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Abstract

Design Optimization of Vehicle Structures for Crashworthiness

Improvement

Hesham Kamel Ibrahim, Ph.D.

Concordia University, 2009

The complicated nature of the physical crash processes of complex vehicle structures

makes design optimization for crashworthiness a very challenging task. Moreover,

large scale and highly nonlinear nature of crashworthiness simulations of vehicle struc-

ture make it impractical to conduct direct optimization on the full nonlinear model

of the structure. The main objective of the thesis is to present a systematic and prac-

tical methodology to conduct vehicle crashworthiness design optimization efficiently

at early stages of design. The thesis includes four main parts. In the first part,

an efficient and practical methodology for design optimization of vehicle structures

under frontal impact for crashworthiness improvement is presented. The proposed

methodology is based on identifying the main vehicle structural part contributing

most to the total amount of impact energy absorbed in the whole vehicle structure.

The computationally efficient surrogate model of expensive nonlinear finite element

simulation of this major vehicle part is developed and then integrated with gradient

based optimization algorithm to maximize its absorbed impact energy while guard-

ing against increase in its weight. In the second part, a methodology for deriving the

important relation between minimum structural weight and maximum impact energy

is presented. The proposed methodology is based on the principle of the Pareto front

and multiobjective optimization. The methodology enables the designer to evalu-

ate the crashworthiness performance of any suggested design easily and effectively.

Moreover, the methodology provides different optimum designs from which the de-

signer can easily select the optimum design variables to improve the performance
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of the initial design. In the third part, the crashworthiness behavior of simple thin

walled structures and vehicle structural components made of magnesium due to its

light weight is examined and a new methodology for material design optimization

is presented. The proposed methodology adds material type as design variables to

formal size design variables. Direct optimization using the genetic algorithm is con-

ducted to find the optimum material combination and part’s thicknesses to improve

the crashworthiness performance of the vehicle structure. Finally in the fourth part,

the effect of imperfection on crush elements performance is studied. Different im-

perfection configurations are proposed to improve the crashworthiness performance

of crush elements. The genetic algorithm is directly combined with nonlinear finite

elements models to search for optimum imperfection values. The results show that

the crashworthiness performance of crush elements can be greatly improved through

introduction of proper imperfection. Using the proposed methodologies, the current

research presents a fundamental and systematic study to conduct design optimization

of vehicle structures practically and efficiently.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

Each year more than one million people are killed in road accidents [1]. In Canada

in 2006, nearly two hundred thousands were injured in road accidents [2], bringing

an estimate of $63 billion in social costs [3]. The majority of fatalities and serious

injuries occurred due to frontal vehicle collisions [4].

Consumers have become highly aware of the importance of vehicle safety which has

made it a major influencing factor in vehicle sales. Moreover, the competitive nature

in the automobile sector makes each company always strive to develop safer vehi-

cles. Considering this, safety is of paramount importance in modern vehicle design

and according to Khalil and Du Bois [5], crashworthiness is the first analysis to be

completed in modern vehicle design.

The nonlinear finite element method is the state of the art tool in modern vehicle

design for safety. This method enables the designer to investigate different designs

easily and reliably. This is very important especially at the initial design stages,

at which the design is uncertain and different alternatives are to be tested. Another
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advantage of the nonlinear finite element method is that, it reduces the total number of

prototype testing. This is also very important, since vehicle crash tests are expensive

and time consuming. For instance, a physical crash test may take on average 36 hours

to prepare and a male dummy costs approximately $30,000 without instrumentation

[6].

The nonlinear finite element method is extremely computationally expensive. This is

due to the complex nature of vehicle structures. A typical vehicle structure consists

of many parts with complex shapes made of different materials. During an accident,

parts go through large deformations and stresses exceed materials elastic limits into

plastic regions. Furthermore, parts are pressed against each others under the large

forces of impact. This produces contact forces and friction between these parts.

Finally, the whole accident occurs during very short time (about 100 ms). Considering

this, the nonlinear finite element method requires sophisticated modeling, which in

turn demands huge calculations. For example, a simulation of full frontal impact of

a full vehicle model may last for more than half a day [7].

In addition to safety, there are numerous design objectives (fuel economy, space, com-

fort, etc.). An acceptable vehicle design must meet safety requirements and all other

design objectives. This means that an ad-hoc approach can no longer be applied

to vehicle design, and instead, optimization must be applied. Optimization is a nu-

merical technique that systematically and automatically searches the design space

through numerous iterations to find an optimum feasible solution. This constitutes a

problem in vehicle design for safety due to the large computational cost of nonlinear

finite element analysis. Moreover, the gradient based optimization technique requires

gradients of the objective and constraint functions, which cannot be obtained analyt-

ically due to the complexity of the problem. Numerical evaluation of these gradients

may also fail or generate spurious results due to the high frequency noisy nature of

the responses. Also, in the case of using nongradient based algorithms such as genetic
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algorithms, a much larger number of iterations is required compared with gradient

based techniques. Considering this, applying optimization algorithms directly to the

nonlinear finite element model is not practical and an alternative method based on

approximation techniques should be investigated.

Approximation techniques are used to create approximate mathematical models of

complicated models, and they are sometimes called meta-models (models of models).

Basically, the idea is to collect sample points of the design space and then use them

to create the approximate models. Design of experiments is used to minimize the

number of the required sample points. Approximate models can be used to predict the

crash responses instead of performing the complex nonlinear finite element analysis.

Moreover, approximate models smooth the captured response by modeling the global

behavior and ignoring the high frequency numerical noise which is usually present in

typical vehicle crash responses. Subsequently, approximate models can be used with

any gradient based optimization technique. They can also be used with nongradient

based optimization techniques, since their computational cost is very small compared

to the nonlinear finite element model. The Response Surface Method (RSM) is one

of the approximation techniques that has been successfully used by many researchers

to model the important crash responses.

RSM has been used mainly for vehicle component models. This may cause a problem,

since optimizing a component separated from the vehicle does not necessarily guar-

antee that the optimized component will behave optimally when integrated in the

full vehicle. Another problem with RSM design optimization is that, the number of

design points required to build RSM models increases rapidly as the number of design

variables increases. This is known as the curse of dimensionality [8] which in turn

limits the possibility of using RSM with full vehicle nonlinear finite element models.

Developing an efficient design optimization technique for full vehicle structures is a

challenging task that has not yet received sufficient attention.
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Considering the aforementioned issues, the main objective of the present research

is to develop an efficient and practical methodology for design optimization of full

vehicle nonlinear finite element models. The proposed methodology is based on the

efficient and effective integration of optimization algorithm, nonlinear finite element

analysis, and approximation methods. Using the proposed methodology, practical

approximate models of vehicle structural components are created and then used for

design optimization of the full vehicle structure for crashworthiness improvement.

Thus, optimum designs can be obtained at a very modest computational cost. This is

very useful, especially at initial design stages. Applying optimization at early design

stages has been proven to be an efficient means for improving product design at even

later design stages [9]. Chen and Usman [10] mention that implementing optimization

at early design stages will help in improving the manufacturing process and also in

reducing the number of required tests and prototypes, which will ultimately reduce

the total product cost.

A problem in modern vehicle design for crashworthiness is the ability to evaluate

the performance of a specific design easily and quickly. In modern vehicle design for

crashworthiness, the main goal is to maximize the amount of impact energy absorbed

in vehicle structure and at the same time minimize its weight. Thus, it is important

to find if a design absorbs the maximum amount of impact energy for its current

weight or not. In this thesis, a new methodology is proposed to derive the relation-

ship between maximum amount of impact energy absorbed and minimum weight.

The methodology is based on the principle of the Pareto front and multiobjective

optimization. The derived relationship can then be used to find if a design is opti-

mum or not. The proposed methodology also provides the designer with the optimum

design variables that can be used to optimize the performance of any sub-optimum

design.

Weight reduction is a very important goal in modern vehicle design. Reducing weight
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will lower fuel consumption and consequently carbon emissions. Recently, magnesium

has received a considerable attention from automobile manufacturers due to its low

density. A considerable amount of research has been published on the development of

new magnesium alloys. However, few research has been made on the crashworthiness

response of vehicle structural parts made of magnesium alloys. In this thesis, the

behavior of vehicle structural parts made of magnesium alloys under dynamic impact

loading is analyzed. In addition, a methodology is proposed for including material

type as a design variable in design optimization for crashworthiness improvement.

This will provide the designer with a wider selection of design solutions than when

conducting a conventional design optimization that uses only parts thicknesses as

design variables.

Thin walled columns are typically used as add-on crash energy absorbing systems and

are usually called crush elements. During a frontal collision, they help in absorbing

part of the amount of impact energy and more importantly they reduce the impact

forces transmitted to the occupants. This is very important since very large forces can

cause irrecoverable brain damage. Thus, crush elements help in reducing the risk of

brain injuries and in improving the crashworthiness performance of the whole vehicle.

For optimum performance, crush elements must deform in a progressive buckling

mode under impact. To initiate this mode of deformation, geometrical imperfections

are intentionally introduced to the crush elements shape. This is typically made by

simple chamfering. In this thesis, different new configurations are presented and their

effect on crush elements performance is systematically studied. To achieve optimum

performance of crush elements, design optimization is conducted to find the optimum

values of imperfection shape parameters.
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1.2 Literature Review

Crashworthiness is an engineering term used to define the ability of vehicle structure

to protect its occupants during an impact [11]. Crashworthiness is not limited to

automobiles only, it is also applied to other transportation vehicles, such as ships,

planes, and trains. In fact, the first systematic and scientific investigation of the

subject was applied to railway axles between 1879 to 1890 by Thomas Andrews [12].

In other words, crashworthiness is the process of improving the crash performance of

a structure by sacrificing it under impact for the purpose of protecting occupants from

injuries [13]. To improve the structure design for crashworthiness, it is required to

understand the different factors affecting the crash process. In the following, different

fundamental aspects of design for crashworthiness have been described and pertinent

works have been reviewed.

1.2.1 Crash Characteristics

Accidents occur in a random manner. An automobile can be impacted from any

direction at different speeds. It can also include an automobile impacting another

automobile, which in turn can be the same or different from the first automobile. This

shows how automobiles affect and being affected by each other in crash situations [6].

An automobile can also impact a rigid barrier, a tree, a light post. . . etc, which may

lead to severe deceleration and high loads, as a rigid body can not deform to absorb

part of the impact energy. An automobile can also impact a pedestrian which leads

to the importance of design for pedestrian safety as well, and finally an automobile

can go into rollover accidents. According to Galganski [14], crashworthiness problems

can be characterized by:

1. Displacement and energy: Frontal structure length is being reduced by modern
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design styles and at the same time, it is required to absorb most of the impact

energy and to minimize intrusion into the compartment.

2. Crash pulse: Crash pulse is the deceleration induced by impact on the human

body. Head injury criterion (HIC) is used to measure the damage from crash

pulse on the brain, and it should be less than a certain limit by regulations [15].

3. Crash position: The structure should be able to mitigate injuries in different

crash positions such as full frontal impact, offset frontal impact, side impact,

rear impact, and rollover.

4. Automobile compatibility: With different automobile models, the structure

should be able to mitigate injuries resulting from an accident involving two

different automobiles, which can differ in size and/or weight.

1.2.2 Accidents Types

1.2.2.1 Frontal Impact

Frontal impact can be realized in two stages: In the first stage, the vehicle strikes a

barrier or another vehicle which causes front to end crush and the kinetic energy is

dissipated into deformation of the structure. In the second stage, the occupant con-

tinues to move freely against the interior if not restrained, or interacts with restraint

system, if restrained. The kinetic energy is then transformed into interior deforma-

tion of the structure and compression to the occupant’s body. Finally, the remaining

kinetic energy is dissipated as the occupant decelerates with the vehicle.

Injuries may occur during the second stage in case the impact loading is high enough

beyond the safety limits. A good design should ensure that the kinetic energy is

dissipated gradually to minimize injuries.
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Safety measures, such as using energy absorbing materials to cover the interior parts,

seat belts, and air bags are important in reducing injuries due to interaction between

the occupant and the interior.

To provide the minimum level of safety, automobile manufacturers are obliged by

law to ensure that their designs comply with governmental regulations. Automobile

manufacturers must demonstrate that their vehicles are in compliance with safety

standards before they are sold. For frontal collisions, vehicle designs are regulated

by FMVSS 208 in the U.S., by CMVSS 208 in Canada, and by ECE R-12 in Europe

[16–18].

1.2.2.2 Side Impact

Side impact is the second most frequent mode of accidents. It is defined as the incident

when a striking vehicle hits a target vehicle in the area of one or more of its pillars,

during which the kinetic energy is transformed into deformation of both vehicles. The

side impact can be described in two stages as has been described in frontal impact.

However, in side impacts, restraint systems play less role in protecting the occupant

due to the proximity of the occupant to the interior (doors). The stiffness of the

side structure plays a major role in occupant’s safety, i.e., it must be strong to resist

intrusion. The cross bars are also important in controlling the deformation to protect

the occupant. Finally, the inside layout is an important factor as well in minimizing

injuries due to interaction between the occupant’s body and the vehicle interior. For

side impacts, vehicle designs are regulated by FMVSS 214 in the U.S., by CMVSS

214 in Canada, and by ECE R-59 in Europe [16–18].
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1.2.2.3 Rear Impact

Although the number of rear impacts is much less than the number of front or side

impacts, the whiplash injuries caused by this types of accidents are complicated, hard

to recover from, and can cause fatalities [19]. For safety against rear impact, special

attention must be given to the structural integrity of the fuel tank and fuel lines,

seat resistance especially seat backs, and to head restraints. For rear impacts, vehicle

designs are regulated by FMVSS 224 in the U.S., by CMVSS 224 in Canada, and by

ECE R-42 in Europe [16–18].

1.2.2.4 Rollover Accidents

In rollover accidents, the whole vehicle structure along with vehicle interior must pro-

tect occupants from injuries. Seat belts are particularly important in these accidents

and the roof must provide resistance to deformation. During rollover accidents, the

doors must not open by themselves and special valves must ensure that fuel lines are

closed and fuel ventilation is directed to a charcoal canister to prevent fire hazards [6].

The study of rollover is of special interest to heavy vehicles and trucks since their rela-

tively higher center of gravity makes them more susceptible to this kind of accidents.

This type of accidents can be prevented by controlling vehicle dynamic responses

during driving and braking performance, as reported by El-Gindy et al. [20, 21]. For

rollover accidents, vehicle designs are regulated by FMVSS 201 and 208 in the U.S.,

by CMVSS 201 and 208 in Canada, and by ECE R-21 in Europe [16–18].

1.2.3 Structural Requirements

By definition, crashworthiness is the measure of the structure’s ability to protect the

occupants during impact, therefore the structure must fulfill some requirements, that

are summarized in the following:
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• The structure must absorb as much impact energy as possible by plastically

deforming in a controllable manner to minimize the remaining impact energy

which can then be handled by the restraint system.

• The structure must preserve at least the minimum survival space to keep injury

and fatality levels as low as possible.

A good design should achieve these two goals simultaneously and at the same time, it

must adhere to other design objectives, e.g., comfortabilty, accessibility, weight, fuel

consumption,...etc. Thus, the full design process is very complicated and requires

high levels of communication between different disciplines.

In order to achieve these goals, a good understanding of the structural deformation

process and its mechanism should be maintained. Generally, the deformation (col-

lapse) modes of the structure can be divided in two modes:

1. Axial collapse mode characterized by regular accordion type folding or irregular

crumpling of the walls of the structure.

2. Bending collapse mode where discrete plastic hinges are formed and the struc-

ture collapses around them in a linkage type fashion.

Pure axial collapse as shown in Figure 1.1 is the most desirable collapse form, as it

includes the absorption of the maximum amount of energy. An axial collapse, also

called progressive buckling, involves formation of complete folds along the beam/tube.

However, it is the most difficult to achieve and it can be realized only during a head

on collision, direct front-rear accidents, or slightly off-angle (5o − 10o) impacts.
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Figure 1.1: Axial collapse mode

On the other hand, the bending collapse mode is the most frequent to occur as it has

the least energy path during an impact, and the structure will follow this path unless

it is well designed to be forced into the axial collapse mode. As shown in Figure 1.2,

this mode involves a global bending initiated by building up of stress concentration

at a weak point until yield is exceeded and the structure bends around this point.

Therefore, the design must not allow this building up of stress concentration and

maintains a uniform deformation along the component length, which leads to the

issue of the stability of the axial collapse.

Figure 1.2: Bending collapse mode

1.2.4 Stability of the Axial Collapse

The axial collapse is the most efficient mode of deformation and it is also the most

difficult to attain. A structure that starts to deform axially can suddenly buckle in

the global bending mode, causing a significant drop in the capacity of the structure to
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absorb the impact energy. This behavior may completely alter the crash performance

of the structure, hence it is important to understand the mechanics of this transition

so that proper measures can be taken to avoid it.

