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Abstract

We present an algorithm in this paper for constructing vatrio domains with consistent topology to parameterizeg¢tmanifold
solid models having homeomorphic topology. The volumgiecameterizations generated by our approach share thessdrog
base domains and are constrained by the correspondingrgmaints. Our approach allows users to control interior niagp by
specifying interior anchor points, and the anchor poingsiarerpolated exactly. With the help of a novel construcdgorithm
developed in this work, the volumetric cross-parametéidracomputed by our method demonstrates its functionalityeveral
examples.
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1. Introduction

Many geometric processing applications require a bijectiv
mapping between models (for example, texture mappingildeta
transfer, morphing, and shape analysis). Computing athigec
mapping between two-manifold surfaces has been widely stud _ _
ied in computer graphics. A general solution for constngti Figure 1: The. polyhedral gells in the template set of base-domains
such mappings can be computed through global parameteriz4€ft) and their corresponding C-polys (right), where the C-polys cor-

. .responding to dferent base-domains are displayed iffietent colors.
tion approaches (such as [1, 2, 3]). However, for the appli-
cations such as morphing and detail transfer, parametieriza
must be constrained by semantic features, which are usuallyomplex of base-domains with consistent topology. Digectl
specified as anchor points on the surfaces of input models. lcomputing a volumetric mapping by using the result of swefac
surface parameterization approaches [4, 5, 6, 7], commag+ba cross-parameterization as constraints cannot guarameet
domains are constructed for the surfaces of input models-to esult of bijective mapping. For instance, the radial basiscfu
tablish mappings that satisfy the constraints prescribedrb  tions (RBFs) based mapping presented in [13] can have self-
chor points. intersection. Similar problem occurs when tetrahedralhmes

The information provided by the boundary surfaces of abased deformation [14] is applied to generate the volumetri
model may be insflicient for describing interior information mapping. Warping a volumetric mesh (with 17k tetrahedra)
like material, intensity, and micro-structure, which slibbe  for the cylinder in Figure 2 to the rabbit leads tokidegener-
defined in the entire solid model. Therefore, researchers ha ated tetrahedra.
paid more attention to volumetric parameterization regent  In this paper, we propose a method to compute domains
Similar to the surface cases, volumetric cross-paranzetisin ~ of volumetric cross-parameterization on three-manifotutiels
is also constrained by semantic features. Computing a corifaving homeomorphic topology, where the parameterizasion
strained mapping between three-manifold models is mork chaconstrained by anchor points. Here, a few heuristics arkegbp
lenging than between two-manifold models. Some existing apto specify anchor points for generating successful voluimet
proaches [8, 9, 10, 11, 12] formulate the computation of volimapping:
umetric mapping globally based on surface correspondences
Bijective mappings can be obtained in some specific types of
domain shapes (such as star shape by the method of Xia et
al. [12]). In real applications, models can have complex ge-
ometry, nontrivial topology, and even interior structurd$e
global domain of such models must be decomposed into sub- e Second, relatively uniform distribution of anchor poirds i
domains with simpler shapes to ensure bijection in mappings  expected to result in base-domains with good shape, which
This motivates our work to find a solution for constructing a is helpful to reduce the stretch in mapping.

¢ First, the anchor points should be defined according to the
semantic correspondences — e.g., mapping two toes of a
human model to the ears and shoulders of another human
body will generate highly distorted mapping.
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Figure 2:Volumetric cross-parameterization can be established among modeld figitedt shapes. Given the prescribed anchor points, the entire
solid model can be decomposed into curved polyhedral cells havingihe sonnectivity as that of the common base-domains. By the volumetric
cross-parameterization, interior structures of the cylinder model earahsferred across all the models (bottom row).

