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Abstract
Recent development of per-frame motion extraction method
can generate the skeleton of human motion in real-time with
the help of RGB-D cameras such as Kinect. This leads to
an economic device to provide human motion as input for
real-time applications. As generated by a single-view im-
age plus depth information, the extracted skeleton usually
has problems of unwanted vibration, bone-length variation,
self-occlusion, etc. This paper presents an approach to over-
come these problems by synthesizing the skeletons gener-
ated by duplex Kinects, which capture the human motion in
different views. The major technical difficulty of this syn-
thesis comes from the inconsistency of two skeletons. Our
algorithm is formulated under the constrained optimization
framework by using the bone-lengths as hard constraints and
the tradeoff between inconsistent joint positions as soft con-
straints. Schemes are developed to detect and re-position the
problematic joints generated by per-frame method from du-
plex Kinects. As a result, we develop an easy, cheap and fast
approach that can improve the skeleton of human motion at
an average speed of 5ms per frame.

Keywords: Skeleton, motion, RGB-D camera, real-time,
user interface.

1 Introduction
Human motion recognition, as a very natural method for
Human-Computer Interaction (HCI), plays an important role
in many computer systems and applications (e.g., [5, 6, 22]).
Widely used methods for capturing human motion in virtual
environment include optical motion capture systems [31,35],
inertial systems [36], acoustic systems [9, 21], mechanical
motion capture systems [16, 19] as well as hybrid systems
combine multiple sensor types [3, 7, 32]. However, most of
these systems need specific hardware and software, which
are expensive. Moreover, the systems usually have a long
installation time and complicated installation steps.
Since the release of Microsoft Kinect [17], this type of RGB-
D camera attracts many attentions from a variety of commu-
nities as it provides many new opportunities for HCI. The
depth information provided by RGB-D cameras facilitate a
lot of applications, such as computer games, virtual try-on
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Figure 1: Problems of skeleton tracking by single Kinect –
the viewing direction of Kinect sensor is specified by yellow
arrows. (Top-left) Self-occlusion: the left arm is hidden by
the main body so that the positions of elbow and wrist are
estimated to incorrect places. (Top-right) Bone-length vari-
ation: when viewing from a different direction, the length
of forearm in an open-arm pose (right) changes significantly
from its length that is captured when stands facing the Kinect
camera (left). (Bottom) Artificial vibration: When viewing
from a specific angle, the position of elbow joint has un-
wanted vibration even if a static pose is kept.

[8], environmental interaction [34], 3D reconstruction and
interaction [12, 20], and human body scanning [30, 33]. The
function of real-time human skeleton extraction in Microsoft
Kinect SDK [17, 29] is very impressive. Nevertheless, when
applying the skeleton generated by Kinect library in virtual
reality (VR) and robotics applications, some problems are
found. Generally, limited by the information provided from
a single-view, the skeleton extracted by [29] has the follow-
ing problems (see also the illustration in Fig.1).

• Self-occlusion: This happens when some parts of a hu-
man body are hidden. As the RGB-D camera can only
report the depth value of a pixel that is nearest to the
camera, information at the hidden part will be missed
(e.g., the top-left of Fig.1).

• Bone-length variation: The method of Shotten et al.
in [29] first segments the pixels of a human body into
different regions, and the segmentations are used to gen-
erate confidence-weighted proposals for the joint posi-
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tions. However, as there is no explicit constraint applied
for the bone-length, the lengths of bones varied signifi-
cantly during the motion (e.g., the top-right of Fig.1).

• Artificial vibration: Caused by the acquisition error
from camera, the segmentation conducted in [29] vi-
brates near the boundary of regions even when the hu-
man body is not moved. This leads to unwanted vi-
brations on the extracted joint-positions (see the bottom
of Fig.1 for an example), which also make the lengths
of bones change during the motion. On the other as-
pect, this artifact vibration is also a factor leading to the
bone-length variation in motion.

