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A self-folding structure fabricated by additive manufaetu and the procedure of fabrication is fast since only a few ac-
ing can be automatically folded into a demanding 3D shag#&e/passive layers need to be made by additive manufactur-
by actuation mechanisms such as heating. However, 3D simg.

faces can only be fabricated by self-folding structuresmwhe

they are flattenable. Most generally designed parts are not o
flattenable. To address the problem, we develop a shape o&ti1 Motivation .
mization method to modify a non-flattenable surface inte flat VOt €very 3D shape can be made by a 2D self-folding
tenable. The shape optimization framework is equipped with Ucture. To fabricate a model by self-folding, the 3D shap
topological operators for adding interior/boundary cuts t m_ust be fIattengbIe —i.e., it can be flattened into a 2D patte_rn
further improve the flattenability. When inserting cutdf-se Without stretching. A 3D surface that has such a geometric
intersection is locally prevented on the flattened 2D piecddOPerty is called flattenable. A designed 3D shape is of-

The total length of inserted cuts is also minimized to redudgn Non-flattenable, and some geometric details cannotbe re
artifacts on the finally folded 3D shape. constructed if such a shape is fabricated by a non-optimized

self-folding structure (refer to an example in the top row of
Keywords:  Additive manufacturing, Flattenable, Self-Fig.1). In the prior work of self-folding structures (e.[g]),
folding, Origami, Kirigami, Computer-Aided Design the 3D models to be fabricated are cut into strips in order to
make them flattenable. Nevertheless, artifacts are lefteat t
places where cuts are introduced after folding. The more the
1 Introduction cuts, the more artifacts are resulted on the final folded part
Additive manufacturingAM) is a promising technique In this paper, we aim at tackling this problem by optimizing a
for fabricating Three-Dimensional (3D) complex shapeslesigned surface that is fabricated by self-folding strres.
which are difficult to be fabricated by traditional manufacThe following two questions will be answered:
turing processes. Currently, most AM processes are layer-
based. However, such approach has drawbacks such as failb-
rication speed is slow and the built parts have anisotropic
stiffness (i.e., weaker in one direction comparing to ather
Recently, inspired by Origami and Kirigami [1,2], a new AM
technique based on self-folding structures has been dev
oped to overcome the problems of the conventional layer-
based fabrication approach [3, 4]. The self-folding apphoa
this is also calledtD prlntlng In other fields, SE|f-f0|ding Moreover, self-intersection must be prevented on the
structures have also attracted a lot of attentions in bieme¢attened 2D piece oM’. Before finding answers of the
cal and robotic applications (e.g., [, 6]). Instead of dite  ahove questions, we review the related literatures on self-

fabricating the designed 3D shape, this new manufacturifglding structures and geometric computation approaches.
method first fabricates a two-dimensional (2D) part. Then,

the part will be self-folded into the designed 3D shape using
certain stimulating conditions (e.g., heat or magnetichdM 1.2 Related Works

els fabricated by this method have reconfigurable shapes, Self-folding structures (also called self-transforming o
self-evolving structures) are usually designed to defdwairt

shapes in a pre-defined way, where the shape variation can

Given a 3D shapM that is not flattenable, how to op-
timize the shape oM into a flattenable on&1” while
minimizing the shape similarity error betwedh and

M’?

e:f-' When cuts need to be added in order to get a shape that
is more similar toM, how to minimize the number and
the length of cuts oM’?
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Too many cuts resultsin
artifacts on surface Result of Shape Optimization with only Interior Cuts

Fig. 1. For an input freeform surface to be fabricated by Origami-structure — the face model, our shape optimization can generate a 2D
pattern for producing a self-folding structure by AM, which can be folded into a face model by heating (see the top row). Cuts can be
automatically added onto the model to further improve the shape similarity of fabricated surface comparing to the input model. Adding too
many cuts can generate unwanted artifacts on the surface of fabricated part — see the bottom-left corner for an example.