Very few research has been conducted in this area despite its great importance to

the subject of design for crashworthiness, which can be explained by the high level of

complexity of the subject and due to the many factors involved. It has been shown

that the loss of stability can be attributed to the sharp reduction of bending stiffness

of the locally deformed portion of the tube, which causes the tube to buckle in a

global manner when a certain critical collapsed length is reached [22].

Abramwicz and Jones [22] studied the transition between global bending to progres-

sive buckling of statically and dynamically loaded tubes. This transition is important

since the amount of the absorbed impact energy is significantly different in each case.

Based on numerous test results, they proposed two empirical formulas for square and

circular steel tubes as:

(
L

C

)
cr

= 3.423e(
0.04C

t ) (1.1)

(
L

2R

)
cr

= 3.355e(
0.032R

t ) (1.2)

Eq.(1.1) provides the critical length to width ratio for square tubes while Eq.(1.2)

gives the critical length to diameter ratio for circular tubes. If length to mean diameter

or edge width of tubes are higher than the above critical values, the tubes will undergo

global buckling [22].
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1.2.5 Crashworthiness Metrics

Crashworthiness is measured by different metrics depending on the type of analysis

being conducted. There are mainly three types of analyses [6]:

Structural analysis, in which the structure response under impact is of engineering

concern. In this type of analysis, the amount of Impact Energy (IE) absorbed is

of paramount importance as the larger the value, the safer the design. The main

objective of the design process is to increase IE. Dividing IE by the structural

mass is called the Specific Energy Absorbed (SEA), which represents the amount

of energy absorbed with respect to the structural mass. It is basically used to

compare the efficiency of different structures. Another important quantity is the

peak reaction force achieved during impact. The objective of the design process

is to limit peak values since higher peak values can induce large deceleration

values which may cause irrecoverable brain damage.

Injury analysis, in which the effect of impact on the occupants is considered. This ef-

fect is determined by the injury tolerance limits determined from bio-mechanics.

This type of analysis also studies the interaction between occupants and vehicle

interior under crash situations, and how restraint systems can limit the level of

injury severity.

Pedestrian injury analysis, in which the effect of impact on pedestrians is studied.

This type of analysis is concerned with improving the vehicle bumper, hood and

windshield designs in order to minimize injuries to pedestrians.

1.2.6 Modeling Simple Vehicle Structural Components

Vehicle structures are mainly composed of thin walled members. Researchers have

used both analytical and experimental approaches to study the behavior of simple
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thin walled tubes under impact. Brief discussions of these approaches are provided

in the following sections.

1.2.6.1 Analytical Approach

The work for developing analytical models of thin walled tubes under axial impact was

pioneered by Alexander [23]. He derived a simple analytical equation for calculating

the mean impact force needed to plastically deform a thin wall cylindrical tube. He

equated the required work to deform the walls of the tube into folds with the mean

impact force multiplied by the amount of deformation, and derived the following

equation:

Pm = Ct1.5
√
D (1.3)

where

Pm Mean crush force
C A constant to be determined by experiments
t Wall thickness
D Mean diameter

His equation was later improved to model the mechanics and the kinematics of the

folding process of the axial collapse mode [24, 25]. The models involved simple rela-

tions between the important crash characteristics and the component geometry and

material properties. These models were based on simplifying assumptions, such as,

the neutral surface does not stretch nor shrink, which limited the models predic-

tion capabilities. Later on, Wierzbicki and Abramowicz [26] developed an analytical

approach to the crushing response of thin walled columns, based on the plasticity

theory. Using the energy balance between external load and internal work exerted by

the deforming parts, they developed an equation for the mean crushing load as:
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Pm = 38.12M0C
1/3t

−1/3 (1.4)

where

Pm Mean crush force
Mo = σ0t

2/4 Fully plastic moment
σ0 = (0.9− 0.95)σu Average flow stress
σu Ultimate tensile strength of the material
C = (b+ d)/2 b and d are sides of a rectangular box column
t Wall thickness

For a square tube, where C = d = b, Eq.(1.4) becomes:

Pm = 9.53σ0t
5/3b

1/3 (1.5)

and for a circular tube, where R is the mean radius:

Pm = 2 (πt)
3/2R

1/2σ0/3
1/4 (1.6)

In the above equations, the influence of the inertia forces is neglected as they are

relatively small in comparison with the static crushing load. It is also assumed that

the static flow stress (σ0) is independent of the strain rate. This latter simplification

neglected the fact that some materials exhibit a change in response under impact

loading due to the change in the strain rate. This behavior is referred to as material

strain rate sensitivity.

Material strain rate sensitivity is the phenomena in which the dynamic flow stress

(σd) depends on the strain rate (ε̇). Cowper and Symonds [27] proposed a constitutive

equation to calculate the dynamic flow stress (σd) as a function of static flow stress

(σ0), strain rate (ε̇), and two material parameters q and D which, can be described

as:
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σd = σ0

[
1 +

(
ε̇

D

)1/q
]

(1.7)

Abramwicz and Jones [28] updated Eq.(1.6) to account for strain rate sensitivity using

Eq.(1.7) and reached an analytical formula for Pm as:

Pm = 2 (πt)
3/2R

1/2σ0

[
1 +

(
V

4RD

)1/q
]
/3

1/4 (1.8)

where V is the axial impact velocity. It is noted that when D approaches infinity for

strain rate insensitive materials, Eq.(1.8) reduces to Eq.(1.6). They also introduced

another equation for calculating Pm for square tubes as:

Pm = 13.05σ0t
2 (C/t)

1/3

[
1 +

(
0.33V

CD

)1/q
]

(1.9)

1.2.6.2 Empirical Approach

Other researchers followed another approach, instead of purely analytical, they used

experimental data of crushed tubes to develop empirical relations. Magee and Thorn-

ton [29] used crush test data of different columns (steels ranging in tensile strength

from 276 to 1310 MPa, aluminum alloys and composites) of several different section

geometries and developed a relationship for the mean crush load for circular tubes

as:

Pm = ησuφA0 (1.10)

where

16



η = Es

σus
Structural effectiveness

Es = Er

W
Specific energy

Er Maximum energy that can be absorbed by the structure

W Weight

σus = σu

ρ
Specific ultimate strength

σu Ultimate strength

ρ Density

φ = Vm

Ve
Relative density

Vm Material volume

Ve Volume enclosed by the structural section

A0 Overall section area defined by the outer circumference

For square tubes, where b is the edge width and t is the thickness, the relation is:

Pm = 17t1.8b0.2σu (1.11)

Equations (1.10 and 1.11) have a drawback as the material elasticity is not taken

into consideration. Thus, for two materials having the same ultimate strength, they

exhibit the same mean crush load. Mahmood and Paluszny [30] proved that this

contradicts test findings. They developed a quasi-analytical approach, in which they

assumed that a thin walled square tube is a composition of plate elements subjected

to compression and will buckle locally only when critical stresses are reached. The

process starts with local buckling of some elements and finally leads to folding of the

tube. The section collapse strength is related to its thickness to width ratio (t/b)

and to its material properties. For very small sections, called (non-compact) sections

(t/b = 0.0085− 0.016), the collapse mode will be governed by geometry as its local

buckling strength is considerably less than its material yield strength [30]. For larger

(t/b) values (compact sections), material properties govern the mode of collapse as the

local buckling strength exceeds material yield strength. In general, the collapse mode

will be governed by a combination of geometry and material properties, in which the
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maximum crushing strength of the section (Smax) is given by [31]:

Smax =
[
kpE (t/b)1/2

]n [(
1− ν2

)
γσy
]−n

σy (1.12)

where

kp The crippling coefficient and it is a function of the degree of restraint
at the longitudinal edges

n Exponent that is influenced by the degree of warping and lateral
bending of the unloaded edges (corners)

E Young’s modulus of elasticity

σy Material yield strength.

γ Material strain hardening factor

The maximum loading capacity Pmax of a section can be calculated by multiplying

Eq.(1.12) by the cross section area. Hence for a rectangular section with thickness

t and sides b and d, the area is (2tb (1 + α)), where α = d/b is the aspect ratio and

thus Pmax can be given as:

Pmax = 2
[
kpE/γ

(
1− ν2

)]0.43
t1.86b0.14 (1 + α)σ0.57

y (1.13)

For a square steel column (α= 1, kp= 2.11, ν= 0.3 and E = 30× 106 psi), Eq.(1.13)

yields to:

Pmax = 9425t1.86b0.14γ−0.43σ0.57
y (1.14)

The expressions for mean crushing stress (Sm) and mean crushing load (Pm) of a

square steel tube can be given by [31]:

Sm =
[
kpE (t/b)2 /

(
1− ν2

)
γ
]0.43

σ0.57
y (1.15)
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Pm = 3270t1.86b0.14γ−0.43σ0.57
y (1.16)

1.2.7 Modeling Vehicle Structures

In the previous section, models of only simple thin walled tubes under axial loading

have been presented. However, these simple models cannot be used to predict the

behavior of complicated vehicle structures under different loading conditions. The

automobile manufacturers have fueled the research for developing reliable models

that can accurately predict the behavior of vehicle structures under impact. This is

due to the fact that, vehicle safety certification is a complicated process that requires

numerous tests. For example, for a car to meet the safety requirements for frontal

impact, it must pass a rigid barrier crash at 0, +30 and -30 degrees at 30 mph

according to FMVSS 208 [16] and at 35 mph at 0 degrees according to the New Car

Assessment Program (NCAP) [32]. These tests are expensive and time consuming

and considerable research has been devoted to develop reliable models to reduce the

number of required tests. The current modeling techniques can be divided as follows:

1. Lumped Mass Spring (LMS) models

2. Finite Element (FE) models

3. Multi Body Dynamics (MBD) models

4. Hybrid models

In the following sections, a brief overview of each modeling technique is presented.

1.2.7.1 LMS Models

A simple and yet a relatively accurate model was developed by Kamal [33] in 1970.

This model became widely known as the Lumped Mass-Spring (LMS) model. This
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model succeeded in simulating the response of a full automobile in a full frontal impact

with a rigid wall. The model as shown in Figure 1.3, approximates the vehicle by a

system of lumped masses and springs.

Figure 1.3: Kamal’s LMS model [33]

The model is quite simple, however, it requires an extensive knowledge and under-

standing of structural crashworthiness from the user and also a considerable expe-

rience in determining the model parameters and translating the output into design

data. Moreover, the model also requires that spring parameters to be determined

from physical experiments using the static crush setup as illustrated in Figure 1.4.
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Figure 1.4: The static crush setup [34]

LMS models have been used successfully in the simulations of front, side and rear

impact vehicle crashes [35–37]. Figure 1.5 shows a LMS model for simulating a

vehicle hitting a rigid wall barrier at 56 km/h. The model parameters were identified

from an actual rigid wall test from which masses and springs stiffnesses were tuned

in order to achieve the best agreement with test results. Figure 1.6 shows a sample

comparison between the acceleration histories of the actual test results and the results

from the LMS model. Figure 1.7 also shows a LMS model of a bullet car impacting

a target car from the side at 50 km/h.

Figure 1.5: A LMS model for frontal impact [38]
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Figure 1.6: Comparison between physical test results and a LMS model [38]

Figure 1.7: A LMS model for a vehicle to vehicle impact simulation [37]

1.2.7.2 Limitations of LMS Models

LMS models are easy tools for developing energy management systems. The designer

can use LMS models to develop design guidelines for component placements. LMS

models also enable the designer to understand the mechanics and the influencing

factors of collision such as impact speed, mass ratio and structural stiffnesses of

colliding vehicles. Deceleration time history, amount of energy absorbed by vehicle

structure and the amount of deformation can be easily calculated. However, LMS

22



models have their limitations which can be summarized as follows [39]:

• A prime limitation of the LMS models is that they require a prior knowledge of

the spring characteristics of the system, thus they are ineffective for developing

new models.

• The development of an accurate model highly depends on the developer expe-

rience, skill, and understanding of the crash mechanics.

• LMS models with one degree of freedom for each component are only limited for

predicting the behavior in the longitudinal direction. For example, the behavior

due to a mis-alignment in the horizontal or in the vertical planes can not be

captured. In addition, problems involving offset or angular impact can not be

simulated. Three dimensional LMS models have been developed to overcome

this restriction [40,41] .

1.2.7.3 FE Models

The application of the nonlinear FE method in crashworthiness analysis is descried

in detail in Chapter 2. In the following, an overview of the application of nonlinear

FE models to crash problems is presented.

Some research has been conducted to investigate the use of the implicit method in

crash simulations. A pioneering article was published in 1981 by Winter et al. [42], in

which a head-on collision of a vehicle frontal structure with a rigid wall was simulated

using the implicit code DYCAST [43]. In this model, the left half of the vehicle was

represented by 504 membrane triangular, beam, bar, and spring elements.

Later in 1983, Haug et al. [44] discussed the development of an implicit-explicit code

(PAM-CRASH), which was used to analyze the response of an A-pillar and the right
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front quarter of a unit-body passenger vehicle structure. The code incorporated a

quasi-static analysis using an iterative incremental force/displacement analysis.

In 1986, Argyris et al. [45] discussed the development of an implicit code for crash

analysis. The developed code was used to calculate the response of a frontal vehicle

structure under impact with a rigid barrier at an initial velocity of 13.4 m/s. From

this point, the application of implicit FE solvers to crash analysis did not proceed

any further. This is primarily due to its inability to account for contact and folding

of thin sheet metal structures and due to excessive demands on computer hardware

storage and speed.

The year 1986 is a landmark in the history of the nonlinear FE method and marks a

breakthrough in crash simulations [5]. At that year, Haug et al. [46] published what

appears to be the first published work on the application of the explicit FE method

in crashworthiness problems. The FE model as shown in Figure 1.8 simulated a

Volkswagen Polo hitting a rigid wall barrier at 13.4 m/s and included 2272 shell ele-

ments and 106 beam elements. As shown, the model primarily represented the frame

structure. The nonlinear behavior of the material was included using an elastoplastic

constitutive model with strain hardening. The simulation took four hours to simulate

60 milliseconds of the crash event on a CRAY-1 supercomputer.
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Figure 1.8: The VW-POLO model [46]

This breakthrough was the result of the introduction of vectorized supercomputers

that allowed the practical application of the explicit finite element method to crash

simulations. From this point onward, nonlinear FE models have been used at an

increasing rate due to the rapid advancement in the computational capabilities in

terms of speed, memory and storage. Now, nonlinear FE models are widely used

for analyzing the behavior of vehicle structures under impact loading. The detailed

geometric models of vehicle components are usually established using computer aided

design softwares. This has facilitated the development of FE models as these geo-

metric models can be easily imported to the FE codes for meshing. In addition, the

improvement of the nonlinear codes for faster computations and more accurate results

has encouraged the design community to adopt nonlinear FE models as the state of

the art tool for crashworthiness analysis.

1.2.7.4 Brief History of Nonlinear FE Softwares

The birth of the first nonlinear FE software was at the US Lawrence Livermore

National Laboratories (LLNL) [47]. The software was named DYNA and it was

developed mainly for solving problems that were highly nonlinear and impossible to
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solve with existing computational tools. For example, for a military aircraft hitting

at 200 m/s a concrete safety containment of a nuclear power plant, 60 elements were

used to model the concrete building and the simulation took 33 hours on a VAX

11/780 [48]. The software was developed in an open environment in what resembles

today an open source environment. In 1973, the French company ESI Group saw

the potentials of using a numerical tool for solving nonlinear problems in commercial

applications and began developing its own code and named it PAM-CRASH [49]. In

1985, several developers from the ESI French group founded their own company and

developed their own code RADIOSS [50]. In 1989, developers from the US LLNL

founded their own company named Livermore Software Technology and called the

code LS-DYNA [51]. In 1978, ABAQUS was developed by a group of PhD students

from Brown University in the US. At first, it included an implicit solver and later in

1991, the explicit solver was introduced. In 2005, the company was acquired by the

French group Dassault Systèmes [52]. Currently LS-DYNA, PAM-CRASH, RADIOSS

and ABAQUS are the most widely used nonlinear FE software for crash simulations.

The use of nonlinear FE models is not limited only to crash simulations and is applied

to many other complex problems involving high nonlinearity such as:

• Occupant simulation [53,54].

• Evaluating and improving roadside hardware [55–57].

• Improving vehicle design for pedestrian safety [58–62].

• Development of the metal forming processes [63–65].

• Aerospace design [66–68].