Although there are some solution (e.g., [1]) to improve the
extracted skeleton in a single-view system, a more reliable
consideration is to introduce more cameras into the motion
extraction system. Especially when the cost of such a cam-
era is low (e.g., the Kinect sensor). For the problem shown
in Fig.1 (top-left), a single-view approach like [1] can have
trivial chance to fix the incorrect skeleton. In our system, du-
plex Kinects are used. All above drawbacks are improved by
our approach, which is easy, cheap and fast.

1.1 Our system
To overcome the problems of skeleton generated from a
single-view, we adopt a system with duplex Kinects for mo-
tion capture. A camera facing the user at the beginning of
per-frame motion capture is called principal camera (de-
noted by KA in the rest of this paper), and the other cam-
era is called secondary camera (denoted by KB). Although
the artificial variation can be somewhat reduced by averag-
ing the positions of joints reported by two cameras, this setup
with two sensors cannot automatically solve the problems of
bone-length variation and self-occlusion. In many cases, po-
sitions of the same joint reported by KA and KB are far away
from each other – called unmatched joints in the rest of this
paper.
As shown in Fig.2, such inconsistent situation occurs even
after registering the coordinate systems of two Kinect cam-
eras by a calibration procedure. Specifically, 3D point clouds
are used to calibrate the positions of two Kinects by a method
similar to [20] so that the 3D environments captured by KA

and KB overlap. Our analysis finds that the inconsistency of
skeletons is generated by the following reasons:

• The 3D regions captured by two Kinects are partially
overlapped on the human body (as shown in the top row
of Fig.2); therefore, the positions of joints computed in-
dependently by the 3D information obtained from KA

and KB are seldom coincident although they could be
very close to each other after 3D registration.

• More significant inconsistency is caused by the mis-
classification of regions in the 3D data obtained from
a single-view. As illustrated in the bottom row of Fig.2,
the joint of right elbow is tracked to the waist joint by
mistake if only KA is used. However, this joint is re-
ported as ‘tracked’ by Kinect SDK [17]. Simply aver-
aging two skeletons will generate an incorrect result.

Figure 2: Inconsistent skeletons extracted by two Kinects.
(Top row) The 3D information captured by KA (in red) and
KB (in blue) are only partially overlapped even after carefully
applying a registration procedure; as a result, the extracted
skeletons, S A and S B, can be very close to each other but
seldom be coincident. (Bottom row) In the view of KA, the
elbow joint of S A is misclassified to the region of waist joint;
although the position of this elbow joint on S B is correct,
simply computing the average of S A and S B (i.e., 1

2 (S A +

S B)) will not give the result as good as S ∗ generated by our
approach.

• When self-occlusion occurs in the view of any Kinect,
inconsistent positions can also be generated as the joint
position is estimated (but not being tracked) according
to the motion database of Kinect SDK library [17].

The problem of inconsistency can be solved under our opti-
mization framework (details can be found in Sections 2 and
3).
In this paper, we present an approach using the setup of du-
plex Kinects to enhance the skeletons generated by Kinect
system. Two Kinects, KA and KB, are placed ‘orthogonal’ to
each other. Note that, it is not necessary to let KA and KB ex-
actly orthogonal to each other, where the relative position and
orientation between them can be automatically registered at
the beginning of skeleton tracking (see Section 4). Microsoft
Kinect SDK [17] is used to generate two skeletons S A and
S B corresponding to KA and KB respectively. Under a con-
strained optimization framework, an optimal skeleton S ∗ is
obtained by using the bone-lengths as hard constraints and
the tradeoff between inconsistent joint positions as soft con-
straints. A practical per-frame method is developed to detect
and re-position the problematic joints efficiently. As a result,
we are able to compute S ∗ in real-time applications (i.e., at
about 30 fps). The skeleton enhancement itself can be up-
dated at ∼ 5 ms for each frame in average when running on
our test platform.

