Behavioral Verification of an ATM Switch Fabric using
Implicit Abstract State Enumeration

Michel Langevin§1, Sofiene Tahar?, Zijian Zhou!, Xiaoyu Song, Eduard Cerny

University of Montreal, IRO Dept., Montreal, Quebec, Canada
3 GMD-SET, Schloss Birlinghoven, St. Augustin, Germany

Abstract

We investigate equivalence checking of the RTL hard-
ware implementation of the Cambridge Fairisle Asynchro-
nous Transfer Mode (ATM) 4 by 4 switch fabric against a
high-level behavioral specification which has unrestricted
Jrame size, cell length and word width. The verification is
based on the reachability analysis of the product machine
of the implementation and the specification, both modeled
as Abstract State Machines (ASM). Multiway Decision
Graphs (MDG) are used to encode both the output and
transition relations of the ASMs and of the set of reach-
able abstract states, allowing implicit abstract state
enumeration. Since MDGs avoid model explosion induced
by data values, this experiment demonstrates the effective-
ness of MDG-based verification as an extension of
ROBDD-based approaches.

1. Introduction

Design errors in network components may have disas-
trous effects, in particular, if networks are used in safety-
critical applications. Simulation is traditionally used for
checking system correctness. However, it is practically im-
possible to achieve exhaustive simulation for such complex
systems. Therefore, formal verification of the correctness
of digital systems is gaining interest, as the correctness of a
formally verified design implicitly involves all possible in-
put values [7].) ,

ATM (Asynchronous Transfer Mode) is considered as
the network technology for addressing the variety of needs
for new high-speed, high-bandwidth applications. Al-
though ATM is being hailed as the most important commu-
nication mechanism in the foreseeable future, there is
currently little experience on the application of formal ver-
ification to ATM network hardware. _

In this paper, we present our results on formally verifying
an ATM network component using a new class of decision
graphs, called Multiway Decision Graphs (MDG) [3]. The
component is the Fairisle 4 by 4 switch fabric which is part
of the Fairisle ATM network [9]. It was fabricated with no

1

now by Nortel Technologies, Otiawa, Ontario, Canada
“ now by Concordia University, Montreal, Quebec, Canada

1063-6404/96 $5.00 © 1996 IEEE

20

consideration for formal verification. The main contribu-
tions of our work are the specification of the expected be-
havior of the switch fabric, and its equivalence checking
against the hardware implementation. The behavioral spec-
ification and thus the verification have no restrictions on the
frame size, cell length or word width. The verification is
based on reachability analysis of the product machine of the
implementation and the specification, modeled as networks
of Abstract State Machines (ASM) [3]. Multiway Decision
Graphs (MDG) are used to encode the output and transition
relations of ASMs and the set of reachable abstract states, al-
lowing implicit abstract state enumeration. This experiment
confirms the effectiveness of the MDG-based verification
methodology as an extension of ROBDD-based approaches
[11, since model explosion induced by data values expanded
to their binary representation is largely avoided.

The organization of this paper is as follows: in Section 2
we review some related work on formal verification of
ATM hardware. In Section 3 we describe the behavioral
specification and the RTL implementation of the switch
fabric, and in Section 4 we show how to model both as ab-
stract state machines (ASM) represented by MDGs. Using
implicit abstract state enumeration, we present in Section 5
the equivalence proof of the specification and the imple-
mentation. In Section 6 we report experimental results and
then conclude the paper in Section 7. '

2. Related Work

There exist so far few published results addressing for-
mal verification of ATM related circuits. To our best knowl-
edge, there are only two such cases in the open literature:

P. Curzon [4] formally verified the 4 by 4 fabric of the
Fairisle switch using the HOL theorem prover [6]. He hier-
archically verified each of the modules used in the design of
the switching element, by describing the behavioral and
structural specifications down to the gate level, . and then
proving the related correctness theorems in HOL. The sep-
arate proofs were then combined to prove the correctness of
the whole switch fabric.

B. Chen, et. al at Fujitsu Digital Technology Ltd. [2] ex-
ploited symbolic model checking to detect a design error in
an ATM circuit. Using SMV (Symbolic Model Verifier)
(8], they identified the error by checking a number of prop-

erties described in CTL (Computational Tree Logic) [8].
Given the Boolean representation in SMV, to avoid state
space explosion, they abstracted the width of addresses
from 8 bits to 1 bit, and the number of addresses in a FIFO
from 168 to 5. However, in some cases a property could not
be verified because of this reduction and a detailed gate-lev-
el model was needed for certain blocks to pinpoint the
source of the error.