be induced by different physical stimulations to fold, exa general 3D shape, and the distortion increases signifjcant
pand, shrink and curl. The idea was first developed by uahen the freeform surfaces are more complex in shape [21].
ing hydrophilic materials that can be activated when beirgjlian et al. [22] presented an optimization-based computa-
submerged in water. Thereafter, different self-foldingcime tional framework for the design and reconstruction of gaher
anisms have been developed in the form of planar sheetsdavelopable surfaces. They optimize a pair of models in the
using different folding principles — e.g., shape memory mderm of 3D mesh and 2D pattern while maintaining an iso-
terials [7], bilayer structures [8—10], inhomogeneousanatmetric mapping between them. However, models with high
rials [11], and Shrinky-Dinks films [12]. They can be trig-surface complexity have not been considered, where topolog
gered by different conditions, including thermal [13,14]; ical operations need to be performed. Specifically, cutsinee
crowaves [15], or humidity [16, 17]. The Shrinky-Dinks filmto be added to reduce the distortion. Sheffer [23] proposed
shrinks when it is exposed to an environment having a tera-method based on a minimum spanning tree that passes
perature higher than the transition temperature of the filthrough points with high Gaussian curvature to compute cuts
By controlling the area of exposure on a film surface, theith a minimal total length. Wangt al. [24] introduced
bending movements can be designed. Using this idea, ourcetting paths starting from a point with maximum Gaussian
cent paper [4] has calibrated the mapping between the widthrvature to the surface boundary to reduce stretchesdin sur
of a hinge (in the form of exposed film) and the bending ariace flattening. In both methods, cuts are added in the way
gle of this hinge under heating. Many other researches hasdinking critical points and the surface boundary; howeve
also demonstrated the self-folding techniques usingrdiffe such cuts maybe long and have the risk of introducing self-
approaches. Nevertheless, the previous works mainly fodagersections on the flattened 2D piece. This paper proposes
on the transformation of simple shapes, for which manualdifferent strategy to add cuts in a more effective and safe
modeling was used in their construction (e.g., [18]). Reway.
cently, Raviv et al. [19] showed how to construct and sim-
ulate a complex solid structure that bends and stretchas ove The approaches based on directly optimizing a 3D shape
time; however, the work only considers a 2D grid skeletoio improve its flattenability converges slowly. For instanc
In this paper, we aim at automatically designing self-fotgi Wang [25] introduced the Flattenable Laplacian (FL) mesh
structures for fabricating 3D freeform surfaces. and used Newton’s method to optimize the mapping to be
isometric. The problem is formulated as a constrained non-
Given a 3D shape, computing its corresponding 2D pdinear optimization problem, and a scheme akin to multi-
tern is known as the surface flattening problem in Computegrid solver was employed to improve the convergence of
Aided Design/Manufacturing (CAD/CAM) [20]. The com-the computation. Other direct optimization approacheh suc
putation of surface flattening is usually formulated as miras [26, 27] also have similar problems. Different from the
imizing different surface metrics, such as angle, distangarior work, we conduct a flattening/folding deformation ap-
area. However, no mapping can fully reduce the distortion gmoach in this work.



1.3 Main Results
We first flatten a 3D surfadd into a 2D patter with Polystyrene Film
minimal stretching. The 2D pattern is then folded into . l
shapeM® similar toM while keeping the rigidity of each [Body [d| + |
fragment onD. After that, M1 is flattened into a new 2D — = 9
patternD, which will be folded back to get a better ap- !
proximation ofM. lIteratively applying the aforementioned
flattening and the folding steps can result in a pair of 2D ar
3D models< D™ :: M >, whereD™ andM®™ are iso- N
metric andV (™ gives a good approximation 4. b
When cuts are needed to further reduce the error
tweenM®™ and M, most of the prior approaches add cut
from the interior of a surface to its boundary. Our study fing '
that adding such long cuts may not be optimal in many casi /
There are different types of non-flattenable surfaces. &/h -
adding cuts to boundary is appropriate for elliptic surkade
could lead to unwanted self-intersection for hyperbolic Sufig. 2. an illustration for the working principle of self-folding [4].
faces. Itis also known that a 2D pattern with self-inter®ect (top) The self-folding structure is printed on a shrinking film with body
cannot be fabricated using a self-folding structure. I8 tei  ang constraining layers. It is bended when heat is applied. (Bottom)
search, a novel interior cutting scheme is introduced. Afhe test case of a self-folded crane model is shown.
algorithm for progressively applying interior and boundar
cuts has been developed. Based on it, our method can pre-

vent self-intersection on 2D patterns and reducing thd tof§ Used [28]. Fig.2 illustrates the described working princ
cutting length at the same time. ple and shows a crane example that is self-folded from a de-

The technical contributions of this work are: signed 2D pattern. After modeling and calibrating the 2D
atterns on the active layer, we can control the bending an-
1. We develop a new computation tool for designing sel&e on every hinge by designing different 2D patterns on a
folding structures from a general 3D freeform surface.hinge. Specifically, the bending angle)(depends on the

2. We propose a framework of iterative flattening/foldingnicknesses of the active layén) @nd the passive layerd)(
to optimize the flattenability of an input 3D surface, angs well as the width of a hingé).

simultaneously find the flattenable 3D shape as well as
its corresponding 2D pattern. ) _ o
3. We develop a hybrid cutting algorithm, which can pre2-2 Terminology and Mathematical Definitions

vent self-intersection on 2D patterns and minimize the The necessary terminology and mathematical defini-
surface deflects that caused by the added cuts. tions of our work are presented in this section. First of all,

) ) o _ the computation of design optimization is taken on an ab-
Experimental tests using the fabrication method of 4D pringt active graph of the self-folding structure that is dedias
ing have been performed to verify the effectiveness of thg|ows.

developed design optimization framework for self-folding
structures. Definition 1 The abstractive graph of a self-folding struc-
ture is represented by a mesh surfdte- {F,E,V}, where
F, E andV are the sets of faces, edges and vertices, respec-
2 Methodology tively.
2.1 Fabrication by Additive Manufacturing _ ) _