• Medical applications [69, 70].
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1.2.7.5 MBD Models

In multi body dynamic models, physical components are represented by intercon-

nected bodies with different joint types. In fact, LMS models are special cases of the

more general MBD models. The difference is that in MBD models, various joint types

with different degrees of freedom can be used and multi bodies can be flexible bodies

instead of rigid bodies used in LMS models. MBD models are efficient at capturing

the kinematics and the kinetics of interacting bodies, which is an area best suited for

analyzing the response of the human body when interacting with the vehicle interior

or vehicle exterior [71]. In an early work by McHeny in 1963 [72], he used MBD to

model the human body seated with restraint system in a frontal collision as shown in

Figure 1.9. In his work, the human body is represented by four rigid bodies connected

through pin joints. The model was in good agreement with experimental test results.

Figure 1.9: An early MBD model [72]

Currently MBD models are mainly used to simulate the interaction between occu-
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pants or pedestrians and vehicle structure and also to predict the interacting kinetics

between two or more colliding vehicles.

1.2.7.6 Hybrid Models

A hybrid model combines FE and MBD in a single model. Usually, the FE model

is used to simulate the vehicle structure where the MBD model is used to simulate

human occupants. This configuration allows for computational efficiency, since MBD

can model the human body at a comparatively lower computational cost compared

to FE models. The model in Figure 1.10 shows a hybrid model for a side impact

test. LS-DYNA is used to model the vehicle structure and the rigid barrier, where

MADYMO, a MBD commercial software is used to model the occupant.

Figure 1.10: A hybrid model of a side impact test [73]

Modeling humans using MBD models has been criticized on the basis that designing

a car based on the dummies responses will make the car safe for dummies but not

necessarily for humans [74]. Therefore, research has been conducted in this area to

use FE models to model the occupants since they can capture more details about the

effect on the body, especially the internal organs. The problem with this approach is

the evaluation of material properties for human body parts which is not an easy task.

Moreover, the resulting FE model becomes exceedingly complex and computationally

demanding. For example, a human brain model alone consists of more than 300,000
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elements [74]. Nevertheless, some automobile manufacturers have developed their

own FE human models, such as Toyota which has developed Total HUman Model for

Safety (THUMS) [75].

1.3 Crashworthiness Improvement

Having a variety of reliable modeling tools, researchers have used these tools to an-

alyze and improve vehicle designs for safety. Crashworthiness improvement can be

approached in two ways: (1) Geometry optimization for crashworthiness and (2) Ma-

terial optimization for crashworthiness.

1.3.1 Geometry Optimization for Crashworthiness

The automobile is a complicated product with different design (often contradicting)

objectives. An intuitive ad-hoc approach can no longer be used to find a feasible

solution that can meet all the design objectives and using optimization becomes

inescapable. Optimization is a systematic mathematical method for solving problems

in which the problem is configured in a way that the objective and the constraints

are well specified and defined as functions of the problem variables.

The problem is formulated as the process of finding the set of design variables X that

minimizes or maximizes the objective function F within the design constraints Gj,

where j = 1 : n and n is the number of constraints. X is usually bounded between

XL (Lower bound) and XU (Upper bound). A formal optimization problem with a

single objective is formally defined as follows:
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Find Xthat :

Minimizes F

Subjec to: Gj ≤ 0 (1.17)

where,XL ≤ X ≤ XU

There are numerous numerical approaches for solving optimization problems and they

can be classified into two main categories: gradient and nongradient based methods.

In gradient based method, analytical or numerical gradients of the objective and

constraint functions are required, while nongradient based methods do not require the

gradients. Nevertheless, both methods require a considerable number of iterations to

find the optimum value of X.

Considering this, applying optimization for crashworthiness design is extremely diffi-

cult since analytical gradients are not readily available in nonlinear FE analysis and

also numerical evaluation of gradients generate erroneous results due to the inherent

complexity of the nonlinear FE method. Moreover, each iteration to evaluate the

objective and constraint functions requires running the computationally very expen-

sive nonlinear FE analysis. These complexities prevent the practical application of

optimization directly to nonlinear FE analysis.

To overcome these problems researchers have investigated different approximate mod-

els, sometimes called meta-models (models of models) [76]. The idea is to build simple

and easy to calculate approximations of the complex nonlinear FE model and use these

approximations to predict the responses of the model. As these approximations can

be calculated at a much less computational cost than the nonlinear FE models, an op-

timization problem can then be formulated using these meta-models to calculate the

values of objective and constraint functions at each iteration, and thus optimization
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can be applied effectively. The first application of meta-models for optimization of

large scale structural problems was introduced by Schmit and Farshi [77] in 1974. For

a comprehensive review of approximate methods for optimization in structure design,

one can refer to Ref. [78]. In the following, some pertinent works are presented.

The first published work on the application of meta-models in crashworthiness design

appears to have been published by Schoof et al. [79] in 1992. They built approximate

models of multi body dynamics models. Then, they applied optimization to the ap-

proximate models to minimize the injury criterion for a child seated in a child’s seat.

Later in 1996, Etman et al. [80] used the RSM to build approximate models of the

crash responses of a sedan in frontal impact. They used MADYMO (a multi body

dynamic software) to simulate the frontal impact on the occupant side. Schramm

et al. [81] used LS-DYNA (a nonlinear finite element software) to model an S-rail

under frontal impact. They then used RSM to build approximate models of the im-

pact energy and applied optimization to maximize the value of the impact energy

absorbed in the S-rail structure. Yamazaki and Han used RSM to approximate the

energy absorbed in circular tubes [82], square tubes [83] and S-rails [84]. They ap-

plied optimization to the approximate models, where the objective was to maximize

the amount of impact energy absorbed in the tubes and the S-rails. Marklund and

Nilsson [85] used RSM to model an air bag that was simulated by LS-DYNA. They

applied optimization to the approximate model to find the optimum airbag design

variables to minimize occupant injuries in situations where the occupant is not seated

in an ideal position. Craig et al. [86] used RSM to create function approximations

of an instrument panel and conducted optimization to find the optimum shape de-

sign variables to minimize knee injuries of the occupant. Recently, Liu [87, 88] used

LS-DYNA to model thin walled square and octagonal tubes under axial impact. He

then used RSM to approximate the impact energy absorbed by the tube. Finally, he

applied optimization to find the optimum shape variables to maximize the specific
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energy absorbed while constraining the maximum crushing force.

1.3.2 Material Optimization for Crashworthiness

Material’s role is of paramount importance to crashworthiness. Lighter materials are

being developed to reduce automobile’s weight for cost and emission reduction. At

the same time these lighter materials should maintain the safety of the automobile

according to regulations. Significant research work has been conducted to achieve

both objectives. The research in this area can be classified according to the type of

material into four categories: (1) steel, (2) composite materials, (3) aluminum and (4)

magnesium. A brief overview of the published literature is presented in the following:

1.3.2.1 Steel

Steel sheets have been used in vehicle structures for more than one century. Its

low production costs, consistent properties and the huge accumulated and available

knowledge about its production processes make it the material of choice for auto-

mobile manufacturers. Its crashworthiness performance has been studied by several

researchers. Van Slycken et al. [89] studied high strength steels potentials for crash-

worthiness. They showed that high strength steels under dynamic loading experience

higher energy absorption capacities and these capacities even increase as the strain

rate increases, which is an advantage for crash energy absorption applications. Peix-

inho et al. [90] examined the crashworthiness behavior of thin walled tubes made

of dual phase and transformation induced plasticity (TRIP) steels. TRIP steels are

steels containing a metastable austenite that transforms into martensite during plastic

deformation, which allows for enhanced strength and ductility [91]. They conducted

tensile tests at different strain rates as well as axial crushing tests. Their test results

showed that TRIP steels are strain rate sensitive and this can be useful for crash-
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worthiness applications. They used LS-DYNA to model the tests, and numerical

and experimental results were in good agreement. Hosseinipour et al. [92] studied

improving the crash behavior of steel tubes by incorporating annular grooves. They

showed that this may lead to a controllable progressive deformation, thus increasing

the energy absorption capacity of the tubes.

1.3.2.2 Composite Materials

Composite materials have been investigated for their probable use as impact energy

absorbing elements. Some of the composites that have been investigated for use in

crashworthiness are random chopped fiber reinforced composites. George et al. [93]

studied the crashworthiness performance of random chopped carbon fiber reinforced

epoxy composites. They conducted quasi static tests and concluded that they can

be used as crash energy absorbers. Mahdi et al. [94] used ABAQUS to simulate

corrugated steel tubes filled with cotton fibers embedded into polypropylene. They

showed that the energy absorption capacity increases as the number of corrugations

increases and decreases as the ratio between diameter to thickness (D/t) increases.

1.3.2.3 Aluminum

Aluminum has been used in some automobile structures due to its low density. In

1993, Audi introduced the aluminum space frame sedan, and in 1999, GM introduced

the first all wrought aluminum cradle [95]. Caliskan et al. [96] studied the impact

behavior of the frontal structure of a 2005 Ford GT aluminum spaceframe. They

conducted a full frontal test and used material properties from actual tests as input

data for the LS-DYNA model. They also studied the energy absorption capacity of

rails made of a 6063-T6 aluminum alloy and concluded that properties of the Heat

Affected Zone (HAZ) affect the rail crash performance and their effect should be
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included in future models.

1.3.2.4 Magnesium

Magnesium has recently received a great attention from the automotive industry due

to its attractive low density. It is the lightest of all structural metals (78% lighter

than steel and 35% lighter than aluminum). Moreover, it is also one of the the most

abundant structural materials in Earth’s crust and in sea water [97]. Due to its

excellent casting properties, it has been used in several automotive components, such

as, engine block, engine cradle, transmission case, and instrument panel [98]. Also, it

has been used as inner door frames and seats [99]. However, it has not fully replaced

steel in vehicle structures due to the following challenges:

• Magnesium has a Hexagonal Closed Packed (HCP) crystal structure and has

limited slip systems, mainly in the basal planes, hence it is difficult to form

especially at low temperatures.

• Magnesium has high affinity to react with oxygen which causes corrosion, hence

expensive treatments are required [100].

There is a considerable amount of research to overcome the challenges that hinder the

full use of magnesium alloys in vehicle structures. Nehan et al. [101] presented the

development of an instrument panel cross beam made of magnesium AM60B alloy.

They mentioned that magnesium improved vehicle safety and at the same time, it

minimized the vehicle weight. Newland et al. [102] studied the strain rate behavior

of magnesium alloys and concluded that reducing the aluminum content within the

alloys improves their strain rate sensitivity and ultimately improves their impact

absorbing capacity. Abbott et al. [103] studied magnesium alloys AM60, AS21 and

AZ91 and concluded that they can perform very well in crash situations. Recently,
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Easton et al. [104] presented the development of a new alloy AM-EX1. They also

mentioned that magnesium alloys, specifically AZ31 alloy, can absorb more impact

energy than aluminum or steel alloys. They concluded that material models should

be improved by incorporating defects, non-uniformity, and materials microstructural

characteristics. Despite these efforts, more research is required to understand the

crashworthiness performance of vehicle structures made of magnesium alloys. In this

study, a new approach is introduced on improving the crashworthiness performance

of vehicle structures using magnesium alloys.

1.4 The Aim of the Present Work

The main objective of this research is to develop an efficient and practical methodol-

ogy for design optimization of vehicle structures. The proposed methodology consists

of three main stages and is demonstrated on a nonlinear finite element model of a

pickup truck.

In the first stage, a full nonlinear transient dynamic finite element analysis using

LS-DYNA is conducted on the full vehicle model under frontal impact. Then, the

crash behavior of major structural parts is examined based on their impact energy

absorbing characteristics. The major contributing structural part to the total impact

energy absorbed in the whole vehicle structure is identified. After that, a separate

nonlinear finite element model of the identified structure component is constructed

and modified so that its crashworthiness behavior, when treated individually under

the same impact scenario, is similar to that in the full vehicle model.

In the second stage, an approximate model of the separate nonlinear finite element of

the identified structure component is developed using RSM. Different types of RSM

models are tested and the most accurate is used to represent the crashworthiness

behavior of the structural component.
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In the third stage, the RSM model selected from the second stage is used in an

optimization problem. The objective of the optimization problem is to maximize

the amount of impact energy absorbed in the identified structural component while

maintaining its initial weight. The optimized structural component is then integrated

into the full vehicle nonlinear finite element model and simulated. The results are

then examined to verify if the crashworthiness performance of the full vehicle has

been improved.

Besides the above main objective, other important objectives of the present work are:

Utilizing the developed RSM model to formulate a multiobjective optimization prob-

lem.

The goal is to construct the Pareto front, which includes all possible optimal solutions

within the design space in order to derive the relation between the optimal amount of

impact energy absorbed and optimal weight. The derived relation can then be used

as a guideline to the designer to quickly investigate the effectiveness of any design. If

the design is not optimal, using the proposed approach, the designer can easily select

the proper design variables to achieve an optimum design. This enables the designer

to quickly and easily evaluate vehicle designs and select optimum designs.

Crashworthiness improvement using magnesium.

The modified nonlinear finite element model of the chassis frame that was identified

previously in the main objective is used to investigate the crashworthiness response of

vehicle structural parts made of magnesium. Different combinations between steel and

magnesium are also examined. The optimum combination between steel, magnesium

and parts thicknesses is also studied using a genetic algorithm directly combined with

the modified nonlinear finite element model.

Investigation on add-on crash energy absorbing system.

The system includes a thin walled square tube that acts as an impact energy absorber.
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The objective of the system is to absorb as much impact energy as possible and at

the same time to reduce the transmitted impact loads to the occupants. To achieve

this goal, different imperfections are introduced to the thin walled tubes to trigger the

deformation in a controlled manner for optimal performance. The genetic algorithm

is also directly combined with the nonlinear finite element model of the thin walled

tube to find the optimal values of imperfection.

1.5 Thesis Organization

This thesis consists of seven chapters. The present chapter (chapter 1) provides

the problem statement and motivation of the study. In this chapter, a systematic

literature review was presented on the subject of crashworthiness with most important

and relevant contributions to the field. The chapter concludes by identifying the

objectives of the work and the layout of the thesis.

In chapter 2, nonlinear finite element analysis is presented. The differences between

linear and nonlinear finite element analyses and the sources of nonlinearity are also dis-

cussed. Then, modeling of crashworthiness using the nonlinear finite element method

is described in details. After that, a thin walled square tube is modeled and the

simulation results are verified against published experimental work. Finally, mesh

sensitivity analysis is conducted and different shell element types are simulated and

compared.

Chapter 3 begins with an overview of the process of creating approximate models and

then different types of meta-model building techniques are presented. The response

surface method is described in details along with the other used tools such as design of

experiments and regression analysis. After that, optimization using the response sur-

face method is demonstrated with two examples: a benchmark analytic function and

an S-rail vehicle component. The proposed methodology is then explained in details
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and demonstrated through an illustrative example and finally results are discussed.

Chapter 4 presents a new concept on the process of deriving the relations between

optimal crashworthiness responses. Multiobjective optimization and the Pareto front

are first reviewed, and then the concept is applied to a simple thin walled tube.

Finally, the concept is applied to the chassis structure identified in chapter 3.

Chapter 5 investigates the crashworthiness behavior of vehicle structural components

made of magnesium using the modified nonlinear finite element model that was de-

veloped in chapter 3 for the identified chassis structure.

Chapter 6 investigates the effect of imperfection on the performance of a crash energy

absorbing system. The genetic algorithm is used to find the optimal imperfection

values.

Finally, chapter 7 provides a summary and the most important findings and contri-

butions of the present work. Then various recommendations are identified for future

work.
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Chapter 2

Nonlinear Finite Element Modeling

2.1 Introduction

The work developed in this thesis basically depends on using the nonlinear FE method

to model vehicle structures in crashes. Therefore, the theory and the mathematical

foundation of the nonlinear FE method are explained in this chapter, which is divided

into four main parts. In the first part, an overview of the FE method is presented and

the differences between linear and nonlinear FE analyses are stated. This is followed

by the description of the sources of nonlinearity in nonlinear FE analysis. In the

second part, the nonlinear FE method is described focusing on its implementation in

crashworthiness design. The theoretical foundation which includes the development

of the governing equations is presented. The time integration algorithms required to

solve the nonlinear time dependent equations are also described. Next, the contact

algorithm used to handle the contact forces between structural parts under compres-

sion and also shell elements and material model types are described. Then finally, a

brief discussion on the role of imperfection in nonlinear FE analysis is presented. The

third part presents a review over the different applications of the nonlinear FE analy-

sis in vehicle crashworthiness design. The fourth part includes a detailed description
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of the modeling process of a thin walled square tube under axial impact loading and

results are discussed in details.

2.2 Overview of the FE method

The FE method is a numerical method used for solving complicated engineering

problems. Starting from its first application in the analysis of aircraft structures

in the mid fifties [105], the FE method has evolved as the state of the art tool for

solving complex engineering problems. The basic idea is that, the human mind can not

understand the behavior of complex (continuous) physical systems without breaking

them down into simpler (discrete) sub-systems [106]. The process of breaking down

the continuous system into simpler systems is called discretization and the simpler

systems are called finite elements .

