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Abstract. In this paper we describe the design and verification of the concentrator of a Knockout
ATM (Asynchronous Transfer Mode) switch fabric using the VIS tool. The Knockout is a popular
ATM switch fabric which has application in both datagram and virtual circuit packet networks.
The concentrator is the most difficult component in the Knockout ATM switch fabric. We developed
an RTL structural design as well as a higher-level behavioral model of the Knockout switch
concentrator in Verilog HDL. We then used equivalence checking within VIS to verify the
concentrator structure against its behavioral model. While sequential equivalence checking failed,
we succeeded the combinational equivalence checking of a latch-reduced model of the
concentrator

1. Introduction

With the rapid development of EDA tools, a top-down design phase has been used in industry. An
ASIC designer usually describes a design as RTL (Register Transfer Level) code in some
Hardware Description Language (HDL) such as Verilog or VHDL. The RTL design is then
synthesized into gate-level netlist automatically using synthesis tools. The gate level design will
be further converted into transistor-level design by using standard cells. Throughout these
conversions, itis mandatory to ensure the correctness of each design phase. In addition to the RTL
design, sometimes a behavioral description is developed in order to prepare test benches and proper
simulation environments. However, it would be interesting to directly compare the RTL and
behavioral models. This can be achieved by giving the same inputs to the RTL and behavioral code
and checking whether the outputs of both models are the same. For a large design, such exhaustive
simulation is impossible, so the practical way to do this is using random simulation. However,
some special scenarios cannot be detected by random testing. Using equivalence checking based
on formal methods [7], such verification is made possible. In fact, if equivalence checking can
replace random simulation, such comparison will be more reliable. Because of the above reasons,
equivalence checking becomes quite useful in hardware verification.

Equivalence checking can be divided into two categories: combinational equivalence checking
[6] and sequential equivalence checking [4]. Combinational equivalence checking is based on
Reduced Ordered Binary Decision Diagrams (ROBDDSs) [2] which represents a circuit as a binary
decision diagram. Bryant [2] proved that a circuit can be described as a reduced binary diagram



which is a canonical form, i.e., every circuit (function) has a unique representation. Hence,

equivalence checking simply involves testing whether the two binary diagrams match exactly. This
method has been efficiently applied in almost every equivalence checking tool. Some commercial
tools have also been used in industry to verify the equivalence between RTL and gate-level circuits.
However, since current designs are mainly synchronized and clock-driven, to perform the

combinational equivalence checking between two different level sequential circuits, we have to cut
the designs into pieces, and map each latch (i.e., 1-bit register or flip-flop) of one level design into

another, and compare the combinational circuits between every two consecutive latches.
Therefore, combinational equivalence cannot be applied to compare an RTL design with its
behavioral counterpart because their internal latches cannot be mapped correspondingly.

Instead, sequential equivalence checking [4] can be used to verify the equivalence between two
levels of a design without latch mapping, that means it can be applied to verify the equivalence
between an RTL design and its behavioral model. But the drawback of sequential equivalence
checking is the so-called state space explosion problem [7] so that it is hard to be applied in a large
design.

To make use of sequential equivalence checking, in [8] we apptiedular sequential
equivalence checking on the verification of Fairisle ATM (Asynchronous Transfer Mode) switch
[9]. Modular means to verify the equivalence betwesitvmodule®f the behavioral and RTL
models, orsubmodule®f RTL and synthesized gate-level models. Although such equivalence
checking cannot ensure the overall behavior correctness of a system, a reliable submodule will
reduce the effort in a higher-level module verification. The overall behavior can be further verified
by model checking or simulation.

Other related work in the area of the formal verification of communications devices using
equivalence checking include the verifications in the MDG (Multiway Decision Graphs) tool [3]
of the Fairisle ATM switch fabric [10] and a Telecom System Block from PMC-sierra Inc. [12]. In
[10], the authors achieved a three level equivalence checking between behavioral, RTL and gate
levels. In [12], the sequential equivalence checking between behavioral model and RTL is
described. In both cases, the authors were making use of the data abstraction features of the MDG
representation and tool [3].

