Formal Verification of an ATM Switch Fabric
using Multiway Decision Graphs

Sofiéne Tahar, Zijian Zhou, Xiaoyu Song, Eduard Cerny and Michel Langevin§

University of Montreal, IRO Dept., Canada. E-mail: {tahar,zhouz,song,cerny} @iro.umontreal.ca
8 GMD-SET, Germany. E-mail: langevin @borneo.gmd.de

Abstract

In this paper we present our results on formally verifying
the implementation of an Asynchronous Transfer Mode
(ATM) network switching fabric using a new class of
decision graphs, called Multiway Decision Graphs (MDG).
The design we consider is in use for real applications in the
Cambridge Fairisle network. We produced the description
of the hardware implementation at different levels of
abstraction. We then performed the verification of an
abstract description model against the description of the
gate-level implementation. Using this abstract model, we
accomplished the verification of specific properties that
reflect the behavior of the Fairisle ATM switch fabric.

1. Introduction

As communication networks are becoming pervasive,
the consequence of errors in the design or implementation
of network components becomes increasingly important.
Simulation and testing have traditionally been used for
checking the correctness of those systems. However, it is
practically impossible to run an exhaustive test or simula-
tion for such large and complex systems. The use of formal
verification for determining the correctness of digital sys-
tems is thus gaining interest, as the correctness of a formally
verified design implicitly involves all cases regardiess the
input values.

ATM (Asynchronous Transfer Mode) has been con-
ceived as an appropriate network technology to address the
variety of needs for new high-speed, high-bandwidth appli-
cations. It is being hailed as the most important communi-
cation mechanism of the foreseeable future. However, there
is currently little experience on the application of formal
verification to ATM network hardware.

In this paper, we present our results on formally verify-
ing an ATM network component using a new class of deci-
sion graphs, called Multiway Decision Graphs (IMDG) [3].
These decision graphs subsume the class of Bryant’s Re-
duced Ordered Binary Decision Diagrams (ROBDD) [1]
while accommodating abstract sorts and uninterpreted
function symbols. The device we investigated is part of a
network which carries real user data: the Fairisle ATM net-

0-8186-7502-0/96 $5.00 © 1996 IEEE

106

work [8], designed and in use at the Computer Laboratory
of the University of Cambridge. It provides a realistic for-
mal verification case study. The component we consider is
the Fairisle 4 by 4 switching fabric. It performs the actual
switching of data cells from input ports to output ports and
arbitrates cell clashes and forms the heart of the ATM Fair-
isle communications network switches.

We produced the description of the switch fabric at two
different levels of abstraction. We then performed the veri-
fication of an abstract description model against the original
gate-level implementation. Using the former model, we
then verified specific safety properties which reflect the be-
havior of the Fairisle ATM switch. In addition, we checked
the correctness of several faulty implementations in which
the introduced errors were successfully identified by gener-
ating adequate counterexamples. Using the applications
provided by the MDG software package, all verification
tasks were achieved automatically in a reasonable amount
of time.

The organization of this paper is as follows: Section 2
outlines some related work in the formal verification of
ATM hardware. In Section 3, we give a brief description of
Multiway Decision Graphs (MDGs) and the existing MDG-
related verification techniques. In Section 4, we overview
the Fairisle ATM switch. The descriptions of the hardware
implementation at the gate and abstract (word) levels are
sketched out in Section 5. In Section 6, we explore the dif-
ferent verifications we accomplished using the models. Ex-
perimental results are presented in Section 7 and Section 8
finally concludes the paper.

2. Related works

There exists in the literature only few work which ad-
dressed the formal verification of ATM related circuits.

P. Curzon [4] formally verified the 4 by 4 fabric of the
Fairisle switch using the HOL theorem prover [6]. He veri-
fied each of the modules used in the design of the switching
element separately by describing the behavioral and struc-
tural specifications down to the gate level, and then proving
the related correctness theorems in HOL. The separate
proofs were then combined to give a result about the verifi-
cation of the whole switch fabric.