A standard procedure for the FE method has been elaborated over the years and can

be summarized as follows:

1. The whole continuous system is discretized into simpler elements of finite sizes

interconnected at nodal points.

2. The cause - effect relationship is established over each element. This relation

depends on the problem type, e.g., for structural analysis problems, it is a

relation between force (cause) and displacement (effect).

3. Equations are assembled (i.e., combining all elements relations) according to

continuity considerations and the boundary conditions are applied.

4. The equations are solved using a suitable numerical technique.
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2.2.1 Differences between Linear and Nonlinear FE Analyses

There are mainly two types of FE analyses: linear and nonlinear. The two major

differences between them can be summarized as [107]:

• In linear FE analysis, the displacements are assumed to be infinitesimally small,

where nonlinear FE analysis involves large displacements. The term displace-

ments refers to both linear and rotational motions.

• In linear FE analysis, the material behavior is assumed to be linearly elastic,

whereas in nonlinear FE analysis, the material exceeds the elastic limit and/or

its behavior in the elastic region is not necessarily linear.

Linear FE problems are considerably easy to solve at a low computational cost com-

pared to nonlinear FE problems. Also, different load cases and boundary conditions

can be scaled and superimposed in linear analysis which are not applicable to non-

linear FE analysis. The nonlinear FE analysis can be considered as the modeling

of real world systems, while linear FE is the idealization. This idealization can be

reasonably satisfactory in some cases, but for special cases nonlinear FE modeling is

the only option such as in crashworthiness simulations. The main distinct features of

the nonlinear FE method can be summarized as follows [108]:

• The principle of superposition can not be applied.

• The load is analyzed one case at a time.

• The response is dependent on the load history.

• Initial system state is important.
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2.2.2 Sources of Nonlinearity

The sources of nonlinearity can be divided as follows [107]:

Geometric nonlinearity; in which the change in geometry is taken into consideration

in setting the strain-displacement relations.

Material nonlinearity; in which the material response depends on the current defor-

mation state and possibly past deformation history.

Boundary condition nonlinearity; in which the applied force and/or displacement

depends on the deformation of the structure.

2.3 Nonlinear FE for Crashworthiness

Simulation of vehicle accidents is one of the most challenging nonlinear problems in

mechanical design as it includes all sources of nonlinearity. A vehicle structure consists

of multiple parts with complex geometry and is made of different materials. During

crash, these parts experience high impact loads resulting in high stresses. Once these

stresses exceed the material yield load and/or the buckling critical limit, the struc-

tural components undergo large progressive elastic-plastic deformation and/or buck-

ling. The whole process occurs within very short time durations. Since closed form

analytical solutions are not available, using numerical approach specially the nonlin-

ear FE method becomes unavoidable. There are few computer softwares dedicated to

nonlinear FE analysis such as ABAQUS, RADIOSS, PAM-CRASH and LS-DYNA.

LS-DYNA has been proved to be best suited for modeling nonlinear problems such

as crashworthiness problems. In the following section, the theoretical foundation of

the nonlinear FE analysis is presented.
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2.3.1 Governing Equations

The principle of virtual work can be employed to derive the governing differential

equations in finite element form [106]. It states that the work done by external loads

is equal to the work done by internal loads. It should be noted that the principle of

virtual work can be applied to both linear and nonlinear problems. Now, applying

the principle of virtual work to a finite element with volume Ve, we can write [109]:

δ (U)e = δW e (2.1)

where δ (U)e is the work done by the internal loads and δW e is the work done by the

external loads. Eq.(2.1) can be expressed as:

ˆ
Ve

{δε}T {σ} dV =

ˆ
Ve

{δu}T {F} dV +

ˆ
Se

{δu}T {Φ} dS +
n∑
i=1

{δu}Ti {p}i − (2.2)

ˆ
Ve

(
{δu}T ρ {ü}+ {δu}T κD {u̇}

)
dV

Rearranging the terms in Eq.(2.2), the equations of motion can be written as:

ˆ
Ve

{δu}T {F} dV +

ˆ
Se

{δu}T {Φ} dS +
n∑
i=1

{δu}Ti {p}i =

ˆ
Ve

(
{δε}T {σ}+ {δu}T ρ {ü}+ {δu}T κD {u̇}

)
dV (2.3)

where {δu}, {δε} and {σ} are vectors of displacements, strains and stresses respec-

tively, {F} is a vector of body forces, {Φ} is a vector of prescribed surface tractions,
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which are nonzero over surface Se, {p}i is a vector of concentrated loads acting on

total n points in the element, {δu}i is the displacement at the ith point, ρ is the mass

density, and κD is the material damping parameter.

The displacement field {u} is a function of both space and time and it can be written

with its time derivatives as:

{u} = [N ] {d} {u̇} = [N ]
{
ḋ
}

{ü} = [N ]
{
d̈
}

(2.4)

Eq.(2.4) represents a local separation of variables, where [N ] are shape functions of

space only and {d} are nodal functions of time only. Substituting Eq.(2.4) in Eq.(2.3)

yields:

{δd}T
[ˆ

Ve

[N ]T [B]T {σ} dV +

ˆ
Ve

ρ [N ]T [N ] dV
{
d̈
}

+

ˆ
Ve

κD [N ]T [N ] dV
{
ḋ
}

−
ˆ
Ve

[N ]T {F} dV −
ˆ
Se

[N ]T {Φ} dS − [N ]T
n∑
i=1

{p}i

]
= 0 (2.5)

where {ε} = [B] {u} and Eq.(2.5) can be written in matrix form as:

[m]
{
d̈
}

+ [c]
{
ḋ
}

+
{
rint
}

= rext (2.6)

where the element mass matrix is defined as:

[m] =

ˆ
Ve

ρ [N ]T [N ] dV (2.7)

the damping matrix is defined as:
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[c] =

ˆ
Ve

κD [N ]T [N ] dV (2.8)

the element internal force vector is defined as:

{
rint
}

=

ˆ
Ve

[N ]T [B]T {σ} dV (2.9)

and the external load vector is defined as:

rext =

ˆ
Ve

[N ]T {F} dV +

ˆ
Se

[N ]T {Φ} dS +
n∑
i=1

{p}i (2.10)

The governing equations of motion of a structure consisting of many elements can be

derived by expanding Eq.(2.6) as:

[M ]
{
D̈
}

+ [C]
{
Ḋ
}

+
{
Rint

}
=
{
Rext

}
(2.11)

where [M ] and [C] are system structural mass and damping matrices respectively,

{Rint} = [K] {D} is the internal load vector, {Rext} is the external load vector, {D},{
Ḋ
}

and
{
D̈
}

are the nodal displacements, velocities and accelerations respectively.

Eq.(2.11) is a system of coupled, second order, ordinary differential equations in time.

Thus, it is called a finite element semi-discretization because although displacements

{D} are discrete functions of space, they are still continuous functions of time. It

should be noted that for problems with material and geometry nonlinearity as in

crashworthiness problems, the stiffness matrix [K] is not constant and instead is a

function of displacement and consequently of time as well.
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2.3.2 Direct Integration Methods

Direct integration methods are used to discretize Eq.(2.11) in time to obtain a se-

quence of simultaneous algebraic equations. The approach is to replace the time

derivatives in Eq.(2.11) (i.e.
{
Ḋ
}

and
{
D̈
}

) by approximate differences of displace-

ment {D} at various instances of time. First, Eq.(2.11) can be written at a specific

instant of time as:

[M ]
{
D̈
}
n

+ [C]
{
Ḋ
}
n

+
{
Rint

}
n

=
{
Rext

}
n

(2.12)

where, n denotes n∆t time and ∆t is the time step. There are two methods to solve

Eq.(2.12): implicit and explicit.

2.3.2.1 The Implicit Method

In the implicit method, {D} is defined as:

{D}n+1 = f

({
Ḋ
}
n+1

,
{
D̈
}
n+1

, {D}n , ...
)

(2.13)

Hence, the implicit method requires knowledge of time derivatives of {D}n+1, which

are unknown, thus expensive iterative methods must be used. Every iteration requires

the solution of a system of equations involving mass, damping, and stiffness matrices.

Depending on the complexity of the model, the number of equations can reach tens

of thousands, hence the computational cost can be expensive. The implicit algorithm

is unconditionally stable under some conditions, thus it allows for large time steps to

be used. This makes it suitable for long-duration structural dynamic problems and

not for crash problems with very short durations, where the explicit method should

be used [109].
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2.3.2.2 The Explicit Method

In the explicit method, {D} is defined as:

{D}n+1 = f
(
{D}n ,

{
Ḋ
}
n
,
{
D̈
}
n
, {D}n−1 ...

)
(2.14)

Hence, the explicit method requires knowledge of the complete history of the informa-

tion consisting of displacements and their times derivatives at time n∆t and earlier

to calculate the displacements at time step n + 1. The explicit method has been

proved to be very suitable for nonlinear transient dynamic problems with very short

durations of time such as crash problems.

2.3.2.3 The Central Difference Method

The central difference method is one of the numerical integration techniques and it

has been successfully used with the explicit method to solve the equations of motion

Eq.(2.12). The central difference method approximates velocity as:

{
Ḋ
}
n

=
1

2∆t

(
{D}n+1 + {D}n−1

)
(2.15)

and acceleration as:

{
D̈
}
n

=
1

∆t2
(
{D}n+1 − 2 {D}n + {D}n−1

)
(2.16)

The aforementioned equations are obtained using Taylor series expansion of the terms

{D}n+1 and {D}n−1 about time n∆t as:

{D}n+1 = {D}n + ∆t
{
Ḋ
}
n

+
∆t2

2

{
D̈
}
n

+
∆t3

6

{ ...

D
}
n

+ · · · (2.17)
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{D}n−1 = {D}n −∆t
{
Ḋ
}
n

+
∆t2

2

{
D̈
}
n
− ∆t3

6

{ ...

D
}
n

+ · · · (2.18)

Substituting Eqs.(2.15 and 2.16) in Eq.(2.12) yields:

[
1

∆t2
M +

1

2∆t
C

]
{D}n+1 = (2.19){

Rext
}
n
− [K] {D}n +

1

∆t2
[M ]

(
2 {D}n − {D}n−1

)
+

1

2∆t
[C] {D}n−1

Eq.(2.19) is a system of linear algebraic equations. All the information in the right

hand side are known for time step n. Eq.(2.19) is conditionally stable, which requires

the time step ∆t to be less than the time needed for the acoustic wave to propagate

across one element. If ∆t is too large, the explicit method fails and if it is unneces-

sarily small, the computation becomes too expensive. ∆t is bounded by the Courant

condition, which can be written as follows:

∆t ≤ l

vac
(2.20)

where l is element length and vac is the acoustic wave speed through the material of

the element

The explicit method is ideal for wave propagation problems such as in typical auto-

mobile accidents. For example, the acoustic speed in mild steel is vac ≈ 5000m/s and

for an element with l = 5mm, the time step will be 1 microsecond. In addition, the

explicit method can be easily implemented and is capable of solving large problems

with minimum computer storage [109]. However, for structural dynamic problems,

where the time durations are usually long, the implicit method is more well suited.

In LS-DYNA, the explicit method is the default method for solving crash problems
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and the central difference method is used for integration [110].

2.3.3 Contact Algorithm

In vehicle crash accidents, contact forces are developed when structural parts are

crushed under impact loading. An algorithm is required to handle the transmission

of forces between the individual structural parts through contact. There are three

types of contact algorithms available in LS-DYNA [110]. The algorithms are: (1)

The kinematic constraint algorithm, (2) The distribution parameter algorithm, and

(3) The penalty algorithm. The penalty algorithm is the most widely used for vehicle

crash simulations [110]. It calculates the contact force on a node by placing nor-

mal interface springs between penetrating nodes and the contact surface. For more

information on the subject, one can refer to Refs. [108,110].

2.3.4 Friction

Vehicle crashes involve structural parts sliding against each others or against them-

selves. It is essential to handle the friction forces between parts accurately. In LS-

DYNA, friction between surfaces is based on a Coulomb formulation [110]. One can

refer to Ref. [108] for more information.

2.3.5 Shell Elements

Most vehicle structural parts are thin plate like structures that are modeled using

shell elements. An overview over the recent shell elements is provided in Ref. [111].

LS-DYNA includes a comprehensive library of element types from which the analyst

can select the best element according to the type of problem. There are currently 14

different shell elements in LS-DYNA as provided in Table 2.1.
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Table 2.1: Shell elements in LS-DYNA

El # Element

1 Hughes-Liu

2 Belytschko-Lin-Tsay

3 BCIZ triangular shell

4 C0 triangular shell

6 S/R Hughes-Liu

7 S/R co-rotational Hughes-Liu

8 Belytschko-Leviathan shell

10 Belytschko-Wong-Chiang Shell

11 Co-rotational Hughes-Liu

16 Fully integrated shell element

17 Fully integrated DKT,triangular shell element

25 Belytschko-Tsay shell with thickness stretch

26 Fully integrated shell with thickness stretch

27 C0 triangular shell with thickness stretch

A brief description of the different shell elements available in LS-DYNA can be sum-

marized as follows:

1. The Hughes-Liu element (T1) is formulated based on a degenerated solid ele-

ment [112, 113]. This formulation results in substantially large computational

costs, however it is effective when very large deformations are expected. This

element uses one-point quadrature at the mid-plane.

2. The Belytschko-Lin-Tsay element (T2) element is the most computationally

efficient among all shell elements [114]. The element cannot treat warped con-

figurations accurately and also, it should not be used with coarse meshes [115].
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3. The BCIZ Triangular element (T3) is based on a Kirchhoff plate theory [116].

It uses three in-plane integration points which increases its computational cost.

4. The C0 Triangular element (T4) is based on a Mindlin-Reissner plate theory

and uses linear velocity fields [117]. One quadrature point is used in the element

formulation. This element is slightly stiffer than the quadrature element as has

been pointed out by its developers [117]. Hence, it should be used as a transition

between different meshes and not the entire mesh.

5. The S/R Hughes-Liu element (T6) is the same as the Hughes-Liu, however,

instead of using one-point quadrature, it uses selectively reduced integration at

Gauss quadrature integration points. This feature increases the computational

cost.

6. The S/R co-rotational Hughes-Liu element (T7) is the same as the S/R Hughes-

Liu except that it uses the co-rotational system [114].

7. The Belytschko-Leviathan element (T8) adds the drilling degree of freedom to

the element formulation which inhibits the formation of zero energy modes [118].

It can accurately model the twisted beam, hence it is recommended for warped

structures.

8. Belytschko-Wong-Chiang element (T10) is an improvement over the Belytschko-

Lin-Tsay element (T2) to solve the twisted beam problem, however, it is rel-

atively computationally expensive (approximately 10% more compared to T2)

[119].

9. The co-rotational Hughes-Liu element (T11) uses the co-rotational system, how-

ever, it is computationally expensive compared to the Hughes-Liu element (T1).

10. The fully-integrated Belytschko-Tsay element (T16) uses the local element coor-

dinate system defined by two basis vectors parallel to its plane and a third vector
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normal to its plane [120]. It is about as 2.5 times slower than the Belytschko-

Tsay element (T2) element.

11. The Fully integrated DKT triangular element (T17) is based on the Discrete

Kirchhoff Triangular (DKT) formulation developed by Batoz [121] which is an

extension to the work made by Morley [122]. The bending behavior of this

element is better than the C0 triangular element.

12. Elements (T25 and T26) are the Belytschko-Tsay element and are fully inte-

grated shell elements with two additional degrees of freedom to allow a linear

variation of strain through the thickness. These elements are best suited for

metal forming applications.

13. The C0 triangular shell with thickness stretch element (T27) is the same as

element (T4) however, it allows for strain variation along the thickness.

The default element in LS-DYNA is the Belytschko-Lin-Tsay shell (T2) element. It

is widely used in crash modeling due to its computational efficiency and acceptable

accuracy. Therefore, it is discussed in more details in the following section.

2.3.5.1 The Belytschko-Lin-Tsay Shell (T2) Element

The Belytschko-Lin-Tsay shell element is a quadrilateral element, in which each of

the four nodes has 5 degrees of freedom (3 translations and 2 rotations), in which 2

axes of rotation lie within the element plane as shown in Figure 2.1. The four nodes

lie within the plane and the unit vectors ê1 and ê2 are tangent to the shell’s mid plane

and ê3 is in the thickness direction. The signˆdenotes the local coordinates.
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Figure 2.1: Shell element

The Belytschko-Lin-Tsay shell element has been successfully used in industry es-

pecially in crash modeling during the past two decades [114]. This is due to its

computational efficiency and stability which stems from its efficient formulation. The

formulation is based on the Co-Rotational (CR) method, which is briefly explained

in the following sections.