e Third, anchors are specified to help decompose the dde consistent witlDy. When all models are parameterized to
mains into nearly convex regions and help add constraintthe same set of CBD, the cross-parameterization betwean the
inside solids. is established (e.g., our examples use the mean value eoordi

nates [16]). Figure 2 shows an example of how to establish
The computation is conducted on solid models representegross-parameterization in the volumes of models by our doma
by tetrahedral meshes, which can be generated from agonstruction algorithm.
intersection-free triangular mesh model (e.g., by the iplybl
available tool in [15]). A tetrahedral medid can be repre-
sented by a tupl®! = (V, E, F, T) which is a collection of ver-
tices (), edges E), faces F), and tetrahedrar(). In addition Surface parameterization has been studied for many years
to the tuple, a solid modé¥l to be parameterized also has a setand comprehensive surveys can be found in [17, 18]. Here,
of pre-defined anchor poin@, which could be specified on the our review only focuses on the approaches that find constiain
boundary surface d1 or insideM. The models are then to be bijective mappings between a pair (or a set) of models. Peaun
parameterized onto a set@immon base-domains (CBD). The  al. [4] used the connectivity of a predefined template as-base
CBD can be considered as a volumetric mesh model formed bgomains and traced the boundary of patch layouts on each of th
polyhedral cells, where every vertex of the cells is coroeshb  input meshes by linking the given anchor points in a consiste
ing to an anchor point. By this setup, the volumetric crossway as that in the template. Kraevoy et al. [5] and Schreiner
parameterization on a set of modd¥s (i = 1,2,---) sharing et al. [6] further extended the idea of Praun et al. [4] by au-
the same set of anchor poin&is converted into a problem tomating the generation of common base-domains. Our work
of how to consistently partition a model into a setanfved  presented in this paper generalizes the cross-paransienz
polyhedral regions (calledC-polys in this paper) according to to volumetric domains.
the CBD. The template of CBD is also represented by a tuple Volumetric parameterization plays an important role in gnan
Y = (Gy, Ey, Fy, Dy) — Gy is the set of verticesEy andFy  solid modeling applications and has attracted more and more
are the collections of edges and faces, Bds the set of poly-  attention recently. Ju et al. [19] and Floater et al. [16kexed
hedral cells (see Figure 1 for the base-domains of a genuis-twthe mean-value coordinates [20] from surfaces to volumes to
model). compute the interpolation of volumetric data. Mean-valae ¢

The basic idea of domain construction on a given mddiéd ~ ordinate is a powerful and flexible tool to compute the magpin

to compute curves, patches, and C-poly$/drbetween anchor between two volumes. However, to use it on general solid mod-
points according to edgésy, faceskFy and polyhedral'y in ¥ els with complex shape, a domain construction method as what
respectively. The connectivity of constructed C-polysdse®  we propose in this paper is needed.

1.1. Related work



Wang et al. [10] generalized the harmonic mapping to tetra2. Algorithms
hedral meshes and reduced the discrete harmonic energy by
a variational procedure. They proposed an algorithm to map In this section, we present the algorithms for CBD construc-
a genus-zero volume to a solid sphere. Li et al. [8, 9, 21}ion and the volumetric cross-parameterization on CBD. As-
computed the harmonic volumetric mapping between threesumptions for the input of these algorithms are as follows.
manifold models having the same topology. The basic idea
of their approach is to simulate an electrical chargingeyst
over sample points by using harmonic functions. Method
of Fundamental Solutions (MFS) is used in order to manipu-
late the boundary map. Li et al. [21] also pointed out the im-
portance of considering heterogeneous structures in \athion
data. However, the volumetric parameterization based on ha
monic function is not always bijective and the constraints a
only approximated but not enforced. The approach introduce Given the template of CBD which could be treated as a
by Martin et al. [22] can compute harmonic volumetric param-special set of connected polyhedral cells, its boundarfaser
eterization for cylindrical volumes, which is used for &iiate W8 = (GS, EB, F2) is actually a polygonal mesh. All the ver-
spline construction. Xia et al. [12] parameterized stapsu  tices, G (G5 c Gy), of ¥B should already have their corre-
volumes by using Green functions, and showed that the corsponding anchor points defined on the boundary surface of the
structed map is bijective and smooth except at only one @niquinput modelM. The boundary surface can be decomposed into
critical point. Xia et al. also proposed an algorithm [11p®  patchesP® having the same connectivity 8 by a variant [7]
compose a volume into the direct product of a two-dimengionaof the consistent surface decomposition method in [4]. As a
surface and a one-dimensional curve. By tracing the integraesult, the boundary surfaces of input models are decordpose
curve along the harmonic function, a bijective mapping is-co into a set of polygonal patches having the same topology as
structed between the volume and the domain. However, thethat of ¥ (see the top row of Figure 2 for an example). These
approach is not as flexible as ours that allows to add anchgratches serve as an initial front to construct C-polys inftie
points inside solid models. lowing sub-section.

