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Abstract

We present an algorithm in this paper for constructing volumetric domains with consistent topology to parameterize three-manifold
solid models having homeomorphic topology. The volumetricparameterizations generated by our approach share the sameset of
base domains and are constrained by the corresponding anchor points. Our approach allows users to control interior mappings by
specifying interior anchor points, and the anchor points are interpolated exactly. With the help of a novel construction algorithm
developed in this work, the volumetric cross-parameterization computed by our method demonstrates its functionalityin several
examples.
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1. Introduction

Many geometric processing applications require a bijective
mapping between models (for example, texture mapping, detail
transfer, morphing, and shape analysis). Computing a bijective
mapping between two-manifold surfaces has been widely stud-
ied in computer graphics. A general solution for constructing
such mappings can be computed through global parameteriza-
tion approaches (such as [1, 2, 3]). However, for the appli-
cations such as morphing and detail transfer, parameterization
must be constrained by semantic features, which are usually
specified as anchor points on the surfaces of input models. In
surface parameterization approaches [4, 5, 6, 7], common base-
domains are constructed for the surfaces of input models to es-
tablish mappings that satisfy the constraints prescribed by an-
chor points.

The information provided by the boundary surfaces of a
model may be insufficient for describing interior information
like material, intensity, and micro-structure, which should be
defined in the entire solid model. Therefore, researchers have
paid more attention to volumetric parameterization recently.
Similar to the surface cases, volumetric cross-parameterization
is also constrained by semantic features. Computing a con-
strained mapping between three-manifold models is more chal-
lenging than between two-manifold models. Some existing ap-
proaches [8, 9, 10, 11, 12] formulate the computation of vol-
umetric mapping globally based on surface correspondences.
Bijective mappings can be obtained in some specific types of
domain shapes (such as star shape by the method of Xia et
al. [12]). In real applications, models can have complex ge-
ometry, nontrivial topology, and even interior structures. The
global domain of such models must be decomposed into sub-
domains with simpler shapes to ensure bijection in mappings.
This motivates our work to find a solution for constructing a

Figure 1: The polyhedral cells in the template set of base-domains
(left) and their corresponding C-polys (right), where the C-polys cor-
responding to different base-domains are displayed in different colors.

complex of base-domains with consistent topology. Directly
computing a volumetric mapping by using the result of surface
cross-parameterization as constraints cannot guarantee the re-
sult of bijective mapping. For instance, the radial basis func-
tions (RBFs) based mapping presented in [13] can have self-
intersection. Similar problem occurs when tetrahedral mesh
based deformation [14] is applied to generate the volumetric
mapping. Warping a volumetric mesh (with 171.7k tetrahedra)
for the cylinder in Figure 2 to the rabbit leads to 15k degener-
ated tetrahedra.

In this paper, we propose a method to compute domains
of volumetric cross-parameterization on three-manifold models
having homeomorphic topology, where the parameterizationis
constrained by anchor points. Here, a few heuristics are applied
to specify anchor points for generating successful volumetric
mapping:

• First, the anchor points should be defined according to the
semantic correspondences – e.g., mapping two toes of a
human model to the ears and shoulders of another human
body will generate highly distorted mapping.

• Second, relatively uniform distribution of anchor points is
expected to result in base-domains with good shape, which
is helpful to reduce the stretch in mapping.
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Figure 2:Volumetric cross-parameterization can be established among models with different shapes. Given the prescribed anchor points, the entire
solid model can be decomposed into curved polyhedral cells having the same connectivity as that of the common base-domains. By the volumetric
cross-parameterization, interior structures of the cylinder model can be transferred across all the models (bottom row).

• Third, anchors are specified to help decompose the do-
mains into nearly convex regions and help add constraints
inside solids.

The computation is conducted on solid models represented
by tetrahedral meshes, which can be generated from an
intersection-free triangular mesh model (e.g., by the publicly
available tool in [15]). A tetrahedral meshM can be repre-
sented by a tupleM = (V, E, F,T ) which is a collection of ver-
tices (V), edges (E), faces (F), and tetrahedra (T ). In addition
to the tuple, a solid modelM to be parameterized also has a set
of pre-defined anchor pointsG, which could be specified on the
boundary surface ofM or insideM. The models are then to be
parameterized onto a set ofcommon base-domains (CBD). The
CBD can be considered as a volumetric mesh model formed by
polyhedral cells, where every vertex of the cells is correspond-
ing to an anchor point. By this setup, the volumetric cross-
parameterization on a set of modelsMi (i = 1,2, · · ·) sharing
the same set of anchor pointsG is converted into a problem
of how to consistently partition a model into a set ofcurved
polyhedral regions (calledC-polys in this paper) according to
the CBD. The template of CBD is also represented by a tuple
Ψ = (GΨ, EΨ, FΨ,DΨ) – GΨ is the set of vertices,EΨ andFΨ
are the collections of edges and faces, andDΨ is the set of poly-
hedral cells (see Figure 1 for the base-domains of a genus-two
model).