In our previous work [4], a fabrication method based op _ R€ferring to the self-folding structurd; defines the
additive manufacturing has been presented for self-fgldif?Ullding blocks on the passive laydt, defines the hinges
structures. This method will be employed in the physicd/ere the bending happens, angives the geometric shape
tests for verifying the design results that are generatealipy " POth 3D and 2D. To simplify the analysis and the com-
approach. We briefly introduce the principle of the fabricg2utation, only two-manifold mesh surfaces are considered i
tion approach here. A multi-layered structure with both adiS Study. Each interior edge of a two-manifold mesh has
tive and passive materials is employed, where different m3l© adjacent faces. The angle between the normals of two
terial layers undergo various ratios of volumetric shrigeca N€1ghboring faces in 3D defined the bending angle of the

after heating. As a result, a structure made in this way can B&Teésponding hinge. When there axeinterior edges, we
self-folded into a desired configuration. In our setup, pr&i€ed to determing. hinges with the set of bending angles as

strained polystyrene films that shrink under heating — tf‘@l’az""’a”e}'

Shrinky-Dinks films [12] — are used as the layer of activpefinition 2  For each vertekin V, there is a position; in

material. The layers of passive materials are produced frofp) gng a corresponding 2D planar coordinate
photocurable resin by additive manufacturing — thask-

image-projection-based stereolithograpiWiP-SL) process The 2D pattern of a self-folding structure is denoted by

Constraint




between the faces in 3D and 2D. Such rigidity measurement
can be considered as a weak form of the isometry and flat-
tenability metrics.

For each triangld € M with three vertices afv1 vz v3)
in 3D and(p1 p2 p3) in 2D, we add the fourth accessory point
v4 along the unit normals of the triangle rooted at the center
of f. Similar,p4 is also added for the corresponding triangle
R(v2) inD.

Fig. 3. For a triangle with vertices (Vl V2 V3) (left) deformed a Remark4 The transformationfrom 2Dto 3DE= Pl’:\)*l
shape in blue by an affine transformation T, we can extract the pure with

rotation matrix R from T using SVD. . - - .
P =[vi—VyVy—Vy V3 — V]
P = [p} — P} P; — P4 P — Pyl
by aligning the centers of 3D and 2D coincident.
Remark 1 The mappingl : M — D, need to bésometric
as the building blocks iff are inelastic. Note that, the planar positions are also represented as
3D vectors in this formulation. In generdl,is not a rigid
When giving the 3D and 2D shapesMfandD, whether transformation (see Fig.3 for an illustration). Its neariegd
I is isometric can be checked by the invariance of edggnsformatiorR can be obtained by first computing tBen-
length. gular Value Decompositio(SVD) of T: T = UZV', and
then eliminating the scaling matrix asR = UV ". Based
on this, the rigidity ofl can be evaluated by the following

D, on which the vertices are placed{at V|p;}.

Remark 2 The mapping] : M — D, is isometric if and

only if metric.
Eiso = Z (IvsVgll — |IpsPgl)? =0 (1) Definition4 The rigidity of mappind” : M+ D is defined
vecE by the Frobenius nori- ||r as

. Nt
wheres andq are two vertices of the edge Ergd = z Th— Rk|||2:- 3)
From differential geometry [29], it is known that only k=1

developable surfaces have isometric mappings to planar

shapes. The mathematical definition of developable surfagimilar to this formulation, when a transformation is from
is given on differentiable surfaces relating to Gaussian c8D to 2D (e.g., in the flattening)} is formulated in an in-
vature. Generally, a surface is developable if and onlyef thverse way a3 = PP1.

Gaussian curvature at any point is zero except the bound- Generally, designed 3D freeform surfaces are non-
ary points, which do not have Gaussian curvature. Herfgattenable. As a result, we need to compute 2D pieces that
we adopt a discrete interpretation of developable surfade acan be folded back into the shapes similar to the designed
name it as flattenable (or non-flattenable) by using the defiurfaces. To conduct such optimization, a metric is needed
nitions in [25]. to evaluate the shape similarity between a shilp¢hat is

— . ) folded back from a 2D piece and the designed 3D siiape
Definition 3  For a triangular mesh vertex if and only

if the summed inner anglé(v) around it is identical to & Definition5 AssumeVl’ andM have the same connectivity.
the triangles around it can be flattened onto a plane withoTite shape approximation error is defined as
distortion; such a vertex is calldthttenable vertex

Ny
. . Bapr=3 Vi —vi|I?, (4)
Remark 3 A triangular mesh patch is flattenable when all i=
its interior vertices are flattenable, which can be meashbyed

a metric wherev; andv] are the positions of a vertex &t andM’.

Ee =5 (B(v) —2m*=0 (2) 2.3 Algorithm Overview

To fabricate a designed 3D shape by a self-folding struc-
ture, the current practice is to introduce many cuts on the
input surface so that the surface is tessellated into asstrip

The problem of the isometric metri§s, and the flat- Nevertheless, as mentioned before, unwanted artifacts are
tenable metricEsy; is that the direct computation based oralso created for the added cuts. We develop a design op-
them does not lead to an optimization framework that camization approach to address the problem by minimizing
converge fast (see [21, 25]). Instead, we define a new furthe shape approximation error between the designed surface
tion based on measuring the rigidity of the transformaticand the surface that is folded from a planer piece. When

with all interior vertexv.