Another approach of formal verification of an ATM cir-
cuit was made by B. Chen et al. at Fujitsu Digital Technol-
ogy Ltd. [2]. The authors identified a design error in an
ATM circuit using the tool SMV (Symbolic Model Verifi-
er) [7] by verifying some properties expressed in CTL
(Computational Tree Logic) [7]. To avoid the state explo-
sion problem, the authors abstracted the datapath from 8 bits
to 1 bit. However, since the datapath was only 1 bit in the
state model, in certain blocks the property could not be
checked because of this reduction. In these cases, a more de-
tailed datapath model was built to pinpoint the source of the
error, If the error was not identified in that block, then the
more abstract model is used for the remaining verification.

The approach of P. Curzon [4] provided a successful
case study of applying HOL theorem prover to the verifica-
tion of an ATM switch. However, the use of HOL is inter-
active and requires lots of expertise to guide the verification
process. The work done at Fujitsu Ltd. showed the applica-
tion of SMV for checking some important properties related
to the circuit implementation. Although the verification is
automatic, the adopted data abstraction (e.g., using 1 bit to
represent 8-bit data width) for avoiding the state explosion
problem was not quite adequate.

3. Multiway decision graphs

Although ROBDDs have proved to be a powerful tool
for automated hardware verification, they require a binary
representation of the circuit. Hence, the size of an ROBDD
grows, sometimes exponentially, with the number of varia-
bles. ROBDD-based verification thus cannot be applied to
circuits with complex datapaths. Recently, Multiway Deci-
sion Graphs (MDG) have been proposed to represent cir-
cuits at a more abstract level [3]. It is based on a subset of a
many-sorted first-order logic augmented with a distinction
between abstract sorts and concrete sorts. Concrete sorts
have enumerations, while abstract sorts do not. A data value
can be represented by a single variable of abstract sort, rath-
er than by concrete Boolean variables, and a data operation
can be represented by an uninterpreted function symbol.
For circuits with large datapaths, MDGs are thus much
more compact than ROBDDs, and hence greatly increase
the range of circuits that can be verified since the verifica-
tion is independent of the width of the datapath. For details
about MDGs refer to [3].

Using abstract sorts, we are able to represent circuits at
the RT-level (Register Transfer). We have developed a
reachability analysis algorithm (based on a technique called
abstract implicit enumeration [3]) where we use MDGs to
represent sets of abstract states as well as the transition and
output relations of sequential RTL designs. We also have
developed applications for hardware verification such as
combinational circuits verification, safety property check-
ing and equivalence checking of two state machines. In
safety property checking, we verify that a certain condition
holds in all reachable states of a state machine. In equiva-
lence checking, we form a product machine of the specifi-
cation and the implementation and check that the

107

equivalence of corresponding outputs is an invariant. When
an invariant is not satisfied during the verification process,
a counterexample is provided to help with identifying the
source of the error.

4. The Fairisle ATM switch

The Fairisle switch forms the heart of the Fairisle net-
work. It consists of three types of components: input port
controllers, output port controllers and a switch fabric (Fig-
ure 1). Each port controller is connected to a transmission
line and to the switch fabric. The port controllers synchro-
nize and process incoming and outgoing data cells, append-
ing control information in the front of the cells in a routing
tag (Figure 2). This tag is stripped off before the cell reaches
the output stage of the fabric. A cell consists of a fixed
number of data bytes which arrive one at a time. The fabric

Input Port
Controllers

Qutput Port
Controllers

VoY

. C SWITCH B

.’O_> FABRIC -

>0+ O
Transmission Transmission

Lines
Figure 1. The Fairisle ATM switch

switches cells from the input ports to the output ports ac-
cording to the routing tag. If different port controllers inject
cells destined for the same output port controller (as indicat-
ed by the route bits) into the fabric at the same time, then
only one will succeed. The others must retry later. The rout-
ing tag also includes priority information (priority bit) that
is used by the fabric for arbitration which takes place in two
stages. First, high priority cells are given precedence, and for
the remaining cells the choice is made on a round-robin ba-
sis. The input controllers are informed of whether their cells
were successful using acknowledgment lines. The fabric
sends a negative acknowledgment to the unsuccessful input
ports, but passes the acknowledgment from the requested
output port to the successful input port. The port controllers
and switch fabric use all the same clock, hence bytes are re-
ceived synchronously on all links. They also use higher-lev-
el cell frame clock—the frame start signal. It ensures that the
port controllers inject data cells into the fabric synchronous-
ly so that the routing tags (bytes) arrive at the same time. In
this paper, we are concerned with the verification of the
switch fabric which is the core of the Fairisle ATM switch.

