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Iterative Closest Point (ICP) is a popular algorithm used
for shape registration while conducting inspection duringa
production process. A crucial key to the success of ICP is
the choice of point selection method. While point selec-
tion can be customized for a particular application using its
prior knowledge,Normal-Space Sampling is commonly used
when normal vectors are available. Normal-based approach
can be further improved by stability analysis – called covari-
ance sampling. The stability analysis should be accurate to
ensure the correctness of covariance sampling. In this paper,
we go deep into the details of covariance sampling, and pro-
pose a few improvements for stability analysis. We theoret-
ically and experimentally show that these improvements are
necessary for further success in covariance sampling. Ex-
perimental results show that the proposed method is more
efficient and robust for the ICP algorithm.

Keywords: ICP, shape registration, inspection, point selec-
tion, stability analysis, kinematic.

1 Introduction
Registration is a process to align different datasets in a

same coordinate system. It is a fundamental task in many
applications of computer vision, pattern recognition, com-
puter graphics, medical imaging, etc. In manufacturing, to
register a point cloud scanned from a fabricated part with a
3D Computer-Aided Design (CAD) model is an important
process for quality control and inspection. Lately, the layer-
based additive manufacturing (AM) method [23] is also ad-
vancing to 6-axis AM [17], which requires an accurate reg-
istration. It is also referred to asscene-to-model registra-
tion that finds an optimal rigid transformation (six degrees of
freedom in translations and rotations) to align one dataset
(model) to another (scene). “Model” and “scene” are the
aliases for two datasets, where ”scene” stands for the static
one and ”model” stands for the moving one. The most pop-
ular fine registration method is theIterative Closest Point
(ICP) algorithm [1]. ICP has many different elements, which
can be summarized into one or more of these categories [14]:
point selection, point matching, pair weighting, outlier re-
moval, error metric, and energy minimization. In general,
these steps are applied sequentially in an ICP process, but
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it is not a must to perform all these steps; each step is per-
formed only if necessary. In this paper, we mainly focus on
the category of point selection. Point selection is usuallyper-
formed for the sake of convergence and computational com-
plexity, or sometimes for outlier removal. This is because
indiscriminately using all the points for registration will in-
ordinately slow the ICP convergence, find a wrong pose, or
even make ICP diverge. In the ideal case, it is desirable to use
the minimum number of points for the same level of accu-
racy. It is natural to look for good strategies in point selection
based on different prior knowledges. For instance, uniform
sampling [20], random sampling [11], sampling on intensity
or color [22], sampling on normal-space [14], etc. Normal
is available in most of applications, andNormal-Space Sam-
pling (NSS) is to choose a certain number of points such that
the distribution of normals among selected points is as-large-
as-possible. NSS is known to perform much better than uni-
form sampling [14], and thus it is commonly used in prac-
tice. The normal information can be further analyzed to find
a set of points that can better constrain the transformation.
Gelfand et al. [6] proposed the stability analysis, and based
on that, they developed the covariance sampling for ICP. Our
study is motivated by their work, and we further confirm that
the accuracy of the stability analysis is very important for
covariance sampling. We propose several key improvements
to the stability analysis that help increase the accuracy (often
substantially), along with their theoretic proof and experi-
mental data.

On the other hand, some approaches rely on different
local shape descriptors to select the points that have singular
descriptor values for registration [7], and expect that these
singular points can uniquely define the transformation be-
tween the input datasets. Although using rare points may be
a good strategy for registration, not every model has distin-
guishable features, especially when only partial registration
can be done (e.g., unfinished workpiece in machining). For
example, the surface of a blade model is featureless. Even
the sharp edges of the blade are not good candidates. This is
because the leading or trailing edge have extremely small di-
mensions, and thus the machining and measuring errors are
relatively much higher than at other places, which makes the
edges not reliable in registration. We will show in this paper
that the improved stability analysis can be used as a quanti-
tative measurement to check if the selected points are suffi-



cient for registration. The stability of registration is defined
as the error introduced when the object performs an infinites-
imal motion from the desired location. In other words, large
registration errors will be introduced when the object is not
placed exactly in the desired location; therefore, the whole
registration process can be converged quickly and become
more stable.

