
4D Printing for Freeform Surfaces: Design
Optimization of Origami and Kirigami Structures

Tsz-Ho Kwok1,2, Charlie C.L. Wang1, Dongping Deng2, Yunbo Zhang1,3, Yong Chen2∗

1Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong

2Epstein Department of Industrial and Systems Engineering, University of Southern California

3School of Mechanical Engineering, Purdue University

A self-folding structure fabricated by additive manufactur-
ing can be automatically folded into a demanding 3D shape
by actuation mechanisms such as heating. However, 3D sur-
faces can only be fabricated by self-folding structures when
they are flattenable. Most generally designed parts are not
flattenable. To address the problem, we develop a shape opti-
mization method to modify a non-flattenable surface into flat-
tenable. The shape optimization framework is equipped with
topological operators for adding interior/boundary cuts to
further improve the flattenability. When inserting cuts, self-
intersection is locally prevented on the flattened 2D pieces.
The total length of inserted cuts is also minimized to reduce
artifacts on the finally folded 3D shape.

Keywords: Additive manufacturing, Flattenable, Self-
folding, Origami, Kirigami, Computer-Aided Design

1 Introduction
Additive manufacturing(AM) is a promising technique

for fabricating Three-Dimensional (3D) complex shapes,
which are difficult to be fabricated by traditional manufac-
turing processes. Currently, most AM processes are layer-
based. However, such approach has drawbacks such as fab-
rication speed is slow and the built parts have anisotropic
stiffness (i.e., weaker in one direction comparing to others).
Recently, inspired by Origami and Kirigami [1,2], a new AM
technique based on self-folding structures has been devel-
oped to overcome the problems of the conventional layer-
based fabrication approach [3, 4]. The self-folding approach
this is also called4D printing. In other fields, self-folding
structures have also attracted a lot of attentions in biomedi-
cal and robotic applications (e.g., [5, 6]). Instead of directly
fabricating the designed 3D shape, this new manufacturing
method first fabricates a two-dimensional (2D) part. Then,
the part will be self-folded into the designed 3D shape using
certain stimulating conditions (e.g., heat or magnetic). Mod-
els fabricated by this method have reconfigurable shapes,

∗Corresponding author: yongchen@usc.edu, (213) 740-7829

and the procedure of fabrication is fast since only a few ac-
tive/passive layers need to be made by additive manufactur-
ing.

1.1 Motivation
Not every 3D shape can be made by a 2D self-folding

structure. To fabricate a model by self-folding, the 3D shape
must be flattenable – i.e., it can be flattened into a 2D pattern
without stretching. A 3D surface that has such a geometric
property is called flattenable. A designed 3D shape is of-
ten non-flattenable, and some geometric details cannot be re-
constructed if such a shape is fabricated by a non-optimized
self-folding structure (refer to an example in the top row of
Fig.1). In the prior work of self-folding structures (e.g.,[3]),
the 3D models to be fabricated are cut into strips in order to
make them flattenable. Nevertheless, artifacts are left at the
places where cuts are introduced after folding. The more the
cuts, the more artifacts are resulted on the final folded part.
In this paper, we aim at tackling this problem by optimizing a
designed surface that is fabricated by self-folding structures.
The following two questions will be answered:

1. Given a 3D shapeM that is not flattenable, how to op-
timize the shape ofM into a flattenable oneM′ while
minimizing the shape similarity error betweenM and
M′?

2. When cuts need to be added in order to get a shape that
is more similar toM, how to minimize the number and
the length of cuts onM′?

Moreover, self-intersection must be prevented on the
flattened 2D piece ofM′. Before finding answers of the
above questions, we review the related literatures on self-
folding structures and geometric computation approaches.

1.2 Related Works
Self-folding structures (also called self-transforming or

self-evolving structures) are usually designed to deform their
shapes in a pre-defined way, where the shape variation can



Fig. 1. For an input freeform surface to be fabricated by Origami-structure – the face model, our shape optimization can generate a 2D

pattern for producing a self-folding structure by AM, which can be folded into a face model by heating (see the top row). Cuts can be

automatically added onto the model to further improve the shape similarity of fabricated surface comparing to the input model. Adding too

many cuts can generate unwanted artifacts on the surface of fabricated part – see the bottom-left corner for an example.

be induced by different physical stimulations to fold, ex-
pand, shrink and curl. The idea was first developed by us-
ing hydrophilic materials that can be activated when being
submerged in water. Thereafter, different self-folding mech-
anisms have been developed in the form of planar sheets by
using different folding principles – e.g., shape memory ma-
terials [7], bilayer structures [8–10], inhomogeneous mate-
rials [11], and Shrinky-Dinks films [12]. They can be trig-
gered by different conditions, including thermal [13,14],mi-
crowaves [15], or humidity [16,17]. The Shrinky-Dinks film
shrinks when it is exposed to an environment having a tem-
perature higher than the transition temperature of the film.
By controlling the area of exposure on a film surface, the
bending movements can be designed. Using this idea, our re-
cent paper [4] has calibrated the mapping between the width
of a hinge (in the form of exposed film) and the bending an-
gle of this hinge under heating. Many other researches have
also demonstrated the self-folding techniques using different
approaches. Nevertheless, the previous works mainly focus
on the transformation of simple shapes, for which manual
modeling was used in their construction (e.g., [18]). Re-
cently, Raviv et al. [19] showed how to construct and sim-
ulate a complex solid structure that bends and stretches over
time; however, the work only considers a 2D grid skeleton.
In this paper, we aim at automatically designing self-folding
structures for fabricating 3D freeform surfaces.