1.2 Related work
The research of motion capture system has a long history,
where the surveys of vision-based techniques can be found
in [18, 25]. The skeleton generation function provided by
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Kinect SDK is based on the approach described in [29]. It
is a per-frame-based method. A body parts representation is
designed to map the pose estimation problem into a per-pixel
classification problem. The segmentations are used to gen-
erate confidence-weighted proposals for the joint positions.
A large and highly varied training data set is employed for
the classification problem. As a result, the approach is fast
and can predict the joint points position in 3D regardless to
body shape or clothing. Our work presented in this paper is
based on above pose estimation approach to generate the ap-
proximated positions of joints. Differently, we focus on how
to improve the skeletons generated by these approaches so
that the motion of human body is more realistic to be used in
real-time applications.
A thread of research in motion is about how to improve (or
correct) joint-positions captured by motion systems. Many
existing approaches focus on the problem of occlusion fill-
ing. Interpolation methods (e.g., linear or spline interpola-
tion [26]) are commonly used to estimate the missed mark-
ers. However, interpolation algorithms cannot be used for
on-site applications as they require data sampled both be-
fore and after the period of occlusion. Tommaso et al. [23]
propose an extrapolation algorithms which only require data
sampled before an occlusion. Bone-length constraints are
used in BoLeRO [14] for occlusion filling methods. Ho et
al. [10] used bone-length constraints in character motion. By
keeping the distance between adjacent joints from the orig-
inal scales to the target scales, the scene semantics is cap-
tured. Our approach also takes the bone-length constraints
as a basic assumption.
Real-time human skeleton extraction is an impressive func-
tion provided by Microsoft Kinect SDK [17]. However, in-
formation that can be captured in a single view is not suffi-
cient for many motions. Aforementioned problems occur fre-
quently. Therefore, more attention is paid on multiple Kinect
approaches recently (e.g., [4,30]). A survey about 3D human
pose estimation from multi-view videos can be found in [11].
Difficulties of using multiple Kinects for motion capture have
been analyzed above.

1.3 Main result
Our approach provides the following advantages in skeleton
tracking.

• By using the constraints of bone-lengths and the weight-
ing scheme to solve inconsistent joint positions, this ap-
proach provides an improved per-frame skeleton track-
ing solution.

• The joint mistracking problem of Kinect is solved by a
new method that can efficiently estimate the reliability
of joint positions and then adjust the weights in opti-
mization.

• Since the inconsistency of joint-positions is solved
under the constrained optimization framework, two
Kinects can be automatically calibrated in a very sim-
ple way, which greatly reduces the installation time of
system.

As a result, a low-cost (∼ $100 × 2) RGB-D camera-based
skeleton tracking interface is developed as an input device
for real-time applications.

2 Optimization
In this section, we formulate the skeleton enhancement prob-
lem under a framework of constrained optimization.
Without loss of generality, we assume that a rotation matrix
R and a translation vector t have been obtained during the
initialization of the duplex Kinects system to synthesize the
3D scenes captured by two cameras. For any point q ∈ <3

in the coordinate system of KB, its corresponding position in
the system of KA is q′ = Rq+ t. Given two skeletons, S A and
S B that are generated by KA and KB respectively, we wish to
optimize the position of every joint pi ∈ S A to p∗i in the co-
ordinate system of KA to satisfy the following requirements:

• The distance between two neighboring joints (e.g., p∗i
and p∗j) is expected to be the same as the corresponding
bone-length1 (e.g., li, j).

• When the positions of a joint i obtained in both KA

and KB are reliable, p∗i should be as-close-as-possible
(ACAP) to pi and Rqi + t with qi being the position of
joint i on S B.

• When the positions of a joint i obtained by one Kinect
is reported as unreliable and an estimated position is
given, the position of p∗i should be closer to the reliable
position.