Lines

T L) T

Spare (unused) Route
1 'l A
Bit 7 [} 5 4 3 2 1 Q

Figure 2. The routing tag of a Fairisie ATM cell
The behavior of the switch fabric is cyclic. In each cycle

or frame, it waits for cells to arrive, reads them in, processes
them, sends successful ones to the appropriate cutput ports,

Priority] Active

and sends acknowledgments. It then waits for the arrival of
the next round of cells. The cells from all the input ports
start when a particular bit (the active bit) of any one of them
goes high, The fabric does not know when this will happen.
However, all the input port controllers must start sending
cells at the same time within the frame. If no input port rais-
es the active bit throughout the frame then the frame is in-
active—no cells are processed. Otherwise it is active.

Figure 3 shows a block diagram of a 4 by 4 switch fabric.
The inputs of the fabric consists of the data lines which car-
ry the cells, the acknowledgments that pass in the reverse
direction, and the frame start signal which is the only exter-
nal control signal. The outputs consist of the switched data
and the switched and modified acknowledgment signals.
The switch fabric is composed of an arbitration unit, an ac-
knowledgment unit and a dataswitch unit (Figure 3). The ar-
bitration unit reads the routing tags, makes arbitration
decisions when two or more cells are destined for the same
output port, passes the result to the other modules with the
grant signals and governs the timing of the other units using
the output disable signals. The dataswitch performs the ac-
tual switching of data from an input port to an output port
according to the most recent arbitration decision. The ac-
knowledgment unit passes appropriate acknowledgment
signals to the input ports. Negative acknowledgments are
sent until arbitration is completed.

AckOut[0..3 AckIn[0..3
- e ACK o
FrameStart (fs)
Datain Grant 1
araTRATION | <2]
loutputDisablg
4x1
)) DataOut
=|10..3]
DATASWITCH % %8

Figure 3. The Fairisle switch fabric

All the units are repeatedly subdivided until eventually
the logic gate level is reached, providing a hierarchy of
units. The design has a total of 441 basic components where
a basic component is a logic gate with two or multiple in-
puts or a one-bit flip flop. The switch fabric is built on a
4200 gate equivalent Xilinx programmable gate array.

5. Description of the switch fabric hardware

The Fairisle switch fabric was designed using the Qudos
HDL [5] hardware description language. To formally verify
the fabric using MDGs, we translated these descriptions into
very similar descriptions using a prolog-style HDL—MDG-
HDL which is supported by the MDG software package.

5.1. Gate-level description

Many of the modules in the original Qudos description
were large and logically unrelated while preserving the map-
ping into a Xilinx gate array. Similarly to the description

108

done by Curzon in HOL [4], we organized the hardware de-
scription in several levels of hierarchy, making use of mod-
ularity within MDG-HDL that is lacking in Qudos HDL,
thus facilitating both the specification and the verification.
The Fairisle switch fabric is composed of the acknowl-
edgment, arbitration and dataswitch units (Figure 3). Each
unit is further defined as a module which is further subdi-
vided until the same gate-level implementation is reached as
in the original Qudos HDL design. Both the Qudos HDL and
the MDG-HDL descriptions are in terms of the same collec-
tion of logic gates. To illustrate the similarities and differ-
ences of the two descriptions, we consider the Qudos HDL
and MDG-HDL structural descriptions of a mutiplexing
component of the dataswitch—DMUX4T2. We first give the
Qudos HDL definition as:
DEF DMUX4T2 (d[0..3],x:IN;dout[0..1]:I0);
XBar:I0;
BEGIN
Clb:=XiCLBMAP5i20(d[0..1],x%,d[2..3],dout[0..1]);

InvX:= XiINV(x,xBar) ;

Bl0]:= AO(d[0],xBar,d[1],x,dout[0]);
B[1l]:= AO(d[2],xBar,d[3],x,doutil]);
END;

where the first statement is a dummy declaration providing
information about the way the component design should be
mapped into a Xilinx gate array, and the AO components are
AND-OR logic gates. Using MDG-HDL this same module
is described as:

module (DMUX4T2
port (inputs{((d0,bool), (dl,bool),
(d2,bool), (d3,bool)), (x,bool}),
outputs ((dout0,bool), (doutl,bool))),
structure
signals (xBar,bool},
component (InvX,NOT (input (x} , output (xBar})),
component (A0_0, A0 (input (d0,xBar,dl, x),
output (dout0))),
component (A0_1,20(input (d2,xBar,d3,x),
output (doutl))))).