Given a 3D shape, computing its corresponding 2D pat-
tern is known as the surface flattening problem in Computer-
Aided Design/Manufacturing (CAD/CAM) [20]. The com-
putation of surface flattening is usually formulated as min-
imizing different surface metrics, such as angle, distance,
area. However, no mapping can fully reduce the distortion on

a general 3D shape, and the distortion increases significantly
when the freeform surfaces are more complex in shape [21].
Kilian et al. [22] presented an optimization-based computa-
tional framework for the design and reconstruction of general
developable surfaces. They optimize a pair of models in the
form of 3D mesh and 2D pattern while maintaining an iso-
metric mapping between them. However, models with high
surface complexity have not been considered, where topolog-
ical operations need to be performed. Specifically, cuts need
to be added to reduce the distortion. Sheffer [23] proposed
a method based on a minimum spanning tree that passes
through points with high Gaussian curvature to compute cuts
with a minimal total length. Wanget al. [24] introduced
cutting paths starting from a point with maximum Gaussian
curvature to the surface boundary to reduce stretches in sur-
face flattening. In both methods, cuts are added in the way
of linking critical points and the surface boundary; however,
such cuts maybe long and have the risk of introducing self-
intersections on the flattened 2D piece. This paper proposes
a different strategy to add cuts in a more effective and safe
way.

The approaches based on directly optimizing a 3D shape
to improve its flattenability converges slowly. For instance,
Wang [25] introduced the Flattenable Laplacian (FL) mesh
and used Newton’s method to optimize the mapping to be
isometric. The problem is formulated as a constrained non-
linear optimization problem, and a scheme akin to multi-
grid solver was employed to improve the convergence of
the computation. Other direct optimization approaches such
as [26, 27] also have similar problems. Different from the
prior work, we conduct a flattening/folding deformation ap-
proach in this work.



1.3 Main Results
We first flatten a 3D surfaceM into a 2D patternD with

minimal stretching. The 2D pattern is then folded into a
shapeM(1) similar to M while keeping the rigidity of each
fragment onD. After that,M(1) is flattened into a new 2D
patternD(1), which will be folded back to get a better ap-
proximation ofM. Iteratively applying the aforementioned
flattening and the folding steps can result in a pair of 2D and
3D models< D(n) :: M(n) >, whereD(n) andM(n) are iso-
metric andM(n) gives a good approximation ofM.

When cuts are needed to further reduce the error be-
tweenM(n) and M, most of the prior approaches add cuts
from the interior of a surface to its boundary. Our study finds
that adding such long cuts may not be optimal in many cases.
There are different types of non-flattenable surfaces. While
adding cuts to boundary is appropriate for elliptic surfaces, it
could lead to unwanted self-intersection for hyperbolic sur-
faces. It is also known that a 2D pattern with self-intersection
cannot be fabricated using a self-folding structure. In this re-
search, a novel interior cutting scheme is introduced. An
algorithm for progressively applying interior and boundary
cuts has been developed. Based on it, our method can pre-
vent self-intersection on 2D patterns and reducing the total
cutting length at the same time.

The technical contributions of this work are:

1. We develop a new computation tool for designing self-
folding structures from a general 3D freeform surface.

2. We propose a framework of iterative flattening/folding
to optimize the flattenability of an input 3D surface, and
simultaneously find the flattenable 3D shape as well as
its corresponding 2D pattern.

3. We develop a hybrid cutting algorithm, which can pre-
vent self-intersection on 2D patterns and minimize the
surface deflects that caused by the added cuts.

Experimental tests using the fabrication method of 4D print-
ing have been performed to verify the effectiveness of the
developed design optimization framework for self-folding
structures.

2 Methodology
2.1 Fabrication by Additive Manufacturing

In our previous work [4], a fabrication method based on
additive manufacturing has been presented for self-folding
structures. This method will be employed in the physical
tests for verifying the design results that are generated byour
approach. We briefly introduce the principle of the fabrica-
tion approach here. A multi-layered structure with both ac-
tive and passive materials is employed, where different ma-
terial layers undergo various ratios of volumetric shrinkage
after heating. As a result, a structure made in this way can be
self-folded into a desired configuration. In our setup, pre-
strained polystyrene films that shrink under heating – the
Shrinky-Dinks films [12] – are used as the layer of active
material. The layers of passive materials are produced from
photocurable resin by additive manufacturing – themask-
image-projection-based stereolithography(MIP-SL) process

Fig. 2. An illustration for the working principle of self-folding [4].

(Top) The self-folding structure is printed on a shrinking film with body

and constraining layers. It is bended when heat is applied. (Bottom)

The test case of a self-folded crane model is shown.

is used [28]. Fig.2 illustrates the described working princi-
ple and shows a crane example that is self-folded from a de-
signed 2D pattern. After modeling and calibrating the 2D
patterns on the active layer, we can control the bending an-
gle on every hinge by designing different 2D patterns on a
hinge. Specifically, the bending angle (α) depends on the
thicknesses of the active layer (h) and the passive layers (d),
as well as the width of a hinge (L).

2.2 Terminology and Mathematical Definitions
The necessary terminology and mathematical defini-

tions of our work are presented in this section. First of all,
the computation of design optimization is taken on an ab-
stractive graph of the self-folding structure that is defined as
follows.

Definition 1 The abstractive graph of a self-folding struc-
ture is represented by a mesh surfaceM = {F,E,V}, where
F, E andV are the sets of faces, edges and vertices, respec-
tively.

Referring to the self-folding structure,F defines the
building blocks on the passive layer,E defines the hinges
where the bending happens, andV gives the geometric shape
in both 3D and 2D. To simplify the analysis and the com-
putation, only two-manifold mesh surfaces are considered in
this study. Each interior edge of a two-manifold mesh has
two adjacent faces. The angle between the normals of two
neighboring faces in 3D defined the bending angle of the
corresponding hinge. When there arene interior edges, we
need to determinene hinges with the set of bending angles as
{α1,α2, . . . ,αne}.

Definition 2 For each vertexi in V, there is a positionvi in
3D and a corresponding 2D planar coordinatepi .

The 2D pattern of a self-folding structure is denoted by



Fig. 3. For a triangle with vertices (v1 v2 v3) (left) deformed a

shape in blue by an affine transformation T, we can extract the pure

rotation matrix R from T using SVD.

D, on which the vertices are placed at{i ∈V|pi}.

Remark 1 The mapping,Γ : M 7→ D, need to beisometric
as the building blocks inF are inelastic.