The basic idea of domain construction on a given modelM is
to compute curves, patches, and C-polys inM between anchor
points according to edgesEΨ, facesFΨ and polyhedralTΨ in Ψ
respectively. The connectivity of constructed C-polys needs to

be consistent withDΨ. When all models are parameterized to
the same set of CBD, the cross-parameterization between them
is established (e.g., our examples use the mean value coordi-
nates [16]). Figure 2 shows an example of how to establish
cross-parameterization in the volumes of models by our domain
construction algorithm.

1.1. Related work

Surface parameterization has been studied for many years
and comprehensive surveys can be found in [17, 18]. Here,
our review only focuses on the approaches that find constrained
bijective mappings between a pair (or a set) of models. Praunet
al. [4] used the connectivity of a predefined template as base-
domains and traced the boundary of patch layouts on each of the
input meshes by linking the given anchor points in a consistent
way as that in the template. Kraevoy et al. [5] and Schreiner
et al. [6] further extended the idea of Praun et al. [4] by au-
tomating the generation of common base-domains. Our work
presented in this paper generalizes the cross-parameterization
to volumetric domains.

Volumetric parameterization plays an important role in many
solid modeling applications and has attracted more and more
attention recently. Ju et al. [19] and Floater et al. [16] extended
the mean-value coordinates [20] from surfaces to volumes to
compute the interpolation of volumetric data. Mean-value co-
ordinate is a powerful and flexible tool to compute the mapping
between two volumes. However, to use it on general solid mod-
els with complex shape, a domain construction method as what
we propose in this paper is needed.

2



Wang et al. [10] generalized the harmonic mapping to tetra-
hedral meshes and reduced the discrete harmonic energy by
a variational procedure. They proposed an algorithm to map
a genus-zero volume to a solid sphere. Li et al. [8, 9, 21]
computed the harmonic volumetric mapping between three-
manifold models having the same topology. The basic idea
of their approach is to simulate an electrical charging system
over sample points by using harmonic functions. TheMethod
of Fundamental Solutions (MFS) is used in order to manipu-
late the boundary map. Li et al. [21] also pointed out the im-
portance of considering heterogeneous structures in volumetric
data. However, the volumetric parameterization based on har-
monic function is not always bijective and the constraints are
only approximated but not enforced. The approach introduced
by Martin et al. [22] can compute harmonic volumetric param-
eterization for cylindrical volumes, which is used for trivariate
spline construction. Xia et al. [12] parameterized star-shaped
volumes by using Green functions, and showed that the con-
structed map is bijective and smooth except at only one unique
critical point. Xia et al. also proposed an algorithm [11] tode-
compose a volume into the direct product of a two-dimensional
surface and a one-dimensional curve. By tracing the integral
curve along the harmonic function, a bijective mapping is con-
structed between the volume and the domain. However, their
approach is not as flexible as ours that allows to add anchor
points inside solid models.

1.2. Main results

The technical contributions of this paper are summarized as
follows.

• We develop a novelpatch construction algorithm to find
a two-manifold surface patch composed of the mesh faces
to approximate an intersection-free surface interpolating a
boundary loop embedded in three-manifold models. The
area of patch is minimized to make the boundary of do-
main compact.

• An automatic construction algorithm is investigated in this
paper to constructcurved polyhedra (named as C-polys)
which serve ascommon base-domains (CBD) for volumet-
ric parameterization.

Based on the CBD constructed by our approach, constrained
cross-parameterization between three-manifold models can be
established.

The rest of our paper is organized as follows. Section 2
presents the algorithms for CBD construction and volumet-
ric cross-parameterization. The operators for constructing the
boundary curves and patches of C-polys are presented in section
3. After that, the operators for reducing distortion in volumetric
parameterization are introduced in section 4. Examples andap-
plications to demonstrate the functionality of our approach are
given in section 5.

2. Algorithms

In this section, we present the algorithms for CBD construc-
tion and the volumetric cross-parameterization on CBD. As-
sumptions for the input of these algorithms are as follows.