e Input models are required to be homeomorphic to each
other, i.e., having the same topology.

e Anchor points (ofin the models) should have one-to-one
correspondences and are specified in a consistent manner.

2.1. Consistent boundary surface decomposition

2.2. Construction of curved polyhedral domains
1.2. Mainresults i
After constructing the boundary surface patche8, of a

solid modelM according ta¥B, P8 is used to construaiurved
aﬁolyhedral domains (C-poly) insideM. In order to generate C-
polys in a consistent connectivity as the polyhedral d@llsan
i i i advancing-front strategy is adopted here. Starting frowlygp
e We develop a novgpatch construction algorithm to find onal surface patch in the front, its adjacent C-poly (cqroesi-
a two-ma_nlfold surface patc_h composed of the mesh faceﬁ]g to a polyhedron i) can be constructed and the front is up-
to approximate an mtersecpon-free surfz_ace interpodedin 440 accordingly. Therefore, by using the polygonal pedh
boundary loop embedded in three-manifold models. Thess 55 the initial front, we can progressively construct C-goly
area of patch is minimized to make the boundary of do-,iacent to the front one by one. To ensure that the conettuct
main compact. C-polys have the same connectivity @g in ¥, the following
requirements must be satisfied during the construction.

The technical contributions of this paper are summarized
follows.

e Anautomatic construction algorithm is investigated irsthi . .
paper to Construcmurvaj po|yhajra (named as C_p0|ys) 1. Free Of Inter sections. The nery Constructed curves and
Wh|Ch serve asommon ba%dornaj ns (CBD) for V0|umet_ surface patCheS must not intersect with any other anchor
ric parameterization. points, curves or patches.
2. Consistent cyclic order: The cyclic order of patches

Based on the CBD constructed by our approach, constrained around a curve must be consistent to that of the corre-

cross-parameterization between three-manifold modelsbea sponding path in¥' (see Figure 3 for an illustration).
established. 3. Non-blocking: A C-poly should not enclose any anchor
points that do not belong to it (see Figure 4 for an illustra-

The rest of our paper is organized as follows. Section 2
presents the algorithms for CBD construction and volumet-
ric cross-parameterization. The operators for constngdiie It is known that restricted brushfire algorithm [4] could be
boundary curves and patches of C-polys are presented inrsect used to trace a path between anchor points in a topologically
3. After that, the operators for reducing distortion in voktric  equivalent manner on surface. To prevent intersections and
parameterization are introduced in section 4. Examplespnd wrong cyclic order when generating patches and paths, we de-
plications to demonstrate the functionality of our apptoace  velop a novel method in section 3 to construct patches in an
given in section 5. intersection-free manner and in a correct cyclic order.

tion).



Intersection Cyclic Order mesh forMs into a mesh foiM; that has new distribution of ver-
tices but the same connectivity. The warping can be gerterate
correct @ rures by using the mean-value coordinates (e.g., [16, 19]). Ttie-te

i sector  —— pateh hedral meshes with consistent connectivity are the finallies
stored for the cross-parameterization.