When giving the 3D and 2D shapes ofM andD, whether
Γ is isometric can be checked by the invariance of edge
length.

Remark 2 The mapping,Γ : M 7→ D, is isometric if and
only if

Eiso = ∑
∀e∈E

(‖vsvq‖−‖pspq‖)
2 ≡ 0 (1)

wheresandq are two vertices of the edgee.

From differential geometry [29], it is known that only
developable surfaces have isometric mappings to planar
shapes. The mathematical definition of developable surface
is given on differentiable surfaces relating to Gaussian cur-
vature. Generally, a surface is developable if and only if the
Gaussian curvature at any point is zero except the bound-
ary points, which do not have Gaussian curvature. Here,
we adopt a discrete interpretation of developable surface and
name it as flattenable (or non-flattenable) by using the defi-
nitions in [25].

Definition 3 For a triangular mesh vertexv, if and only
if the summed inner angleθ(v) around it is identical to 2π,
the triangles around it can be flattened onto a plane without
distortion; such a vertex is calledflattenable vertex.

Remark 3 A triangular mesh patch is flattenable when all
its interior vertices are flattenable, which can be measuredby
a metric

Ef lt = ∑(θ(v)−2π)2 ≡ 0 (2)

with all interior vertexv.

The problem of the isometric metricEiso and the flat-
tenable metricEf lt is that the direct computation based on
them does not lead to an optimization framework that can
converge fast (see [21, 25]). Instead, we define a new func-
tion based on measuring the rigidity of the transformation

between the faces in 3D and 2D. Such rigidity measurement
can be considered as a weak form of the isometry and flat-
tenability metrics.

For each trianglef ∈ M with three vertices at(v1 v2 v3)
in 3D and(p1 p2 p3) in 2D, we add the fourth accessory point
v4 along the unit normals of the triangle rooted at the center
of f . Similar,p4 is also added for the corresponding triangle
in D.

Remark 4 The transformation from 2D to 3D isT = PP̂−1

with

P= [vt
1− vt

4 vt
2− vt

4 vt
3− vt

4]

P̂= [pt
1−pt

4 pt
2−pt

4 pt
3−pt

4]

by aligning the centers of 3D and 2D coincident.

Note that, the planar positions are also represented as
3D vectors in this formulation. In general,T is not a rigid
transformation (see Fig.3 for an illustration). Its nearest rigid
transformationR can be obtained by first computing theSin-
gular Value Decomposition(SVD) of T: T = UΣV⊤, and
then eliminating the scaling matrixΣ asR = UV⊤. Based
on this, the rigidity ofΓ can be evaluated by the following
metric.

Definition 4 The rigidity of mappingΓ : M 7→ D is defined
by the Frobenius norm‖ · ‖F as

Ergd =

nf

∑
k=1

‖Tk−Rk‖
2
F . (3)

Similar to this formulation, when a transformation is from
3D to 2D (e.g., in the flattening),T is formulated in an in-
verse way asT = P̂P−1.

Generally, designed 3D freeform surfaces are non-
flattenable. As a result, we need to compute 2D pieces that
can be folded back into the shapes similar to the designed
surfaces. To conduct such optimization, a metric is needed
to evaluate the shape similarity between a shapeM′ that is
folded back from a 2D piece and the designed 3D shapeM.

Definition 5 AssumeM′ andM have the same connectivity.
The shape approximation error is defined as

Eapx=
nv

∑
i=1

‖vi − v′i‖
2, (4)

wherevi andv′i are the positions of a vertex onM andM′.

2.3 Algorithm Overview
To fabricate a designed 3D shape by a self-folding struc-

ture, the current practice is to introduce many cuts on the
input surface so that the surface is tessellated into a strips.
Nevertheless, as mentioned before, unwanted artifacts are
also created for the added cuts. We develop a design op-
timization approach to address the problem by minimizing
the shape approximation error between the designed surface
and the surface that is folded from a planer piece. When



Fig. 4. Algorithm overview. The details of flattening and folding sim-

ulation are presented in Sections 3.1 and 3.2 respectively. Our hybrid

cutting insertion algorithm will be introduced in Section 4.

cut insertion cannot be avoided, we attempt to add cuts as-
short-as-possible. In other words, both the geometry and the
topology of the input meshM will be optimized.

The overview of our algorithm is illustrated in Fig.4.
Our algorithm has two nested loops of iterations.

Inner Loop: The inner loop takes care of the shape op-
timization to improve the flattenablity of a given shape
by iteratively applying flattening/folding deformations.
The positions of vertices in 3D and 2D meshes are opti-
mized together to minimize both the approximation er-
ror Eapx and the isometric errorEiso (by Ergd).
Outer Loop: WhenEapx obtained after running the in-
ner loop of the shape optimization is too high, cuts are
iteratively added in the outer loop. In each step of iter-
ation, a cut is applied carefully in order to prevent self-
intersections in 2D pattern. Operations are developed to
generate as-short-as-possible cuts to preserve the quality
of the fabricated surface.

After applying cuts in the outer loop, the inner loop of shape
optimization is run again to further improve the shape ap-
proximation. Working together, the computation taken by
these two levels of iterations converges rather quickly. The
framework proposed in this paper provides a useful tool for
designers when using the 4D-printing technique to fabricate
self-folding structures.

3 Shape Optimization
Our idea in optimizing a non-flattenable 3D shapeM

is to iteratively get 2D patterns that are nearly isometric to

M via the repeated process of flattening and folding. When
flattening a 3D surface, the stretch caused by the difference
between the 2D and 3D surfaces should be minimized. Af-
ter getting a 2D pattern, it will be folded to approximate the
input 3D shapeM. The steps of flattening and folding are it-
eratively applied until both the approximation errorEapx and
the rigidity errorErgd have been minimized. We stop the iter-
ation when neitherEapx norErgd drops any more. Note that,
in this shape optimization, the mesh topology is not adjusted.
Both flattening and folding operations only add deformations
on the model. Therefore, only vertices of a mesh are moved
during the iterations of the shape optimization. The final po-
sitions of vertices are what we are interested in this design
stage.