2.3.5.2 The Co-Rotational Method

The co-rotational method is the most recent Lagrangian kinematic description for

nonlinear FE analysis and has been used successfully by many researchers to solve

highly geometrical nonlinear problems [123–126]. The CR method decomposes the

motion into rigid body motion and pure rotation. An embedded coordinate system

follows the element (like its shadow) during deformation. As illustrated in Figure

2.2, the current configuration ΓD is a combination of rigid body motion and pure

deformation which is obtained through eliminating the rigid body motion by using

the base configuration (Γ0) and the CR configuration (ΓCR). Application of the CR

method in shell type structures is very complex and one may refer to Ref. [127] for a
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more comprehensive review.

Figure 2.2: CR kinematic description

2.3.5.3 Element Limitations

The Belytschko-Lin-Tsay shell element is very computationally efficient due to its

optimized formulation. However, the element has certain limitations, which can be

summarized as follows:

• The element is based on the assumption of perfectly flat geometry, and this

limits its ability when membrane shear deformation occurs [115]. In problems

when significant shear is expected to occur and its effect cannot be ignored,

other elements such as the Belytschko-Wong-Chiang element can be used [119].

• The formulation of the element is based on the uncoupling of the membrane

and bending effects and thus it is limited to small bending strains.

• The element is not suitable for warped structures. Loads parallel to the local

x-y plane will cause bending strains to develop, which are not accounted for
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in element formulation. This may subsequently underestimate the structure’s

bending stiffness.

2.3.6 Material Models

There is a broad library of material models that are available in LS-DYNA, which

includes more than 300 material models. These models can be effectively used to

describe the behavior of different materials varying from composites, ceramics, fluids,

foams, glasses, hydrodynamic materials, metals, plastics, rubber, soil, concrete, rock,

adhesives to civil engineering components and biological materials.

2.3.6.1 Material Strain Rate Sensitivity

It is the phenomena in which for some materials the dynamic plastic flow stress (σd)

is dependent on the strain rate (ε̇), known as viscoplasticity [128]. For dynamic

impact loading, the static flow stress (σ0) should be modified to account for the

material strain rate sensitivity that can be significant in some materials. Cowper and

Symonds [27] proposed a constitutive equation to calculate the dynamic flow stress

(σd) as a function of static flow stress (σ0), strain rate (ε̇), and two material constants

(q and D) to be determined experimentally as:

σd = σ0

[
1 +

(
ε̇

D

)1/q
]

(2.21)

In LS-DYNA, there are two commonly used material models; the MAT PLASTIC

KINEMATIC model (material type 3), and the MAT PIECEWISE LINEAR PLAS-

TICITY model (material type 24) to address the strain rate sensitivity of the material.

In the plastic kinematic model, the values of the modulus of elasticity and the tan-

gential modulus are directly used while the piecewise linear plastic model requires
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an elaborate description of the stress-strain diagram. Both can be effectively used in

elastic-plastic modeling with strain rate sensitivity, and are suitable for crashworthi-

ness analysis.

2.3.7 The Role of Imperfection in Nonlinear FE Analysis

In nonlinear and also in linear FE analysis, many assumptions are made due to the

lack of information about some physical parameters or due to the uncertainties about

their actual values, such as, the exact value of material yield strength and the exact

value of the part’s thickness. This may lead to deviation between the results from test

experiments and FE models. The sources of deviation can be classified as follows:

1. Deviation due to material: For example, consider that in FE analysis, isotropic

materials are assumed to have homogeneous properties, whereas in reality, there

are many factors that may lead to non homogeneous material properties, for

example, imperfections in the microstructure, voids, ...etc.

2. Deviation due to geometry: For example, consider that in FE analysis, it is

assumed that material thickness is uniform along the tube’s circumference,

whereas this may not be the case in real world due to manufacturing processes’

deviations which can lead to non-uniform sizing.

3. Deviation due to load: For example, consider that in FE analysis, a longitudinal

axial loading is assumed to be completely perpendicular to the tube’s surface

which is also assumed to be completely horizontal. And, it is also assumed

that the load is perfectly aligned with the tube’s axis, whereas in reality, these

complete precise conditions can not be guaranteed.

4. Deviation due to measurement: In reality, physically measured quantities are

subject to measuring tools tolerances and are also subject to the variation be-
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tween different samples. This may cause a difference between measured and

actual values.

The aforementioned sources can lead to a large difference between idealized FE simu-

lations and reality, especially in nonlinear FE analysis. The intentional introduction

of slight imperfection within the nonlinear FE model helps in accounting for the differ-

ence between reality and idealization. One can refer to Ref. [129] for more information

on this important subject.

2.4 Applications of the Nonlinear FE Analysis

Due to the rapid development in the computational capabilities, the use of nonlin-

ear FE analysis has been growing steadily in industry, especially in the automotive

sector. In vehicle crash design, nonlinear FE analysis has been used to model: sim-

ple structural components, vehicle components, full vehicle structures, occupants and

pedestrians. However, it should be noted that, despite the major development in

current computation capabilities, nonlinear FE analysis remains a highly computa-

tionally demanding process, especially for large size models including different parts

made of different materials as in crashworthiness simulations. In the following sec-

tions, the application of nonlinear FE analysis to simulate the crash in vehicle accident

problems are briefly discussed.

2.4.1 Modeling Simple Vehicle Structural Components

Researchers used nonlinear FE extensively to study the response of simple struc-

tural components, mainly circular and square tubes used in vehicle structures, under

impact. In an early work by Otubushin [130], he used LS-DYNA to model the exper-

imental work of Abramwicz and Jones [131], in which they studied mild steel square
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tubes under impact loading. It was shown that the simulation results were in good

agreement with those obtained experimentally. Later, Langseth et al. [132] compared

the experimental and the numerical results of AA6060 aluminum alloy square tubes

under both static and dynamic loadings. They demonstrated that simulation results

are in good agreement with experiments. Kormi et al. [133] studied the effect of im-

plementing helical grooves in circular thin walled steel tubes under axial static and

dynamic loading, they concluded that a system of tubes can be designed to serve as

a crash energy absorber.

2.4.2 Modeling Vehicle Structures

Zheng et al. [134] studied the quasi-static crushing of an S-shaped aluminum front

rail and derived a simple analytical solution for the force-deflection response, which

compared reasonably well with the numerical results. Tehrani et al. [135] investigated

improving the crashworthiness performance of S-frames by incorporating ribs inside.

They also used two materials in the S-frame design to improve crashworthiness and

to reduce the weight [136]. Hosseinzadeh et al. [137] used LS-DYNA to perform a

parametric study on a commercial bumper system, and studied the shape, material,

and impact conditions to reduce its weight and to improve its crashworthiness perfor-

mance. Mao et al. [138] studied rollover accidents using LS-DYNA, they concluded

that simple design modifications can improve roof strength and energy absorption

capabilities.

2.4.3 Modeling Full Vehicle Structure

Zaouk et al. [139, 140] presented a detailed procedure for modeling a full vehicle as

part of a project to assess vehicle safety and to reduce the number of physical tests.

They recommended that accurate geometric and material specifications in vehicle
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structural components are important to obtain accurate responses using nonlinear FE

models. Kwasniewski et al. [141] also used LS-DYNA to study, the crashworthiness of

a commercial paratransit bus model consisting of 73600 finite elements and 23 material

models, and proposed recommendations for bus body manufactures to improve its

safety. Qi et al. [142] used LS-DYNA to simulate a full frontal impact with a rigid wall

at low and high impact speeds of a commercial automobile, and then used simulation

to improve the design. Zhang et al. [143] used LS-DYNA as a simulation tool to

produce input data to train a neural network. Then they used the neural network to

reconstruct accidents scenarios and to predict the pre-impact velocity of the vehicle.

2.4.4 Modeling Occupants

Maruthayappan et al. [144] described the development of a FE dummy model to be

used in simulating side impacts inside a Ford Taurus passenger car and they validated

their model against test data. Arnoux et al. [145] presented the development process

of a FE dummy model using RADIOSS which can be used to simulate occupants in

vehicle accidents. Shah et al. [146] used a whole human FE model to simulate the

response to impact in a car to car accident. They also studied the effect of impact

on the thoracic and abdominal organs especially the effect on the blood vessels and

the aorta and they compared their findings with autopsy data. Kitagawa et al. [147]

used a human FE model to understand the mechanism of whiplash (injury to the

cervical spine caused by an abrupt jerking motion) during rear collisions. Kim [148]

studied the effect of restraint systems and air bags on brain injuries. He developed

a simple model of the head only based on the analysis of a full human body model

and concluded that the simplified model can be used effectively as it produced almost

identical kinematic responses.
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2.4.5 Modeling Pedestrians

Takahashi et al. [149] developed a FE model of the human lower limb using PAM-

CRASH to understand the injury mechanisms of ligaments damages and bone frac-

tures in car-pedestrian accidents. After validating their model with data from Post-

Mortem Human Subjects (PMHS), they integrated their model with an upper body

and finally used their full pedestrian model with FE car model to simulate a full

car to pedestrian accidents. Lee et al. [150] used FE to develop a better hood and

bumper designs to mitigate the effects of accidents on pedestrians. Yasuki [151] also

used FE models of human male, female, and child to simulate the effect of impact on

lower limbs and concluded that better designs of frontal structures can be achieved

by varying their stiffnesses for less injuries to pedestrians. Kikuchi et al. [62] devel-

oped a FE model of the pelvis and lower limb of a pedestrian in a standing position

subjected to impact by a Sport Utility Vehicle (SUV) modeled by another FE model

and validated their model with published data.

2.5 Simulation of a Square Tube

Vehicle structures are made of simple building blocks in the form of thin wall (usually

square) tubes. In accidents, these tubes serve as crash energy absorbing structures.

Many researchers studied the response of these structural components under dynamic

axial loading [25,152,153]. In this section, a nonlinear FE model of a thin wall square

tube has been developed and the results are compared with these obtained from

published experiments by Abramwicz and Jones [131]. The objective is to validate

the nonlinear FE model (developed in LS-DYNA) and conduct a systematic sensitivity

analysis on the number and types of elements to be used.

The experimental tests conducted by Abramwicz and Jones [131] included dropping
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a 73.6 kg weight with a pre-impact speed of 10.288 m/s over a square tube with a side

length of 37.07 mm, a wall thickness of 1.152 mm, and a height of 244.1 mm. From

their published work, the time-velocity diagram of a specimen called I21 is used to

validate the nonlinear FE model.

2.5.1 Description of the Nonlinear FE model

A geometrical model has been developed with the same dimensions of specimen I21 in

Ref. [131]. To match the experimental results, an imperfection has been introduced

in the form of a 0.5 mm outward misalignment in the middle of the wall section. Hy-

permesh [154] is a commercial parametric pre-processor which includes an automatic

remesher, and it was used to develop the FE model for LS-DYNA. A view of the FE

model is shown in Figure 2.3.

Figure 2.3: View of the FE model of the square tube

The MAT PLASTIC KINEMATIC, which is material type 3 in LS-DYNA [114], was

used to model the material behavior under impact loading. This material model is

suitable for modeling isotropic materials under impact loading and it is computa-

tionally efficient. The model is capable of capturing the material hardening effect

and strain rate sensitivity by including the Cowper Symonds parameters [27]. The

material properties taken from Ref. [131] are: yield strength σy = 277.5 MPa, density
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ρ = 7830 kg/m3, Possion’s ratio ν = 0.3, modulus of elasticity E = 210 GPa, and

Cowper Symonds parameters: D = 6884 s−1 and q = 3.91.

The impactor mass was modeled by a moving rigid wall using the RIGIDWALL

PLANAR keyword in LS-DYNA [114]. The wall was given the same mass (73.6 kg)

as the impactor in experiments and the same initial velocity 10.288 m/s. To prevent

sliding at the proximal ends, the nodes located on the lower tube end were constrained

in all directions and the nodes located at the upper tube end were allowed to move

only in the longitudinal direction and constrained in other directions. The contact

between the tube surfaces was modeled using the CONTACT AUTOMATIC SINGLE

SURFACE keyword in LS-DYNA, in which the surfaces were given a coefficient of

static friction of 0.74 and a coefficient of dynamic friction of 0.57 [155]. The default

element type in LS-DYNA, which is the Belytschko-Lin-Tsai (T2) element was used

to model the tube. The results of the simulation are presented and discussed in the

following section.

2.5.2 Results and Discussion

In their published work, Abramowicz and Jones [131], published the velocity history

diagram of the upper end of the tube (specimen I21). The same experimental results

in Ref. [131] were also used by Otubushin [130] to validate his nonlinear FE model

results using LS-DYNA. Thus, his results are also presented here for comparison. It

should be noted that Otubushin used a total of 2124 elements of the Belytschko-

Lin-Tsay (T2) shell element. In the following section, mesh sensitivity analysis is

conducted to find the optimum number of elements to generate results close to the

published velocity history signal in Ref. [131].
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2.5.2.1 Mesh Sensitivity Analysis

In this study, the number of elements used to conduct mesh sensitivity analysis are:

384, 1372, 2232, 3888 and 38885. LS-DYNA simulation is conducted with each num-

ber of elements and the results of the velocity history signals are compared with these

of Refs. [130, 131]. The results are shown in Figure 2.4. It is interesting to note that

finer meshes are not necessarily producing accurate results in crash simulations. For

example, a coarse mesh (384 elements) resulted in a relatively closer velocity signal

to the experimental one. However, in order to verify that 384 elements are enough to

model the tested tube, the final deformed shapes when using 384 and 1372 elements

are compared with the final deformed shape of the tested tube in Ref. [131]. The final

deformed shapes are shown in Figure 2.5, which clearly shows that there is a large

difference between the deformed shape when using 384 elements and the deformed

shape of the tube in Ref. [131]. On the other hand, using 1372 elements produces

a final deformed shape that resembles the one in Ref. [131]. Moreover, using 1372

elements also produces a very close velocity time signal to the tested one in Ref. [131],

thus 1372 is the optimum number of elements enough to model the tube.

It is interesting to note that using 1372 elements produces a velocity history that is in

a good agreement with that reported in Ref. [131] and it is even in better agreement

with experimental results compared with that of Ref. [130]. The number of elements

(1372) is 35% less than that used in Ref. [130]. This can be attributed to the fact

that in the present work 5 integration points through the thickness have been used,

while 3 integration points have been used in Ref. [130]. Thus, to increase the accuracy

with the same number of elements, one may use more integration points through the

thickness.
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Figure 2.4: Velocity vs time for element T2 using different mesh sizes

Figure 2.5: Final deformed shapes of the square tube

Figure 2.6 shows a comparison between the deformation-time signals of the upper

tube end extracted from numerical simulations using different number of elements. It

should be noted that no information regarding deformation versus time is provided

in Ref. [131] explicitly. Thus, for the sake of comparison, the velocity versus time is

integrated to obtain the deformation-time signal.
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Figure 2.6: Deformation vs time for element T2 using different element sizes

It is obvious that, the final simulated deformation is generally higher than the exper-

imental result. This observation is in accordance with previous findings by Langseth

et al. [132], who reported that numerical analysis tends to overpredict the maximum

deformation when compared with experimental test data. It is interesting to note

that the results seem to deviate from the physical signal as the number of elements

increase, which can be attributed to the aspect ratio (ratio between element thickness

and length). Increasing the number of elements seems to deteriorate the convergence

of the solution. This effect has also been reported by Wu and Saha [156], who men-

tioned that extreme mesh refinement can even lead to questionable results.

2.5.2.2 The Effect of Using Different Shell Elements

In this study, different shell elements are used to model the tube in order to compare

their effect on the results. The final crush deformation (the final distance traveled

by the tube end) is calculated for each element type. The values are then compared

with the final crush deformation of specimen (I21) (151.16 mm). Figure 2.7 shows
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the percentage error between the final crush deformation for each element and the

one of specimen (I21). It should be noted that the triangular element (T27) has

failed completely to model the tube. It is clear that triangular elements (T3, T4,

T17 and T26) have large error values. It can be concluded that the use of triangular

elements should be limited in areas where mesh refinement is needed. Finally, element

(T25) has a large error value (about 50%). This element as well as other elements

with thickness stretch, such as (T26 and T27) are primarily designed for modeling

shells when large strains through the thickness are expected as in metal forming

applications. Conventional shell elements assume that the thickness remains constant

under loading which in turn leads to neglecting through the thickness stresses [157].