wrong

sector \

2.4. Generation of template complex

The template complex of CBD for a set of solid mod#ls
(i = 1,2,---) sharing the consistent sets of anchor points can
be constructed in an automatic way. First, we pick one solid
modelM;, and apply the surface domain decomposition method
o iriclicF s Banmtny SuTes of Kwok et al. [7] to construct a layout of triangular surface
Interior anchor points patches linking the anchor points. Second, by convertinghpa
boundaries into straight edges, a triangular surface nsesb-i
\ ; J tained, which has anchor points on the surfacdvgfas its
/ —_/ \ [ / \ I =8 1 vertices. Last, using the interior anchor pointshdf and the
/ triangular surface mesh as constraints, the algorithr@arf
strained Delaunay Tetrahedralization (CDT) such as [15, 23]
can be used to build the connectivity of a tetrahedral mest th
use only the anchor points ®f, as vertices. The complex of

Figure 4:An illustration of blocking: (left) a blue patch and a red patch this tetrahedral mesh is good enough to be employed as the

defined in template, (middle) the blue patch fails to be constructed dug®mplex of CBD,¥. To get a better performance for the pa-

to the blocking generated by the red patch, and (right) blocking can beameterization, we can further merge some of the tetrahedra

prevented by constructing the red patch in a restricted way. domains to be polyhedral domains if the merging improves the
shape of domains, e.g., a regular cube is better than the same
region composed by a few tetrahedra.

Figure 3: Intersections between patchagves should be prevented,
and cyclic order around a curve must be enforced.

Furthermore, the construction algorithm will fail to termi
nate if an anchor point is enclosed by other C-polys and be-
comes unreachable. For example as shown in Figure 4, a bl Operatorsfor Domain Construction
patch should be constructed as shown in the left, but it is pos
sible that the prior constructed patch (in red) blocks thehan ~ 3.1. Tracing boundary curves

points of the blue patch to be connected — in other words, the A poundary curve of C-polys is a path linking two anchor
red patch divids the anchor points of the blue patch into tWqhoints. Basically, any part of the path shot®T run be-
disconnected regions. This is also known asilweking prob-  yond the space enclosed by the input solid mddello satisfy

lem in the consistent surface parameterization setupl4€8]).  the requirement of being intersection-free, the path disuils
Non-blocking can be guaranteed by regional restrictionin 0 NOT pass through any boundary surface patch that has been
algorithm (details can be found in section 3.3). constructed. Here, we trace the shortest patMirior each

Remark: Throughout the advancing-front process, we keep th&€dge inEy by employing a standard brushfire algorithm [24].
front being two-manifold until no more C-ploys can be con- T0 prevent self-intersections in domain construction,etiges

structed. should not be considered as a possible path if they are amjace
to any mesh edges or faces that have been classified as parts of
2.3. \olumetric mappings the existing C-polys. In addition, to overcome topologicht

. . tacles, virtual edges are added between the center of arfdce
Each C-poly constructed by the above algorithm is composeﬁje vertex opposite to the face when tracing paths. If theltes
by a set of tetrahedra. The volumetric mapping from a C-poly, :

to its corresponding polyhedron in the templ#tean be estab- méisngog,?sst,ﬁﬁf;p;s;:ivmfgiﬁS d\ll\;lr;uezzl edge, the eetraih
lished then (e.g., by Green’s functions [12], MFS [9], hamico '
field [11], or the mean-value coordinates [16, 19]).

For two solid modelsMg and My, having the consistent sets
of anchor points, the cross-parameterization can be éstiabl A more challenging work is to construct a surface patch de-
between their volumes if both of them are parameterizeddo thfined according to anchor point (Vi € 1,2,...,n). The
same template of base-domaiNs, By the model-to-domain boundary curves linking these anchor points have been gener
mappingsl’s : Mg = ¥ andI; : M; = ¥, the model- ated by the above method, and these boundary curves form a
to-model mapping iS¢ = I7! - Ts. The volumetric cross- loop C to be filled by a surface patch. Similar to curves com-
parameterization established in this way is continuoussacr posed of mesh edges, we construct patches composed of mesh
the boundaries of C-polys. To have a compact representatidiaces here. Again, the constructed patches bounding Gpoly
for the result of cross-parameterization, we warp thetetleal  should not intersect any other existing curves or patches an
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the models in dterent colors illustrate the shrinkage of the input vol- ) %
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ume in diferent stages, and (right) the black curves give the movinc N
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Figure 6:Progressive results of topology-preserved peeling that form a