3.1 Elastic Flattening
Flattening a surfaceM into a 2D pattern is in fact in-

troducing a deformation from 3D to 2D by eliminating one
dimension [30]. The flattening process simulates an elastic
deformation with the isometric energy minimized. Directly
formulating the optimization byEiso will make the problem
highly non-linear, and results in a very slow convergence. To
overcome this difficulty, a weak formErgd will be used in-
stead. The 2D shapeD can be obtained by moving the mesh
points ofM and determining the values of the 2D positions
{pi} as

argmin
{pi}∈ℜ2

Ergd. (5)

There are two sets of unknowns in this optimization – the set
of planar positions{pi} and the set of rotation matrices on
faces{Rk}. They are correlated to each other. To decouple
this, we linearize the numerical computation in two orthog-
onal directions by using the local/global strategy. Specifi-
cally, when the initial positions in 2D are known, we can
treat{pi} as known and compute{Rk} by SVD applied on
Tk = P̂kP−1

k . As SVD is taken locally on each face, the com-
putation can be completed very efficiently. For the first iter-
ation, the initial values of{pi} are determined by the least
square conformal map [31]. In the later iterations, planar po-
sitions determined in the previous step are used to calculate
{Rk}. After obtaining the rotation matrices, new values of
{pi} are computed in the global sense. AsTk = P̂kP

−1
k is in

a linear form of the planar positions, Eqn.(5) can be rewritten
into a least-square system

argmin
x={pi∈ℜ2}

‖Ax −b‖2,

whereA is a sparse matrix derived from{Tk}, andb is a
vector containing entries from{Rk}.

These two steps are then iterated until converged, and
the result is a 2D patternD flattened from the input 3D shape
M. However, if the 3D shape itself is not flattenable,Ergd can
hardly be minimized into zero. In such cases, we simulate



Fig. 5. Shape optimization: (Left) A highly non-flattenable surface –

half sphere – is input to our system. (Middle) The 2D pattern com-

puted by our system. (Right) The simulated 3D shape folded up from

the 2D pattern.

the folding process onD to get a folded shapeM′ that is as-
similar-as possible toM.

3.2 Folding Simulation
In this simulation, a 2D patternD is folded to approxi-

mate the given 3D shapeM. As only bending along the edges
are allowed, the isometric energyEiso is demanded to bezero
during the process of folding. The deformation can be sim-
ulated by moving the vertices ofD to get the 3D positions
vi which is driven by minimizing the shape approximation
error, that is

argmin
{vi∈ℜ3}

Eapx s.t., Eiso = 0. (6)

Again, to improve the convergence of computation, the weak
form of isometric metric – the rigidity energyErgd is used to
replaceEiso. After using the Lagrange multiplier, the non-
constrained optimization is taken as

argmin
{vi∈ℜ3}

Eapx+λErgd (7)

to compute the folded shape ofD. The penalty coefficientλ
controls the influence of the rigidity during the deformation.
If λ is too small, it becomes an elastic deformation that is not
what we want. However, if an extremely large coefficient
λ is chosen,Eapx will be ignored and it is hard to foldD.
Therefore, a reasonable large value should be chosen. In our
simulation, the penalty coefficientλ = 10.0 is employed. It
is easy to find that the formula in Eqn.(7) is in the quadratic
form and results in a fast convergence.

To demonstrate the functionality of our system, we apply the
flattening/folding simulation to a highly non-flattenable sur-
face – hemisphere (refer to Fig.5 for an illustration). Al-
though it is impossible to find a 2D pattern without stretch,
our approach can find a perfect circular disk that is the best
approximation for the unfolded 2D pattern. Also, the shape
warped back from the planar disk shows a good approxima-
tion of the hemisphere. The major defect comes from the
unwanted wrinkles appeared on the folding result; however,

this matches well with the physical phenomena happened in
nature. In summary, our shape optimization framework can
effectively compute a pair of 2D/3D shapes for approximat-
ing an input 3D shape. In next section, topological operations
will be added to further improve the design optimization on
self-folding structures.

4 Cut Insertion
The framework of shape optimization presented in Sec-

tion 3 can reduce the isometric error in finding a flatten-
able shape that is a good approximation of a non-flattenable
shape. However, if the shape is highly non-flattenable (e.g.,
the face models as shown in Fig.1), the part fabricated from
the computed 2D pattern will have large approximation er-
ror. Consequently, cuts must be added to reduce the surface
stretch during flattening. Accordingly, a better 2D pattern
can be obtained that may result in a better 3D folding result.
When inserting a cut, the following two requirements need
to be fulfilled:

1. The cuts will not lead to self-intersections (locally) in
the 2D pattern;

2. The total length of the inserted cuts needs to be mini-
mized.

For requirement 1, it will be too difficult to foresee any global
self-intersections that maybe introduced before the cut isre-
ally applied. Therefore, in determining cut insertions, it
should at least guarantee no local self-intersection, and we
leave the checking of the global self-intersection after insert-
ing the cut.

We are motivated by Definition 3 and Remark 3 to add
cuts through those vertices with the sum of surface angle,
θ(· · · ), that are far different from 2π. Specifically, there are
two kinds of non-flattenable vertices: one is withθ(vp)< 2π
(calledelliptic vertex), another one hasθ(vp) > 2π (called
hyperbolic vertex), which are illustrated in Fig.6. For a non-
flattenable vertex withθ(vp) < 2π, when unfolding its ad-
jacent faces into 2D, the incident angles are forced to be-
come larger (stretched). In contrast, for the surface with
θ(vp) > 2π, the incident angles are enforced to be smaller
under flattening (compressed). These two different non-
flattenable local surfaces actually encounter two different
types of potential energy, which should be released in dif-
ferent ways. Therefore, we introduce the interior cut and the
boundary cut to deal with these two different situations. A
boundary cut is a cut linking a non-flattenable vertex and its
nearest boundary vertex on the input surface. An interior
cut is a cut only added at two neighboring edges of a non-
flattenable vertex, which introduces a new interior hole on
the input surface. Both operators changes the topology of an
input surface.

i) For an elliptic vertex, the results of applying differenttypes
of cuts are given as follows.