In this paper, we will apply both combinational equivalence checking and sequential
equivalence checking to verify the concentrator block of a Knockout ATM switch [5]. The rest of
the paper is organized as follows: We present the general functionality of an ATM Knockout
switch in Section 2. and the architecture of a Knockout concentrator in Section 3.. In Sections 4
and 5, we describe the design and Verilog modeling of the structure and behavior of a 4x4
Knockout concentrator, respectively. In Section 6., we discuss the equivalence checking
verification. Finally, Section 7. concludes the paper.

2. The Knockout ATM Switch

The Knockout switch is an N-input N-output packet switch with all inputs and outputs operating
at the same bit rate. Fixed-length packets arrive on the N-input in a time-slotted fashion, with each
packet containing the address of the output port. The Knockout switch has application in both
datagram and virtual circuit packet networks.

Aside from having control over the average number of packet arrivals destined for a given
output, we assume no control over the specific arrival time of packets on the inputs and their
associated output addresses. In other words, there is no time-slot specific scheduling that prevents
two or more packets from arriving on different inputs in the same time slot destined for the same
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output. Hence, to reduce at minimum (or at least provide a sufficiently small probability of) packet
loss, packet buffering must be provided in the switch to smooth fluctuations in packet arrivals
destined for the same output.

The interconnection fabric for the Knockout Switch has two basic characteristics: (1) each input
has a separate broadcast bus, and (2) each output has access to the packets arriving on all inputs.
Figure 1(a) illustrates these two characteristics where each of the N inputs is placed directly on a
separate broadcast bus and each output passively interfaces to the complete set of N buses. This
simple structure provides several important features.

First, with each input having a direct path to every output, no switch blocking occurs where
packets destined for one output interfere with (i.e., delay or block) packets going to other outputs.
The only congestion in the switch takes place at the interface to each output where, as mentioned,
packets can arrive simultaneously on different inputs destined for the same output. Without a
priority scheduling of packet arrivals, this type of congestion is unavoidable, and dealing with it
typically represents the greatest source of complexity within the packet switch. The focus of the
Knockout Switch architecture is one of minimizing this complexity.

In addition to the above property, the switch architecture is modular: the N broadcast buses can
reside on an equipment backplane with the circuitry for each of the N input/output pairs placed on
a single plug-in circuit card. Hence, the switch can grow modularly from 2 x 2 b xadN by
adding additional circuit cards.
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Figure 1: The Knockout ATM switch



3. Architecture of the Knockout ATM Switch

Figure 1(b) illustrates the architecture of the bus interface associated with each output of the
switch. The bus interface has three major components: packet filter, concentrator and shifter
buffer. At the top of Figure 1(b), there is a row of N packet filters. Here the address of every packet
broadcast on each of the N buses is destined, with packets addressed to the output are allowed to
pass on to the concentrator, others are blocked. The concentrator then achieves an N to L (L << N)
concentration of input lines, wherein up to L packets making it through the packet filters in each
time slot will emerge at the outputs of the concentrator. These L concentration outputs then enter
a shared buffer composed of a shifter and L separate FIFO buffers. The shared buffer allows
complete sharing of the L FIFO buffers and provides the equivalent of a single queue with L inputs
and one output. Operating under a first-in first-out queuing discipline.

In Figure 1(b), the circuits for packet filter and shifter are very simple and common, and they
are quite similar to other ATM switches. However, the concentrator circuit is very special.
Specifically, the function of the concentrator is: if there are k packets arriving at a time slot for the
same output address, these k packets, after passing through the concentrator, will emerge from the
concentrator on outputs 1 to k, wink < L+1. If k> L, all L outputs of the concentrator will have
packets, and k-L packets will be dropped (i.e., lost) within the concentrator.

The basic building block of the concentrator is a sinthie2 contention switch shown in Figure
2(a). The two inputs contend for the “winner” output according to their activity bits. If only one
input has an arriving packet (indicated by the active bit = 1), it is routed to the winner (left) output.

If both inputs have arriving packets, one input is routed to the winner output and the other input is
routed to the looser output. If both inputs have no arriving packets, we do not care except that the
active bit for both should remain at logic 0 at the switch outputs.