Curzon’s work used HOL which is interactive and re-
quires expertise to guide the verification process {7]. The
work at Fujitsu Ltd. used a model checker which is auto-
matic, but the adopted data abstraction for avoiding state
explosion is not always applicable.

To overcome these drawbacks, we attempt to raise the
level of abstraction of automated verification methods to
that of interactive methods, without sacrificing automation.
MDGs [3] are based on a subset of a many-sorted first-order
logic with abstract sorts and uninterpreted function sym-
bols. They subsume the class of Reduced Ordered Binary
Decision Diagrams (ROBDD) [1]. In a previous work [10],
we produced the description of the Fairisle switch fabric at
two different levels of abstraction—the original gate-level
implementation and an abstract RTL implementation which
holds for any arbitrary word width n. We then performed
the verification of the RTL hardware against the gate-level
implementation where the generic word size was aligned to
be 8-bit wide. In this paper, we report on the equivalence
checking of the implementation against a behavioral speci-
fication with no restrictions on the frame size, cell length or
word width.

3. The Fairisle ATM Switch

The Fairisle switch [9] consists of three types of compo- '

nents: input port controllers, output port controllers and a
switch fabric (Figure 1).

Din0 Dout0 ::EE
Aocutl Ain0 —
: Dinl ATM :
transmission gf’“;l Switch transmission
lines 2 o2 2 b lincs
___{35:_ Din3 Fabric
Aout3
input port output port

controliers controtlers

Figure 1. The Fairisle ATM switch

The port controllers synchronize and process incoming
and outgoing data cells, appending control information in
the front of the cells in a routing tag (Figure 2). This tag is
stripped off before the cell reaches the output stage of the
fabric. A cell consists of a fixed number of data bytes which
arrive one at a time. The fabric switches cells from the input
ports to the output ports according to the routing tag. If dif-
ferent port controllers inject cells destined for the same out-

21

put port controller (indicated by the route bits) into the
fabric at the same time, then only one will succeed. The oth-
ers must re-try later. The routing tag also includes priority
information (priority bit) used for arbitration: high priority
cells are given precedence, and the final choice is made on
a round-robin basis. The input controllers are informed of
whether their cell was successful using acknowledgment
lines. The fabric sends a negative acknowledgment to the
unsuccessful input ports, but passes the acknowledgment
from the requested output port to the successful input port.
The port controllers and switch fabric all use the same
clock, hence bytes are received synchronously on all links.
They also use a higher-level cell frame clock—the frame
start signal (fs). It ensures that the port controllers inject
data cells into the fabric synchronously so that the routing
tags arrive at the same time. In this paper, we are concerned
with the verification of the switch fabric only.

1 I I [
spare (unused) route

|] | 1

Bit 7 6 5 4 3 2 1 0

priority| active

Figure 2. The routing tag of a Fairisle ATM Cell

3.1. Behavioral specification

Starting from a set of timing-diagrams describing the ex-
pected input-output behavior of the switch fabric, we de-
rived a behavioral specification in the form of a finite state
machine. The state machine consists of a complete descrip-
tion of the expected behavior of the fabric, including the as-
sumptions on the environment.

The behavior of the switch fabric is cyclic. In each cycle
or frame, it performs the following actions: The switch
waits for cells to arrive. Once they arrive, it reads the head-
ers, and establishes paths to the appropriate output ports and
produces the acknowledgments.

The cells from all the input ports start when a particular
bit (the active bit, Figure 2) of any one of them goes high.
The fabric does not know when this will happen. However,
all the input port controllers must start sending cells at the
same time within the frame. If no input port raises the active
bit throughout the frame-then the frame is inactive—no
cells are processed. Otherwise it is active.

Frame
Stant

I

Ain

Aout

Din

Dout

time ‘,5 X Lh)) . g

Figure 3. Expected behavior in an active frame

A timing-diagram of the expected input-output behavior
during an active frame is in Figure 3. After the frame starts
(at time), the switch waits for the headers to appear on the
input lines Din. After the arrival of the headers (at time),
an arbitration is done in at most 2 cycles. The successful
cells (bytes that follow the headers on Din) are transferred
to the corresponding output ports (Dour) with a delay of 4
cycles, while acknowledgments traverse in the opposite di-
rection, without synchronous delay, starting at time #,+3.
Notice that the last cycle of a frame (at time t,-1) does not
transfer data. When there is no data or acknowledgment to
transfer, the switch forces zero values on output data lines
(thus, the value of Ain are don’t care).