. . genus-zero solid h(S) with its boundary surfacéTh(S), interpolat-

must be two-mgmfold. Moreover_, the c_or_15tructed patch is €Xjng the loopC of boundary curvesiTh(S) is subdivided byC into two
pected to be a discrete surface with a minimal area to redhgce t syrface regions with disk-like topology, where the one with a smaller

distortion in volumetric mapping. Our basic idea of compgti  area is selected as the surface patch of C-poly.
a surface patch that interpolates the given loop is to mimic a
physical phenomenon of shrinking a volume of viscous fluid
around a ring. Keeping on the shrinkage, the volume of fluid
will become a membrane that is stretched and fills the ring.

3.2.1. Laplacian Movement Field (LMF)
The volumetric shrinkage of a solid mesh can be achieved

S _1 2 2 2

by minimizing an energy al(S) = 2 fQ Si+ SV_ + SWdUdde Figure 7: Peeling step that will generate non-manifold entities should
(see [25]_ for reference). The variational der|vat|veE(S) 'S_ be prevented: (left) non-manifold edges and (right) non-manifold ver
a Laplacian operator. In other words, the volumetric shrink jices.

age can be realized by applying Laplacian operators. When the
shrinkage is constrained to a given loop, the result is armmrahi
surface interpolating the loop. The discrete Laplacianr@pe LMF values at its four vertices. We progressively change the
tor [26] at vertexv; is defined ad (vi) = X jenw) Wj(vj — Vi)  solid S into a thin solidTh(S) with its boundary interpolating
with N(v;) being the one-ring neighbors of. w; > 0 are the  C by removing tetrahedra one by one, where the tetrahedron
weighting codficients satisfyind’; w; = 1. There are dierent with a larger LMF value has a higher priority to be removed
choices ofw; (ref. [27]), and here we choose edge-length-basedwhich can be implemented with the help of a maximum heap).
codficients as The solidS is therefore changed int8, Sy, - - - until no more
tetrahedron can be removed —i.e., a membrane containigg onl
= (1) alayer of tetrahedra has been obtained. The solid memtsane i
Zjenw,) IV = Vil denoted byl h(S). See an illustration shown in Figure 6. As the

Notice that the vertices located on the curves to be intatpdl boundary surfacedTh(S), of Th(S) is two-manifold and has

are set as hard constraints not to move during the Laplacia@enus-zero topology, the interpolated lc0wn dTh(S) sepa-

evolution. rates the surface into two two-manifold regions. We compare
After applying Laplacian operators, all vertices are movedtheir areas, and the one with a smaller area is selected as the

towards the minimal surface (as illustrated in Figure Sprmc-  surface patck interpolatingC. P has disk-like topology and is

tice, the position of a vertex on the resultant membrane ean b2 collection of the mesh faces M.

directly computed by solving a linear systeiotvi) = 0 Sub- e polation:  To ensure the boundary surfaceTi(S) in-

ject to the position constraints. For a pointin the given 8lod o1qateC, when removing a tetrahedron adjacent to an edge,
the distance between its positions before and after ampiji@ ¢ i c, we check whether it is the last tetrahedron adjacent to
Laplacian operator indicates its distance to the minimdése. o |t 5o the removal is prevented.

These values in the entire solid moddl form a scalar field _
named a4 aplacian Movement Field (LMF). The peeling pro-  Topology Faithfulness:  To ensure the boundary surface of

cess introduced below can form a membrane encloSimgpd ~ Th(S) is two-manifold and genus-zero, we need to check the
the order of peeling is governed by LMF. topology of the resultant solid before removing a tetrabedr

Two cases are prevented.