Here, the components NOT and AO are atomic modules pro-
vided by the MDG software package. Note also that the data
sorts in the interface and the internal signals must always be
specified.

5.2. Abstract (word-level) description

The data inputs and outputs of the switch fabric consist
of 4 byte-wide lines. In Qudos HDL there is no facility for
describing high-level words. Thus the data-in and data-out
lines are modelled as 32 individual lines. This could be easily
modelled in MDG-HDL using concrete sorts, say an enu-
meration sort word8 for words of size 8. However, they are
better described as words of size n using abstract sorts, e.g.,
an abstract sort wordn. Such high-level words are of arbitrary
size, thus making descriptions generic where the word sizes
do not always have to be specified. The verification of the
switch element is therefore directly applicable to switch el-
ements of different word size.

Beside abstracting the data lines from a bundle of bits to
a compact word of abstract sort, we have abstracted the be-
havior of the dataswitch unit by modelling it using simple

data multiplexors instead of collections of logic gates. For
example, a set of 8 DMUX4T2 modules (see Section 5.1) is
modelled using a single mutiplexor component (which is
part of a larger module) as follows:

signal (dw0,wordn) .

signal (dwl,wordn) .

signal (dwout, wordn) .

signal {x,bool) .

component (DMUX4T2_w, MUX (sel (x) ,
inputs ([(0,dw0), (1,dwl)]),
output {dwout))) .

We now obtain a much simpler abstract implementation
of the dataswitch which reflects the switching behavior in a
more natural way and is implemented with a smaller net-
work of components and signals. Figure 4 shows the ab-
straction of the switch fabric used, where w is a word of
abstract sort wordn. Note that the arbitration block is now
provided with data inputs of sort wordn. It is no more fed
with single bits of the routing tag and its description in-
volves uninterpreted functions which extract (decode) spe-
cific bits from the input tags (words), e.g., the active bit is
obtained through the use of the uninterpreted function bit0
of type [wordn — bool] which selects the first bit of the
routing tag. This ability to use uninterpreted functions for
bit manipulation is used in the verification of the abstract
description against the gate-level one in Section 6.1.

r Ny r ACK o |
I (gate-level)! I l (gate-lovel)] l
Data RBIT| Datain “TARBITR |

157 N A g s S

[S
327 |(gatedevel)| 3: _l L

Original Model

DATASWD 2204 |
w word-level)| w 3

Abstract M;;iel

Figure 4. Model abstraction for the switch fabric
6. Formal verification

6.1. Verification of the abstract model

If we wish to use the abstract (word-level) model of the
fabric for further experimentation, we should ensure the
equivalence of the gate-level implementation against the
abstract model. The correctness of equivalent behavior is
established if the two machines produce the same data out-
puts for all input sequences. This, however, cannot be done
for an arbitrary word size n since the gate-level description
is not generic. We should somehow “instantiate” the data
signals of the abstract model to be 8 bit wide. This can be
realized within the MDG environment using uninterpreted
Junctions which encode and decode abstract data to Boolean
data and vice-versa. For instance, decoding can be realized
using 8 uninterpreted functions bit' (i: 0..7) of type [wordn
— bool], which extract the i¥" bit of an n-bit data and hence
encode the 4 n-bit data lines to a 32-bit bundle. Fncoding is
done using one uninterpreted function concat8 of type
[(boolxbool x bool x bool xbool xbool xbool xbool) — wordn]
which concatenates any 8 Boolean signals to a single word
and thus encodes a bundle of 32 Boolean data signals to 4
signals of sort wordn.

109

Based on this technique, four symmetric configurations
are possible for performing the verification. This is illustrat-
ed in Figure 5 where only the data inputs and outputs of the
fabric are considered, since the abstraction in fact only af-
fects the dataswitch block (Figure 4). In all of these cases,
we ensure that we feed the two machines with the same in-
puts and check the equivalence of their outputs which
should also be the same. The encoding and decoding blocks
(as represented in Figure S) are not functional blocks that

a FABRIC w
32 |{gate-level)] 32!