• Input models are required to be homeomorphic to each
other, i.e., having the same topology.

• Anchor points (on/in the models) should have one-to-one
correspondences and are specified in a consistent manner.

2.1. Consistent boundary surface decomposition

Given the template of CBD which could be treated as a
special set of connected polyhedral cells, its boundary surface
ΨB = (GB

Ψ
, EB
Ψ
, FB
Ψ

) is actually a polygonal mesh. All the ver-
tices,GB

Ψ
(GB
Ψ
⊂ GΨ), of ΨB should already have their corre-

sponding anchor points defined on the boundary surface of the
input modelM. The boundary surface can be decomposed into
patchesPB having the same connectivity asΨB by a variant [7]
of the consistent surface decomposition method in [4]. As a
result, the boundary surfaces of input models are decomposed
into a set of polygonal patches having the same topology as
that ofΨB (see the top row of Figure 2 for an example). These
patches serve as an initial front to construct C-polys in thefol-
lowing sub-section.

2.2. Construction of curved polyhedral domains

After constructing the boundary surface patches,PB, of a
solid modelM according toΨB, PB is used to constructcurved
polyhedral domains (C-poly) insideM. In order to generate C-
polys in a consistent connectivity as the polyhedral cellsDΨ, an
advancing-front strategy is adopted here. Starting from a polyg-
onal surface patch in the front, its adjacent C-poly (correspond-
ing to a polyhedron inΨ) can be constructed and the front is up-
dated accordingly. Therefore, by using the polygonal patches in
PB as the initial front, we can progressively construct C-polys
adjacent to the front one by one. To ensure that the constructed
C-polys have the same connectivity asDΨ in Ψ, the following
requirements must be satisfied during the construction.

1. Free of intersections: The newly constructed curves and
surface patches must not intersect with any other anchor
points, curves or patches.

2. Consistent cyclic order: The cyclic order of patches
around a curve must be consistent to that of the corre-
sponding path inΨ (see Figure 3 for an illustration).

3. Non-blocking: A C-poly should not enclose any anchor
points that do not belong to it (see Figure 4 for an illustra-
tion).

It is known that restricted brushfire algorithm [4] could be
used to trace a path between anchor points in a topologically
equivalent manner on surface. To prevent intersections and
wrong cyclic order when generating patches and paths, we de-
velop a novel method in section 3 to construct patches in an
intersection-free manner and in a correct cyclic order.
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Figure 3: Intersections between patches/curves should be prevented,
and cyclic order around a curve must be enforced.

Figure 4:An illustration of blocking: (left) a blue patch and a red patch
defined in template, (middle) the blue patch fails to be constructed due
to the blocking generated by the red patch, and (right) blocking can be
prevented by constructing the red patch in a restricted way.

Furthermore, the construction algorithm will fail to termi-
nate if an anchor point is enclosed by other C-polys and be-
comes unreachable. For example as shown in Figure 4, a blue
patch should be constructed as shown in the left, but it is pos-
sible that the prior constructed patch (in red) blocks the anchor
points of the blue patch to be connected – in other words, the
red patch divids the anchor points of the blue patch into two
disconnected regions. This is also known as theblocking prob-
lem in the consistent surface parameterization setup (ref.[4, 5]).
Non-blocking can be guaranteed by regional restriction in our
algorithm (details can be found in section 3.3).

Remark: Throughout the advancing-front process, we keep the
front being two-manifold until no more C-ploys can be con-
structed.

2.3. Volumetric mappings

Each C-poly constructed by the above algorithm is composed
by a set of tetrahedra. The volumetric mapping from a C-poly
to its corresponding polyhedron in the templateΨ can be estab-
lished then (e.g., by Green’s functions [12], MFS [9], harmonic
field [11], or the mean-value coordinates [16, 19]).

For two solid models,Ms andMt, having the consistent sets
of anchor points, the cross-parameterization can be established
between their volumes if both of them are parameterized to the
same template of base-domains,Ψ. By the model-to-domain
mappingsΓs : Ms ⇒ Ψ and Γt : Mt ⇒ Ψ , the model-
to-model mapping isΓst = Γ

−1
t · Γs. The volumetric cross-

parameterization established in this way is continuous across
the boundaries of C-polys. To have a compact representation
for the result of cross-parameterization, we warp the tetrahedral

mesh forMs into a mesh forMt that has new distribution of ver-
tices but the same connectivity. The warping can be generated
by using the mean-value coordinates (e.g., [16, 19]). The tetra-
hedral meshes with consistent connectivity are the final results
stored for the cross-parameterization.