Interior cut: As the incident angles are under stretched, if
an interior cut is made, while the angles are restoring



Fig. 6. Different cuts are to be added at vertices with different local

shapes. (Top row) For an elliptic vertex, adding an interior cut will lead

to self-intersection. Therefore, boundary cuts are usually added to

resolve the non-flattenable problem. (Bottom row) The situation is re-

versed for a hyperbolic vertex. Boundary cuts lead to self-intersection

while inserting an interior cut can resolve the problem.

to its original size, the edges will be pushed out and the
adjacent faces will intersect with each other (see Fig.6a).

Boundary cut: A boundary cut can separate and extend the
boundary of the input surface. Self-intersection is pre-
vented (see Fig.6b).

ii) For a hyperbolic vertex, an inverse conclusion can be
made as follows.
Interior cut: Adding an interior cut at the vertex will intro-

duce two boundary vertices with obtuse surface angles.
Therefore, the condition withθ(vp) > 2π on 3D can be
satisfied (see Fig.6c).

Boundary cut: A boundary cut is not suitable for the hy-
perbolic surface. As the local area of the vertex is
larger than what can be given by a planar shape, self-
intersection cannot be avoided at this vertexvp with
θ(vp)> 2π (see Fig.6d).

4.1 Interior Cut
The interior cut is only applied to a hyperbolic vertexvp

(i.e.,θ(vp)> 2π). When adding an interior cut, the following
criteria are demanded.

1. The cut does not reach any existing boundaries.
2. The cut is as-short-as-possible.
3. The cut is as-straight-as-possible.

The first criterion is obvious; if it is not satisfied, the cut
becomes a boundary cut. The second criterion comes from
the observation that adding a long cut can easily lead to sig-
nificant visual artifact on the part that is fabricated by self-
folding structures. The last criterion relates to the effective-
ness on releasing potential energy by adding a local interior
cut. An interior cut actually separates the faces adjacent to
vp into two groups, and the potential energy is adsorbed by
each of the groups. A heuristic, which has also been verified
by our experiments, is that the energy distribution is well

balanced if the newly created two groups have similar areas.
Less stretch will be transferred to other vertices aroundvp

when an interior cut is added in this way. The algorithm for
inserting an interior cut is presented as follows.

Assume there aren incident edges{e1, . . . ,en} around
vp, we need to find a pair of edges,(ei ,ej), that are the best
candidates to fulfill the above criteria. Asn is small, a sim-
ple brute-force search can be applied. First, edges with any
endpoint on the boundary are eliminated from the list of in-
cident edges as they violate the first criterion. After this step,
if there are only one edge left in the candidate list, the inte-
rior cut onvp is skipped. Secondly, we loop through all the
incident edges in this list to construct pairs of edges. A pair
of edges(ei ,ej) is considered as a candidate pair if the an-
gle betweenei andej is greater thanπ2 at vp. Lastly, among
all these pair of edges, the pair with the smallest total edge
length is selected as an interior cut to be inserted.

4.2 Boundary Cut
For an elliptic surfaceM (i.e., θ(vp) < 2π), boundary

cuts are applied. Starting from the pointvp, the cut is contin-
uously extended until it reachesM’s boundary. The shortest
path fromvp to the boundary ofM is desired. Hence, we first
build an undirected graphG based on the connectivity ofM,
where vertices ofM become vertices onG and edges onG
are converted fromM’s edges with their edge lengths as their
weights. Usingvp as the target and all boundary vertices on
M as sources, the multi-source Dijkstra’s algorithm [32] is
employed to compute the one-to-many shortest path. Then,
all edges on the shortest path are opened up to construct a
boundary cut.

4.3 Algorithm with Hybrid Cutting
As shown in the algorithm overview (see Fig.4), cuts

are added only when the shape approximation error is higher
than a threshold. The approximation error is produced when
a 2D pattern cannot be folded into the given 3D shape – i.e.,
the approximation error is directly related to the flattenability
of a given surface. To efficiently reduce the approximation
error, we identify the most non-flattenable points and insert
an appropriate cut to make it flattenable. In addition, we
know that a boundary cut is usually much longer than an
interior cut. Therefore, we try to minimize the approximation
error by using interior cuts first, and boundary cuts are only
applied when it is necessary.

Given a threshold of the allowed approximation error
(ε), the algorithm with the developed hybrid cutting strategy
is given as follows:

1 Run the shape optimization and get a pair of optimized
2D/3D modelsM(m) andD(m), and compute the approx-
imation errorε(vi) at each vertexvi ∈ M(m) as the dis-
tance betweenvi and its corresponding point in the input
modelM.

2 If maxi∈V{ε(vi)} ≤ ε (the given tolerance), the model
M(m) is good enough and the algorithm stops. Other-
wise, cuts will be computed.



A1 Routine of interior cuts only: For all hyperbolic vertices,
locate the one with maximal surface angle (i.e.,vp =
argmaxvi

(θ(vi))).
A2 If θ(vp) > 2π+ ξ is found, apply an interior cut to it

and go back to Step 1. Otherwise, output the computed
results.

B1 Routine of boundary/interior cuts: Locate the vertex
with the largest derivation from flattenable (i.e.,vp =
argmaxvi

(θ(vi)−2π)2).
B2 If θ(vp)< 2π− ξ, a boundary cut is applied; otherwise,

an interior cut is applied ifθ(vp)> 2π+ ξ.
B3 If a cut is made, go back to Step 1; otherwise, output the

computed results.

A fuzzy condition with a thresholdξ has been added when
detecting non-flattenable vertices to avoid over-cutting the
nearly flattenable regions. We takeξ = π/16 in all our tests.
In the algorithm, two routines are used to provide a better
control on the balance between the approximation error and
the length of cuts (i.e., the surface quality of the final folded
parts). Also, interior cuts have a higher priority than bound-
ary cuts. For example, in the face model as shown in Fig.7a,
the features of nose and mouth disappear in the shape opti-
mization result without introducing any cuts. After apply-
ing the routine of interior cuts, we have already been able
to see the profile of the nose and mouth (refer to Fig.7b).
When sharper profiles are demanded on these features, the
routine of boundary/interior cuts are activated to furtherin-
sert boundary/interior cuts (a result can be seen in Fig.7c).