Figure 2.7: Error values between specimen (I21) and simulations for all element types

2.5.2.3 The Computational Time of Different Shell Elements

Figure 2.8 shows the recorded computation time for all element types. It can be

noted that element type (T2) is the most computationally efficient element among all

element types. Considering this, the element type (T2) offers a fine balance between

accuracy and computation efficiency.
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Figure 2.8: Recorded computational time for all element types

2.5.2.4 Snapshots of the Deformation History

Figure 2.9 shows the different stages of deformation and it shows that the tube deforms

in a progressive manner into folds. The tube was modeled using the Belytschko-Lin-

Tsay (T2) shell element and the number of elements was 1372.
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Figure 2.9: Different snap shots of the deformation history

2.5.2.5 The Effect of Imperfection

Figure 2.10 shows a comparison between two final deformed shapes: with and with-

out consideration of imperfection. The imperfection was introduced in the form of

a 0.5 mm outward misalignment in the middle of the wall section. Its purpose is

account for the imperfection that naturally exists in the experimentally tested tube.

It is clear that the two profiles have completely different folding patterns. The final
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deformed shape of the tube with imperfection resembles the one for the tube that

was tested experimentally in Ref. [131]. This clearly shows the importance of the role

of imperfection in nonlinear FE analysis to generate realistic results, which has been

previously discussed in section 2.3.7.

Figure 2.10: Comparison between two deformation profiles

2.5.3 Conclusion

It can be concluded that, the Belytschko-Lin-Tsay (T2) shell element is the most

suitable element for modeling thin walled structures in crash simulations. The results

clearly showed that the T2 shell element achieves a balance between accuracy and

computational cost. Also, it can be concluded that, using a reasonable number of

elements can produce accurate results compared to using a very large number of

elements. Finally, it can be concluded that, implementing imperfection into the

nonlinear FE model is important to acquire realistic results.
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Chapter 3

Optimization for Crashworthiness

3.1 Introduction

As previously mentioned in chapter 1, in current competitive environment, applying

optimization is inescapable for rapid product development and cutting production

costs. However, applying optimization to the field of crashworthiness design is faced

with certain challenges due to the complexity of the physical phenomenon of impact

and the unavoidable complicated modeling approaches. In crashworthiness design,

many responses are highly nonlinear with high frequency noisy characteristics. For

instance, Figure 3.1 shows a typical rigid wall force on a 1839 kg pickup truck during

a full frontal impact at 56 km/h with a rigid wall barrier.
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Figure 3.1: Typical reaction force-time history in a frontal impact

It is clear that, the system is highly nonlinear and it includes high frequency noise.

If a gradient based algorithm is directly connected with the nonlinear FE analysis,

the problem becomes impossible to solve due to the extremely high computational

cost. Moreover, gradient based algorithms require gradients of the objective and con-

straint functions, which cannot be obtained analytically due to the complexity of the

problem. Numerical evaluation of the gradients may also fail or generate spurious

results due to the noisy nature of the responses. In the case of using nongradient

based algorithms such as genetic algorithms, a much larger number of iterations is

required compared with gradient based techniques. However, applying optimization

directly to a nonlinear FE model is not practical and an alternative method based on

approximation techniques should be investigated. In the following section, the meta-

model building using approximation techniques is described. Then, meta-models are

used to solve two optimization problems: (1) the Rosenbrock function and (2) crash-

worthiness improvement of an S-Rail. Next, the proposed methodology is explained

in detail and followed with an illustrated example. Finally, a detailed discussion of

the results is presented.
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3.2 Meta-model Building

Meta-models are easy to calculate approximate models of the difficult to calculate

actual models. The process of building a meta-model is illustrated in the flow chart

shown in Figure 3.2. Meta-models are constructed from sampled data either gathered

from physical experiments or calculated from computer simulations using nonlinear

FE analysis. The data is sampled from the design space of interest. The designer

based on his experience specifies the range in which design variables can change.

Then, this multi-dimensional design space is discretized to points, where each point

represents a combination between variables at different levels. To minimize the num-

ber of required data points needed to build the meta-model, Design of Experiments

(DOE) is used. DOE is a statistical technique used to maximize the information gain

using the minimum number of experiments. In the following section, a brief review

of DOE is presented.

Figure 3.2: The meta-model building process
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3.2.1 Design of Experiments (DOE)

DOE is the science of designing experiments with different influencing variables to

understand the behavior of one or more responses. DOE was founded by Sir Ronald

A. Fisher, who in the early 1920’s published his landmark book (The Design of Ex-

periments) [158]. He formulated the basics of the science in his book and studied the

effect of different fertilizers and other variables (soil condition and moisture content,

...etc) in different land plots on the final condition of the crop [159]. Now, DOE is

widely used in agriculture, industrial design, pharmaceutics, management, market-

ing, chemical engineering, life science, ...etc. DOE is basically the statistical tool

for minimizing the number of expensive time consuming experiments while maximiz-

ing the information gain from these experiments. In a report published by NASA

in 1969 [160], it was described in detail how DOE along with mathematical opti-

mization principles were used to develop an improved Cobalt-Nickel alloy. With the

advancement of computer hardware and software, researchers realized the usefulness

of DOE and started using it as means to minimize the burden of computations with-

out sacrificing accuracy as much as possible. It should be noted that, although there

are many different DOE designs for selecting data points from a multi-dimensional

design space [161], not all of them are suitable for computer experiments. A brief

description of the suitable DOE methods is provided here.

3.2.1.1 Factorial

There are two kinds of factorial design techniques called, full factorial and fractional

factorial. In full factorial design, the design is composed of all the combinations of

design variables at all levels. For a system with two design variables in which each

variable can take a value from one of two values (levels), a full factorial design then

has 22 = 4 points. Thus for a design with k variables and l levels, there are lk
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data points. The number of points increases exponentially with the number of design

variables. Therefore, it is typically used with small number of design variables.

In a fractional factorial design, a fraction of the full factorial design is considered.

The number of design points is lk−p , where p is a number that defines the size of the

fraction.

3.2.1.2 Koshal

The Koshal design was suggested by Koshal in 1933 [162] to minimize the number of

points in the full factorial design, and it uses the one factor at the time principle.

3.2.1.3 Central Composite

The central composite design uses a 2k factorial design plus the center point and the

face center points. The design then consists of 2k + 2k + 1 points.

3.2.1.4 D-optimal

The D-optimal criterion is one of the alphabetic optimality techniques, which are

based on minimizing the variance within the estimated response from the meta-model

[163].

Assume β as the vector of unknown coefficients in a meta-model of the form ŷ = Xβ,

where ŷ is the approximated response and X is the design matrix. The value of the

variance in β, var(β) is related to
(
XTX

)−1
[164].

An accurate meta-model is a model with minimum value of var(β). Minimizing

the value of var(β) corresponds to maximizing the value of
∣∣XTX

∣∣. This can be

formulated into an optimization problem as:
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Find X that :

Maximizes
∣∣XTX

∣∣ (3.1)

X can be continuous, discrete or a combination of both. The genetic algorithm [165]

is a natural choice for solving this type of problems [166].

For selecting design points for crashworthiness problems, Redhe et al. [167] suggested

using 1.5 times the minimum number of points. It is noted that, the minimum number

of points is the same number as unknown coefficients in the model. For example, for

a linear model with only two variables in the form of y = a0 + a1 · x1 + a2 · x2, three

points are the minimum for calculating the values of the coefficients a0, a1 and a2.

3.2.1.5 Latin Hypercube Sampling

The Latin Hypercube Sampling (LHS) design was proposed by Mckay et al. [168] and

was specifically designed for computer simulation experiments. Each design variable

is divided at n number of intervals. n values for the first variable are randomly

selected based on equal probability. Then, these n values are randomly combined

with n randomly selected values for the second design variable. The two n pairs are

then combined with n randomly selected values for the third design variable. The

process proceeds until all variables are included. LHS allows unbiased estimation of

the main effect of all variables in the design space.

3.2.1.6 Random Numbers

In this type of design, the design space is sampled at random. It is usually used to

study new systems when no a priori knowledge is available.
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3.2.1.7 Remarks on DOE Designs

Both LHS and random numbers designs depend on the quality of the used pseudo-

random numbers. Pseudo-random are random numbers created using an algorithm,

different from the true-random numbers generated from a physical process.

The creation of the design matrix for certain type of DOE design can be made auto-

matically with any of the available statistical softwares. However, special care must

be taken as some of the DOE techniques are not suitable for meta-modeling of com-

puter based simulations. This originates from the fact that computer simulations are

deterministic in nature, i.e., a computer simulation will always give the same results

for a fixed input, whereas physical experiments will have a varying output within a

certain limit according to the testing conditions. This has been pointed out by Sacks

et al. [169] and by Welch et al. [170], who mentioned that not all DOE are ideal for

deterministic computer experiments. Sacks et al. [171] also discussed the differences

between deterministic and non deterministic based meta-models.

The D-optimal criterion has been proven to be suitable for computer based simula-

tions as it is based on minimizing the variation within the model’s estimated output

and it has been recommended to produce acceptable results [172, 173]. In his PhD

thesis, Roux [174] states that the D-optimal criterion offers a compromise between

computational cost and accuracy.

Xu et al. [175] have studied different DOE techniques and they mentioned that the

D-optimal criterion is specially recommended for situations when there is a priori

knowledge available about the design variables and is necessary when this information

is unavailable.

Roux et al. [176] described other advantages of the D-optimal criterion as: (1) It

is suitable for design spaces with irregular shapes, (2) It is flexible in offering any

number of design points, and (3) A new design of experiments can be altered to
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incorporate design points from an older design.

3.2.2 Meta-Model Techniques

The three basic techniques for building meta-models are: (1) Response Surface Method

(RSM), (2) Kriging and (3) Neural networks. A brief description of each technique is

provided in the following sections.

3.2.2.1 Response Surface Method (RSM)

RSM is an approximation technique used to construct response functions in the form

of polynomial (usually second order) functions. These functions are smooth approxi-

mations and are ideal for responses with noisy behaviors. Thus, they can be effectively

used in any gradient based or non gradient based optimization algorithm. Giunta et

al. [173] demonstrated that RSM is effective at filtering out the numerical noise in-

trinsic to most computer based simulations. RSM is a global approximator, which

offers the designer the opportunity to explore the response within the global design

space [177]. A detailed review of RSM can be found in [163].

RSM first appeared in the work of Box and Wilson [178], who in 1951 published

an article on the subject of proper model selection for arriving at optimum output

responses in experiments. They suggested a linear model to approximate the output

responses. Although their work was applied to chemical engineering experiments,

they mentioned that it can be applied to other disciplines as well.

Having recognized the potentials of RSM, much work has been done for developing

more suitable DOE methods for modeling experiments with large variations [163,179–

181]. RSM is basically based on using regression analysis to formulate a polynomial

function. For instance, a second order polynomial model can be written as:
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ŷ = Xβ (3.2)

where X is the n×m design matrix, in which n is the number of undertaken experi-

ments and m is the number of unknown model coefficients β. ŷ is the approximation

of the output response y that can be written as:

y = ŷ + ε (3.3)

where ε = y − Xβ is the error between the true response y and its approximation

ŷ. As it can be realized, an optimum approximate model is the one with minimum

error ε. The problem then is to find the values of the unknown coefficients β that will

minimize the value of ε. This can be easily achieved using the least squares technique.

Let L =
n∑
i=1

ε2i be the value of the summation of squared error ε for all data points.

In matrix form L can be represented as L = εT ε, where εT is the transpose of ε.

Substituting ε = y −Xβ into L yields:

L = εT ε = (y −Xβ)T (y −Xβ) (3.4)

To minimize L, one may simply differentiate L with respect to β and equate it to

zero to find β as:

β =
(
XTX

)−1
XTy (3.5)

It should be noted that XTX is assumed to be nonsingular.
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Model Types

There are four types of regression models. For instance, for a model with five design

variables (x1, x2, x3, x4, x5), which will be used later in Section 3.5, the four models

can be represented as follows:

(1) A linear model (Model 1) that includes only basic variables and does not include

any interaction between variables can be described as:

ŷ = a0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x5 (3.6)

This type of model, represent a hyper-plane in the 5 dimension design space with no

curvature since only first degree variables are included. The constant term represents

the initial value of the response.

(2) A linear model with interaction (Model 2) that includes constant, linear, and

interaction terms as in the following form:

ŷ = a0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a12x1x2 + a13x1x3

+a14x1x4 + a15x1x5 + a23x2x3 + a24x2x4 + a25x2x5

+a34x3x4 + a35x3x5 + a45x4x5 (3.7)

This model allows for the first order interaction between variables and it represents

a hyper-plane in the variables space.

(3) A quadratic model (Model 3) that includes constant, linear, interaction, and
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squared terms in the following form:

ŷ = a0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a12x1x2 + a13x1x3

+a14x1x4 + a15x1x5 + a23x2x3 + a24x2x4 + a25x2x5 (3.8)

+a34x3x4 + a35x3x5 + a45x4x5 + a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 + a5x

2
5

This model is quite flexible in representing wide varieties of models especially when

there is no prior knowledge about the type of the model to be used. Thus, it is the

default model of choice in RSM application. It represents a hyper plane in the design

space with curvature due to the second degree terms.

(4) A pure quadratic model (Model 4) that includes constant, linear, and squared

terms described in the following form:

ŷ = a0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x5 (3.9)

+a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 + a5x

2
5

This model represents a hyper-plane with curvature, but it includes no interacting

terms.

Meta-model selection is the process in which the designer tries to find the best ap-

proximation that fits the data. A prior knowledge about the system being modeled

will facilitate this process. This knowledge can include the type of variables that

are important to the output response. Also, knowledge about the type and level

of interaction between variables, if any exists, will help in formulating the approxi-

mate model. However, this information is not always available, and a trial and error

process is inevitable. In such a case, different meta-models are evaluated based on

their success in approximating the data, the model with the highest accuracy is then

selected.
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Measuring Accuracy

It is important that the accuracy of the developed meta-model is verified so that it can

be used with confidence in the optimization process. The coefficient of determination

known as R2 is typically used to check the model’s ability to identify the variation

within the output response [182] and is defined as:

R2 = 1− SSE

SST
(3.10)

where

SSE =
n∑
i=1

(yi − ŷi)2 (3.11)

and

SST =
n∑
i=1

(yi − ȳ)2 (3.12)

where yi is the true output response, here calculated from nonlinear FE analysis, ŷi is

the approximate response calculated from RSM, ȳ is the average of the true response,

and n is the number of design points used to generate the model. R2 varies between

0 and 1, where values close to 1 mean that the approximate model has high ability

to explain the variations within the output response [182].

The value of R2 will not decrease by adding new variables. This means that R2 can

increase even by adding unnecessary variables. In fact, R2 can be brought to 1 if

a model with (n − 1) of variables is used to fit n points. Therefore, adjR2 is used

instead, which adjusts R2 by dividing both SSE and SST by their associated degrees

of freedom as:

81



adjR2 = 1−
SSE
(n−p)
SST
(n−1)

(3.13)

where p is the number of design variables. adjR2 will then account for adding unim-

portant design variables. Since for n points, the value of SST
(n−1)

is constant, then adjR2

will increase only when adding new variables results in reducing the value of SSE
(n−p) .

In fact adjR2 may even decrease when adding new variables decreases the value of

(n− p) more than it decreases the value of SSE.

3.2.2.2 Kriging

Kriging, is a statistical technique for building empirical interpolations based on sam-

pled data. It was named after D.G. Krige [183], who is in his Master’s thesis applied

this technique to estimate the true ore grade from sampled data. The Kriging model

can be written as:

ŷ = f(x) + κ(x) (3.14)

which is a combination of a polynomial function f (x) which globally approximates

the design space, and a stochastical component κ(x) which adds deviations.

3.2.2.3 Neural Networks (NN)

Neural Networks (NN) are mathematical models based on principles inspired by brain

style computation [184]. NN (or ANN for Artificial NN) can be considered as universal

approximators [185], which require a considerable number of training data in order

to generate reasonable approximations of the true responses. Thus, they are widely

used in applications where large data are available such as in data mining [186–188].
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The basic building block of a neural network (NN) is the neuron. A neuron is a

processing unit which has some (usually more than one) inputs and only one output

as shown in Figure 3.3. First each input xi is weighted by a factor ωi and the whole

sum of inputs is calculated as
n∑
i=1

ωixi = a. Then an activation function (f) is applied

to the result (a) to provide the neuron output as f(a).

Figure 3.3: A schematic drawing of a neuron

As mentioned before, the function (f) is called the activation function. The most

widely used function is the S-shaped or the sigmoid function as shown in Figure 3.4,

which can be described as:

f(a) =
1

1 + e−a
(3.15)

Figure 3.4: The Sigmoid activation function
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Generally, neural networks are built by assembling neurons into layers and connect-

ing the outputs of neurons from one layer to the inputs of the neurons in the next

layer. Figure 3.5 shows a schematic drawing of a feed forward NN, i.e., with no feed

back. Note that there is no processing on layer 0 and its role is basically limited to

distributing the inputs to the next layer, so data processing starts at layer 1. The

output of one neuron may go to the input of any neuron, including itself. If the

outputs of a neuron from one layer are going to the inputs of neurons from previous

layers then the network is called recurrent, thus providing feedback.