[Ivj = vill

3.2.2. Construction by topology guaranteed peeling ) _

Suppose the loopC, to be interpolated is enclosed by a 1. The_removal will lead _to a non-manifold edge or a non-
genus-zero solic that is represented as a tetrahedral mesh, ~ Manifold vertex (see Figure 7).
we first compute the values of LMF at every vertex3f The 2. The removal will generate an empty void, which changes
LMF value of a tetrahedron is then defined as the average of the  the genus-number.

5



B0) ([B0) < <L<q<E

Figure 10: (From left to right) Constructing a trial patch (orange) to
Figure 8: Topology-preserved volume growing to form the initial complete a C-poly which encloses two anchor points (red). Growing a
genus-zero solid for peeling. genus-zero solid around the orange patch that subdivides thetQrren
poly into two regions: green and yellow, where green region contains
all the red anchor points. Compute a new patch within the yellow
region. The new patch forms a C-poly does not induce any blocking.

patches, and will not fall in the wrong sectors. In order te by
pass topological obstacles, we sometime need to refinetthe te
hedra between the lodp and the existing curves or patches.

3.3. Restriction for non-blocking

The only left problem is how to prevent blocking when con-
structing the last patch of a C-poly. Blocking means the G-po

Figure 9:Intersection prevention in the surface patch construction—théendoSes some other anchor points that do_ not belo_ng to the
tetrahedra adjacent to any other curves or patches must not betadded>-Poly. Whether the aforementioned topological blocking-ha
the grown region which will be peeled later for surface construction. Pens after inserting the last patch for the C-poly can bdyeasi

checked by exploring all the tetrahedra inside the C-pobe®

if there are any anchor points embedded. In the cases tltht lea
Initial genus-zero solid: ~ The initial genus-zero solidS,  to blocking, this last patch should be generated infeedint
of peeling can be obtained by a growing process as describetdy. As illustrated in Figure 10, we can apply the previous
below. For a loopC that passes through a set of vertisgs growing based method to construct a genus-zero solid inside
(Vi € 1,2,...,m), we search for a tetrahedron that contains thehe C-poly around the last patch without including any faces
pointve = %Zvi (or the closest tetrahedron g if v is not  in other patches. The growing stops when all anchor points
inside the input modeM). This tetrahedron is hamed as the that should be excluded have been enclosed in the temporaril
centric tetrahedron. Starting from the centric tetrahedron, we grown solid (see the green region in Figure 10). Then, a new
can grow a region by the advancing-front method to add tetrapatch is constructed in the rest region of the previously- con
hedra adjacent to the front one by one. The growing procedurstructed C-poly (e.g., the yellow region in Figure 10). Bisth
stops when all edges & have been enclosed by the grown method, a new C-poly will be generated by excluding all an-
region, which is then used as the initial solid for the peglin chors that should not be enclosed - i.e., the topologicakblo
process. Again, when growing the region, the cases that wilng problem can be solved.
generate non-manifold entities should be prevented toaguar
tee the grown volume has genus-zero topology. Figure 8 showz'[;
a genus-zero solid obtained by growing from a loop. As the™
peeling will be conducted in this sol, the values of LMF are
computed only on the vertices &f instead of the entire input
model M. Although rarely, the centric tetrahedron could be in
a region separated from the region containing the IGpphe
growing algorithm will report fail to enclosg in this case. We
then restart the growing procedure from a tetrahedron agenta
ing an edge o€.

Operatorsfor Reducing Distortion

The boundary curves or patches of a template of CBD
are represented by straight edges and facet.irHowever,
the boundary curves and patches constructed by our method
presented above are in zigzag and terrain-like shapeshwhic
will introduce unwanted distortion in the volumetric cress
parameterization. Motivated by the smoothing operatoduse
) , . . ) in [5], two operators are incorporated into the domain carast