M via the repeated process of flattening and folding. When
flattening a 3D surface, the stretch caused by the difference
between the 2D and 3D surfaces should be minimized. Af-
ter getting a 2D pattern, it will be folded to approximate the
input 3D shapé. The steps of flattening and folding are it-
eratively applied until both the approximation erkey,yx and

the rigidity errorE,yq have been minimized. We stop the iter-
ation when neitheEapx nor Ergq drops any more. Note that,

A
Hyperbolic Elliptic in this shape optimization, the mesh topology is not adfliste
a0 Shaps' : [ . Both flattening and folding operations only add deformagion
o on the model. Therefore, only vertices of a mesh are moved
. St during the iterations of the shape optimization. The final po

sitions of vertices are what we are interested in this design
stage.

Isometric/Approximation
( Error Minimized?

i
Yes
¥

Acceptable , I | 3.1 Elastic Flattening

e Flattening a surfac$! into a 2D pattern is in fact in-
troducing a deformation from 3D to 2D by eliminating one
dimension [30]. The flattening process simulates an elastic
deformation with the isometric energy minimized. Directly
formulating the optimization b¥so will make the problem
highly non-linear, and results in a very slow convergence. T
Fig. 4. Algorithm overview. The details of flattening and folding sim-  gvercome this difficulty, a weak foriﬁrgd will be used in-
ulation are presented in Sections 3.1 and 3.2 respectively. Our hybrid  stead. The 2D sha@ can be obtained by moving the mesh

cutting insertion algorithm will be introduced in Section 4. points ofM and determining the values of the 2D positions
{pi} as
cut insertion cannot be avoided, we attempt to add cuts as-
short-as-possible. In other words, both the geometry amd th argmin Ergg. (5)
topology of the input mesk will be optimized. {pi}en?
The overview of our algorithm is illustrated in Fig.4.
Our algorithm has two nested loops of iterations. There are two sets of unknowns in this optimization — the set

Inner Loop: The inner loop takes care of the shape oer planar positiongp;} and the set of rotation matrices on
timization to improve the flattenablity of a given shapdCes{Rk}. They are correlated to each other. To decouple
by iteratively applying flattening/folding deformations s, we linearize the numerical computation in two orthog-
The positions of vertices in 3D and 2D meshes are opfna! directions by using the local/global strategy. Specifi
mized together to minimize both the approximation e@lly, when the initial positions in 2D are known, we can
ror Eapx and the isometric errdgso (by Ega). treat{pi}ials known Qnd computERy} by SVD applied on
Outer Loop: When Eapyx obtained after running the in- Tk = PP~ As SVD is taken locally on each face, the com-
ner loop of the shape optimization is too high, cuts afutation can l_)e completed very efﬂmently. For the first-iter
iteratively added in the outer loop. In each step of ite@tion. the initial values ofp;} are determined by the least
ation, a cut is applied carefully in order to prevent selfduare conformal map [31]. In the later iterations, plarar p
intersections in 2D pattern. Operations are developed$§ions determined in the previous step are used to catulat

generate as-short-as-possible cuts to preserve theyqualfRk} - After obtaining the rotation matrices, new ‘1"'?"“.93 of
of the fabricated surface. {pi} are computed in the global sense. As= PxP, ~ is in
a linear form of the planar positions, Eqn.(5) can be reamitt
After applying cuts in the outer loop, the inner loop of shapgyto a least-square system

optimization is run again to further improve the shape ap-
proximation. Working together, the computation taken by
these two levels of iterations converges rather quicklye Th
framework proposed in this paper provides a useful tool for
designers when using the 4D-printing technique to fabeicat
self-folding structures. whereA is a sparse matrix derived frofTy}, andb is a
vector containing entries frofRy}.
These two steps are then iterated until converged, and

3 Shape Optimization the resultis a 2D patterd flattened from the input 3D shape

Our idea in optimizing a non-flattenable 3D shadde M. However, if the 3D shape itself is not flattenaliig can
is to iteratively get 2D patterns that are nearly isomewic thardly be minimized into zero. In such cases, we simulate

argmin ||Ax —b||?,
x={pie02}



this matches well with the physical phenomena happened in
nature. In summary, our shape optimization framework can
effectively compute a pair of 2D/3D shapes for approximat-
ing an input 3D shape. In next section, topological openatio
will be added to further improve the design optimization on
self-folding structures.

Fig. 5. Shape optimization: (Left) A highly non-flattenable surface— 4 Cut Insertion

half sphere — is input to our system. (Middle) The 2D pattern com- The framework of shape optimization presented in Sec-
puted by our system. (Right) The simulated 3D shape folded up from  tion 3 can reduce the isometric error in finding a flatten-
the 2D pattern. able shape that is a good approximation of a non-flattenable

shape. However, if the shape is highly non-flattenable,(e.g.
the face models as shown in Fig.1), the part fabricated from
the computed 2D pattern will have large approximation er-
ror. Consequently, cuts must be added to reduce the surface
stretch during flattening. Accordingly, a better 2D pattern
3.2 Folding Simulation can be obtained that may result in a better 3D folding result.