4.4 Interactive Tools
In the design process, different applications may have

different requirements on the inserted cuts. Therefore, our
design platform also provides interactive tools for users to
specify the regions in which cuts are preferred (or prohib-
ited). This intension from designers can be easily incorpo-
rated into the above algorithm by:

1. Removing all the vertices of the prohibited regions from
the cut insertion algorithm;

2. Giving a preference weight on the vertices that are in the
preferred regions;

3. Modifying the weights of edges in the pre-
ferred/prohibited regions when using Dijkstra’s
algorithm to compute the path of a boundary cut.

Users can also directly pick edges to insert cuts. In addition,
our system provides a function to report and visualize the
self-intersections on the flattened 2D patterns.

5 Implementation Details for Fabrication
After the given 3D shape is optimized and the corre-

sponding 2D pattern has been found, it is ready to generate
information for fabrication. In our previous work [4], we
have modeled the elastic deformation on the hinge as large

Fig. 8. The mask images generated for fabricating the face model

with only interior cut shown in Fig.7. There are in total five layers,

including two body layers, two constraining layers, and one layer of

Shrinky-Dinks film in the center.

deflections of a wide beam, i.e.,

∆Ed =
1
2

Mα, M =
E⊤I

R(1− v2)
, (8)

where∆Ed is the energy used in generating the deformation,
M is the required moment for bending,E⊤, v are the Flexural
Modulus and the Poisson ratio of the resin material, andI =
bd3

12 . In summary, as the thickness of the active layerh and
the passive layerd are fixed, all variables in the formulation
are constants, except the bending angleα at a hinge and its
width L. Therefore, we can perform a set of experiments
with different L values to calibrate its relationship withα.
For more details of the formulation and experiments, please
refer to [4]. Based on the experimental calibrations, we can
computeL by a givenα (in radian) using

L = (α−0.46)/(0.1

√

h
d3 ).

To fabricate self-folding structures using the MIP-SL pro-
cess, we need to generate mask images with grayscale val-
ues at pixels from the 2D patterns [33]. The mask image
for the body layers can be generated by shrinking half dis-
tance ofLW that is computed above on each edge. Since
our self-folding structure is a sandwiched design, we have
to print on both front and back sides of the shrinking film.
The same mask images are used for the body layers at both
sides. See Figs.2 and 8 for illustrations. Note that, hinges
with nearly zero bending angles are considered as rigid body
when generating the mask images. Another mask image to
be generated is the constraining layer. When a constraint is
added on one side of a hinge, the structure will be bent to the
other side (refer to Fig.2 for the principle). As a result, two
different mask images have to be produced at opposite sides
of the film (see the right column in Fig.8).



Fig. 7. For a highly non-flattenable input – the face model, only applying the shape optimization (without cuts) results in a shape with large

shape approximation error – the nose and the mouth disappear. The overlaid red lines are the contour of the input shape. The result can be

improved by adding an interior cut. A final result with high similarity as input can be obtained by our hybrid cut insertion algorithm, in which

both the interior and boundary cuts are added.

6 Experimental Results
We have implemented the presented optimization ap-

proach as a prototype software system using C++. TAUCS li-
brary [34] is employed as the numerical solver of linear equa-
tions. Different examples have been tested in our framework,
and both numerical and physical tests have been performed
to verify the optimization results. Running on a standard PC
with Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, the sta-
tistical data on computational time is shown in Table 1. It can
be found that the computation complexity is mainly based on
the number of triangles of the input model. In general, the
algorithm is converged within seconds. Table 1 also shows
the necessary number of iterations required for a converged
computation in all the examples. It can be seen from the data
that as the face model is highly non-flattenable, it takes more
steps to converge (i.e., 26 steps in total). In contrast, even the
car model has many triangles, as it is modeled for the sheet
metal fabrication, if has a better flattenability and takes only
6 steps to converge.

To compare the folded shapes with/without the pre-
sented optimization step, we measure the Hausdorff distance
between the result and the given 3D shape by the publicly
available software, Metro [35]. The statistics are shown in
Table 2. Here, the shape approximation errors in terms of
the Hausdorff distances are measured in the four different
stages throughout the optimization process: (1) before op-
timization, (2) after flattenability-based shape optimization,
(3) with only interior cuts inserted, and (4) with both interior
and boundary cuts inserted. As 2D patterns are not avail-
able as the input, we take the resultant 3D shape after run-
ning the shape optimization for one step (i.e.,M(1)) as the

Table 1. Statistics on Convergence and Computational Time

Model Size (#tri) #iter Time (s)

Face 41 26 0.86

Flower 22 5 0.13

Wave 884 14 7.06

Car 758 6 2.71

The size of model is reported as the number of triangles (#tri), and
#iter is the number of iteration steps until converged.

Table 2. Statistics on Shape Approx. Errors† in Different Stages

Input Shape Optimization Cut Insertion

Model Before After Interior Both

Face 2.02 / 8.42 1.57 / 9.98 1.08 / 6.04 0.94 / 5.80

Flower 0.71 / 1.86 0.54 / 1.82 – 0.11 / 0.67

Car 1.09 / 4.33 0.25 / 2.13 0.18 / 1.26 0.13 / 1.25

†Hausdorff distances are measured for indicating shape approx.
errors in different stages, and they are reported in the format of
[average / maximum].

shape before optimization. Three examples are shown in the
table: a flower blade model (Fig.9), a face model (Fig.7),
and a car-body model (Fig.11). In all of these examples, the
shape approximation errors decrease during all the optimiza-
tion steps. There is only one exception – the flower blade
model, which does not have any hyperbolic vertex. Thus, no
data is reported for the stage of inserting interior cuts.