Among these requirements, the length preservation of bones
is set as hard constrains in our optimization framework while
the ACAP request is set as soft constraints. In short, joints
of a skeleton can be re-positioned by solving the following
constrained optimization problem.

min
∑

i∈S A
wA

i ‖p∗i − pi‖2 + wB
i ‖p∗i − (Rqi + t)‖2

s.t.
∑
{i, j}∈S A

(‖p∗i − p∗j‖ − li, j)2 = 0 , (1)

where the weights wA
i and wB

i are adjusted according to the
reliability of pi and qi. Details about weighting will be dis-
cussed in Section 3 below. Note that in Eq.(1), pi and qi

could be either ‘tracked’ positions or ‘estimated’ positions
(reported by Kinect SDK as ‘inferred’ joints).
The constrained optimization problem defined in Eq.(1) can
be solved efficiently. With the Lagrange multiplier λ, an aug-
mented objective function as

J(X) =
∑

i∈S A
wA

i ‖p∗i − pi‖2 + wB
i ‖p∗i − (Rqi + t)‖2

+λ
∑
{i, j}∈S A

(‖p∗i − p∗j‖ − li, j)2

(2)
can be minimized by using Newton’s method. Here, the un-
known vector becomes X = {p∗i } ∪ λ. The update in each
iteration of Newton’s approach consists of two steps:

1. Solving ∇J2(X)d = −∇J(X);

1The bone-length can be obtained during the initialization step.

3



2. X← X+τd by using a line search to determine the best
τ.

Note that, in the computation of each frame, the optimized
joint-positions obtained in previous frames are used as the
initial value of X. Using the sequential linearly constrained
programming, the second derivatives of the constraint are ne-
glected. The equation ∇J2(X)d = −∇J(X) to be solved in
each step is simplified to

(
H ΛT

Λ 0

) (
dp

λ

)
=

(
bp

bλ

)
(3)

with {p∗i }new = {p∗i } + dp. Here, the vectors Λ and bp are

Λ = { ∂
∂p∗i

∑

{i, j}∈S A

(‖p∗i − p∗j‖ − li, j)2} (4)

bp = −{ ∂
∂p∗i

∑

i∈S A

wA
i ‖p∗i − pi‖2 + wB

i ‖p∗i − (Rqi + t)‖2} (5)

and the value of bλ is

bλ = −
∑

{i, j}∈S A

(‖p∗i − p∗j‖ − li, j)2. (6)

H is a diagonal matrix H = diag{hi} that has

hi =
∂2

∂p∗i
2 (wA

i ‖p∗i − pi‖2 + wB
i ‖p∗i − (Rqi + t)‖2). (7)

Efficient Numerical Scheme: By the above formulation,
when applying the iterations to find optimal value of {p∗i }, we
can actually determine the value of dp in a more direct way
(i.e., without applying the general numerical solver). Specif-
ically, the value of λ can be computed by

λ = (ΛH−1bp − bλ)/(ΛH−1ΛT ) (8)

with H−1 = {1/hi} since H is a diagonal matrix. The value of
dp can be determined by the substitution that

dp = H−1(bp − ΛTλ). (9)

In short, the optimization for joint-positions in a frame is
completed in a very efficient way. The resultant joint-
positions can be obtained in less than 5ms in average accord-
ing to our experimental tests. Here, we stop the iteration of
Newton’s approach when ‖d‖ < 10−5 or the update has been
taken for more than 50 times.

3 Scheme for Solving Inconsistency
Now we introduce the method about how to determine the
values of wA

i and wB
i based on the reliability of joint-positions

extracted by KA and KB. When using a single Kinect setup,
whether a joint is ‘well’ tracked will be reported by the
Kinect SDK as ‘tracked’ or ‘inferred’. The position of an
‘inferred’ joint is estimated by the method proposed in [29]
– which will be mentioned as ‘estimated’ positions in the rest

Figure 3: An illustration for explaining the observation that
the distance between mis-tracked joints in one viewing plane
will generally be much shorter than the distance in another
viewing plane.