In this simulation, a 2D patterd is folded to approxi- When inserting a cut, the following two requirements need
mate the given 3D shapé. As only bending along the edgesto be fulfilled:

are allowed, the isometric enerfy, is demanded to beero h i lead I . locallv) i
during the process of folding. The deformation can be sim-l' The cuts will not lead to self-intersections (locally) in
the 2D pattern;

ulated by moving the vertices & to get the 3D positions h Y hof the i d J e min
vi which is driven by minimizing the shape approximation - '€ total length of the inserted cuts needs to be mini-
error, that is mized.

the folding process ob to get a folded shapi’ that is as-
similar-as possible t¥.

Forrequirement 1, it will be too difficult to foresee any gibb
argmin Eapx st., Eiso = 0. (6) self-intersections that maybe introduced before the ciet-is
{vied3} ally applied. Therefore, in determining cut insertions, it
should at least guarantee no local self-intersection, amd w
(j&ave the checking of the global self-intersection afteent
ing the cut.

We are motivated by Definition 3 and Remark 3 to add
cuts through those vertices with the sum of surface angle,
6(---), that are far different from72 Specifically, there are
two kinds of non-flattenable vertices: one is wetfv,) < 21t
argmin Eapx+ AErgg (7)  (calledelliptic verte®, another one ha8(vp,) > 2m (called
{vieD3} hyperbolic vertex which are illustrated in Fig.6. For a non-

flattenable vertex witl®(vp) < 21, when unfolding its ad-

to compute the folded shape bf The penalty coefficierk jacent faces into 2D, the incident angles are forced to be-
controls the influence of the rigidity during the deformatio cOme larger (stretched). In contrast, for the surface with
If A is too small, it becomes an elastic deformation that is n8tVe) > 21 the incident angles are enforced to be smaller
what we want. However, if an extremely large coefficiergnder flattening (compressed). These two different non-
A is chosen Eapx Will be ignored and it is hard to fold. flattenable local surfaces actually encounter two differen

Therefore, a reasonable large value should be chosen. In Bies of potential energy, which should be released in dif-
simulation, the penalty coefficieAt= 10.0 is employed. It ferentways. Therefore, we introduce the interior cut ared th
is easy to find that the formula in Eqn.(7) is in the quadratRoundary cut to deal with these two different situations. A
form and results in a fast convergence. boundary cut is a cut linking a non-flattenable vertex and its
nearest boundary vertex on the input surface. An interior
To demonstrate the functionality of our system, we apply theut is a cut only added at two neighboring edges of a non-
flattening/folding simulation to a highly non-flattenable-s flattenable vertex, which introduces a new interior hole on
face — hemisphere (refer to Fig.5 for an illustration). Althe input surface. Both operators changes the topology of an
though it is impossible to find a 2D pattern without stretchinput surface.
our approach can find a perfect circular disk that is the best o ) )
approximation for the unfolded 2D pattern. Also, the shagFor an elliptic vertex, the results of applying differéypes
warped back from the planar disk shows a good approxim®-CUts are given as follows.
tion of the hemisphere. The major defect comes from theterior cut: As the incident angles are under stretched, if
unwanted wrinkles appeared on the folding result; however, an interior cut is made, while the angles are restoring

Again, to improve the convergence of computation, the we
form of isometric metric — the rigidity enerdsyq is used to
replaceEiso. After using the Lagrange multiplier, the non-
constrained optimization is taken as



(Vp) <2im balanced if the newly created two groups have similar areas.
‘ Less stretch will be transferred to other vertices aroupd
when an interior cut is added in this way. The algorithm for
L inserting an interior cut is presented as follows.
‘/ Assume there ara incident edgeqey,...,e,} around
@ (®) vp, we need to find a pair of edggs, €j), that are the best

candidates to fulfill the above criteria. Asis small, a sim-
A ple brute-force search can be applied. First, edges with any
' endpoint on the boundary are eliminated from the list of in-
‘ cident edges as they violate the first criterion. After tihéps
‘ if there are only one edge left in the candidate list, the-inte
y o rior cut onvy, is skipped. Secondly, we loop through all the