The state machine representation in Figure 4 was in-
spired by this behavioral description as given in the design
documentation (in the form of timing diagrams). The de-
scription. is based on the following four assumptions about
the environment of the fabric:

* At start up (t) the frame start (t,) waits at least two cycles
before going high, i.e., £, > 1,42
* Headers arrive (1) at least three cycles after frame start
(o), le., 1> 142
* Next frame start arrives (t;=t}) at least three cycles after
frame start (1), i.e., 7, > £:+2
* Headers arrive (1) at least three cycles before next frame
start (1,=t}), i.e., 1, > t)+2
In Figure 4, there are 14 conceptual states in the ma-
chine. To simplify the presentation, the symbols s and 4 de-
note a frame start (fs = 1) and the arrival of headers (active
bit set in at least one Din), respectively, “~” denotes nega-
tion, and the symbols g, 4 or r inside a conceptual state rep-
resent the computation of the acknowledgment output
(Aout), the data output (Dout) or round-robin arbitration, re-
spectively; they are part of all transitions emerging from the
state. Note that the absence of an acknowledgment or data
symbol in a conceptual state means that the default value of
0 is output.

tgh2+i et 1 ty
] ; — t > o+l
t . t, >t +2
’ FSCPZ\ s IN s /N o> +2
N N o>t +2

t+ 1=

L34 4 ~s /é\ ~$ /9\ ~8 ﬂm
~$
] I
t+4 t, +5+k

Figure 4. The expected switch fabric behavior

22

Three time axes illustrate the time units of a frame to
which the transitions correspond. The symbols Ip, Ly and 1,
represent the initial time, the arrival time of a frame start
signal ‘and the arrival time of a header, respectively. The
ending time (z,) of a frame is not given, since it is the same
as 1, of the next frame.

State 0 is the initial state from which there must be two
transitions without the arrival of the frame start (states 1 and
2). This complies with the first constraint on the environ-
ment of the switch. The states 0, 1 and 2 are related to the
time axis #;. The waiting loop for the first frame start in state
2 is shown by a natural number .

States 3, 4 and 5 describe the behavior of the switch after
the arrival of a frame start, with at least a three-cycle delay
before the arrival of either the headers or the next frame
start. These are the second and third constraints on the en-
vironment. These states are related to the time axis t,. The
waiting loop for the arrival of either the headers or the next
frame start in state 5 is shown by a natural number J. Note
that the arrival of the next frame start corresponds to the end
of an empty frame.

States 6 to 13 describe the behavior of the switch fabric
after the arrival of headers. When the headers arrive, the
frame start signal must not arrive before at least three cycles
to comply with the last constraint on the environment. States
6 to 10 are related to the time axis #,. After arbitration (state
8), the switch transfers the acknowledgments in each cycle
of a frame and switches data delayed by two cycles. This de-
lay is represented using the sequence of transitions from
state 8 to state 10. The self-loop in state 10 represents the
transmission of data and acknowledgments in the remainin g
cycles of the cell (indicated by a natural number k). The ar-
rival of a frame start in states 8, 9 or 10 marks the beginning
of another frame. Here, a new sequence of state transitions
along the 7, axis progresses similarly as in states 3, 4 and 5
described above, but considering possibly different scenar-
los for completing the transmission of the preceding cells.

To compute the acknowledgments, the data outputsand the
round-robin arbitration, we use the following state variables:
co; (i={0,...,3}) of type {0,1}: co; is 1 iff the output port
i is connected.
ip; (i={0,...,3}) of type {0,...,3}: ip; is the Input port con-
nected to the output port i (during arbitration, it is the last
input port connected to the output port i).
sT;; (={0,...,3}; j={1,...,4}) of type {0,...,255}: sryj is
the value of Din; delayed by j clock cycles. That is, during
each transition of the state machine, the data input Din; is
shifted in.