of this paper. When duplex Kinects are employed in the mo-
tion capture, for the same joint, it can be reported as ‘tracked’
by one Kinect while being reported as ‘inferred’ by another
one. A scheme is developed to determine the weights (i.e.,
wA and wB) employed in the above constrained optimization
framework to indicate the reliability of a position.
According to our experimental tests, the positions of a joint i
reported by KA and KB (e.g., pi and q′i) can be unmatched –
i.e., the distance between pi and q′i is large. The unmatched
case sometime happens even when both Kinect sensors re-
port ‘tracked’ joints. Our observation finds that most of the
unmatched cases are led by the mis-tracking of joint position
in a camera. To resolve this problem, we need to figure out
which one is mis-tracked and therefore give a lower weight
in optimization. Without loss of generality, mis-tracking oc-
curs in the scenario that a joint i is very close to another joint
m in the viewing plane of a camera (e.g., KA) but they are
actually far away from each other in <3 – m stands for mis-
leading here. This can be detected in the viewing plane of
another camera (e.g., KB) which is placed in a nearly orthog-
onal orientation. An illustration is shown in Fig.3. For a joint
i, the following steps are conducted to figure out which joint
m will more likely lead to the mis-tracking of i:

• We first project pi into the viewing plane of KA and
search its closest joint j in the viewing plane which has
no bone directly linking to i.

• Then, we project q′i into the viewing plane of KB and
search its closets joint k – again, there must have no
bone linking i and k.

• The distance, dA
i, j, between i and j in the viewing plane

of KA and the distance, dB
i,k, between i and k in the view-

ing plane of KB are compared. If dA
i, j < dB

i,k, j is con-
sidered as the mis-leading joint, m, that could cause the
mis-tracking of i. Otherwise, k is considered as the pos-
sible candidate that leads to mis-tracking.

After determining the mis-leading joint m, distances between

4



Figure 4: Our algorithm can correct the positions of problem-
atic joints by resolving inconsistency under our constrained
optimization framework while preserving the bone-lengths.
The joints in the red circles are problematic.

points i and m in the viewing planes of KA and KB can be ob-
tained as dA

i,m and dB
i,m. If dA

i,m > dB
i,m, the position of i provided

by KA, pi, is more reliable; otherwise, the position generated
by KB, q′i , is more trustable. Such reliability is incorporated
in the formulation of weights computation below.
The distance between i and the mis-leading joint (i.e., m) in
the viewing plane of KA and KB are used to determine the
basic weights of w̄A

i and w̄B
j . Specifically,

w̄A
i =

dA
i,m

dA
i,m + dB

i,m

, w̄B
i =

dB
i,m

dA
i,m + dB

i,m

. (10)

Since the ’inferred’ joint position is an estimated result by the
Kinect SDK, the ’tracked’ one is expected to be more reli-
able. If pi and q′i have different tracking states (i.e. ‘tracked’
and ‘inferred’), there exists a reliability difference between
the two joint points. In order to reflect this difference, two
adjusting coefficients hA

i and hB
i are integrated to w̄A

i and w̄B
i

respectively. Values of the coefficients are assigned to be h
for the joint which is reported as ‘tracked’ and (1− h) for the
‘inferred’ one, where h ∈ (0.5, 1.0) is a parameter that can
be tuned by users. A larger h is used, the weighting results
depend more on the tracking state of Kinect SDK.
Finally, the weights are normalized to

wA
i =

(hA
i w̄A

i )4

(hA
i w̄A

i )4 + (hB
i w̄B

i )4
, wB

i =
(hB

i w̄B
i )4

(hA
i w̄A

i )4 + (hB
i w̄B

i )4
.

(11)
h = 0.786 is adopted for all examples shown in this paper.
Our scheme proposed above can successfully resolve incon-
sistency. Figure 4 shows the processed result for an example
with unmatched joints.

4 Details of Initialization
During initialization of the system, we need to determine a
rotation matrix R and a translation vector t to synthesize the
3D information captured by two cameras, KA and KB. This

is in fact a problem of rigid registration, where a good sur-
vey can be found in [27]. However, as shown in the top row
of Fig.2, even after applying an accurate calibration step to
determine R and t, the transformed positions of joints ob-
tained from KB do not keep coincident with joint-positions
extracted by KA. Therefore, a simplified but more effective
method is developed in our approach.
After installing and placing the two Kinects appropriately –
nearly orthogonal to each other, we let a user to stand at about
45◦ facing both Kinects and in a pose with two arms and legs
open (such as the top row of Fig.2). In such a pose, all joints
S A and S B will be reported as ‘tracked’ and will be used to
determine R and t in a least-square sense by minimizing the
following energy function defined on joint positions