Datain '
__{w DataOut ?

FABRIC | a1y
W Hworddevel} W

2 32

DataOut ?
‘W |(word-level] w

(@) (b)
Datain] 92 gig '4 ° De,am[32 facia w12 o
DataQut DataQut
32 . w .
Enc| FABRIC w FABRIC 0 32
W | (word-evel] w W J(word-level] W

() (d)

Figure 5. Different configurations for the
abstract model verification

we add to the implementation description but illustrate the
uninterpreted functions that we insert into the invariant dur-
ing equivalence verification. Theoretically any one of these
configurations could be used in the verification. However,
we noticed that case (d) in Figure 5 is the least expensive.
This is because it avoids the use of the uninterpreted func-
tion concat8 which requires a full encoding of the 8-bit
Boolean vector at the abstract level, i.e., for each Boolean
vector which could be represented by the 8 bits, we have to
provide a fixed correspondence to a specific constant of ab-
stract sort, e.g., (0,0,0,0,0,0,0,0) « zero, (0,0,0,0,0,0,1,0)
<> two, where zero and two are of abstract sort wordn.

Using the sequential equivalence checking facility of the
MDG tools, we verified that the abstract machine is equiv-
alent to the original gate-level one for a word size equal to
8. Since the data abstraction affects only the dataswitch
block (refer to Figure 4), the verification needed to deal
with the equivalence of the dataswitch blocks at the two lev-
els. The verification run time for the (best) variant (d) in
Figure 5 is given in Section 7.

6.2. Verification of safety properties

Property checking is used for verifying that a design sat-
isfies some specific requirements. The ATM switch fabric
works under the control of its environment, i.e., the port con-
trollers. It transfers the data at exact clock cycles. Thus
checking safety properties is sufficient to verify its correct
behavior. For designs containing symmetrical portions, like
the ATM switch in question, we can even trace the error to
the parts of the circuit. In this section, we describe our tech-
niques for the safety property verification using the abstract
model of the switch fabric. Examples of properties are
checking of correct circuit reset and checking of correct data

routing. In difference to the previous verification of the
switch fabric in HOL [4], we perform the verification under
the conditions of its operating environment, which is sound
and can greatly reduce the cost of verification.

We consider the behavior of the fabric in the real Fairisle
swiich. The environment of the switch fabric generates the
frame start signal (Figure 3), denoted as f5, at every 64™ ris-
ing clock cycle. It goes low in the next clock cycle. Initially,
it should wait at least 2 clock cycles to let the fabric reset
before it can generate the first fs signal. The first byte of the
cell (the routing tag, or the header), denoted as k, must be
generated at the 8! rising clock edge after the fs is reset to
fow, 1.e., 9 clock cycles after f5 is set. When the active bit in
this routing tag is set, the cell is called active. Otherwise it
is inactive (an empty cell). To simpiify our presentation, we
consider the case for active cells only.

In analogy to the specification of P. Curzon [4], we use
the time points £, 1, and 7, to denote the start of a frame, the
start of an active cell and the end of a frame (which is the
start of the next frame), respectively. Using these time
points, we can state several properties which reflect the be-
havior of the switch fabric. These properties are indeed in-
spired by the top-level behavioral specification of the
switch fabric as given in [4] and the other documentation
about the switch element design. In the rest of this section,
we illustrate our verification technique by the following
representative properties:

- Property I: From ¢43 to 1 ,+4, the default value (zero) will
be put on the data output port DataOut[0] where zero is a
generic constant.

- Property 2: From t+1 to 7,+2, the default value (0) will be
put on the acknowledgment output port AckOut]0].

- Property 3: From t,+5 to t,+2, if input port O chooses
output port O with the priority bit set in the routing tag, and
no other input ports have their priority bits set, the value
on DataQut{0] will be the input of Dataln[0] of 4 clock
cycles earlier.

- Property 4: From 1,43 to 1, if input port 0 chooses output
port 0 with the priority bit set in the routing tag, and no
other input ports have their priority bits set, the value on
AckOut[0] will be the input of Ackinl0].

Properry I and 2 deal with the reset behavior of the cir-
cuit, while Property 3 and 4 state specific behaviors of the
switching of cells. Although the (informal) description of
the above propeities explicitly involves the notion of time,
we can verify them using only safety property checking
based on a state machine model inspired by [9].