In the states annotated by a (8, 9 and 10) the values of
Aout;, i={0,...,3} are computed as follows (ef stands for
else if):

if ((cog=1) and (ipy=i)) then (Aout=Aing)
ef ((coy=1) and (ip;=i)) then (Aout=Ain,)
ef ((coy=1) and (ip,=i)) then (Aout=Ain,)
ef ((coz=1) and (ip3=i)) then (Aout=Ainz)
else (Aout;=0)

In the states annotated by d (10, 11 and 12), the values of
Dout;, i={0,...,3} are computed as follows:

if (co=0) then (Douz;=0)

ef (lpl=0) then (Douti=sr0'4)
ef (ip;=1) then (Dout;=sry 4)
ef (ip;=2) then (Dout;=sr; 4)
else (Dout=sr3 4)

The values of co; and ip; are modified only during arbi-
tration, i.e., during the transition from state 7 to state 8; each
(coj, ip;) value-pair is computed from the values of all s7; ;
(the cell headers), considering the active, priority and route
fields, and the current value of ip; for the round-robin arbi-
tration. This can be easily described using if-then-else con-
structs, but it is too long to be shown here.

3.2. The switch fabric implementation

Figure 5 shows a block diagram of the switch fabric im-

plementation. It is composed of an arbitration unit (timing,
decoder, priority filter and arbiter), an acknowledgment
unit and a dataswitch unit. The timing block controls the
timing of decisions with respect to the frame start signal and
the arrival time of the headers. Arbitration is implemented
in two stages. The decoder reads the routing tags of the cells
and decodes the port requests and priorities. The priority fil-
ter filters out the requests with low priority and those from
inactive inputs, and passes the actual request situation for
each output port to the arbiters. The arbiters (in total four—
one for each port) make arbitration decisions for each out-
put port i by setting values for the corresponding outDis;,
xGrant; and yGrant; Boolean signals. The dataswitch per-
forms the actual switching of data from input ports to output
ports (a set of registers is used in the dataswitch; they are re-
set when their corresponding outDis signal is 1). The ack
unit passes appropriate acknowledgments to the input ports.
The pair of xGrant; and yGrant; signals corresponds to the
ip; variable of the specification, but this simple relation
does not hold between the outDis; signals and the specified
co; variables.

Aout0 e AinO
| I

avaiz T S N——vi

Aocut3 e Ain3

frame sturt

Din0
Dint
Din2
Din3

chislc%]

Figure 5. A Fairisle switch fabric implementation

Each of the units is repeatedly subdivided until eventu-
ally the logic gatelevel is reached. The design has a total of

441 basic components (a logic gate with two or more inputs,
ot a 1-bit-Flip-Flop). The design was described in Qudos
HDL [5] and the Qudos simulator was used to perform the
original (non-formal) validation.

4. Representation using MDGs

To compare the two descriptions exposed in the preceding
sections, we need to model their behavior. The conventional
method is to use finite state machines and represent them us-
ing Reduced Ordered Binary Decision Diagrams (ROBDD)
[1]. However, the presence of data in both descriptions (16
8-bit wide state variables in the specification and 20 registers
of the same width in the implementation) makes the proce-
dure very explosive and difficult. To alleviate the problem,
we use Multiway Decision Graphs (MDG) [3].

MDGs subsume ROBDDs, and accommodate abstract
types and uninterpreted function symbols, while providing
and exploiting structure sharing. The formalism underlying
MDGs is a many-sorted first-order logic with a distinction
between abstract sorts and concrete sorts. Concrete sorts
have enumerations, while abstract sorts do not. A data value
can be represented by a single variable of abstract sort, rath-
er than by a vector of Boolean variables, and a data opera-
tion can be represented by an uninterpreted function
symbol. We distinguish two kinds of function symbols (op-
erators): abstract operators which are used for data opera-
tions, e.g., addition of two abstract variables; cross-
operators which are used for feed-back from datapath to
control circuitry, e.g., a comparator equal. For more details,
see [3] or [11].

For circuits with large datapaths, as the ATM switch fab-
ric, MDG-based modeling is much more compact than us-
ing ROBDD:s. It allows us to consider the data input, state
and output variables of a state machine as values of an ab-
stract (i.e., non-specified) sort. For instance, the 8-bit-wide
data in both ATM descriptions can be described as values
of an abstract sort wordn. The output and next state relations
of the state machine can then be encoded in MDG. MDG-
oriented modeling using Abstract State Machine (ASM) [3]
can represent an unbounded class of FSMs, depending on
the interpretation of the abstract sorts and operators.