As mentioned in section 2.2, topologically equivalence musijo framework to reduce the distortion caused by the shépe o
be ensured by preventing intersections and wrong cyclierord e 4omains. Note that, the operators will not be appbed t
when constructing a sur_face patch. It can be realized With thy o \ertices on the surfaces of input models.
help of the above growing process. During the process, the
tetrahedra adjacent to any other paths or curves must not be .
added into the grown region (see Figure 9). Similarly, fastn 4.1. Curvesiretching
tetrahedra in the wrong sectors (as illustrated in Figuréh@y The purpose of curve stretching is to make a boundary curve
are not added. As a result, the initial sofidfor peeling does  &a; linking two anchor points; anda; as straight as possible
not include any such tetrahedra. Thus, the surface patch cowhile staying inside the input solitM. The curve stretching
structed by peeling does not intersect any existing curves aperator achieves this goal through the iterative positjottate
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of vertices. For each vertex located org;a;, supposey-1 and
Viy1 are its two adjacent vertices on the curve, we apply

Vi <= Vi + A((Vie1 + Vis1)/2 — Vi) 2

whereA is a relaxation factor with a value ofZb. The update

is forbidden if the new position ofx makes any of its adjacent
tetrahedra degenerate. For the vertices that are witheething
neighbors ofaa; and are not on any other curves or patches
of C-polys, their positions are updated by the relaxed unifo
Laplacian. Again, any update that will lead to degeneratibn
tetrahedra is prevented. The above steps are repeatedhentil
updates of vertices are trivial.

C-polys smooth by position updating, which is similar tovaur “
stretching. For a vertexon the surface patch of a C-poly,

V< V + A(Vag — V) 3

4.2. Patch stretching \
The patch stretching operator makes the boundary patch of \ ’
L

with 2 = 0.25 being the relaxation factor ang,y being the av-
erage position o¥’s one-ring neighbors oR. For vertices that
are three-ring neighbors of the surface patch and are natyn aFigure 11: An example to demonstrate the functionality of stretching
other curves or patches of C-polys, their positions are tgutda operators to reduce distortion in volumetric cross-parameterization be-
by the relaxed uniform Laplacian. We repeat the above stepdveen two human modelsls and M. The top row shows the result
until the updates of vertices are trivial. Similarly, thedape of of domain construction without stretching. The bottom row gives the
a vertex is forbidden if it makes any of its adjacent tetrahed result with stretching. The color maps display tifestretch [28] of
degenerate. tetrahedra transformed by the corr_espo_ndlng cross-parametetizatio
Notice that, preventing the degeneration in tetrahedrangur where the value 1.0 stands for no distortion.
position update can also avoid intersections between suanve
patches of C-polys. Incorporating curve stretching andfpat  Not only interior structures but also the clothes worn on hu-
stretching in the domain construction algorithm can gye@t  man bodies can be transformed by bijective volumetric eross
duce the distortion of volumetric cross-parameteriza@®e  parameterization. This leads to an important applicatiothé
Figure 11 for an example). apparel industry — design reuse. To conduct volumetricseros
parameterization outside human models, we first generdte vo
ume meshes between a model and ftset surface, which is
similar to the concept of shell map [28]. Constrained voltime
This section studies the results generated by our approadit cross-parameterization can be constructed betweesothk
and demonstrates its performance in a variety of applicatio  shells. As shown in Figure 14, the mapping constructed by our
Given a set of models, the method proposed in this paper camethod is intersection-free while the result from t-FFD][@9
construct a set of base-domains according to the conngctivi spatial warping [13]) has self-intersections in the regiorith
of a template which is constrained by anchor points. This idiigh curvature (such as under the crotch). Again, the shape
useful to volumetric blending and remeshing. Figure 2 gares transformation supports non-manifold entities — see theore
example of blending the interior structure between modéls w above the arm.
a variety of shapes. Our method can decompose the shape ofHexahedral mesh is always demandedAmite Element
a complex model into sub-domains to generate bijective mapAnalysis (FEA) or Computational Fluid Dynamics (CFD) anal-
pings (e.g., the hand models shown in Figure 12). ysis. With the help of our framework, after establishingibk
Once volumetric mapping is established between modelgjmetric cross-parameterization on tetrahedral meshes$ex-
point-to-point correspondences are well defined. Theeefafr  ahedral mesh can be transformed from multiple cubic regular
ter establishing volumetric cross-parameterization betwtwo  shapes into other freeform models. Examples can be found in
models, we can easily transfer all the interior structuresde-  Figs.15 and 16.
tails from one model to another. Two scanned human models The input constraints given to our method can be specified
are shown in Figure 13 as an example. The bones and orgaiside the volumes, which provides a better control for thalg
can be warped from one model to another. Compared with othety of cross-parameterization. An example is shown in Fégur
shape transformation techniques (e.g., t-FFD [29]), tlecbi 17. Parameterizing a cubic domain to a spherical region-with
tive mapping constructed by our method c#ieetively prevent  out adding interior anchor points may warp the L-shape model
self-intersection. into an obstacle (in yellow) — see the top row of Figure 17. To