In this paper, we present several improvements for sta-
bility analysis and covariance sampling in defining the rota-
tion center, point extraction, and torque normalization. We
summarize the contributions as:

1. Rotation center is commonly set as the center of mass;
however, it is not always valid. We develop an
axis/center-iteration algorithm to find the correct rota-
tion center, which is a nonlinear problem.

2. The selected point set is updated throughout the point
extraction process, so the principle axes of the mo-
tion are changed too, which is another nonlinear opti-
mization problem. We develop an addition/reduction-
iteration algorithm to extract an elite point set.

3. Normalization between the force and torque is not well-
understood, and there are different ways for the normal-
ization. We study this problem and experimentally in-
duce the correct normalization of torque for ICP appli-
cations.

Our introduced methods enable a quantitative measurement
to evaluate the stability of the selected points. We can reduce
the number of points to achieve the same level of accuracy
by finding out a set of points that can provide the needed
stability.

In the rest of this paper, we will first give a brief review
of related works, in Section 2. After that, Section 3 will in-
troduce the basic details of ICP, as well as the idea of stability
analysis. Section 4 presents our proposed improvements for
stability analysis. Experimental results are given in Section
5. Finally, the paper is concluded in Section 6.

2 Related Works
There is quite a large amount of research work in sur-

face registration (e.g., [10]). For a detailed review, readers
are referred to a thorough survey paper on surface registra-
tion [15]. Among all, theIterative Closest Point (ICP) algo-
rithm [1] is a widely used method for aligning different parts
of an object. Pottmann and Leopoldseder [13] proposed the
Squared Distance Minimization (SDM) for ICP in minimiz-
ing the error between different datasets. The SDM technique
has variants in different orders: the zero-order approximation
of surface distance –Point Distance (PD) – uses the closest
point as the target for fitting [1]; the first-order –Tangent Dis-
tance (TD) – measures the fitting error by using the projec-
tion on the tangent plane as the target [3]; the second-order
– Square Distance (SD) – uses the curvature information to
approximate the local shape [12]. Higher order can give bet-
ter approximation, but the performance of SD is the same
as TD when the datasets are close to each other [21]. How-

ever, the quality of alignment obtained by ICP still heavily
depends on choosing good pairs of corresponding points in
the two datasets. Gelfand et al. [6] pointed out that if too
many points are chosen from featureless regions of the data,
the algorithm could fail. They proposed a geometrically sta-
ble ICP by choosing samples that constrain unstable trans-
formation to minimize the uncertainty in registration. The
point selection in their stable ICP is based on the stability
analysis, or slippage analysis [5]. The basic idea is that the
position of a feature (called slippage feature [2]) should be
uniquely defined within a local neighborhood so that the fea-
ture correspondence is locally well defined. Their approach
is valuable because it uses fewer points but provides better
convergence than the Normal-Space Sampling [14] without
requiring more information. Therefore, in this paper we pro-
vide a few more improvements, aiming to increase the usage
and the impact of stability analysis.

Besides, there are also research results that use local
shape descriptors to select feature points for registration;
for example, curvature map [4], integral volume descrip-
tor [7], intrinsic wave descriptor [19], Heat Kernel Signature
(HKS) [18], 3D-SIFT [8] (see [9] for a survey). Based on dif-
ferent local shape descriptors, most of the existing methods
select the points that have rare or unique descriptor valuesfor
registration, and expect that these rare points can uniquely
define the transformation. Song et al. [16] detected saliency
information for each scan, and employed Markov random
field (MRF) to partition scans into salient and non-salient
regions. The rare points are then selected from the salient
regions. However, indiscriminately using all the rare points
could lead to too many redundancies for ICP. On the other
hand, there would be not enough rare points if the object has
few or even no feature regions. In principle, seven points are
sufficient to uniquely define the geometric placement. How-
ever, extra points are desired to reduce the demand of ac-
curacy from each point, and thus increase the stability and
robustness for the whole system. In this paper, we study how
to find the minimum number of points that can achieve the
demanded level of stability.