First, we simulate the environment as a state machine
with one state variable s as shown in Figure 6 where we as-
sume that the first frame start signal is generated after two
clock cycles after power on.

Figure 6. Environment state machine

110

In Figure 6, there are 68 states enumerated by integers
(Using MDG-HDL, s can be described as a concrete varia-
ble of sort [1..68]). Arrows denote state transitions. fs, h and
d above the states mean that the frame start signal, the rout-
ing tag of an active cell and the data are generated in that
state, respectively. States 1 to 5 are related to the initializa-
tion of the fabric. States 6 to 68 represent the cyclic behav-
ior of the fabric, where one cycle corresponds to one frame.
With this diagram, we can map the time points ¢, ¢, and ¢,
to states, as f, =3 or t,= 66; 1, = 12; and t, = 66. Then, e.g.,
t,+5 to t,+2 are essentially the states between 17 and 68
when the remaining 52 bytes of the cell following the rout-
ing tag are switched to the output port. Consequently, we
can express our properties in terms of states rather than time
points.

The environment state machine is composed with the
switch fabric, as shown in Figure 7. As there is a 4-clock-
cycle delay for the cells to reach the output ports, it is nec-
essary to use a delay circuit to remember the input values
that are to be compared with the outputs (remember that the
fabric is modelled at an abstract (word) level, i.e., Da-
taln[0..3] and DataOut[0..3] are all n-bit words). We also
need to memorize the grant signal (which grants an output
port to an input port) of the previous frame for the round-
robin arbitration (Section 4). Combining these machines,
we obtain the required platform for checking the safety
properties. This composed machine is represented inside
the dashed frame in Figure 7.

r - - o T T = = = -
Dataln{0..3] '
| 2ano.3 4 clock cycle delay Datainf0.3
I Ackin[0..3] , DataOut[0..3]
Environment | Te SWITCH FABRIC |- RO 3]
! state Grant ' Ptopgﬂy
|1 machine - rant checking
| | routing tags
‘ , Ackin0..3]
! s
L= - — — — — — — 4

Figure 7. Checking safety properties

We re-state now the previous properties as invariants us-
ing ITE (If-Then-Else) formulas.

- Property 1’: If (s € N) then DataOut{0] = zero, where N
= {6,..,16] and zero is the default data value (a generic
constant of sort wordn).

- Property 2': If (s € N) then AckOut[0] = 0, where N =
[4,...,14, 67, 68] and 0 is the default acknowledgment
value.

- Property 37 If (s € N') and priority[0..3] = [1,0,0,0] and
route[0} = O then DataOut[0] = Dataln’[0], where N=
{17,...,68], priority[0..3] are the priority bits for all the input
ports and route[0] are the routing bits for input port 0 (refer
to Figure 2).

~ Property 4’: If (s € N) and priority{0..3] = [1,0,0,0] and
route[0] = 0 then AckOut[0] = Ackin[0], where N=
[15,...,66], priority[0..3] and route[0] are the same as
explained in the above property.

These invariants can be easily represented using MDGs.
By exploring the state space of the combined machine, at
each reachable state, we check if the outputs satisfy the in-
variant. We have verified the above properties for one output
port of the fabric. In addition, we were able to discover sev-
eral introduced design errors by checking those properties.

7. Experimental results

We verified the abstract model against the gate-level
one, and the properties described in Section 6.2 which re-
flect the essential behavior of the switch. Using these prop-
erties, we also checked the correctness of three erroneous
implementations. The experimental results are shown in Ta-
ble 1. They were done on a SPARC station 20 with 128 MB
of memory, The CPU time is in seconds and the memory us-
age is given in megabytes.

The verification of the abstract model against the gate-
level implementation was reduced to the comparison of the
dataswitch outputs of both machines. Therefore, we were
able to verify their equivalence after 2 transitions since we
have a 2-clock-cycle delay within the dataswitch. Note that
the state variables of the two machines had to be initialized
with corresponding values, i.e., constants zero of sort
wordn, and 0’s of sort Boolean for the abstract and gate-lev-
el models, respectively. In this case, we used several rewrit-
ing rules stating that all bits of zero are equal to the Boolean
0, i.c., bit'(zero) = 0, i=0..7.

