bstate, p1, p2, n_bstate],

      [init,    1,  *,  s5], 

     [init, *, 1, s3], 

     [s13, *, *, s13], 

     [s5, 1, *, s5], 
     [s5, *, 1, s3],

       [s3, *, *, s13] ])).

component(output_comp, table([ 
[bstate,  Acc],
[s13, 1], [s3, 1] | 0 ])).

init_val(bstate, init).
next_state_partition([ [[n_bstate]] ]).

(a)

signal(bstate, bstateSort). 

(b)

conc_sort(bstateSort,[init, s3, s5,s13]).
signal (p1, bool).
signal(p2, bool).

Initial states: 5, 3

Old     : 

Succ    : 13 

State [5]: 

Succ    : 5, 3 

Old     : p2, p1 U p2

Succ    : 13

signal (init, bool).

component(state1_comp,table([

     [init, *, 1, s3], 

     [s13, *, *, s13], 
     [s5, *, 1, s3],
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Table 1. Experimental Results and Comparison of LTL to MDG-HDL Translations using LTL2AUT and 
Wring.

Formulae

Using LTL2AUT Using Wring

CPU 
Time

# 
States

# 
Trans.

# 
Acc.

CPU 
Time

# 
States

# 
Trans.

# 
Acc.

p U q 0.02 4 6 1 0.08 4 6 1

p U (q U r ) 0.01 5 10 2 0.15 5 10 1

~(p U (q U r )) 0.01 8 19 0 0.28 7 13 0

GF p ->GF q 0.01 5 11 2 0.27 5 11 1

Fp U Gq 0.01 6 14 2 0.22 4 7 1

Gp U q 0.01 6 8 1 0.17 5 6 1

~(GF p ->GF q) 0.02 8 16 2 0.43 4 8 1

~(GF p <->GF q) 0.01 9 32 2 0.80 6 14 1

p R ( p \/ q) 0.01 5 11 2 0.12 4 6 0

Xp U Xq \/ ~ X ( p U q ) 0.01 10 16 1 0.16 5 8 1

(Xp U q ) \/ ~X( p U (p \/ q )) 0.01 10 21 1 0.29 8 14 1

G(p ->Fq ) /\ (Xp U q) \/ ~X( p U (p /\ q )) 0.03 17 61 2 1.79 11 30 1

G(p ->Fq ) /\ ((X p U X q ) \/ ~X(p U q )) 0.01 21 63 2 0.15 4 11 1

G(p ->Fq ) 0.01 4 11 1 0.16 4 11 1

 ~G(p ->X (q R  r )) 0.01 6 10 2 0.17 6 10 1

 ~(GFp  \/ FG q ) 0.04 5 16 2 0.36 4 8 1

G(Fp /\  Fq) 0.01 5 20 2 0.26 4 12 2

Fp /\ F ~p 0.02 9 17 2 0.37 9 17 1

( X~q /\ ~r) R (X(~s U ~p) R (~r) U ( ~s  R 
~r ))

0.02 69 391 2 91.84 9 15 1

( G(q \/ GF p)  /\ G (r  \/  GF~p)) \/ Gq \/ Gr 0.02 11 39 1 0.92 9 22 2

(Gq \/ FG p) /\ G(r \/ FG ~p)) \/ Gq  \/ G r 0.01 11 39 1 0.70 5 7 1

 ~((G(q +GFp ) /\ G( r +GF~p)+G(q )+Gr ) 0.01 35 130 2 2.89 12 30 1

 ~((G(q \/ FGp ) /\ G(r \/ FG~p)) \/  Gq  \/ 

Gr)

0.01 35 142 2 2.78 13 36 1

G(q \/ X Gp ) /\ G(r \/ XG~p) 0.01 7 21 0 0.33 6 10 0

G(p \/ (Xq /\ X~q)) 0.01 5 10 0 0.05 1 1 0

(p Uq )\/ (q U p ) 0.02 6 11 2 0.22 4 5 1