2.4. Generation of template complex

The template complex of CBD for a set of solid modelsMi

(i = 1,2, · · ·) sharing the consistent sets of anchor points can
be constructed in an automatic way. First, we pick one solid
modelMb and apply the surface domain decomposition method
of Kwok et al. [7] to construct a layout of triangular surface
patches linking the anchor points. Second, by converting patch
boundaries into straight edges, a triangular surface mesh is ob-
tained, which has anchor points on the surface ofMb as its
vertices. Last, using the interior anchor points ofMb and the
triangular surface mesh as constraints, the algorithm ofCon-
strained Delaunay Tetrahedralization (CDT) such as [15, 23]
can be used to build the connectivity of a tetrahedral mesh that
use only the anchor points ofMb as vertices. The complex of
this tetrahedral mesh is good enough to be employed as the
complex of CBD,Ψ. To get a better performance for the pa-
rameterization, we can further merge some of the tetrahedral
domains to be polyhedral domains if the merging improves the
shape of domains, e.g., a regular cube is better than the same
region composed by a few tetrahedra.

3. Operators for Domain Construction

3.1. Tracing boundary curves

A boundary curve of C-polys is a path linking two anchor
points. Basically, any part of the path shouldNOT run be-
yond the space enclosed by the input solid modelM. To satisfy
the requirement of being intersection-free, the path also should
NOT pass through any boundary surface patch that has been
constructed. Here, we trace the shortest path inM for each
edge inEΨ by employing a standard brushfire algorithm [24].
To prevent self-intersections in domain construction, theedges
should not be considered as a possible path if they are adjacent
to any mesh edges or faces that have been classified as parts of
the existing C-polys. In addition, to overcome topologicalob-
stacles, virtual edges are added between the center of a faceand
the vertex opposite to the face when tracing paths. If the resul-
tant shortest path passes through a virtual edge, the tetrahedron
holding this virtual edge will be subdivided.

3.2. Patch construction

A more challenging work is to construct a surface patch de-
fined according to anchor pointsai (∀i ∈ 1,2, . . . , n). The
boundary curves linking these anchor points have been gener-
ated by the above method, and these boundary curves form a
loop C to be filled by a surface patch. Similar to curves com-
posed of mesh edges, we construct patches composed of mesh
faces here. Again, the constructed patches bounding C-polys
should not intersect any other existing curves or patches and
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Figure 5:Applying the Laplacian operator to a solid model can shrink
it into a membrane interpolating the constrained loop (in blue): (left)
the models in different colors illustrate the shrinkage of the input vol-
ume in different stages, and (right) the black curves give the moving
trajectories of vertices.

must be two-manifold. Moreover, the constructed patch is ex-
pected to be a discrete surface with a minimal area to reduce the
distortion in volumetric mapping. Our basic idea of computing
a surface patch that interpolates the given loop is to mimic a
physical phenomenon of shrinking a volume of viscous fluid
around a ring. Keeping on the shrinkage, the volume of fluid
will become a membrane that is stretched and fills the ring.

3.2.1. Laplacian Movement Field (LMF)
The volumetric shrinkage of a solid mesh can be achieved

by minimizing an energy asE(S ) = 1
2

∫
Ω

S 2
u + S 2

v + S 2
wdudvdw

(see [25] for reference). The variational derivative ofE(S ) is
a Laplacian operator. In other words, the volumetric shrink-
age can be realized by applying Laplacian operators. When the
shrinkage is constrained to a given loop, the result is a minimal
surface interpolating the loop. The discrete Laplacian opera-
tor [26] at vertexvi is defined asL(vi) =

∑
j∈N(vi) w j(v j − vi)

with N(vi) being the one-ring neighbors ofvi. w j > 0 are the
weighting coefficients satisfying

∑
j w j = 1. There are different

choices ofw j (ref. [27]), and here we choose edge-length-based
coefficients as

w j =
‖v j − vi‖∑

j∈N(vi) ‖v j − vi‖
. (1)

Notice that the vertices located on the curves to be interpolated
are set as hard constraints not to move during the Laplacian
evolution.