In addition to numerical computation, physical tests
have been performed to verify the effectiveness of our ap-
proach. The tests are taken on the face model (see Fig.1), the
flower blade model (see Fig.9), and a wave shape model (see
Fig.10). For the blade model, we pick the 2D pattern gener-
ated by the shape optimization in the fabrication, which can
be folded without any cuts. However, for the face model, the
fabricated result is far away from the given shape when no
cut is inserted (refer to Fig.1). Therefore, a better resultcan
be obtained when fabricating the model from the 2D pattern
by adding interior-only cuts. In Fig.1, we also show the fabri-
cated part with artifacts that are caused by inserted cuts with
long edge length. In the wave shape model, the originally
designed fillets make it non-flattenable. For such an input
shape, the edges become sharpened in the optimized shape,
i.e., the fillets are removed with the main edges remained.
The fabricated part is also shown in Fig.10. The effective-
ness of our approach has been successfully demonstrated by
the examples.



Fig. 10. An example of wave shape. (a) The fillets in the input model make the model non-flattenable. (b) The edges in the optimized shape

are sharpened to improve its flattenability, and (c) the mask image that only includes the sharp edges. (d) The fabricated result.

Fig. 11. An example of car-body. Given the input model (top-left) that is not flattenable, the iterations of flattenability-based shape optimiza-

tion can significantly improve the 3D shape folded from 2D patterns (see the first row, from M(1) to M(n)). The shape approximation error

can be further improved by first inserting interior-only cuts and then adding both boundary and interior cuts (see the second row and the zoom

windows). The corresponding 2D patterns are also shown at the bottom row.

7 Conclusion and Discussion

In this paper, we present a design optimization frame-
work for using additive manufacturing to fabricate 2D
Origami or Kirigami structures that can be self-folded into
a target 3D shape. The challenge of designing such a self-
folding structure is that only flattenable surfaces can be self-
folded from a planar Origami or Kirigami structure. How-
ever, designers wish to have the flexibility of designing 3D
freeform surface according to their needs. A generally de-
signed 3D freeform surface is rarely flattenable. As a result,
we propose a shape optimization framework to deform a pair
of 3D/2D patches to 1) retain the flattenability and 2) mini-
mize the shape approximation error to the given model. Not
only geometric shape but also topology of an input surface
are optimized in our approach to meet the design demands.
An insight presented in this work is that inserting interior
cuts at the local hyperbolic regions will gain more benefits.
Together with boundary cuts, a hybrid algorithm has been
developed to handle the cut insertion for topological opti-
mization. Experimental results have verified the effective-
ness of our framework in designing self-folding structures

for 3D freeform surfaces.

Our method still has a few limitations. First, we have
optimized the flattenability of a given shape by enforcing the
rigidity of folding between a pair of 3D/2D mesh models.
However, self-collision may occur during the self-folding
process. In our future work, a collision-aware simulation for
flattening and folding will be investigated by introducing the
variable of time to prevent collision during the dynamic pro-
cess of deformations. Second, we have simplified the input
mesh before applying it to our framework to reduce the de-
grees of freedom for optimization. This pre-simplification
strategy may introduce topological obstacle into the proce-
dure of optimization. We plan to develop a dynamic proce-
dure to adaptively simplify the input mesh according to the
behavior during the flattening/folding simulation. Third,our
cutting strategies presented in this paper try to reduce the
shape approximation error without considering the structure
stiffness. The FEM results will be incorporated to develop
new cutting strategies in our future work. Finally, we as-
sume there is no fabrication error in this paper, because the
main focus of the paper is the design optimization for fabri-



Fig. 9. An example of flower blades. (Top row) The input digital

model shown in front and side view, and our framework can optimize

it into a flattenable shape. (Middle row) The mask images for body

and constraining layers generated by our system. (Bottom row) The

2D pattern is fabricated according to the mask images and then self-

folded into the desired 3D shape after heating. Multiple flower blades

are put together to get the final product – a lamp.

cation instead of the fabrication itself. To address the fabri-
cation errors and related effects, we plan to investigate some
inspection-based research by employing 3D scanners to an-
alyze the fabrication error and to further verify the outcome
of our design optimization platform in the future.

Acknowledgements
The research work reported in this paper was par-

tially supported by NSF CMMI 1151191, and the HKSAR
Research Grants Council (RGC) General Research Fund
(GRF), CUHK/14207414.

References
[1] Lang, R. J., 2011.Origami Design Secrets: Mathe-

matical Methods for an Ancient Art. CRC Press, Boca
Raton, FL.

[2] Zhang, K., Qiu, C., and Dai, J. S., 2015. “Heli-
cal kirigami-enabled centimeter-scale worm robot with
shape-memory-alloy linear actuators”.Journal of
Mechanisms and Robotics,7(2), p. 021014.

[3] An, B., Miyashita, S., Tolley, M. T., Aukes, D. M.,
Meeker, L., Demaine, E. D., Demaine, M. L., Wood,
R. J., and Rus, D., 2014. “An end-to-end approach to
making self-folded 3D surface shapes by uniform heat-
ing”. In IEEE International Conference on Robotics
and Automation (ICRA), pp. 1466–1473.

[4] Deng, D., and Chen, Y., 2015. “Origami-based self-
folding structure design and fabrication using projec-
tion based stereolithography”.J. Mech. Des.,137(2).

[5] Park, J.-R., Slanac, D. A., Leong, T. G., Ye, H., Nelson,
D. B., and Gracias, D. H., 2008. “Reconfigurable mi-
crofluidics with metallic containers”.Journal of Micro-
electromechanical Systems,17(2), April, pp. 265–271.

[6] Azam, A., Laflin, K. E., Jamal, M., Fernandes, R.,
and Gracias, D. H., 2011. “Self-folding micropat-
terned polymeric containers”.Biomedical Microde-
vices,13(1), pp. 51–58.

[7] Peraza-Hernandez, E., Hartl, D., Galvan, E., and
Malak, R., 2013. “Design and optimization of a shape
memory alloy-based self-folding sheet”.Journal of
Mechanical Design,135, p. 111007.

[8] Ionov, L., 2011. “Soft microorigami: self-folding poly-
mer films”. Soft Matter,7, pp. 6786–6791.