3 Stability Analysis for ICP
In this section, we briefly describe the basic idea and

formulation of the stability analysis proposed by Gelfand et
al. [6]. Without loss of generality, we assume that the global
(or rough) registration is already available, and we focus on
solving the fine registration by the Iterative Closest Point
(ICP) algorithm. LetP = {p1,p2, . . . ,pn} be the points on
the model, andS be the scene. The goal of the registration al-
gorithm is to find a rigid body transformation that best aligns
the point cloudP to match the sceneS. The procedure of
ICP is to selectk feature points fromP, and minimize the
following energy function:

EICP =
k

∑
i=1

d2(Rpi + t,S), (1)



Fig. 1. The contact surfaces of these mechanical parts are not completely constrained, i.e., they have certain degrees of freedom (DOF).

whereR is the rotation matrix,t is the translation vector,
andd2 is the squared distance function measuring from the
transformed pointpi to the surfaceS.

The optimal transform betweenP andS can be found
by minimizing Eq.(1). The robustness of this optimization
mainly depends on the stability of the energy function to
the distance between the object’s current placement and its
desired placement. Inversely but equivalently, the stability
of ICP can be defined as the amount of energy introduced
in Eq.(1) when the object is moved away from the desired
placement with an infinitesimal distance. This is because it
represents the gradient (or the first derivative) of Eq.(1) at the
optimal point, and we know that in the optimization theory a
system converges faster if the gradient is larger. In the other
words, the larger the gradient is, the more difficult for the
system to leave its optimal solution, and hence more stable.
Therefore, it is called the stability of ICP. Placing most ofthe
points in the kinematic surfaces (e.g., the contact surfaces of
the mechanical parts as shown in Fig.1) cannot help in regis-
tration, as they can freely move along the kinematic surfaces
without introducing any energy. Therefore, we have to ana-
lyze the points to see if they constitute a kinematic surface.

The motion of a point at a particular time instance can
be described as a twistδw, which consists of a translation
δt along a unique axis in wrench space and a rotationδr
about that axis:δw = [δt δr]⊤ ∈ ℜ6, with δt = [tx ty tz]⊤,
andδr = [rx ry rz]

⊤. A wrench is a system of forces and mo-
ments acting on a rigid body that induces the twist, and the
displacement of the pointpi in Euclidean space is given by a
vector (δr×pi + δt). We can think of this as measuring the
error induced when a point is leaving from its desired posi-
tion. In such particular instant, the target point is assumed to
be itself. Using Tangent Distance (TD) as the distance func-
tion d2, the ICP energy can be represented in terms of the
twist by

E =
k

∑
i=1

‖(δr×pi+ δt) ·ni‖
2
, (2)

whereni = [nx ny nz]
⊤ is the normal vector ofpi. The unit

normal force on a pointpi in wrench space can be written as

ui =

[

ni
τi

]

=

[

ni
pi ×ni

]

∈ ℜ6
, (3)

which is a unit force in the direction ofni and a unit moment
along the axisτi = pi ×ni = [τx τy τz]

⊤. The stability of the

whole system is the minimum energy introduced by a twist
in an arbitrary direction. To find out the axis for a twist that
produces the least energy, we can take partial derivatives on
E and set them to be zero. This yields a 6×6 linear equation
system with respect toδw = [tx ty tz rx ry rz]

⊤ in the form of
Hδw = 0:

H = ∑
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. (4)

H is the summation of Hessian matrices from each point
(subscripti for each node is omitted in the above equation).
The HessianH may not be of full rank, depending on the
shape and the selected points. In this paper, we are interested
in all the bases of the wrench space including those in the
null spaces. The bases can be found by computing the eigen-
value decompositionH = QΛQ⊤, whereQ = {w1, . . . ,w6}
consists of the bases (eigenvectors), andΛ = {λ1, . . . ,λ6}
gives the energies (eigenvalues) introduced by a unit normal
wrench on the corresponding basis (sorted in ascending or-
der). The eigenvalues actually indicate the stability along the
corresponding eigenvectors. The smallest eigenvalue is thus
the stability of the whole system.