3D shape Interior cut Boundary cut incident edges in this list to construct pairs of edges. A pai
of edges(e;, g)) is considered as a candidate pair if the an-
Fig. 6. Different cuts are to be added at vertices with different local gle betweerg andej is greater thar‘g atvp,. Lastly, among
shapes. (Top row) For an elliptic vertex, adding an interior cut willlead  g|| these pair of edges, the pair with the smallest total edge

to self-intersection. Therefore, boundary cuts are usually added to length is selected as an interior cut to be inserted.
resolve the non-flattenable problem. (Bottom row) The situation is re-

versed for a hyperbolic vertex. Boundary cuts lead to self-intersection
while inserting an interior cut can resolve the problem. 4.2 Boundary Cut
For an elliptic surfaceM (i.e., 8(vp) < 2m), boundary
) o ) ) cuts are applied. Starting from the poiry the cut is contin-
to its original size, the edges will be pushed out and thgyysly extended until it reaché4's boundary. The shortest
adjacent faces will intersect with each other (see Fig.6gyath fromv,, to the boundary o/ is desired. Hence, we first
Boundary cut: A boundary cut can separate and extend thgiid an undirected grap® based on the connectivity ™,
boundary of the input surface. Self-intersection is prgghere vertices oM become vertices o and edges oG

vented (see Fig.6b). are converted frorv’s edges with their edge lengths as their
ii) For a hyperbolic vertex, an inverse conclusion can b&eights. Using/p, as the target and all boundary vertices on
made as follows. M as sources, the multi-source Dijkstra’s algorithm [32] is

Interior cut: Adding an interior cut at the vertex will intro- €MPIoyed to compute the one-to-many shortest path. Then,

duce two boundary vertices with obtuse surface anglédl €49es on the shortest path are opened up to construct a
Therefore, the condition witB(v,) > 2rmon 3D can be Poundary cut.
satisfied (see Fig.6c).

Boundary cut: A boundary cut is not suitable for the hy-4 3 Algorithm with Hybrid Cutting

perbolic surface. As the_local area of the vertex is  aAq shown in the algorithm overview (see Fig.4), cuts
larger than what can be given by a planar shape, selfre 3qded only when the shape approximation error is higher
intersection cannot be avoided at this verigxwith 5 3 threshold. The approximation error is produced when
B(vp) > 2m(see Fig.6d). a 2D pattern cannot be folded into the given 3D shape —i.e.,
the approximation error is directly related to the flattatitgb
of a given surface. To efficiently reduce the approximation

4.1 |Interior Cut _ _ error, we identify the most non-flattenable points and inser
The interior cutis only applied to a hyperbolic veriex o annropriate cut to make it flattenable. In addition, we

(i-e.,8(vp) > 2m). When adding an interior cut, the followingynq that a boundary cut is usually much longer than an
criteria are demanded. interior cut. Therefore, we try to minimize the approxinoati

1. The cut does not reach any existing boundaries. error by using interior cuts first, and boundary cuts are only
2. The cut is as-short-as-possible. applied when it is necessary.
3. The cut is as-straight-as-possible. Given a threshold of the allowed approximation error

) o . e - (€), the algorithm with the developed hybrid cutting strategy
The first criterion is obvious; if it is not satisfied, the cutg given as follows:

becomes a boundary cut. The second criterion comes from

the observation that adding a long cut can easily lead to sij-Run the shape optimization and get a pair of optimized
nificant visual artifact on the part that is fabricated byf-sel ~ 2D/3D modeldV(™ andD(™, and compute the approx-
folding structures. The last criterion relates to the difee imation errore(v;) at each vertex; € MM as the dis-
ness on releasing potential energy by adding a local interio  tance betweew and its corresponding point in the input
cut. An interior cut actually separates the faces adjagentt modelM.

Vvpp into two groups, and the potential energy is adsorbed RyIf maxcy{e(vi)} < € (the given tolerance), the model
each of the groups. A heuristic, which has also been verified M(™ is good enough and the algorithm stops. Other-
by our experiments, is that the energy distribution is well  wise, cuts will be computed.



Al Routine of interior cuts onlyFor all hyperbolic vertices,
locate the one with maximal surface angle (i\g,=
argmax, (8(vi)))-

A2 If B(vp) > 2+ € is found, apply an interior cut to it
and go back to Step 1. Otherwise, output the comput
results.

B1 Routine of boundary/interior cutsLocate the vertex
with the largest derivation from flattenable (i.ep =
argmay;, (8(v;) — 2m)?).

B2 If 8(vp) < 2n—¢&, a boundary cut is applied; otherwise
an interior cut is applied iB(vp) > 2m+€.

B3 If a cutis made, go back to Step 1; otherwise, output t
computed results.

Body Layer Back Constraining Layer Front Constraining Layer

A fuzzy condition with a threshold has been added WhenFig. 8. The mask images generated for fabricating the face model
detecting non-flattenable vertices to avoid over-cuttimg t
nearly flatte_nable regions._We take- T[/16 in all O_ur tests. including two body layers, two constraining layers, and one layer of
In the algorithm, two routines are used to provide a bett:e;]rmky_DmkS film in the center.
control on the balance between the approximation error and
the length of cuts (i.e., the surface quality of the final &xld
parts). Also, interior cuts have a higher priority than bdun deflections of a wide beam, i.e.,
ary cuts. For example, in the face model as shown in Fig.7a,
the features of nose and mouth disappear in the shape opti- 1 ET|
mization result without introducing any cuts. After apply- AEg=_Ma, M=_——, (8)
ing the routine of interior cuts, we have already been able 2 R(1-v9)
to see the profile of the nose and mouth (refer to Fig.7b).
When sharper profiles are demanded on these features, wiereAEy is the energy used in generating the deformation,
routine of boundary/interior cuts are activated to furtiner M is the required moment for bendirfg] , v are the Flexural
sert boundary/interior cuts (a result can be seen in Fig.7c)Modulus and the Poisson ratio of the resin material, lafd
bl—f. In summary, as the thickness of the active layend
the passive layead are fixed, all variables in the formulation