[9] Shim, T. S., Kim, S.-H., Heo, C.-J., Jeon, H. C., and
Yang, S.-M., 2012. “Controlled origami folding of hy-
drogel bilayers with sustained reversibility for robust
microcarriers”.Angewandte Chemie International Edi-
tion, 51(6), pp. 1420–1423.

[10] Stoychev, G., Turcaud, S., Dunlop, J. W. C., and Ionov,
L., 2013. “Hierarchical multi-step folding of poly-
mer bilayers”.Advanced Functional Materials,23(18),
pp. 2295–2300.

[11] Ahmed, S., Lauff, C., Crivaro, A., McGough, K.,
Sheridan, R., Frecker, M., von Lockette, P., Ounaies,
Z., Simpson, T., Lien, J.-M., and Strzelec, R., 2013.
“Multi-field responsive origami structures: Preliminary
modeling and experiments”. In Proceedings of the
ASME IDETC/CIECIE, August 4-7, Portland, Oregon,
USA, p. V06BT07A028.

[12] Liu, Y., Boyles, J. K., Genzer, J., and Dickey, M. D.,
2012. “Self-folding of polymer sheets using local light
absorption”.Soft Matter,8, pp. 1764–1769.

[13] Wang, M.-F., Maleki, T., and Ziaie, B., 2008. “En-
hanced 3-D folding of silicon microstructures via ther-
mal shrinkage of a composite organic/inorganic bi-
layer”. Microelectromechanical Systems, Journal of,
17(4), Aug, pp. 882–889.

[14] Ge, Q., Qi, H. J., and Dunn, M. L., 2013. “Active ma-
terials by four-dimension printing”.Applied Physics
Letters,103(13).

[15] Yasu, K., and Inami, M., 2012. “Popapy: Instant pa-
per craft made up in a microwave oven”. InAdvances
in Computer Entertainment, A. Nijholt, T. Romo, and
D. Reidsma, eds., Vol. 7624 ofLecture Notes in Com-
puter Science. Springer Berlin Heidelberg, pp. 406–
420.

[16] Smela, E., 2003. “Conjugated polymer actuators for
biomedical applications”.Advanced Materials,15(6),



pp. 481–494.
[17] Ionov, L., 2012. “Biomimetic 3d self-assembling

biomicroconstructs by spontaneous deformation of thin
polymer films”.J. Mater. Chem.,22, pp. 19366–19375.

[18] Tibbits, S., 2014. “4D printing: Multi-material shape
change”.Architectural Design,84(1), pp. 116–121.

[19] Raviv, D., Zhao, W., McKnelly, C., Papadopoulou,
A., Kadambi, A., Shi, B., Hirsch, S., Dikovsky, D.,
Zyracki, M., Olguin, C., Raskar, R., and Tibbits, S.,
14. “Active printed materials for complex self-evolving
deformations”.Sci. Rep.,4.

[20] Wang, C. C. L., Smith, S., and Yuen, M. M. F., 2002.
“Surface flattening based on energy model”.Computer-
Aided Design,34(11), pp. 823–833.

[21] Sander, P. V., Snyder, J., Gortler, S. J., and Hoppe, H.,
2001. “Texture mapping progressive meshes”. In SIG-
GRAPH: Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, ACM,
pp. 409–416.

[22] Kilian, M., Flöry, S., Chen, Z., Mitra, N. J., Sheffer,
A., and Pottmann, H., 2008. “Curved folding”.ACM
Transactions on Graphics,27(3), pp. #75, 1–9.

[23] Sheffer, A., 2002. “Spanning tree seams for reducing
parameterization distortion of triangulated surfaces”. In
Proceedings of Shape Modeling International, pp. 61–
68.

[24] Wang, C. C. L., Wang, Y., Tang, K., and Yuen, M. M. F.,
2004. “Reduce the stretch in surface flattening by find-
ing cutting paths to the surface boundary”.Computer-
Aided Design,36(8), pp. 665–677.

[25] Wang, C. C. L., 2008. “Towards flattenable mesh sur-
faces”.Computer-Aided Design,40(1), pp. 109–122.

[26] Decaudin, P., Julius, D., Wither, J., Boissieux, L., Shef-
fer, A., and Cani, M.-P., 2006. “Virtual garments: A
fully geometric approach for clothing design”.Com-
puter Graphics Forum (Eurographics’06 proc.),25(3),
sep.

[27] Liu, Y., Pottmann, H., Wallner, J., Yang, Y.-L., and
Wang, W., 2006. “Geometric modeling with coni-
cal meshes and developable surfaces”.ACM Trans.
Graph.,25(3), July, pp. 681–689.

[28] Zhou, C., Chen, Y., Yang, Z., and Khoshnevis, B.,
2013. “Digital material fabrication using mask-image-
projection-based stereolithography”.Rapid Prototyp-
ing Journal,19(3), pp. 153–165.

[29] do Carmo, M. P., 1976. Differential Geometry of
Curves and Surfaces. Prentice-Hall.

[30] Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler,
S. J., 2008. “A local/global approach to mesh parame-
terization”. In Proceedings of the Symposium on Ge-
ometry Processing, SGP ’08, pp. 1495–1504.

[31] Lévy, B., Petitjean, S., Ray, N., and Maillot, J., 2002.
“Least squares conformal maps for automatic texture
atlas generation”. ACM Trans. Graph.,21(3), July,
pp. 362–371.

[32] Dijkstra, E., 1959. “A note on two problems in con-
nexion with graphs”. Numerische Mathematik,1(1),
pp. 269–271.

[33] Zhou, C., Chen, Y., and Waltz, R. A., 2009. “Opti-
mized mask image projection for solid freeform fabri-
cation”. Journal of Manufacturing Science and Engi-
neering,131(6), p. 061004.

[34] TAUCS: A library of sparse linear solver.
http://www.tau.ac.il/ stoledo/taucs/.

[35] Cignoni, P., Rocchini, C., and Scopigno, R., 1998.
“Metro: Measuring error on simplified surfaces”.Com-
puter Graphics Forum,17(2), pp. 167–174.