4 Improvements for Stability Analysis
As pointed out in the previous section, the eigenvalues

actually represent the stability of the system. Therefore,it
is imperative for them to be correct. To ensure this correct-
ness, several important improvements should be made. In
this section, two nonlinear optimization problems – finding
a correct rotation center and finding a good point selection
– are addressed, and we will experimentally induce a cor-
rect normalization between the torque and force. They are
crucial; because, if they are not correct, the stability of the
system will be reported wrongly as high. For example, if the
rotation center for a sphere is selected at a place other than
the sphere center, even the smallest eigenvalue will not be
zero as the sphere was supposed to be (more details will be
given in the subsections). Therefore, the correctness is de-
fined as the global optimum in the stability of the system,
and the goal is to minimize the eigenvalues.



Fig. 2. These two parts are mechanically constrained (left), where

their contact surface (right) is analyzed. (Top-right) Before optimizing

the rotation center position (located at the intersection of the three

rotation axes), the stability of the y-axis is reported as high. (Bottom-

right) After updating the rotation center, the analysis gives a much

lower stability for the y-axis.

4.1 Rotation Center
As rotation is a geometric operation turning around a

center, the analysis can give a correct result only when a cor-
rect center is given. The rotational component in Eq.(2) can
be rewritten as

E =
k

∑
i=1

‖(δr× (p∗
i − c)+ δt) ·ni‖

2
, (5)

wherec = [cx cy cz]
⊤ is the rotation center, andpi = p∗

i −c is
assigned to distinguish the Euclidean positionp∗

i from the
vector pi, with the centerc as the start point. Similar to
Principle Component Analysis (PCA), most of the previous
works assume the rotation centerc to be the center of mass
of the model. By shifting the center of mass to the origin of
the coordinate system, the rotation centerc is then the origin
(0,0,0). That is exactly the reason why the center is not seen
in the equations. However, the center of mass is not always
equivalent to the rotation center, e.g., the shape in Fig.2.We
find that when the rotation center is not correctly given, the
stability analysis could report erroneous information. There-
fore, it is crucial for the rotation center to be correct.

Solving the rotation and its center altogether would be a
highly nonlinear problem. In order to solve it efficiently, we
separate and solve it in two phases. In the first phase, we fix
the rotation center (c) and solve for the rotation axis (δr). In
the second phase, the rotation axis is fixed while the rotation
center is sought. These two phases are iteratively performed
until the update in the position of the rotation center is less
than a small value, e.g., 10−2.

Axis Phase
Solving the linear equation systemHδw = 0 discussed in
Section 3 (i.e., Eq.(5)) gives all the bases of the motion. Re-
marked that,pi should be updated with the rotation centerc
in each step throughout the iterations. The surface’s center of
mass is used as the initial guess for centerc at the beginning.
The results of this phase are the eigenvectors{w1, . . . ,w6},

and they are the bases used to compute a new center in the
second phase.

Center Phase
The rotation axis is used to compute a new rotation center.
By taking partial derivatives on Eq.(2), a linear equation sys-
tem of Ac = b can be obtained for each basis already com-
puted in the axis phase, where

A1 = ∑(δr×n)(δr×n)⊤,

b1 = ∑(δr×n)(p∗ · (δr×n)− δt ·n).

One basis gives three equations, and six bases give eighteen
equations.A is not of full rank (i.e.,rank(A) = rank(A|b) =
1), and pure translation bases will give vanished equations,
so the overall system can have multiple solutions. With-
out loss of generality, it can be solved by the Least Squares
method consistently on the eighteen equations. Furthermore,
in order not to be biased by the high error bases in the Least
Squares solution, each equation of a basis is divided by the
basis’s eigenvalue. The result of this phase is a new posi-
tion of rotation center, which is then the new input to the first
phase in the next iteration.

Iterating these two phases eventually will lead to the
optimal (or near-optimal) center. An example is shown in
Fig.2. This figure shows two parts that are mechanically
constrained, and they are rotated against each other arounda
rotation axis with a contact surface. Registration on this con-
tact surface should be instable around the rotation axis. How-
ever, using the center of mass as the rotation center would
wrongly give a high stability value (561.443) for the surface.
After finding the optimal center, the analysis gives a correct
result (now only 0.609).