4.4 Interactive Tools are constants, except the bending anglat a hinge and its

In the design process, different applications may havédth L. Therefore, we can perform a set of experiments
different requirements on the inserted cuts. Therefore, owith differentL values to calibrate its relationship with
design platform also provides interactive tools for users for more details of the formulation and experiments, please
specify the regions in which cuts are preferred (or prohitiefer to [4]. Based on the experimental calibrations, we can
ited). This intension from designers can be easily incorp60mputel by a givena (in radian) using
rated into the above algorithm by:

with only interior cut shown in Fig.7. There are in total five layers,

1. Removing all the vertices of the prohibited regions from L=(a- 0.46)/(0.1\/2).
the cut insertion algorithm;
2. Giving a preference weight on the vertices that are in the
preferred regions; To fabricate self-folding structures using the MIP-SL pro-
3. Modifying the weights of edges in the precess, we need to generate mask images with grayscale val-
ferred/prohibited regions when using Dijkstra’sies at pixels from the 2D patterns [33]. The mask image
algorithm to compute the path of a boundary cut. for the body layers can be generated by shrinking half dis-
tance ofLW that is computed above on each edge. Since
Users can also directly pick edges to insert cuts. In aduitioour self-folding structure is a sandwiched design, we have
our system provides a function to report and visualize ti@ print on both front and back sides of the shrinking film.
self-intersections on the flattened 2D patterns. The same mask images are used for the body layers at both
sides. See Figs.2 and 8 for illustrations. Note that, hinges
with nearly zero bending angles are considered as rigid body
when generating the mask images. Another mask image to
5 Implementation Details for Fabrication be generated is the constraining layer. When a constraint is
After the given 3D shape is optimized and the correadded on one side of a hinge, the structure will be bent to the
sponding 2D pattern has been found, it is ready to generatiber side (refer to Fig.2 for the principle). As a resultptw
information for fabrication. In our previous work [4], wedifferent mask images have to be produced at opposite sides
have modeled the elastic deformation on the hinge as lamgfthe film (see the right column in Fig.8).



(b) Only Interior Cuts (c)]ﬁférior and Boundary Cuts \

\
Given Non-Flattenable 3D Shape

(a) No Cuts

Fig. 7. For a highly non-flattenable input — the face model, only applying the shape optimization (without cuts) results in a shape with large
shape approximation error — the nose and the mouth disappear. The overlaid red lines are the contour of the input shape. The result can be
improved by adding an interior cut. A final result with high similarity as input can be obtained by our hybrid cut insertion algorithm, in which
both the interior and boundary cuts are added.

6 Experimental Results Table 2. Statistics on Shape Approx. Errors! in Different Stages

We have implemented the presented optimization apinput Shape Optimization Cut Insertion
proach asa prototype software systgm using C++_. TAUCS “'Mo del Before After Interior Both
brary [34] is employed as the numerical solver of linear equa
tions. Different examples have been tested in our frameworkFace | 2.02/8.42| 1.57/9.98| 1.08/6.04| 0.94/5.80
and b_oth nume_rlcf';\l a_nd physical tests_have been perforni elgower 071/1.86| 0.54/1.82 : 0.11/0.67
to verify the optimization results. Running on a standard PC
with Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, the sta Car 1.09/4.33| 0.25/2.13| 0.18/1.26| 0.13/1.25

tistical data on computational time is shown in Table 1. it ca _ L

be found that the computation complexity is mainly based 0n|_|'w3(.]|orf.f distances are measured for indicating shap®zappr
. . errors in different stages, and they are reported in thedooh

the number of triangles of the input model. In general, tr{ﬁverage/maximum].

algorithm is converged within seconds. Table 1 also shows

the necessary number of iterations required for a converged

computation in all the examples. It can be seen from the data

that as the face model is highly non-flattenable, it takesemor

steps to converge (i.e., 26 steps in total). In contrast) tve

car model has many triangles, as it is modeled for the sheS%t

metal fabrication, if has a better flattenability and takely o apfe before optimization. Thrge examples are showq in the
6 steps to converge table: a flower blade model (Fig.9), a face model (Fig.7),
) . . and a car-body model (Fig.11). In all of these examples, the
To compare the folded shapes with/without the pre- g . i
LR . = _Shape approximation errors decrease during all the oginiz
sented optimization step, we measure the Hausdorff distanc : .
. - fjon steps. There is only one exception — the flower blade
between the result and the given 3D shape by the public . .
. o model, which does not have any hyperbolic vertex. Thus, no
available software, Metro [35]. The statistics are shown in .~ . L .
" . data is reported for the stage of inserting interior cuts.
Table 2. Here, the shape approximation errors in terms 0