The above requirements are met by a switch with the two states as shown in Figure 2(b). Here,
the switch examines the active bit for only the left input. If the active bit is at logic 1, the left input
is routed to the winner output and the right input is routed to the loser output. If the active bit is a
logic 0, the right input is routed to the winner output, and no path is provided through the switch
for the left input.
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Figure 2: 2 x 2 contention switch



4. Knockout Switch Concentrator Structure

Figure 3 shows the design of an 8-input/4-output concentrator composed of simple 2 x 2 switch
elements and single-input/single-output 1-bit delay element (marked by “D”). This design can be
easily expanded to N-input/L-output concentrator with the same two elements, so it has the
advantage of easy implementation. However, the output function is not easily deduced from the
circuits, and also the connection is complex so that bugs tend to be hidden in the implementation.
For these two reasons, we need to verify the above structure against a behavioral model. In the
following section, we give our methods to verify the circuit by equivalence checking.
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Figure 3: Structure of the 8-input/4-output concentrator

To verify the structure of the Knockout concentrator in VIS, we first modeled it in Verilog,
which is the input language of the VIS tool. In the Appendix, we give the whole Verilog code of
the structural (RTL) model of the concentrator.

5. Knockout Switch Concentrator Behavior

Although the structure of the Knockout concentrator (Figure 3) seems complicated, its
specification is simple: if there is only one active cell in the input ports, it will be transmitted to the
left most output port; if there are only two active cells in the input ports, they will be transmitted
to the two left most output ports; if there are three active cells in the input ports, they will be
transmitted to the three left most output ports; if there are four or more than four, they will be
transmitted to all the four output ports. This behavior can be described as shown in Figure 4.

In Figure 4,i1, i2, ..., 8 are the 8 inputs of the concentratibr= 1 means there is a cell at input
k(k=1, 2, ..., 8), andk = 0 indicates there is no cell at inpkitThe signasummeans the sum of
the 8 inputs, so the value stimindicates the number of inputs which have cells to send. Because
there are 8 clock cycles delay in the structural model of the Knockout concentrator (Figure 4), we
also give 8 clock cycles delays in the behavioral model to synchronize both models.
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Figure 4: Behavior of thes-input/4-output concentrator

For the verification in VIS, we also modeled the above behavior of the concentrator in Verilog
(see Figure 5 below, where the notation “x ? y : z” means “if x then y else z”).

inputil, i2, i3, i4, 5, i6, i7, i8;
output 01, 02, 03, 04;
wire [3 : 0] sum;

assign sum= il+ 2+ i3+ i4+ 5+ i6+i7+i8;
assignol=(sum<1)?0:1;

assign 02 =(sum<2)?0:1;

assign 03 =(sum<3)?0:1;

assign o4 = (sum<4)?0:1;
endmodule

module ko _behav (i1,i2,i3,i4,i5,i6J,i8, 01, 02, 03, 04);

Figure 5: Verilog model of the concentrator behavior

6. Verification by Equivalence Checking

The Knockout concentrator is a sequential design containing about 64 latches (1-bit registers/flip-
flops). Hence we started with a sequential equivalence checking in VIS between the behavioral and
structural Verilog models. However, we could not get any result because the verification crashed
due to a failure in allocating memory (out-of- memory error). This experiment was conducted on

a Sun UltraSparc (300MHz/512MB) workstation.

After close inspection, we noticed that the latches in the structural Knockout concentrator are
only for distributing the operation which could be done with one clock cycle instead of eight clock
cycles so that the clock frequency of the whole system could be higher. In other words, these
latches do not have the function of state transition. Therefore, reducing these latches will not have

an influence on the function of the design.




Once the latches were removed from the Knockout concentrator, it becomes a combinational
circuit. Hence it is now possible to apply combinational equivalence checking. Practically, it is
fairly easy to reduce the latches in a Verilog module. In the structural Knockout concentrator
description, we only need to modify the two submodules: 2x2 switch element and D-flip-flop while
keeping the same concentrator structure. In the behavioral Verilog module, we only need to
remove the eight clock cycles delay.