4.2 Point Extraction
The ideal situation is that we can use the minimum num-

ber of points to get the same level of stability in registra-
tion. Recall that, solving Eq.(2) gives us six eigenvectorsand
eigenvalues, where the eigenvalues represent the stability in
the corresponding eigenvectors. Based on the stability analy-
sis on a given set of chosen points, Gelfand et al. [6] proposed
a greedy algorithm to each time add a point with the largest
energy in the most unconstrained eigenvector. Their idea is
to equally constrain all eigenvectors, such that the total num-
ber of points is minimized. In their setup, the eigenvectors
are kept the same throughout the whole process. Neverthe-
less, due to the reason thatE in Eq.(2) andH in Eq.(4) are
the summations of energies and Hessian matrices for all the
selected points, the eigenvectors obtained fromH do change
when an individual point is added into or removed from the
chosen point set. The situation is actually even more com-
plicated, because a point that does not contribute much in



the current eigenvectors may contribute to the new eigenvec-
tors. Therefore, the point extraction is actually a nonlinear
optimization problem.

To handle this nonlinear optimization problem, again,
we propose a two-phases algorithm to extract points. In the
first phase, we add the high contributive points to the cho-
sen point set, while in the second phase, we remove the low
contributive points from the point set. Whenever the chosen
point set is updated, the stability analysis is run to updatethe
eigenvectors and eigenvalues. Therefore, these two nonlin-
ear optimization problems are in a nested loop, with the point
extraction in the outer loop, while the rotation center identifi-
cation in the inner loop. It is worthwhile to mention that this
process is fast. Although stability analysis is a time consum-
ing process when it is running on a large point set, we start
by adding points to the initial empty set, such that the whole
process is dealing with only a small number of points which
does not take much time.

Addition Phase
For the given eigenvectors{w1, . . . ,w6} of the chosen point
set Φ (if Φ = /0, all the candidate points will be used to
compute the eigenvectors), they are sorted according to the
eigenvalues in the ascending order. Among all the candidate
points, the one that has the largest value of(ui ·w1)

2 will be
added toΦ. When the number of points inΦ is more than
six (i.e.,|Φ| > 6), the eigenvectors are updated based on the
current chosen point set.

Reduction Phase
The points added in the beginning may be no longer signif-
icant in the current eigenvectors. In order to keep an elite
set, we go through a reduction phase when|Φ| > 20 and for
everyn steps of additions. In this phase,n

4 points will be re-
moved fromΦ that have the smallest total sums of(ui ·wk)

2.
We setn = 10 in our experiments.

We set the target for the stable situation to be when the
energyE is greater than or equal to a minimum error ofλmin.
In other words, all the eigenvalues must be at leastλmin, i.e.,
(λ1, . . . ,λ6 ≥ λmin). The two phases are iterated until this tar-
get is achieved. Ifλmin is not defined, it is set as the smallest
eigenvalue of the set with all the candidate points.

4.3 Normalization of Torque
Another improvement is about the balance between the

force and torque. The terms of “force” and “torque” come
from the kinematic area; we borrow them for our geometric
problem to describe the power that induces the correspond-
ing translation alongδt and rotation aroundδr. The normal-
ization actually depends on the nature of applications. For
example, in a kinematic problem, the magnitude of torque
depends on the position – the farther from the center a point
is, the larger torque is needed for a rotation. However, ICP it-
self is a geometric problem, and thus normalization is needed
to make the magnitudes of translations and rotations compat-
ible to each other. It can be easily verified that ICP is scale-

#point time #point time #point time #point time

I 203 351 232 722 401 1224 146 832

Lavg
II 176 299 66 361 270 914 Same as I

III 88 195 54 239 194 493 64 376

Lpn
II 186 313 192 491 380 1170 120 594

III 148 270 79 160 218 455 69 301

Lmax
II 140 251 110 483 170 646 80 378

III 32 116 40 213 134 458 56 290

3
2Lmax

II 140 248 110 618 190 615 72 349

III 30 178 34 340 122 706 66 339

Table 1. Comparison of the torque’s normalization methods. Cases

I, II, and III are three different sets of points, which are detailed in the

paragraph. #point gives the number of points, and time is the total

time (in ms) for ICP to converge. The tests are run on a computer

with 2GZ Dual-Core CPU.

independent. (One can run an ICP on a model and its scaled-
down version, e.g., 10−4 times smaller, and the two results
will be identical.) In this sense, torque does not match the
nature of ICP, and it should be normalized with respect to
the object’s size, i.e.,

ui =

[

ni
1
L pi ×ni

]

. (6)

Notice that, as the stability analysis is fully based on the
eigenvalues that are highly related to the magnitudes of force
and torque, a correct normalization is crucial. The problem
is howL should be set to give a correct normalization.