In the following, we show how to model the specification
and implementation of the ATM switch fabric as ASMs us-
ing MDGs. The two descriptions are in a prolog-style
MDG-HDL which allows the description of hierarchical
structures using module constructs and comes with a large
library of predefined basic components (such as logic gates,
multiplexors, registers, bus drivers, ROMs, etc.). For behav-
ioral specifications, it contains constructs such-as ITE (if-
then-else) and CASE formulas, or tabular representations.
A translator from a subset of VHDL is under development.

4.1. ASM model of the specification

Definitions of sorts and operators:

concrete sort bool = {0,1}

concrete sort port = {0,...,3}

concrete sort Ct/ = {0,...,13})

abstract sort wordn (representing data bytes)

generic constant zero of sort wordn

cross-operator act of type [wordn —> bool] (representing

the active field of header)

cross-operator pri of type [wordn —> bool] (representing

the priority field of header)

* cross-operator rou of type [wordn —> port] (representing

the route field of header)

The ASM is composed of

1) Input variables fs, Ain; (i = {0,...,3}) of sort bool, and
Din; (i = {0,...,3}) of sort wordn;

2) Output variables Aour; (i = {0,...,3}) of sort ool and
Dout; (i = {0,...,3}) of sort wordn;

3) State variables ¢ of sort Ctl, co; (i={0,...,3}) of sort bool,
ip; (i={0,...,3}) of sort port, and sri; (={0,...,3};
J={1,...,4}) of sort wordn.

Figure 6. MDG associated with next-state ¢’

The description of the ASM is completed by giving its
output and next-state relations. An MDG is associated with
each output and next-state variable, encoding its value as
function of the input and state variables. For instance, the
MDG of the next-state variable ¢’ is shown in Figure 6: The
transition from state 5 to state 6 under the meta-symbols ~s
and # of Figure 4 is encoded by the set of highlighted paths
(fs =0)and (¢ =5) and (¢’ = 6) and at least one (act(Din;) =
1) (representing the arrival of a header). The formula repre-
sented by the set of MDG paths is similar to the one repre-
sented by the set of ROBDD paths leading to the true leaf,
except that first-order terms can appear along the paths. The
terms act(Din;) are cross-terms; they encode data-depen-
dent decisions. The MDG of the output Douty is in Figure

24

7. Doutyis equal to the corresponding s7; 4 value, depending
on ipy if the output port 0 is connected (co, = 1) and if the
conceptual state c is 10, 11 or 12; otherwise, Doutz, = zero.

0] 2 3
Bom>
ZeTo st04 srl4 sr2d4 7 s34

i

T
Figure 7. MDG associated with Dout,

The MDGs of the other output and next-state variables
can be derived in a similar way.

4.2. ASM model of the implementation

We first translated the Qudos HDL description into

MDG-HDL. We also constructed an RTL description in

which all byte signals are of abstract sort wordn, and the ac-
tive, priority and route fields are accessed using the cross-
operators act, pri and rou, respectively. The dataswitch is
implemented using simple multiplexors instead of collec-
tions of logic gates. This leads to a simpler implementation
of the dataswitch, reflecting the switching behavior in a
more natural way and using a smaller network of COmpo-

nents [10].
\LdPO ¢dPl JdPZ ¢dP3
0 1 0 1

ﬁ_/yGrantl

I 1] ——-‘i rl-t*
L wi0 T | wil loutDisl

xGrant1

tdoutt
(a) RTL Implementation (b) MDG model for signal wig

Figure 8. Implementation models of dataswitch

Each RTL component has an MDG model in our library.
Given the RTL netlist, an ASM model of its behavior is ex-
tracted by composing, for each output or register, the
MDGs of the components in its cone of influence, and ab-
stracting the internal signals [11], like in the ROBDD case.
For instance, Figure 8 (a) shows the RTL netlist of a word-
slice of the switch output port 1. The dP; signals come from
the registers at the input of the switch (Figure 5), thus de-
laying the data inputs by two cycles. The output of the
dataswitch is fed into registers before reaching the output of
the fabric. The registers inside the dataswitch, e.g., w 70 and
wy in Figure 8 (a), are used to partially compute the output,
given the value of yGrant; (selection between odd or even

Figure 9. MDG encoding a set of reachable abstract states

input ports). The selection is then completed based on the
value of xGrant; is known. If outDis; is 1, the intermediate
registers are forced to zero. Given the MDG models of the
wordn multiplexors and registers with synchronous reset,
the MDG model for wjy’ (next value of w,,) is shown in
Figure 8 (b). The MDGs associated with the other registers
and the output signals are obtained in a similar way.