JR =
∑

i

‖R(qi − cq) + t − (pi − cp)‖2, (12)

where cp and cq are the average centers of {pi} and {qi} re-
spectively. Specifically, the 3 × 3 matrix R can be solved
by Singular Value Decomposition of the linear equations of
∂JR/∂R = 0. The solution of SVD need to be first converted
into a quaternion, and then be normalized to finalize the rota-
tion matrix R. Details can be found in [28]. The translation
vector t is determined by cp ≡ Rcq + t.
Moreover, the update of translation vector t is also conducted
before the computation in every frame. Specifically, the cen-
tric positions of joints on the main body (i.e., excluding the
joints on limbs and at head) are used to transform the rotated
S B to let its center coincident with the center of S A.
In the initialization step, the lengths of bones are also com-
puted and stored. The tracked joints of S A and S B are first
placed to the average position, i.e.,

p∗i ←
1
2

(pi + Rqi + t). (13)

Then, lengths of bones on this averaged skeleton can be com-
puted. The procedure of bone length initialization can be
taken for a few seconds, and the averaged lengths of each
bone during this period will be preserved in the later ACAP
computation.

5 Results and Discussion
We have implemented the algorithm proposed in this paper
by using Visual C++ and the Microsoft Kinect SDK library
v1.6 [17] on Window 7 OS. The experiments are performed
on real human motions captured by a setup of two Kinect
cameras for Xbox360. All the experimental tests are run on
a moderate PC with Intel Core i5 CPU 750 at 2.67GHz and
4GB RAM. Benefit from the efficiency of our algorithm, the
proposed skeleton enhancement algorithm can generate the
results at the speed of 5ms per frame in average, where the
exact computation time is in the range from 1 to 7 ms. As
a result, the CPU code can achieve a real-time skeleton ex-
traction. Specifically, two different programs are developed
in our prototype system. One is used to communicate with
the Kinect sensor (KA or KB) and extract the skeleton (S A or
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Figure 5: The statistics of bone-length variation at different parts of skeletons in a Badminton playing motion, where the
green, blue and red curves are representing the bone-lengths of S A, S B and S ∗ respectively. The target bone-lengths, which are
obtained from the initialization step, are displayed as a horizontal dot line in black.

S B) by calling the functions provided by Microsoft Kinect
SDK [17]. Limited by the functionality of Kinect SDK li-
brary, one program can only get the skeleton from one Kinect
sensor. Therefore, this program has two copies running at the
same time on the test platform. Another standalone program
communicates with these two programs to collect the data of
S A and S B, and implements the algorithm proposed in this
paper to compute the enhanced skeleton S ∗. The single-core
CPU implementation of [29] provided by Microsoft Kinect
SDK can extract S A and S B at around 30fps on two cores of
CPU. As the program of our enhancement algorithm takes
maximal 7ms for processing the skeleton in a frame, there
is almost no delay in the experimental tests, the optimized
skeleton S ∗ can still be obtained at 30fps in average. There-
fore, the improved skeleton generated by our system can be
used in many real-time applications.

There was a concern about the interference between multi-
ple Kinects. Maimone et al. [15] propose a self-vibration
method for reducing interference between multiple Kinects
operating in the same spectrum. In motion extraction, Caon
et al. [4] verify that the interference caused by two Kinects
is insignificant for the skeleton tracking, and the skeleton re-
mains nearly constant no matter how the relative position of

the two cameras is.