Figure 3.5: A schematic drawing of a NN

The process of adjusting the values of weights ωi is called the training phase, in which

an optimization algorithm adjusts the values of weights ωi in order to minimize the

Mean Squared Error (MSE) between predicted response ŷi and yi:

MSE =
n∑
i=1

(ŷi − yi)2

n
(3.16)

In the training phase, a data set of sampled data from computer simulations or

physical experiments is used and the neural network is presented with a pair of design

variables and the associated response or responses. The weights are then adjusted
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and the process proceeds until all the training data set is used. Another data set is

then used to check the accuracy of the NN.

NN’s are widely used in many applications. For example in an early work by El-Gindy

et al. [189], the potentials of using NN for for modeling vehicle dynamics and control

systems has been investigated. Omar et al. [190] used NN to predict the nonlinear

dynamic characteristics of the vehicle structure under frontal impact. Hajela and

Lee [191] used NN to model crash responses of a rotorcraft and used the models to

optimize the subfloor structure of the rotorcraft.

3.2.2.4 Remarks on Meta-Model Techniques

The Kriging technique has been criticized for its complexity and the lack of available

software [192]. Moreover, Meckesheimer et al. [193] described some numerical prob-

lems with the model fitting. Jin et al. [194] concluded that the Kriging method can

be very sensitive for noisy data .

For NN’s, if a large number of layers (large number of unknown parameters) is used

and if the training is allowed to run long enough, then the MSE could approach to

zero value, which is known as overfitting. For a noisy data, this means that the model

fits the noise within the data instead of interpreting the general trend of the data.

Stander et al. [195] compared between RSM, NN and Kriging for optimization of

crashworthiness improvement and concluded that RSM and NN have performed bet-

ter for this type of application. However, the problem with NN is that model’s per-

formance depends heavily on the layer architecture, which is unknown. Furthermore,

the size of training data set drastically increases with the addition of a new layer. A

well established application of NN technique can achieve good results, however, this

is subject to the user’s experience. On the other side, RSM has been used successfully

with optimization problems and provided good results [196,197].
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It should be noted that all the above mentioned techniques suffer from the Curse of

Dimensionality, which means that as the number of design variables increases, the

number of data points needed for meta-model building also increases. This is further

amplified depending on the level of complexity of the model being used.

In this current work, RSM is selected as an efficient meta-modeling technique to build

the approximate models of the physical system.

3.3 Optimization of a Benchmark Analytic Func-

tion

In this section, the potentials of connecting the principles of meta-modeling with

mathematical optimization for solving complex nonlinear problems is demonstrated

using the Rosenbrock function. The Rosenbrock function was introduced by Rosen-

brock in 1960 [198] as a complex nonlinear function and then was adopted as a bench-

mark problem for testing optimization algorithms. It was first used by De Jong [199]

in 1975 to test the performance of a genetic algorithm. The Rosenbrock function is a

two dimensional function in the following form:

f(x, y) = (1− x)2 + 100 ·
(
y − x2

)
(3.17)

The function has only one global minimum, which lies on a narrow flat valley with

a parabolic shape. Although this minimum at (1, 1) can be easily obtained by sim-

ple differentiation, it is very difficult to be found numerically due to the high level

of nonlinearity. The Rosenbrock function serves as an example of typical crashwor-

thiness responses with high nonlinear behaviors. However, the difference is that in

crashworthiness design, the form of the function is unknown and one has to steer for

innovative techniques to estimate it using meta-modeling techniques.
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Similar to crashworthiness problems, here the objective is to find the minimum value

of the Rosenbrock function by building a meta-model which can approximate its

behavior. Also, the solution should be found with as minimum number of function

calculations as possible to make it comparable with crashworthiness design in which

the value of the function is calculated by intensive nonlinear FE simulations.

Meta-modeling techniques such as RSM can be used to find an approximation of the

unknown form of the function. Then, the approximate function can be connected

with any optimization algorithm to find the optimum solution. The D-optimal DOE

criterion is used to find a suitable number of data points. Here, twenty points are

used and the Rosenbrock function is calculated at each point. The four meta-models

as described in section 3.2.2.1 are used to model the data points. The adjR2 value

is then used to evaluate the performance of each model. As listed in Table 3.1, the

pure quadratic model (Model 4) has higher adjR2 value compared with other models

and thus is selected as a proper approximation (ŷ) of the true function (y).

Table 3.1: Values of adjR2 for different response surface models of the Rosenbrock
function

Model 1 0.57

Model 2 0.54

Model 3 0.73

Model 4 0.75

Now, a mathematical optimization problem can be formulated as:

Find X∗that :

Minimizes ŷ (3.18)

where, xL ≤ x ≤ xU
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where xL = [-1, -1] and xU = [1, 1]. The direct search method [200] in the MATLAB

optimization tool box is used to solve the optimization problem stated above. The

initial point was assumed to be xin = [−1,−0.5] with a function value f(xin) = 229.

The optimal solution was found to be at X∗ = [−0.0031, 0.8583] after 36 iterations.

The value of the Rosenbrock function at the optimum solution (74.5) is 67% times less

than the initial value (229). This means that the objective function has been improved

significantly. It should be noted that the optimum solution is not the global optimum,

however, it was achieved at a compromise between time and accuracy.

3.4 Optimization of a Vehicle S-Rail

The S-Rail is a longitudinal thin walled structure in the shape of the letter S and is

used as a supporting structure. The automobile sub systems are supported on lateral

cross members which are connected to the S-Rail. The S-Rail and the cross mem-

bers basically form the chassis frame of the vehicle structure. For more information,

one may refer to Ref. [201]. The S-Rail plays an important role as a crush member,

especially in frontal crashes. In this section, the principle of using meta-models for

improving the crashworthiness of the S-Rail by mathematical optimization is demon-

strated. To simplify and to lower the computational requirements, a simple prototype

FE model is used.

3.4.1 Problem Statement

It is required to improve the baseline design of an S-Rail for crashworthiness. The

objective is to increase the amount of impact energy that this structure can absorb at

an impact velocity of 10 m/s (27 km/h). The baseline design as shown in Figure 3.6

consists of three parts. The thickness of each part is considered as a design variable,
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thus there are three design variables. The initial design values are assumed to be

[x1=0.5, x2=2.5, x3=2.5] mm. With these initial values, the S-Rail weighs 3.1 kg and

absorbs a maximum of 251.4 J at the designated impact speed of 27 km/h. Lower

and upper bounds of the design variables are assumed to be 0.5 and 2.5, respectively.

Figure 3.6: View of the S-Rail

3.4.2 Solution Approach and Results

One way of solving this problem is to conduct physical experimental tests at all design

space points until a feasible optimum design is reached. However, considering a step

size of 0.5 mm for each design variable, yields a total of (5 [levels])3[variables] = 125

design points, which is clearly impractical and very expensive to perform. It should

be noted that the number increases to 729 if a step size of 0.25 mm is used instead.

Even if a DOE technique is used to minimize the number of experiments, the time

and cost is still inconceivable. Also, using intuition or even experience to guide the

tests does not guarantee that a feasible solution can be reached.

On the other hand, adopting numerical simulation by nonlinear FE modeling is an

attractive option. Although, the method has not been matured enough to the point

that no physical experiments are required, the method is admissibly reliable to cut

down on the number of required tests, and mostly, only a final physical test is needed

to validate the simulation results. Nevertheless, due to the complexity of nonlinear
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dynamic problems, FE simulation does come with its own cost in terms of compu-

tational demands. Consequently, it is also impractical to simulate the 729 designs

or even the 125 ones, especially in the current competitive environment, in which

the design time window is being narrowed steadily. For these reasons, a meta-model

is established with an appropriate number of simulations by a DOE technique and

this meta-model is then used in a systematic form to search for a feasible optimum

solution.

The FE Model

The FE model has been developed in LS-DYNA to simulate the impact behavior of

the S-Rail. For the sake of simplicity and lowering the computational cost, a model

at a reduced scale has been constructed. A scale of 0.4 is used to scale down the full

model, and scaling laws [11] are used to transform other model parameters, such as

component mass and initial kinetic energy, into reduced values. The parameters of

both the full scale model and the reduced scale model are presented in Table 3.2. It

should be noted that neither material properties nor impact speed can be scaled [11].

Table 3.2: Full scale and prototype model parameters for the S-Rail

Quantity Full scale Prototype

Component mass (kg) 46.8 3

Kinetic energy (kJ) 586 3.75

The FE model consists of 5093 shell elements modeled by the Belytschko-Lin-Tsay

element (type 2 in LS-DYNA) with an average element length of 6 mm. The MAT

PLASTIC KINEMATIC material model (type 24 in LS-DYNA) is used to model the

behavior of material under impact. The material properties are presented in Table

3.3.
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Table 3.3: Material properties of the S-Rail

Property value

Density (kg/m3) 7820

Young’s modulus (GPa) 207

Poisson’s ratio 0.3

Yield strength (MPa) 200

Tangential modulus (GPa) 0.2

The D-optimal criterion is used to generate data points for building the meta-model.

For a design with three variables coupled with a quadratic RSM model, a minimum of

10 points is needed according to (n+1)·(n+2)
2

where n is the number of design variables.

Redhe et al. [167] have suggested using 1.5 times this number when using the D-

optimal criterion. Here, 20 points are used to generate more accurate results. Using

design of experiments based on the D-optimal criterion, the design matrix can now

be easily established as provided in Table 3.4.

Table 3.4: The design matrix of the response surface model for the S-Rail

ID x1 x2 x3 ID x1 x2 x3

1 1 1 1 11 2.3 2.5 0.5

2 2.5 0.5 1.3 12 1.7 1.3 1.7

3 2.5 0.5 0.5 13 2.5 2.5 1.5

4 0.5 2.5 2.3 14 2.5 2.5 2.5

5 1.5 0.5 0.5 15 1.5 0.5 2.5

6 1.9 2.5 2.5 16 2.5 2.3 2.5

7 0.5 0.5 1.3 17 0.5 1.5 2.5

8 0.9 2.5 0.5 18 1.7 2.5 0.5

9 0.5 1.3 2.5 19 2.5 1.1 0.5

10 2.5 0.5 2.5 20 1.5 1.5 1.7
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Next, LS-DYNA simulations are performed at each of the design points provided in

Table 3.4 and output responses are evaluated. Since the objective is to maximize the

amount of Impact Energy (IE) absorbed without increasing the weight (Mass), these

two outputs are then collected and used for building the meta-models.

The four models described in section 3.2.2.1 are used to construct the approximate

model of the S-Rail. The accuracy of the models is evaluated using the adjR2 and the

values are provided in Table 3.5. The results show that the quadratic model (Model

3) has the highest accuracy and thus is used to approximate the output responses.

The adjR2 for Mass is one for all model types because Mass is a function of cross

section area, which in turn is a function of parts thicknesses. Thus, the variation

within Mass can be totally explained by parts thicknesses.

Table 3.5: Values for adjR2 for different RSM models for the S-Rail

Mass IE

Model 1 1 0.75

Model 2 1 0.92

Model 3 1 0.97

Model 4 1 0.80

Now, an optimization problem can be formulated based on the design requirements

and developed meta-models, which can be used to represent the objective and the

constraint functions as follows:

Find X∗that :

Maximizes IE

Subjec to: Mass−Massoriginal ≤ 0 (3.19)

where, xL ≤ x ≤ xU
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The optimization problem is solved using the Sequential Quadratic Programming

(SQP) algorithm [202], which is a powerful gradient based nonlinear mathematical

programming technique in MATLAB. After 9 iterations, as shown in Figure 3.7, the

algorithm converged to a feasible optimal solution at X∗ =(2 2 2).

Figure 3.7: Iteration history of the optimization problem of the S-Rail

A full FE analysis of the model at this optimal solution yields a value of 528 J for IE,

which is more than double the initial value (251.4 J). Mass is found to be slightly less

than 3 kg, Thus the derived optimal design not only has increased IE appreciably, it

has reduced mass slightly as well.

Adding Another Constraint to the Problem

While inspecting the time response of the Rigid Wall reaction Force (RWF), a peak

value (RWFmax) of 60.34 N is observed which is about 3.4 times the corresponding

value in the baseline design. According to the regulations, RWFmax must not exceed

40 N. In fact, the baseline design marked 17.6 N for RWFmax.

Considering this, another meta-model was established to account for RWFmax. Again,

in this case, the quadratic model (Model 3), also proved to be more accurate than
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other models with a value of 0.95 for the adjR2 parameter.

The optimization problem is redefined to reflect the new design requirement by adding

another constraint to the optimization problem as:

Find X∗that :

Maximizes IE

Subjec to: Mass−Massoriginal ≤ 0 (3.20)

RWFmax −RWFlimit ≤ 0

where, xL ≤ x ≤ xU

After 10 iterations, as shown in Figure 3.8, the algorithm converged to a feasible

solution at X∗ =(2.5 2.27 1) .

Figure 3.8: Iteration history of the constrained optimization problem of the S-Rail

This design configuration weighs slightly less than 3 kg and after conducting full

FE simulation on the optimal solution, it gives a value of 522.75 J for IE and 37 N

for RWFmax. The values for Mass, IE, RWFmax for the optimum design without
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consideration of RWFmax as a constraint (Design 1) and the optimum design with

consideration of RWFmax as a constraint (Design 2) are all normalized with respect

to the baseline design and shown in Figure 3.9.

Figure 3.9: Comparison between Design 1, Design 2 and baseline for Mass, IE and
RWFmax

Examination of the results reveals that by conducting the design optimization based

on RSM on the S-Rail component, one can considerably increase IE of the S-Rail

while guarding against maximum allowable rigid wall force. The optimal solutions

basically obtained parts’ thicknesses for better energy absorption and the two optimal

designs improved IE by approximately twofolds while keeping the mass slightly lower

than the mass of the baseline design.

3.5 Proposed Methodology

Here, a methodology for enabling an efficient and practical application of optimization

for crashworthiness of vehicle structures under impact is proposed. The proposed

methodology consists of three main stages. In stage 1, a full nonlinear transient

dynamic finite element analysis using LS-DYNA is conducted on the full vehicle model
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under frontal impact. The crashworthiness behavior of different major structural

parts is examined based on their impact energy absorbed. Then, the main structural

part contributing most to the total amount of impact energy absorbed in the whole

vehicle structure is identified. This part is then modified to assure its crashworthiness

behavior when treated individually under the same impact scenario, is similar to that

in the full vehicle model. Crashworthiness design optimization is then conducted

on this modified major component. However, as the traditional direct gradient based

optimization is not practical for this large size complex problem, in stage 2, a surrogate

model of this major component will be developed based on the design of experiment

and response surface methodology. The developed surrogate model is the smooth

representation of the crash response signals (which have noisy behavior) and can be

effectively used in formulating a crashworthiness design optimization problem in stage

3.

Stage 1

In stage 1, as shown in Figure 3.10, the major influential structural components

are identified based on analyzing the detailed nonlinear FE model of a full vehicle

under frontal impact. Separate nonlinear FE models of these major parts are then

created and modified so that their response characteristics once treated individually

will match their relative response once integrated in the full model under the same

conditions. This step is important as the output of these separate models can be

related to that in the full model.
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Figure 3.10: A flow diagram of stage 1

Stage 2

In stage 2, the models are parametrized so that simulation can be automated, as

shown in Figure 3.11. A suitable approximate model is selected, and design points

are determined using DOE. Simulation is then conducted at each point to generate

the required output responses. The unknown coefficients are calculated using linear

regression analysis and the accuracy of the model is checked. If the accuracy is not

satisfactory, another approximate model is then selected, and the process continues

until acceptable models are reached.

Figure 3.11: A flow diagram of stage 2
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Stage 3

In stage 3, an optimization problem is formulated using the approximate models to

represent the objective function and the constraints as shown in Figure 3.12. Now,

no longer the optimization problem depends on intensive calculations by nonlinear

FE simulations, instead easy to calculate RSM polynomials are used. This makes the

optimization problem manageable by any available optimization algorithms.