5. Formal verification of the Fabric

Two ASMs are behaviorally equivalent if and only if
they produce the same output values for all input sequences.
We feed the machines of the behavioral specification and
RTL implementation with the same input sequences and
check the equivalence of their outputs in every state using
reachability analysis of the product-machine. As with
ROBDDs, we use MDGs to represent sets of states, except
that they are abstract, and thus perform implicit abstract
state enumeration automatically using graph-based opera-
tions on MDGs (conjunction, existential abstraction, re-
naming, and pruning-by-subsumption to approximate
difference) [3]. MDG-based reachability analysis avoids
state explosion induced by data, since the verification is in-
dependent of the datapath width.

For the product of the ASMs from Sections 4.1 and 4.2,
an MDG representing a set of total-states encodes a relation
between 39 concrete and 36 abstract state variables. The re-
lation may depend on data values, encoded using Cross-
terms. For instance, parts of the MDG encoding the set of
total states reached at the 9 iteration of the reachability
analysis (i.e., all the states reachable one transition after ar-
bitration) are depicted in Figure 9.

In ROBDDs, 8 Boolean variables would be needed for
each abstract variable of the MDGs (i.e., 288 Boolean vari-
ables for data). Due to the fact that in the set of reachable
states many non-disjoint combinations of data state vari-
ables have the same values, it is not possible to interleave
these Boolean variables to avoid explosion caused by the
binary encoding. In MDGs, the encoding is done using ab-
stract data, yet isomorphic graph sharing is exploited as in
ROBDDs (e.g., the left hand side of Figure 9, where the

25

variables dj; represent the values of Din; at iteration j). De-
cisions on values of abstract data are represented by cross-
terms which also contribute nodes in the MDGs (e.g.,
act(dyg) in Figure 9). Although cross-terms add complexity
to the graph structure in general, the overhead is much
smaller than the explosion induced from encoding data in
binary form.

Using abstract reachability analysis, verification is done
for an arbitrary word width » and any frame size and cell
length that respect the environment assumptions of the
specification. In a previous work [10], we accomplished the
verification of the abstract RTL description against the
gate-level one. By combining these two results, we obtain
complete verification of the design, from a behavioral spec-
ification down to the gate-level implementation.

6. Experimental Results and Discussion

We report the experimental results of comparing the
ASM specification of the switch fabric against the ASM
RTL model using our MDG techniques. A prototype of the
MDG verification tools are implemented in Quintus Prolog.
The experiments were done on a SPARC station 10 with
128 MB of memory. Table 1 shows the size and the CPU
times for constructing some significant MDGs generated
during the reachability analysis.

Table 1. Size and generation time of some MDGs

woe | MR | M | e
9 71 256 1
q7 8321 1675264 80
vy 8572 1677824 5
as 11665 128128 150
Vg 20225 1805952 10
a9 25985 256256 300
vy 46160 2062208 10
Q10 4995 60360 1100
Vio 51106 2122568 60
qi1 1 ‘ 1 60

The MDG g; is the frontier set of states at the end of iter-
ation j, while v; is the set of all reached states. gy is the MDG
encoding the initial total states. There are 256 paths because
the initial values of each ip; can vary. Note that, due to sub-
graph sharing, all these paths are encoded using only 71
nodes. The MDG g7 is the frontier set of states after the first
arbitration phase in the implementation (i.e., at ¢, + 2), while
gg encodes those after the arbitration is completed in both
machines. g and g, encode states where the frame may be
terminated. g, is the final false MDG of the frontier set (rep-
resenting the empty set) meaning that all reachable states
have been visited. The output of the two machines were com-
pared at each iteration, which took up to 100 sec. in some cas-
es. No difference between the two ASMs were detected.

Table 2 summarizes the results. It is apparent that a large
set of states are encoded because of MDG’s abstract repre-
sentation and graph sharing, which results in an acceptable
number of nodes. This supports the conclusion that the ver-
ification would be impossible if ROBDD representation in
the reachability analysis were used.