the Hausdorff distances are measured in the four different |, aqgition to numerical computation, physical tests

stages throughout the optimization process: (1) before apsye peen performed to verify the effectiveness of our ap-
timization, (2) after flattenability-based shape optimima,  ,roach. The tests are taken on the face model (see Fig.1), the
(3) with only interior F:uts inserted, and (4) with both inter flower blade model (see Fig.9), and a wave shape model (see
and bounda.ry cuts inserted. As 2D patterns are not avqﬂrg_lo)_ For the blade model, we pick the 2D pattern gener-
able as the input, we take the resultant 3D shape after ryfaq py the shape optimization in the fabrication, which can
ning the shape optimization for one step (") as the e folded without any cuts. However, for the face model, the
fabricated result is far away from the given shape when no
cut is inserted (refer to Fig.1). Therefore, a better resatt

be obtained when fabricating the model from the 2D pattern

Table 1. Statistics on Convergence and Computational Time

Model | Size (#tri) | #iter | Time (s) T . )
by adding interior-only cuts. In Fig.1, we also show the fabr
Face 41 26 0.86 cated part with artifacts that are caused by inserted cuts wi
Flower 22 5 0.13 long edge length. In the wave shape model, the originally
Wave 884 14 206 designed fillets make it non—ﬂattenablg. For su_ch_ an input
shape, the edges become sharpened in the optimized shape,
Car 758 6 2.71 i.e., the fillets are removed with the main edges remained.

The fabricated part is also shown in Fig.10. The effective-
ness of our approach has been successfully demonstrated by
the examples.

The size of model is reported as the number of triangles) (#tnd
#iter is the number of iteration steps until converged.



Fig. 10. An example of wave shape. (a) The fillets in the input model make the model non-flattenable. (b) The edges in the optimized shape
are sharpened to improve its flattenability, and (c) the mask image that only includes the sharp edges. (d) The fabricated result.
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Fig. 11. An example of car-body. Given the input model (top-left) that is not flattenable, the iterations of flattenability-based shape optimiza-
tion can significantly improve the 3D shape folded from 2D patterns (see the first row, from M(l) to M(”)). The shape approximation error
can be further improved by first inserting interior-only cuts and then adding both boundary and interior cuts (see the second row and the zoom
windows). The corresponding 2D patterns are also shown at the bottom row.

7 Conclusion and Discussion for 3D freeform surfaces.

In this paper, we present a design optimization frame- Our method still has a few limitations. First, we have
work for using additive manufacturing to fabricate 2Doptimized the flattenability of a given shape by enforcing th
Origami or Kirigami structures that can be self-folded inteigidity of folding between a pair of 3D/2D mesh models.
a target 3D shape. The challenge of designing such a seéflewever, self-collision may occur during the self-folding
folding structure is that only flattenable surfaces can lfe seprocess. In our future work, a collision-aware simulation f
folded from a planar Origami or Kirigami structure. How-flattening and folding will be investigated by introducirgpt
ever, designers wish to have the flexibility of designing 3ariable of time to prevent collision during the dynamic{ro
freeform surface according to their needs. A generally deess of deformations. Second, we have simplified the input
signed 3D freeform surface is rarely flattenable. As a resuthesh before applying it to our framework to reduce the de-
we propose a shape optimization framework to deform a pajrees of freedom for optimization. This pre-simplification
of 3D/2D patches to 1) retain the flattenability and 2) ministrategy may introduce topological obstacle into the proce
mize the shape approximation error to the given model. Ndtre of optimization. We plan to develop a dynamic proce-
only geometric shape but also topology of an input surfackire to adaptively simplify the input mesh according to the
are optimized in our approach to meet the design demanbshavior during the flattening/folding simulation. Thiaidir
An insight presented in this work is that inserting interiocutting strategies presented in this paper try to reduce the
cuts at the local hyperbolic regions will gain more benefitshape approximation error without considering the stmectu
Together with boundary cuts, a hybrid algorithm has beestiffness. The FEM results will be incorporated to develop
developed to handle the cut insertion for topological optiew cutting strategies in our future work. Finally, we as-
mization. Experimental results have verified the effectivesume there is no fabrication error in this paper, because the
ness of our framework in designing self-folding structuresain focus of the paper is the design optimization for fabri-
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Fig. 9. An example of flower blades. (Top row) The input digital
model shown in front and side view, and our framework can optimize
it into a flattenable shape. (Middle row) The mask images for body
and constraining layers generated by our system. (Bottom row) The
2D pattern is fabricated according to the mask images and then self-
folded into the desired 3D shape after heating. Multiple flower blades
are put together to get the final product — a lamp.

cation instead of the fabrication itself. To address theifab
cation errors and related effects, we plan to investigateeso

[3] An, B., Miyashita, S., Tolley, M. T., Aukes, D. M.,
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(5]

(6]

[7]

(8]
(9]

[10]

[11]

inspection-based research by employing 3D scanners to an-
alyze the fabrication error and to further verify the outeom[12]

of our design optimization platform in the future.
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