Our first test shown here is conducted to check how signifi-
cantly the algorithm proposed in this paper can improve the
bone-length. As shown in Fig.5, the statistics and compar-
isons of bone-lengths are given at different parts of the skele-
tons extracted from a badminton playing motion (shown in
Fig.6). After applying our algorithm, the lengths of bones
are all very close to the ideal lengths which are set as the
hard constraints in our ACAP optimization framework. In
the other aspect, the bone-lengths of skeletons extracted from
KA and KB independently varies significantly during the mo-
tion, and the length variations on S A and S B are not com-
patible to each other. The skeletons of a badminton playing
motion are extracted from different frames and displayed in
Fig.6 for the comparison. The skeletons processed by our
approach can represent the movement of player more natu-
rally. The skeletons in another motion of basket-ball playing
are show in Fig.7. More demos can be found in the supple-
mentary video of this paper.

Limitations
The major limitation of this approach is that the algorithm
is based on the initial skeletons, S A and S B, generated by
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Figure 6: The motion of badminton playing: the enhanced skeletons, S ∗, generated by our algorithm are displayed in purple
(at the third and the fifth rows), the skeletons generated by Microsoft Kinect SDK, S A and S B, are displayed in brown (at the
second row) and blue (at the fourth row) respectively. In our tests, we also use a video camera to capture the motion (shown in
top row) so that the real motion can be illustrated more clearly. The orientations of two Kinect cameras, KA and KB, are also
illustrated in the first row – see the yellow arrows.

Microsoft Kinect SDK. In the scenario neither of the two
views can generate reliable joint positions (as illustrated in
Fig.8), it has difficulty to retrieve correct joint positions.

On the other hand, the correctness of motion extraction by
Kinect SDK depends heavily on the database of Kinect mo-
tions; therefore, some motions (e.g., squatting shown in
Fig.9) cannot be estimated as good as other existing motions
in the database. In our future work, we plan to construct a
supplementary motion database to cooperate the motion ex-
traction with the motion database of Kinect SDK.

Moreover, we also find that the positions of hands and feet
generated by Kinect SDK can have unwanted vibration that
cannot be eliminated by our algorithm. Nevertheless, this
type of vibration doesn’t affect the overall motion of our re-
sult.

At last, since the technique used to generate S A and S B is
per-frame estimation based, it does not provide the ability to
distinguish the front/back directions of a human body. This
difficulty can be overcome by adding another sensor or at-
taching one special marker on human body (e.g., at the chest
or on one side of the shoulder). Once this special marker can
be identified in the images captured by RGB-D cameras, the
orientation of a human body can be identified.

6 Conclusion

This paper presents an efficient method to enhance the skele-
tons of human motion, which can be extracted per-frame with
the help of RGB-D cameras such as Kinect. This develop-
ment leads to an economic device to provide human motion
as input for virtual reality systems. The skeleton extracted by
a single RGB-D camera using Microsoft Kinect SDK usually
has problems of unwanted vibration, bone-length variation,
self-occlusion, etc. We develop an approach in this paper to
overcome these problems by synthesizing the skeletons gen-
erate by duplex Kinects, which capture the human motion
in different views. Specifically, we did not change the mo-
tion extraction method; but we use two per-frame extracted
skeletons as input to generate an optimized skeleton on-site.
The major technical difficulty comes from how to evaluate
the reliability of each joint’s positions reported by two cam-
eras, and how to resolve the inconsistency. Our algorithm
is formulated under the constrained optimization framework
by using the bone-lengths as hard constraints and the tradeoff

between inconsistent joint positions as soft constraints.
In summary, the following advantages can be provided by
our approach.

• We develop an approach that can preserve the bone-
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Figure 7: The motion of basket-ball playing: enhanced skeletons in the motion are displayed in the third and fifth rows along
the same viewing direction of Kinect cameras (i.e., KA and KB), which are shown in the second and the fourth rows. The
problematic skeletons in the motion extracted by KA and KB independently are circled by red dash lines.

length when taking the on-site skeleton tracking.

• We develop a method to efficiently evaluate the reli-
ability of joint positions that can solve the inconsis-
tent problem of joint positions under our optimization
framework.

• A simple but effective method has been provided to take
care of the calibration of two Kinect’s coordinate sys-
tem automatically.

All these benefits lead to a low-cost RGB-D camera-based
input device for real-time interactive applications. Our future
research will focus on how to further enhance the accuracy
of this device and overcome the current limitations.
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