The most common practice [5, 24], and also what
Gelfand et al. [6] did, is to setL = Lavg as the average dis-
tance of the points from the center, so that the torque is scale-
independent and the contribution of each torque is optimized.
However, we can also setL = Lmax as the maximum distance
(i.e., scale the object to be inscribed in a unit ball), or set
L = Lpn = ‖pi ×ni‖ to normalize the effect by the torque on
each point. It is unknown yet which of them is better or the
best. In this paper, we give a study and induce the best one
particular for ICP. Recall that the stability analysis is tomea-
sure the energy introduced by a given force. It can also be
seen as the response under a given force. For example, when
a unit force is applied, the greatest response is that the point
undergoes a unit translation along the force direction. It is
similar in rotation. Although rotation is a bit more compli-
cated as it is also related to the distance from the center, the
maximum response can still be one. It makes no sense that a
point can displace more than the torque induced. As a result,
we deduce thatL= Lmax is the desired normalization for ICP.
In order to verify this conjecture, we use our framework to



evaluate the performances of different settings to check ifthe
results match our study.

The experiment is set as follows. First (I), a set of arbi-
trary points that can successfully output the correct registra-
tion under ICP is chosen. Second (II), this set of points are
input to our point extraction method, and the smallest eigen-
value is used asλmin to find the minimum number of points
among the set. The extracted points are then used to run ICP
again. Third (III), the result is further verified by the feature
points extracted withλmin from all the points of the object.
The best normalization method should be the one that gives
the smallest number of feature points and can register cor-
rectly. The results of this experiment are shown in Table 1.
Four normalization methods are tested, includingLavg, Lpn,
Lmax and 3

2Lmax, where the last one is used to check if the
best solution is beyondLmax. We record the results by the
number of points and the total computing time used in the
ICP process until it is converged, with the termination condi-
tion set as the alignment error being smaller than 1e-5. From
the table, a few observations can be made:

1. Lpn gives the worst performance, because it always re-
turns the largest number of points, and takes the longest
time to converge.

2. Lavg is better thanLpn, but the numbers of the retained
points in cases II and III are much larger than that from
Lmax.

3. 3
2Lmax has the similar performance asLmax in terms of
the number of points, but the computing time needed to
converge is longer than that byLmax. This means that the
extracted points tend to be less stable than those from
Lmax, and the iteration may be prone to divergence.

As a result, we find that the best performance for ICP is using
Lmax to normalize the torque, which agrees with our study.

5 Results
The stability analysis reports how much the given point

set constrains different motions. The sampling framework
discussed in this paper can be adaptive to the needs in stabil-
ity. The higher the values are, the more stable the system is.
Two test cases are shown in Fig.3. We demonstrate by a reg-
ular shape – a cube, and a featureless model – a blade. The
black points are the candidate points for registration, andthe
red points are the selected points from the candidate points
for different levels of stability. It shows that more pointsare
needed for a higher stability. Meanwhile, the points are basi-
cally located as far as possible from the center, because those
points contribute more to the torque –pi ×ni.

We also compare our improved algorithm with the orig-
inal covariance sampling. In this comparison, we set the
same required stabilityλmin for both methods, and run ICP
for the corresponding sampling results. The Root-Mean-
Square (RMS) alignment errors are recorded in the iterations
throughout, and they are plotted as charts in Fig.4. The align-
ment error measures the distances between a point inP and
its projected position onS. We setλmin = 10 in the experi-
ments. For the rabbit example, all the ICP iterations till con-

Fig. 3. Two examples of point extraction: a cube (top) and a blade

(bottom). From left to right: the input, and three cases with different

stabilities of 40.0, 20.0, and 10.0 for cube; 8.0, 4.0, 2.0 for blade.