After applying Laplacian operators, all vertices are moved
towards the minimal surface (as illustrated in Figure 5). Inprac-
tice, the position of a vertex on the resultant membrane can be
directly computed by solving a linear system:L(vi) = 0 sub-
ject to the position constraints. For a point in the given model,
the distance between its positions before and after applying the
Laplacian operator indicates its distance to the minimal surface.
These values in the entire solid modelM form a scalar field
named asLaplacian Movement Field (LMF). The peeling pro-
cess introduced below can form a membrane enclosingC and
the order of peeling is governed by LMF.

3.2.2. Construction by topology guaranteed peeling
Suppose the loop,C, to be interpolated is enclosed by a

genus-zero solidS that is represented as a tetrahedral mesh,
we first compute the values of LMF at every vertex ofS . The
LMF value of a tetrahedron is then defined as the average of the

Figure 6:Progressive results of topology-preserved peeling that form a
genus-zero solidTh(S ) with its boundary surface,∂Th(S ), interpolat-
ing the loopC of boundary curves.∂Th(S ) is subdivided byC into two
surface regions with disk-like topology, where the one with a smaller
area is selected as the surface patch of C-poly.

Figure 7: Peeling step that will generate non-manifold entities should
be prevented: (left) non-manifold edges and (right) non-manifold ver-
tices.

LMF values at its four vertices. We progressively change the
solid S into a thin solidTh(S ) with its boundary interpolating
C by removing tetrahedra one by one, where the tetrahedron
with a larger LMF value has a higher priority to be removed
(which can be implemented with the help of a maximum heap).
The solidS is therefore changed intoS 0, S 1, · · · until no more
tetrahedron can be removed – i.e., a membrane containing only
a layer of tetrahedra has been obtained. The solid membrane is
denoted byTh(S ). See an illustration shown in Figure 6. As the
boundary surface,∂Th(S ), of Th(S ) is two-manifold and has
genus-zero topology, the interpolated loopC on ∂Th(S ) sepa-
rates the surface into two two-manifold regions. We compare
their areas, and the one with a smaller area is selected as the
surface patchP interpolatingC. P has disk-like topology and is
a collection of the mesh faces inM.

Interpolation: To ensure the boundary surface ofTh(S ) in-
terpolateC, when removing a tetrahedron adjacent to an edge,
e, in C, we check whether it is the last tetrahedron adjacent to
e. If so, the removal is prevented.

Topology Faithfulness: To ensure the boundary surface of
Th(S ) is two-manifold and genus-zero, we need to check the
topology of the resultant solid before removing a tetrahedron.
Two cases are prevented.

1. The removal will lead to a non-manifold edge or a non-
manifold vertex (see Figure 7).

2. The removal will generate an empty void, which changes
the genus-number.
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Figure 8: Topology-preserved volume growing to form the initial
genus-zero solid for peeling.

Figure 9:Intersection prevention in the surface patch construction – the
tetrahedra adjacent to any other curves or patches must not be addedto
the grown region which will be peeled later for surface construction.

Initial genus-zero solid: The initial genus-zero solid,S ,
of peeling can be obtained by a growing process as described
below. For a loopC that passes through a set of verticesvi

(∀i ∈ 1,2, . . . ,m), we search for a tetrahedron that contains the
point vc =

1
m

∑
vi (or the closest tetrahedron tovc if vc is not

inside the input modelM). This tetrahedron is named as the
centric tetrahedron. Starting from the centric tetrahedron, we
can grow a region by the advancing-front method to add tetra-
hedra adjacent to the front one by one. The growing procedure
stops when all edges ofC have been enclosed by the grown
region, which is then used as the initial solid for the peeling
process. Again, when growing the region, the cases that will
generate non-manifold entities should be prevented to guaran-
tee the grown volume has genus-zero topology. Figure 8 shows
a genus-zero solid obtained by growing from a loop. As the
peeling will be conducted in this solidS , the values of LMF are
computed only on the vertices ofS instead of the entire input
modelM. Although rarely, the centric tetrahedron could be in
a region separated from the region containing the loopC; the
growing algorithm will report fail to encloseC in this case. We
then restart the growing procedure from a tetrahedron contain-
ing an edge ofC.