Table 2. Behavioral verification results

Equivalence CPU time Memory Number of
Verification (sec.) (MB) Nodes
Compiling 120 10 25417
Reachability
Analysis 2800 140 295139
Total 2920 150 320556

To test the effectiveness of our approach, we experi-
mented with three erroneous implementations: 1) we ex-
changed the inputs to the JK Flip-Flop that produces the
outDis; signal; 2) we used priority information on input
port O instead of input port 2; 3) we used an AND gate in-
stead of an OR gate to produce the Aouty signal. The non-
equivalence of each erroneous implementation with respect
to the specification was detected during the reachability
analysis, and counterexamples were generated to help with
diagnosing the errors. Table 3 shows the results for these
three experiments, including separate CPU time for per-
forming the reachability analysis and for generating coun-
terexamples.

Table 3. Verification of faulty implementations

Case Reach. Counter- |Number of| Memory
Anal. (sec)| example (sec); Nodes (MB)
Error 1 11 9 2462 1
Error 2 850 450 150904 120
Error 3 600 400 147339 105

7. Conclusions

We have shown the applicability of formal verification
based on a new class of decision graphs, the Multiway De-
cision Graphs, to a real circuit. We have demonstrated that
formal verification of a real piece of communication hard-

26

ware can be conducted automatically using the MDG tools.
We investigated equivalence checking of the RTL hard-
ware implementation of the Fairisle ATM switch fabric
against a behavioral specification with no restrictions on the
frame size, the cell length and the word width. The verifica-
tion was based on the reachability analysis of the product
machine of the implementation and the specification, both
given as Abstract State Machines (ASM). We found no er-
rors in the current implementation. However, we also veri-
fied several faulty implementations and the injected errors
were successfully identified. The results of our current and
previous work [10] illustrate the practicability of complete
formal verification down to the gate level using tools ex-
ploiting MDGs, a methodology that would be impossible in
this case using only ROBDD-based reachability analysis.

We are in the course of developing a model checking al-
gorithm for a restricted first-order temporal logic. This fea-
ture will allow the verification of properties on Abstract
State Machines.

References

[1] Bryant, R.: Graph-Based Algorithms for Boolean Function
Manipulation; IEEE Transactions on Computers, Vol. C-35,

No. &, August 1986, pp. 677-691.

Chen, B.; Yamazaki, M.; Fujita, M.: Bug Identification of a
Real Chip Design by Symbolic Model Checking; Proc.
International Conference on Circuits And Systems
(ISCAS’94), London, UK, June 1994, pp. 132-136.

Corella, F.; Zhou, Z.; Song, X.; Langevin, M.; Cemy, E.:
Multiway Decision Graphs for Automated Hardware
Verification; To appear in the journal of Formal Methods in
System Design. Available as IBM research report
RC19676(87224), July 1994.

Curzon, P.; The Formal Verification of the Fairisle ATM
Switching Element; Technical Reports No. 328 & No. 329,
University of Cambridge, Computer Laboratory, March

(2]

(3]

[4]

1994.

[51 Edgcombe, K.: The Qudos Quick Chip User Guide; Qudos
Limited.

[6] Gordon, M.; Melham, T.: Introduction to HOL: A Theorem

Proving Environment for Higher Order Logic; Cambridge,
University Press, 1993.

Gupta, A.: Formal Hardware Verification Methods: A
Survey; Journal of Formal Methods in System Design, Vol.
1, No. 2/3, 1992, pp. 151-238.

McMillan, M.: Symbolic Model Checking,
Academic Publishers, Boston, Massachusetts, 1993.

Leslie, 1.; McAuley, D.: Fairisle: An ATM Network for
Local Area; ACM Communication Review, Vol. 19, No. 4,
September 1991, pp. 237-336.

Tahar, S.; Zhou, A.; Song, X.; Cerny, E.; Langevin, M.:
Formal Verification of an ATM Switch Fabric using
Multiway Decision Graphs; Proc. IEEE Sixth Great Lakes
Symposium on VLSI (GLS-VLSI’96), Ames, lowa, USA,
March 1996, IEEE Computer Society Press.

Zhou, Z.; Song, X.; Corella, F.; Cerny, E.; Langevin, M.:
Description and Verification of RTL Designs using
Multiway Decision Graphs; Proc. Conference on Computer
Hardware Description Languages and their applications
(CHDL’95), Chiba, Japan, August 1995.

[7]

Kluwer

(8-
(91

[10]

(11]