The combinational equivalence checking on Knockout concentrator was very efficient, and the
verification in VIS succeeded. Table 1 shows the experimental results for the combinational
equivalence checking in VIS, including CPU time, memory usage and number of BDD nodes
allocated. This experiment was conducted on the same workstation indicated above.

Table 1: Combinational equiv. checking results in VIS

CPU time Memory usage | Nodes allocated
(sec.) (MB) (K)
32 45 32,476

From Table 1, itis interesting to notice that the combinational equivalence checking in VIS used
little CPU time and memory to verify the Knockout concentrator while the sequential equivalence
checking of the same models failed running out of memory. This is actually illustrating the reason
why sequential equivalence checking has not been adopted in industry while combinational
equivalence checking is routinely used in checking the correctness of synthesized models.

7. Conclusions

This paper introduced combinational equivalence checking and sequential equivalence checking
as means for the verification of digital designs. Combinational equivalence checking can handle a
relatively large design, and with the help of some techniques such as latch mapping, it also can
partially verify a sequential circuit.

In particular, we described the design, modeling and verification of the concentrator of a
Knockout ATM switch fabric using Verilog HDL and the VIS tool. We developed models for both
the structure and behavior of an 8 input/4 output Knockout switch concentrator. We then used
equivalence checking within VIS to verify the structure of the concentrator against its behavioral
model. This was made possible through the transformation (via latch-reduction) of the sequential
design into a combinational one. Hence, we turned the equivalence checking problem into a pure
combinational equivalence checking.

Since the 8 input/4 output Knockout concentrator is relatively simple, we did not find any errors
in the design model. However, the advantage of the equivalence checking approach proposed in
this work would be more obvious if we design and verify a 32/16 or a 64/32 Knockout
concentrator.
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Appendix: Verilog Model of the Concentrator Structure

module ko_struct (i1,i2,i3,i4,5,16)7,i8, 01, 02, 03, 04);
inputil, i2, i3, i4, i5, i6, i7, i8;
output 01, 02, 03, 04,

wire m11, m12, m13, m14, m15, m16, m17, m18;
wire m21, m22, m23, m24, m25, m26, m27, m28;
wire m31, m32, m33, m34, m35, m36, m37, m38;
wire m41, m42, m43, m44, m45, m46, m47, m48;
wire m51, m52, m53, m54, m55, m56, m57, m58;
wire m61, m62, m63, m64, m65, m66, m67;

wire m71, m72, m73, m74, m75, m76;

wire m85;

se sell(i1, i2, m11, m12);

se sel2(i3, i4, m13, m14);

se sel3(i5, i6, m15, m16);

se sel4(i7, i8, m17, m18);

se se21(ml1l, m13, m21, m22);
se se22(m15, m17, m23, m24);
se se23(m12, m14, m25, m26);
se se24(m16, m18, m27, m28);
se se31(m21, m23, m31, m32);
se se32(m25, m27, m33, m34);
se se33(m22, m24, m35, m36);
se se34(m26, m28, m37, m38);
dr dr41(m31, m41l);

se se42(m33, m35, m42, m43);
dr dr43(m32, m44);

se se44(m37, m34, m45, m46);
dr dr45(m36, m47);

dr dr46(m38, m48);

dr dr51(m41, m51);

se se52(m42, m44, m52, m53);
se se53(m45, m47, m54, m55);
dr dr54(m43, m56);

se se55(m48, m46, m57, m58);
dr dr61(m51, m61);

dr dr62(m52, m62);

se se63(m54, m56, m63, m64);
dr dr64(m53, m65);

se se65(m57, m55, m66, m67);
dr dr71(m61, m71);

dr dr72(m62, m72);

se se73(m63, m65, m73, m74);
se se74(m66, m64, m75, m76);
dr dr81(m71, ol);

dr dr82(m72, 02);

dr dr83(m73, 03);

se se84(m75, m74, 04, m85);
endmodule




module se (i1,i2, 01, 02);
input i1, i2;

output o1, 02;

assign ol = (i1 ==0) ?i2:i1l;
assign 02 = (i1 ==0) ? il :i2;
endmodule

module dr (i1, 0l);
input il;

output 01;

assign ol =i1;
endmodule
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