As mentioned in section 2.2, topologically equivalence must
be ensured by preventing intersections and wrong cyclic order
when constructing a surface patch. It can be realized with the
help of the above growing process. During the process, the
tetrahedra adjacent to any other paths or curves must not be
added into the grown region (see Figure 9). Similarly, for those
tetrahedra in the wrong sectors (as illustrated in Figure 3), they
are not added. As a result, the initial solidS for peeling does
not include any such tetrahedra. Thus, the surface patch con-
structed by peeling does not intersect any existing curves or

Figure 10: (From left to right) Constructing a trial patch (orange) to
complete a C-poly which encloses two anchor points (red). Growing a
genus-zero solid around the orange patch that subdivides the current C-
poly into two regions: green and yellow, where green region contains
all the red anchor points. Compute a new patch within the yellow
region. The new patch forms a C-poly does not induce any blocking.

patches, and will not fall in the wrong sectors. In order to by-
pass topological obstacles, we sometime need to refine the tetra-
hedra between the loopC and the existing curves or patches.

3.3. Restriction for non-blocking

The only left problem is how to prevent blocking when con-
structing the last patch of a C-poly. Blocking means the C-poly
encloses some other anchor points that do not belong to the
C-poly. Whether the aforementioned topological blocking hap-
pens after inserting the last patch for the C-poly can be easily
checked by exploring all the tetrahedra inside the C-poly tosee
if there are any anchor points embedded. In the cases that lead
to blocking, this last patch should be generated in a different
way. As illustrated in Figure 10, we can apply the previous
growing based method to construct a genus-zero solid inside
the C-poly around the last patch without including any faces
in other patches. The growing stops when all anchor points
that should be excluded have been enclosed in the temporarily
grown solid (see the green region in Figure 10). Then, a new
patch is constructed in the rest region of the previously con-
structed C-poly (e.g., the yellow region in Figure 10). By this
method, a new C-poly will be generated by excluding all an-
chors that should not be enclosed – i.e., the topological block-
ing problem can be solved.

4. Operators for Reducing Distortion

The boundary curves or patches of a template of CBD
are represented by straight edges and facets inΨ. However,
the boundary curves and patches constructed by our method
presented above are in zigzag and terrain-like shapes, which
will introduce unwanted distortion in the volumetric cross-
parameterization. Motivated by the smoothing operator used
in [5], two operators are incorporated into the domain construc-
tion framework to reduce the distortion caused by the shape of
base-domains. Note that, the operators will not be applied to
the vertices on the surfaces of input models.

4.1. Curve stretching

The purpose of curve stretching is to make a boundary curve
ãia j linking two anchor pointsai anda j as straight as possible
while staying inside the input solidM. The curve stretching
operator achieves this goal through the iterative positionupdate
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of vertices. For each vertexvk located oñaia j, supposevk−1 and
vk+1 are its two adjacent vertices on the curve, we apply

vk ← vk + λ((vk−1 + vk+1)/2− vk) (2)

whereλ is a relaxation factor with a value of 0.25. The update
is forbidden if the new position ofvk makes any of its adjacent
tetrahedra degenerate. For the vertices that are within three-ring
neighbors ofãia j and are not on any other curves or patches
of C-polys, their positions are updated by the relaxed uniform
Laplacian. Again, any update that will lead to degenerationof
tetrahedra is prevented. The above steps are repeated untilthe
updates of vertices are trivial.

4.2. Patch stretching

The patch stretching operator makes the boundary patch of
C-polys smooth by position updating, which is similar to curve
stretching. For a vertexv on the surface patchP of a C-poly,

v← v + λ(vavg − v) (3)

with λ = 0.25 being the relaxation factor andvavg being the av-
erage position ofv’s one-ring neighbors onP. For vertices that
are three-ring neighbors of the surface patch and are not on any
other curves or patches of C-polys, their positions are updated
by the relaxed uniform Laplacian. We repeat the above steps
until the updates of vertices are trivial. Similarly, the update of
a vertex is forbidden if it makes any of its adjacent tetrahedra
degenerate.

Notice that, preventing the degeneration in tetrahedra during
position update can also avoid intersections between curves and
patches of C-polys. Incorporating curve stretching and patch
stretching in the domain construction algorithm can greatly re-
duce the distortion of volumetric cross-parameterization(see
Figure 11 for an example).

5. Results and Applications

This section studies the results generated by our approach
and demonstrates its performance in a variety of applications.

Given a set of models, the method proposed in this paper can
construct a set of base-domains according to the connectivity
of a template which is constrained by anchor points. This is
useful to volumetric blending and remeshing. Figure 2 givesan
example of blending the interior structure between models with
a variety of shapes. Our method can decompose the shape of
a complex model into sub-domains to generate bijective map-
pings (e.g., the hand models shown in Figure 12).