Black points are the candidate points, and red points are the ex-

tracted points.

vergence are shown. It can be seen that the improved method
globally converges much faster than the original method.
The improved method has already converged after about 80
iterations, while the original method takes more than 180 it-
erations to converge. A sharper comparison is shown in the
rocker arm model. The improved method is converged after
120 iterations, but the original method needs around 260 it-
erations. In both examples, we can see that the convergence
rate is increased more than 2 times in the improved version.
The last example in Fig.4 is a chair model. It clearly shows
that the original method fails to converge, but the improved
method does. This is because the stability of the original
method is not as accurate as the improved one, and thus the
set of points is in fact not fulfilling the required stability, even
though the original analysis falsely says so.

Beside the original stability analysis, we have also con-
ducted some comparisons between our method and other
popular point selection methods. Specifically, we compared
with the Heat Kernel Signature (HKS) method [18], the 3D-
SIFT method [8], and the Normal-Space Sampling (NSS)
method [14], in Fig.5. Two real models are tested: a shoe
and a screwdriver. In our tests, HKS is found to be unstable
and also performs the worst (it cannot converge and keep vi-
brating). This is because it selects the points which are the
local maxima of HKS, but there are not many such points in
rough or noisy models. NSS is better; but since it in general
ignores the shape of the model, its convergence is slow or
even diverges. 3D-SIFT can successfully converge, but it is
much slower when compared with our method.

6 Conclusion
The Iterative Closest Point (ICP) algorithm is a widely

used method for registration of three-dimensional point sets.
The quality of registration obtained by this algorithm de-
pends heavily on choosing good pairs of corresponding



Fig. 4. Comparison between the original covariance sampling and the improved one proposed in this paper. Three examples are shown

in this figure, and each of them shows a chart of Root-Mean-Square (RMS) alignment error against the iteration steps. From the rabbit and

rocker arm examples, we can see that the improved version converges more than 2 times faster than the original one. In the chair example,

even though both methods have the same minimum stability, the original method fails to converge while the improved one does.

Fig. 5. Comparisons between our method and the Heat Kernel Signature (HKS) method, the Normal-Space Sampling (NSS) method, and

the 3D-SIFT method. In the tests on both objects, our method performs much better than the rest.

points in the two datasets. The stability analysis proposed
by Gelfand et al. [6], which makes use of the covariance to
study the effect between its eigenvalues and the convergence
of ICP, provides a good means for this point selection task.
To have an accurate analysis result, we have proposed several
improvements in this paper. First, we have developed a two-
phase iteration algorithm to solve the nonlinear optimization
problem due to finding the correct rotation center. Second,
another nonlinear optimization problem in point extraction is
solved by another two-phase algorithm through iterative ad-
dition and reduction of the selected points. Finally, through
experiments we have shown that a correct normalization be-
tween the torque and force is not to resize the model to make
its average length (from the center) to be one; instead, it
should be scaled to be inscribed in a unit ball. Our exper-
imental results show a great improvement in terms of effi-
ciency and robustness after these improvements have been
made.

There are some limitations of the proposed approach.
First, the analysis works well in complete scans; however,
when the range surfaces are overlapped only partially (see
Fig.6 for an illustration), the analysis can only be done on the
overlapping parts, which means that the analysis has to be re-
done for every pair of the surfaces. Second, the proposed ap-
proach may suffer from high levels of noise, as large noises
make some originally smooth areas strongly constraining.
The noise could be introduced by the inaccuracy of hardware
setup, background color or light for vision scanning device,
or vibration in operation. To illustrate the problem, an ex-

ample of a teapot is shown in Fig.7, in which different levels
of noise are added for comparison. We distribute Gaussian
noise on the vertices in the normal direction, and the amount
of noise is specified by a percentage of the model’s bounding
ball radius. As it is no longer fair to measure the alignment
error directly in the object space for a model with noise, we
measure the transformation error, which is the difference be-
tween the computed transformation matrix at each step and
the desired transformation matrix. The desired transforma-
tion matrix is known because the motion of the model from
its original position is known, and we use Frobenius norm
(i.e., the matrix norm) to compute the difference. It can be
seen that with the level of noise increased, the transforma-
tion error cannot converge to zero. These two issues will be
studied in the future.
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