We checked Properties 1’ to 4’ for one output port of the
switch fabric. The composed machine (Figure 7) for one
port has 157 components, 161 signals and 533 state variables
(27 abstract variables and 26 concrete variables which are
equivalent to 32 Boolean variables).

We also introduced several errors into the implementa-
tion. We describe here three examples. First, we exchanged
the inputs to the JK Flip-Flop that produces the output dis-
able signal. As the output disable signal is wrong, the circuit
cannot be correctly reset. This error was identified by prop-
erty 1’ after 6 transitions and by property 2° after 4 transi-
tions. Both experiments generated counterexamples which
indicated the wrong behavior of the output disable signal.
Second, we used the priority signal of input port O as the pri-
ority signal of input port 2. This error was discovered by
property 3’ after 17 transitions. Third, we used an AND gate
instead of an OR gate which produces the AckOut[0] signal.
This error was found by property 4° after 15 transitions.

Table 1. Experimental results

verifications |G e N oms|generated
Abstract model 183 22 2 183300
Property 1’ 202 15 68 30295
Property 2’ 183 15 68 30356
Property 3’ 143 14 68 27995
Property 4’ 201 15 68 33001
Error 1 using property 1’ 49 8 6 16119
Error 2 using property 3’ 71 11 17 24001
Error 3 using property 4° 82 11 15 24274

111

8. Conclusions

In this paper, we have shown the feasibility of formal
verification techniques based on a new class of decision
graphs—Multiway Decision Graphs (MDG), when applied
to a real circuit. In this sense, we have demonstrated that
formal verification of a real piece of communication hard-
ware can be conducted automatically using the MDG tools.
This ATM is much larger than any other circuit we verified
before using MDGs. Descriptions and verifications of the
fabric have been done at different levels of abstraction. We
verified the equivalence of the original gate-level imple-
mentation of the switch fabric against an abstract descrip-
tion model in which the generic words of abstract sort were
aligned with 8-bit words. Based on the abstract model, we
then verified some specific safety properties that reflect the
behavior of the fabric when used in the Fairisle ATM
switching network. We also accomplished the verification
of several faulty implementations where the introduced er-
rors were successfully identified. These different achieve-
ments illustrate the practicability of such a complete formal
verification down to the gate level using tools based on
Multiway Decision Graphs.

In [4] it is reported that the time spent testing would have
been in the order of several weeks. However, errors were
discovered after the testing process was completed when
the first version of the fabric was in use. Had formal verifi-
cation been applied to the ancestors of the actual design, the
formal verification could possibly have discovered the er-
rors and then validated the corrections.

References
[1] Bryant, R.: Graph-Based Algorithms for Boolean Function
Manipulation; IEEE Transactions on Computers, Vol. C-35,
No. 8, August 1986, pp. 677-691.

Chen, B.; Yamazaki, M.; Fujita, M.: Bug Identification of a
Real Chip Design by Symbolic Model Checking; Proc.
International Conference on Circuits And Systems
(ISCAS’94), London, UK, June 1994, pp. 132-136.

Corella, F.; Zhou, Z.; Song, X.; Langevin, M.; Cerny, E..
Multiway Decision Graphs for Automated Hardware
verification. To appear in the journal of Formal Methods in
System Design. Available as IBM research report
RC19676(87224), July 1994.

Curzon, P.: The Formal Verification of the Fairisle ATM
Switching Element; Technical Reports No. 328 & No. 329,
University of Cambridge, Computer Laboratory, March
1994.

Edgcombe, K.: The Qudos Quick Chip User Guide; Qudos
Limited.

Gordon, M.; Melham, T.: Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic; Cambridge,
University Press, 1993.

McMillan, M.: Symbolic Model Checking;
Academic Publishers, Boston, Massachusetts, 1993.
Leslie, I.; McAuley, D.: Fairisle: An ATM Network for
Local Area; ACM Communication Review, Vol. 19, No. 4,
September 1991, pp. 237-336.

Thuau, G.; Berkane B.: A Unified Framework for Describing
and Verifying Hardware Synchronous Sequential Systems;
Journal of Formal Methods in System Design, Vol. 2, 1993,
pp 259-276.

(2

[3]

[4]

(5}
[61

Kluwer

(71
(8]

91