Once volumetric mapping is established between models,
point-to-point correspondences are well defined. Therefore, af-
ter establishing volumetric cross-parameterization between two
models, we can easily transfer all the interior structures and de-
tails from one model to another. Two scanned human models
are shown in Figure 13 as an example. The bones and organs
can be warped from one model to another. Compared with other
shape transformation techniques (e.g., t-FFD [29]), the bijec-
tive mapping constructed by our method can effectively prevent
self-intersection.

Figure 11: An example to demonstrate the functionality of stretching
operators to reduce distortion in volumetric cross-parameterization be-
tween two human modelsMs and Mt. The top row shows the result
of domain construction without stretching. The bottom row gives the
result with stretching. The color maps display theL2-stretch [28] of
tetrahedra transformed by the corresponding cross-parameterization,
where the value 1.0 stands for no distortion.

Not only interior structures but also the clothes worn on hu-
man bodies can be transformed by bijective volumetric cross-
parameterization. This leads to an important application in the
apparel industry – design reuse. To conduct volumetric cross-
parameterization outside human models, we first generate vol-
ume meshes between a model and its offset surface, which is
similar to the concept of shell map [28]. Constrained volumet-
ric cross-parameterization can be constructed between thesolid
shells. As shown in Figure 14, the mapping constructed by our
method is intersection-free while the result from t-FFD [29] (or
spatial warping [13]) has self-intersections in the regions with
high curvature (such as under the crotch). Again, the shape
transformation supports non-manifold entities – see the region
above the arm.

Hexahedral mesh is always demanded inFinite Element
Analysis (FEA) orComputational Fluid Dynamics (CFD) anal-
ysis. With the help of our framework, after establishing thevol-
umetric cross-parameterization on tetrahedral meshes, the hex-
ahedral mesh can be transformed from multiple cubic regular
shapes into other freeform models. Examples can be found in
Figs.15 and 16.

The input constraints given to our method can be specified
inside the volumes, which provides a better control for the qual-
ity of cross-parameterization. An example is shown in Figure
17. Parameterizing a cubic domain to a spherical region with-
out adding interior anchor points may warp the L-shape model
into an obstacle (in yellow) – see the top row of Figure 17. To
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Figure 12: An example of constrained volumetric cross-
parameterization in highly concave models, where common
base-domains constructed by our method are also shown. The color
map gives theL2-stretch [28] of tetrahedra in the blended solid model.

Figure 13:An example of structure transformation between two human
models. The volumetric cross-parameterization constructed by our ap-
proach is a bijective mapping, thus prevents self-intersections which
are common problems on the spatial-warping-based method (such as
t-FFD [29]).

avoid such cases, we can add anchor points to the surface of
the obstacle. With these constraints, the L-shape model will be
outside the obstacle. The feature alignment method proposed
by Li et al. [21] can achieve a similar goal. However, if the
structures are highly complicated – which is common in real
applications – it is hard to find out the surface parameterization
required by their method. Furthermore, the constraints areex-
actly enforced in our approach while fitting errors are generated
in the approximate fitting based methods.

We have also studied how the volumetric cross-
parameterization is affected by the quality of tetrahedral
meshes used in our algorithm. In Figure 18, we construct the
cross-parameterization between a cube model to other two
cubes with different volumetric meshes. The target model 1
has a mesh with similar quality as that of the source model, and
the target model 2 has a much coarser mesh. Without applying
the stretching operators introduced in Section 4, the denser
volumetric mesh leads to a result of cross-parameterization
with less distortion. This is because that a smoother patch will
be generated on the denser mesh by our patch construction
algorithm. After applying the stretching operators, similar level
of distortion is generated on the mesh models with different
density.

Figure 14:Having volumetric shell constructed between a model and its
offset surface, the mapping of cross-parameterization can be computed
for the shells. This mapping is bijective. As a result, the transformed
clothes are intersection-free.

Figure 15: Volumetric cross-parameterization constructed by our ap-
proach between genus-two models in Figure 1 can be used in the hex-
ahedral remeshing.

6. Conclusion and Discussion

In this paper, we propose a new method for the construction
of CBD used in the volumetric cross-parameterization. The vol-
umetric cross-parameterization can be established through the
base-domains constructed by our approach. The mapping can
be controlled in a very flexible manner by adding and adjusting
anchor points, which are strictly interpolated in the mapping.
The anchor points are allowed to be placed both on the bound-
ary surface and inside the solid models. Examples and applica-
tions shown in this paper have demonstrated the functionality
of our approach.