5. Resultsand Applications



Figure 12: An example of constrained volumetric cross-
parameterization in highly concave models, where commor
base-domains constructed by our method are also shown. The col
map gives the 2-stretch [28] of tetrahedra in the blended solid model.
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Figure 14:Having volumetric shell constructed between a model and its
offset surface, the mapping of cross-parameterization can be computed
for the shells. This mapping is bijective. As a result, the transformed
clothes are intersection-free.

Figure 13:An example of structure transformation between two human
models. The volumetric cross-parameterization constructed by our aj
proach is a bijective mapping, thus prevents self-intersections whic
are common problems on the spatial-warping-based method (such
t-FFD [29]).

avoid such cases, we can add anchor points to the surface
the obstacle. With these constraints, the L-shape modebevil
outside the obstacle. The feature alignment method praposerigure 15: Volumetric cross-parameterization constructed by our ap-
by Li et al. [21] can achieve a similar goal. However, if the proach between genus-two models in Figure 1 can be used in the hex-
structures are highly complicated — which is common in reaphedral remeshing.

applications — it is hard to find out the surface paramettoza
required by their method. Furthermore, the constrainteare
actly enforced in our approach while fitting errors are gatest
in the approximate fitting based methods.

6. Conclusion and Discussion

In this paper, we propose a new method for the construction
We have also studied how the volumetric cross-of CBD used inthe volumetric cross-parameterization. Tdie v
parameterization is feected by the quality of tetrahedral umetric cross-parameterization can be established thrthe
meshes used in our algorithm. In Figure 18, we construct thbase-domains constructed by our approach. The mapping can
cross-parameterization between a cube model to other twoe controlled in a very flexible manner by adding and adjgstin
cubes with diterent volumetric meshes. The target model lanchor points, which are strictly interpolated in the magpi
has a mesh with similar quality as that of the source model, anThe anchor points are allowed to be placed both on the bound-
the target model 2 has a much coarser mesh. Without applyingry surface and inside the solid models. Examples and applic
the stretching operators introduced in Section 4, the densdions shown in this paper have demonstrated the functitynali
volumetric mesh leads to a result of cross-parameterizatioof our approach.
with less distortion. This is because that a smoother paitth w  Limitation of this algorithm comes from three aspects. t-irs
be generated on the denser mesh by our patch constructidime number of anchor points required to generate a suctessfu
algorithm. After applying the stretching operators, sanlevel  domain decomposition depends on the topology of models to
of distortion is generated on the mesh models witfiedént  be parameterized. Basically, more anchor points are reduir
density. for high genus models. For example, for the genus zero mod-
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Figure 18:A study on the performance of the volumetric cross-parameterizatidetahedral meshes withftérent quality. Target model 1 has
a mesh with similar density as the source model, and target model 2 hashecoarser mesh. It is easy to find that cross-parameterization with
similar distortion level can be generated after applying the stretchingtopeia Section 4.
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Figure 16:Structured hexahedral mesh generation on a hand model wit ")
. . . o
the help of volumetric cross-parameterization.
Figure 17:When mapping a cubic domain to a spherical region, adding
interior anchor points can prevent the L-shape model from being
els shown in Figure 2, only four anchor points are necessaryarped into the obstacle shown in yellow.
to generate successful decomposition (although may haye la
distortion). However, for the genus one model in Figure 1,
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