Limitation of this algorithm comes from three aspects. First,
the number of anchor points required to generate a successful
domain decomposition depends on the topology of models to
be parameterized. Basically, more anchor points are required
for high genus models. For example, for the genus zero mod-
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Figure 18:A study on the performance of the volumetric cross-parameterization ontetrahedral meshes with different quality. Target model 1 has
a mesh with similar density as the source model, and target model 2 has a much coarser mesh. It is easy to find that cross-parameterization with
similar distortion level can be generated after applying the stretching operators in Section 4.

Figure 16:Structured hexahedral mesh generation on a hand model with
the help of volumetric cross-parameterization.

els shown in Figure 2, only four anchor points are necessary
to generate successful decomposition (although may have large
distortion). However, for the genus one model in Figure 1,
four anchor points are definitely not enough. Second, similar
to surface cross-parameterization approaches, we assume that
the corresponding anchor points are located consistently at the
meaningful places. Third, the computation of domain boundary
is still expensive in terms of time and memory consumption.
Take the hand model shown in Figure 12 with 125k tetrahedra
as an example, computing the base-domains constrained by 21
anchor points needs around 2 minutes on a PC with 2.66GHz
CPU, and 250MB memory is used at the peak time. Our future
work will focus on how to overcome these limitations. Some
other possible future works include how to use this technique
in isogeometric analysis (e.g., [30]), and how to use mean-
curvature flow (e.g., [31, 32]) to further enhance the stretching
operations.

Figure 17:When mapping a cubic domain to a spherical region, adding
interior anchor points can prevent the L-shape model from being
warped into the obstacle shown in yellow.
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[18] K. Hormann, B. Ĺevy, A. Sheffer, Mesh parameterization: theory and
practice, in: ACM SIGGRAPH courses, 2007.

[19] T. Ju, S. Schaefer, J. Warren, Mean value coordinates for closed triangular
meshes, ACM Trans. Graph. 24 (3).

[20] M. Floater, Mean value coordinates, Computer Aided Geometric Design
20 (1) (2003) 19–27.

[21] X. Li, H. Xu, S. Wan, Z. Yin, W. Yu, Feature-aligned harmonic volumetric
mapping using MFS, Computers & Graphics 34 (3) (2010) 242–251.

[22] T. Martin, E. Cohen, R. M. Kirby, Volumetric parameterization and
trivariate B-spline fitting using harmonic functions, Computer Aided Ge-
ometric Design 26 (6) (2009) 648–664.

[23] J. R. Shewchuk, Constrained delaunay tetrahedralizations and prov-
ably good boundary recovery, in: In Eleventh InternationalMeshing
Roundtable, 2002, pp. 193–204.

[24] R. Kimmel, J. A. Sethian, Computing geodesic paths on manifolds, in:
Proceedings of National Academy of Science, 1998, pp. 8431–8435.

[25] X. Wang, F. F. Cheng, B. A. Barsky, Energy and B-spline interproxima-
tion, Computer-Aided Design 29 (7) (1997) 485–496.

[26] G. Taubin, A signal processing approach to fair surfacedesign, in: Pro-
ceedings of the annual conference on Computer graphics and interactive
techniques, 1995, pp. 351–358.

[27] M. Wardetzky, S. Mathur, F. K̈alberer, E. Grinspun, Discrete laplace op-
erators: no free lunch, in: Proceedings of Eurographics Symposium on
Geometry processing, SGP, 2007, pp. 33–37.

[28] K. Zhou, X. Huang, X. Wang, Y. Tong, M. Desbrun, B. Guo, H.-Y. Shum,
Mesh quilting for geometric texture synthesis, ACM Trans. Graph. 25 (3)
(2006) 690–697.

[29] K. G. Kobayashi, K. Ootsubo, t-FFD: free-form deformation by using
triangular mesh, in: Proceedings of the ACM symposium on SolidMod-
eling and Applications, 2003, pp. 226–234.

[30] G. Xu, B. Mourrain, R. Duvigneau, A. Galligo, Analysis-suitable volume
parameterization of multi-block computational domain in isogeometric
applications, Computer-Aided Design 45 (2) (2013) 395–404.

[31] K. Hildebrandt, K. Polthier, Anisotropic filtering of non-linear surface
features, Computer Graphics Forum 23 (3) (2004) 391–400.

[32] H. Pan, Y.-K. Choi, Y. Liu, W. Hu, Q. Du, K. Polthier, C. Zhang,
W. Wang, Robust modeling of constant mean curvature surfaces,ACM
Trans. Graph. 31 (4) (2012) 85:1–85:11.

10