Figure 3.12: A flow diagram of stage 3

3.6 Illustrative Example

To demonstrate the proposed methodology, a full vehicle model of a Chevrolet C2500

pickup from the public domain [203] is used. Using LS-DYNA, a full frontal vehicle

impact test is simulated in which the vehicle is impacted to a rigid wall at a velocity of

56 km/h (35 mph) according to the Federal Motor Vehicle Safety Standard FMVSS208

regulations for frontal impact [16]. The FE model of the vehicle is shown in Figure

3.13 and the model parameters are summarized in Table 3.6.
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Figure 3.13: View of the Chevrolet C2500 pickup model

Table 3.6: FE model parameters of the vehicle model

Total mass 1839 kg

Pre-impact speed 56 km/h (35 mph)

Total length 235 mm

Number of shell elements 10518

Elements type Belytschko-Lin-Tsay

Barrier RIGID WALL PLANAR

Material type Steel

Material model MAT PIECEWISE LINEAR PLASTICITY

Contact model CONTACT AUTOMATIC SINGLE SURFACE

3.6.1 Identification of Major Influencing Components and

Construction of Reduced Models (Stage 1)

The Impact Energy absorbed (IE) is chosen as the selection criterion to identify the

most influential components. Examination of the simulation output results reveals

that the chassis frame as shown in Figure 3.14 is the major IE absorbing structure,

which contributes nearly 61% of the total IE in the whole vehicle structure as shown

in Figure 3.15.
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Figure 3.14: View of the chassis frame

Figure 3.15: Comparison between IE for major structural components

Now, a separate nonlinear FE model of the chassis frame is constructed as shown in

Figure 3.16 and then modified by adding lumped mass elements using the (*ELE-

MENT MASS) card in LS-DYNA [114]. The values of the masses are adjusted so

that similar responses between the separate model and the full one can be achieved.

The model is also modified by applying similar boundary conditions to those in the

full model using the (*BOUNDARY SPC NODE) card [114].
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Figure 3.16: View of the FE model of the chassis frame

Now, the chassis frame is analyzed individually at the same conditions for the full

vehicle simulation. To check the model accuracy and its ability to represent the

part in the full model, output results from both models are compared as shown in

Figure 3.17. It can be realized that both responses are in good agreement, where the

difference between the final maximum values is approximately 2 %.

Figure 3.17: Impact energy absorbed by the chassis in full vehicle model and in the
reduced model
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3.6.2 Model Parametrization and Construction of the Ap-

proximate Model (Stage 2)

Thicknesses of different chassis parts are selected as design variables to parametrize

the model as shown in Figure 3.18. The variables are x1 as the bumper thickness, x2

as the front rail section thickness, x3 as the middle rail section thickness, x4 as the

rear rail section thickness, and x5 as the cross rail section thickness.

Figure 3.18: Design variables on the chassis frame

To develop the approximate models using RSM, the design space along with the

output responses are to be assigned. The design space includes a range between 1

mm and 5 mm for all the five variables, as this presents a reasonable range for actual

parts. Also here, two output responses, the chassis Mass (Mass) and the Impact

Energy absorbed (IE), which represents the total amount of impact energy absorbed

by the structure are selected. These responses are coded inside the nonlinear FE

model in LS-DYNA, so that they are generated as results in the output data file.

These responses are selected since they represent the most important design output

responses, and will be used to formulate the optimization problem in the final stage

of the proposed methodology.

The four types of meta-models (linear, interactive, quadratic and pure-quadratic)
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mentioned in section 3.2.2.1 are used to construct the approximate RSM models and

the accuracy of each model is checked using the adjR2. The model with highest value

is then selected.

To locate the design points, the D-optimality criterion is applied. Since the model

includes five variables, thus 21 data points are required for the quadratic model (Model

3). In the current research, more design points (40 points) were used to ensure proper

modeling representation. The points are given in Table 3.7. After selection of the

design points in the design space, nonlinear FE analysis is conducted at each design

point using LS-DYNA and the output responses are collected and used in regression

analysis by which the unknowns of the RSM models are determined using Eq.(3.5).

Table 3.7: The design matrix of the response surface

model for the chassis frame

ID x1 x2 x3 x4 x5 ID x1 x2 x3 x4 x5

1 1.37 1.53 1.24 2.17 1.30 21 3.20 2.70 3.80 5.00 5.00

2 2.93 1.33 1.05 3.91 1.99 22 1.80 3.00 5.00 4.00 5.00

3 2.17 1.51 3.80 1.02 1.05 23 2.00 4.80 3.80 2.20 1.00

4 1.02 1.36 1.42 2.84 4.99 24 1.80 3.00 4.70 5.00 5.00

5 1.00 1.00 4.14 4.14 4.60 25 1.00 3.14 5.00 5.00 5.00

6 2.40 1.00 1.20 1.80 1.00 26 2.90 3.14 3.14 3.14 3.00

7 2.70 1.00 5.00 5.00 5.00 27 2.70 3.14 3.14 3.14 3.60

8 2.50 3.14 3.14 3.14 2.80 28 2.70 3.14 3.14 5.00 3.60

9 3.00 1.00 4.00 4.00 5.00 29 1.80 3.00 5.00 5.00 5.00

continued on next page
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ID x1 x2 x3 x4 x5 ID x1 x2 x3 x4 x5

10 2.90 1.00 3.70 3.70 5.00 30 2.90 3.14 3.14 3.14 3.30

11 2.40 1.00 3.40 3.00 5.00 31 2.50 3.14 3.14 3.14 3.00

12 3.20 1.00 3.80 4.00 5.00 32 2.70 3.14 3.14 3.14 3.00

13 3.30 1.50 3.85 4.00 5.00 33 3.20 3.14 3.80 4.00 5.00

14 2.90 2.14 3.14 3.14 3.00 34 1.80 3.14 5.00 5.00 5.00

15 3.20 1.00 3.80 5.00 5.00 35 2.70 3.14 3.80 4.00 5.00

16 3.30 1.00 3.85 4.00 5.00 36 2.70 3.14 5.00 5.00 5.00

17 3.30 1.00 3.85 5.00 5.00 37 2.85 4.74 1.04 2.94 4.00

18 3.30 1.00 4.85 4.00 5.00 38 4.68 3.76 4.10 1.74 4.39

19 3.30 1.00 5.00 5.00 5.00 39 4.80 4.22 3.08 1.52 2.76

20 2.30 1.00 3.90 3.90 5.00 40 4.32 4.72 4.62 4.06 2.84

As mentioned earlier, the different RSM models are used to approximate the output

data and each model’s adequacy and goodness of fit is quantified based on adjR2

value using Eq. (3.13). The results are listed in Table 3.8. It can be observed that

the quadratic model (Model 3) provides the best approximation for all the responses,

hence it is selected as the approximate model to be used in the optimization process.

104



Table 3.8: Comparisons between adjR2 for different RSM models of the chassis frame

Mass IE

Model 1 1 0.52

Model 2 1 0.64

Model 3 1 0.85

Model 4 1 0.6

3.6.3 Optimization Problem Formulation (Stage 3)

Once an efficient and accurate approximate model is developed, an optimization prob-

lem with the objective of improving the crashworthiness performance can now be

formulated using the developed approximate models. Here, IE has been selected as

the objective function to be maximized while constraining the Mass not to exceed

the mass of the base design. Using the Mass as a constraint will ensure that an im-

provement in crash performance will not be achieved at the expense of adding more

weight to the original design. The optimization problem is formulated as follow:

Find X∗that :

Maximizes IE

Subjec to: Mass−Massoriginal ≤ 0 (3.21)

where, xL ≤ x ≤ xU

The initial design values are [x1=2.7, x2=3.14, x3=3.14, x4=3.14, x5=3.6] mm. With

these initial values, the total vehicle weight is 1839 kg and it absorbs a maximum of

0.19 MJ at the designated impact speed of 56 km/h. A lower and upper bounds of

the design variables are assumed to be 1 and 5 respectively. The optimization prob-
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lem is solved using the Sequential Quadratic Programming (SQP) algorithm [202],

which is a powerful gradient based nonlinear mathematical programming technique

in MATLAB. An optimum solution at X∗= (1.2 3.6 1.12 1.17 4.6) was found af-

ter 16 iterations. Different random initial points were used and all converged to the

same optimum solution. This solution will be referred to as Design 1 in the coming

discussion. The optimization history is shown in Figure 3.19.

Figure 3.19: Iteration history of the optimization problem of the reduced model

To verify the solution, LS-DYNA simulation is conducted at the optimum solution.

The final IE and mass were found to be 0.193 MJ and 1831.7 kg respectively. It can

be realized that mass has been reduced while IE has been slightly increased (about

1.6%).
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3.6.4 Optimization of the Full Model

In order to compare the developed approximate model of the reduced model with

that of the full vehicle model, all previous steps are applied to the full vehicle model,

i.e., the full vehicle nonlinear FE model is used instead of the modified one. Again,

the four RSM models are used to develop the meta-models. The results are provided

in Table 3.9.

Table 3.9: Comparisons between adjR2 for the different RSM models of the full vehicle

Mass IE

Model 1 1 0.6

Model 2 1 0.66

Model 3 1 0.72

Model 4 1 0.57

The optimization problem is also formulated with the same objective to increase IE

while constraining the Mass. The problem is solved with the SQP algorithm and a

solution called (Design 2 ) was achieved after 29 iterations at X∗= (1 5 3.26 1 4.41).

Different random initial points were used and all converged to the same optimal

solution. The optimization history is shown in Figure 3.20. Using the full FE model,

mass and IE associated with the optimal point were found to be 1839 kg and 0.196

MJ respectively. Thus mass has remained unchanged and IE has increased by 3.3%.
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Figure 3.20: Iteration history of the optimization problem of the full model

3.6.5 Discussion

Both solutions increased IE by different degrees. Design 1 increased it by 1.6% and

Design 2 increased it by 3.3%. To check how this will affect the occupants within the

vehicle, the Head Injury Criterion (HIC) is calculated at a point on the B-pillar, as

shown in Figure 3.21. The value of HIC can be calculated as follows [6]:

HIC =

(
1

t2 − t1

ˆ t2

t1

a · dt
)2.5

· (t2 − t1) (3.22)

where t1 and t2 are any two points in time during the crash where the difference

between them is either 15 ms or 36 ms, and a is the translational acceleration. Ac-

cording to federal regulations [16], in frontal impact situations for a 15 ms period,

HIC should not exceed 700 and for a 36 ms period, HIC should not exceed 1000.
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These values represent the human tolerance to decelerations, above which irrecover-

able brain damage can occur. This parameter is based on the work performed by

Patrick and Sato [204], who in 1970 used dropped cadavers on flat rigid surfaces

to evaluate the required forces to cause fatal injuries in live human bodies. HIC

provides a numeric value to evaluate the effect of crash on the occupant’s brain, for

more information one may refer to Ref. [205]. HIC has been criticized as it only

includes translational acceleration which disregards the effect of other acceleration

components such as angular accelerations that may cause other forms of injuries due

to the induced shear stresses. With the advancement in computational capabilities,

the trend now is to use detailed FE models to simulate brain injuries and to capture

more details [206]. Despite these deficiencies, HIC is still used in regulations and is

used here to evaluate the effect of the new designs on the occupant.

Figure 3.21: Location of B-pillar

Here, the calculated values for HIC based on a 36 ms period for the baseline design,

Design 1 and Design 2 are found to be 1025, 883 and 1039, respectively. Thus,

Design 1 reduced the value of HIC by 14% while Design 2 increased HIC by 1.4%.

To find the cause of this difference, the design variables in Design 1 and Design 2 are

normalized with respect to the baseline design and plotted in Figure 3.22. As it can

be observed from Figure 3.22, the thickness of the frontal part of the longitudinal rail

(x2) in design 2 is 1.6 times the value of the thickness in the baseline design. This
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caused this part to stiffen, thus raising the value of the deceleration and ultimately

leading to the observed increase in the value of HIC .

Figure 3.22: Comparison between design variables

The variation of the output response IE versus Mass normalized with respect to the

baseline design is plotted in Figure 3.23, which is divided into four regions as:

1. A desirable region in the upper left corner, in which Mass decreases and IE

increases. This region includes designs which surpass the baseline design in

both aspects. It is also very hard to achieve since as shown in Figure 3.23, IE

tends to increase when Mass increases.

2. An undesirable region in the lower right corner, in which Mass increases and IE

decreases. This region designates a region which is not desirable as the design

points represent heavier designs than the baseline design and yet, they absorb

less energy. This implies a bad combination between design variables.

3. Region 1 in the lower left corner, in which both Mass and IE decrease. This

region refers to the region at which mass was reduced at the expense of IE. For
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example, designs from this region can be selected if a reduction in weight is

required at the expense of sacrificing IE.

4. Region 2 in the upper right corner, in which both Mass and IE increase. This

refers to a situation at which IE is increased by adding more weight. Designs in

this region can be selected where weight saving is of less concern than increasing

IE. For example, as in armoured vehicles, they are heavy, however they provide

more safety protection than lighter vehicles.

Figure 3.23: Normalized IE versus Mass for the full vehicle

The designer can use polynomial RSM functions to visualize the design space. For

example, Figure 3.24 shows a response variation with variables x1 and x2.
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Figure 3.24: View of the mass response surfaces

3.6.6 Remarks

Remark 1 An argument may be made that the amount of weight reduced by apply-

ing the proposed methodology is 7 kg only. This may seem as a small value compared

with the required amount of work. However, this small amount of weight reduction

can lead to large savings in mass production. Another benefit of weight reduction is

to improve fuel economy. Reducing weight by 10% decreases fuel consumption by 6-8

% [207]. Consequently, reducing fuel consumption will reduce carbon emissions.

Remark 2 Another argument may be made that advancements in hardware ca-

pabilities are increasing rapidly. Kurzweil [208] mentions that the rate of change in

computer speed is exponential. However, on the other hand, FE models are also

becoming more complicated. FE model developers continue to add more details to

their models to capture more realistic output responses. Haug [209] mentions that,

no matter how much computer power provided to the designers, they will use it to
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its full extent in a very short time.

Figure 3.25 shows the number of elements used to model a mid-size vehicle in frontal

impact over 20 years. As it can be realized, the trend follows an exponential rate.

Figure 3.25: The number of elements for modeling a full vehicle over 20 years [210]

Furthermore, Figure 3.25 shows only the trend of increase for vehicle structure models

without including FE models of occupants. Human FE models are very complex, a

model of the brain alone can include up to 300,000 elements [74]. Combining human

models with vehicle structure models will result in extremely complex models. This

will raise the computational cost substantially.

In addition, optimization requires several iterations to reach an optimum solution.

Using a reduced model at lower computational cost compared with the full vehicle

model enables the practical application of optimization for crashworthiness improve-

ment. In this work, using a PC with Intel Pentium D 2.66 GHz processor, the reduced

model was simulated in 13 minutes compared to approximately 6 hours for the full

vehicle model. For the purpose of this work, simulations were conducted on the

University’s distributed parallel computing Linux workstation (HP-MPI AMD64), on

which 64 processors were used.
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Based on the aforementioned remarks, the proposed methodology significantly re-

duces the amount of time required to find an optimum solution. This also reduces

the total development time of the entire vehicle design. As shown in Figure 3.26,

crashworthiness is one of many design objectives. Considering that crashworthiness

is the first analysis to be completed in modern vehicle design [5], the impact of the

methodology on the entire design cycle can be appreciated.

Figure 3.26: Different automobile objectives

Remark 3 The resulting polynomial functions of the different output responses can

be considered as closed form approximate solutions. The polynomial functions can be

easily shared within other disciplines. Experts from other disciplines can easily use

the polynomial functions to predict the crashworthiness behavior in their calculations

without running a sophisticated nonlinear FE software as LS-DYNA.
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Remark 4 The methodology can also be applied to other vehicle parts. This work

focused on the chassis frame as an important structural part to vehicle safety. A com-

plete implementation of the methodology to all vehicle structural parts will further

improve the crashworthiness performance.

3.7 Summary

In this chapter, a new methodology for enabling the practical implementation of nu-

merical optimization has been proposed. The methodology has been applied to a case

study of a pickup truck. The methodology successfully improved the crashworthiness

performance of the pickup truck at a practical computational cost. It is suggested that

extending the application of the methodology to other structural parts will further

improve the crashworthiness performance of the entire vehicle.
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Chapter 4

Vehicle Design Improvement using

the Pareto Front

4.1 Introduction

Knowing the form of the relationship between two important engineering quantities

can facilitate the design process to a great extent. The two most important engineer-

ing quantities in vehicle crashworthiness design as discussed in chapter 3 are: weight

and absorbed impact energy. Thus, knowing the relationship between the maximum

amount of impact energy absorbed in a structure and its minimum weight is very

important. The designer can use this relationship to quickly check any design and

find if it absorbs the maximum amount of impact energy for its current weight or not.

In this way, the designer can judge the crashworthiness performance of any design

with minimum effort and obtain the values of the design variables that can achieve

maximum impact energy with minimum weight. Unfortunately, in reality, the rela-

tionship between minimum weight and maximum impact energy is unknown. In this

chapter, the Pareto front technique is used to find this relationship and the optimum

values of the design variables.
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4.2 The Pareto Front

The Pareto front is named after Vilfredo Pareto (1848-1923), who in 1906 published

the ’Manuale di Economia Politica’ (Manual of Political Economy), in which he intro-

duced the principles of non dominance in economics. The book captured the attention

of researchers in mathematics and engineering after it was translated to English in

1971 [211]. Later, the principles of non dominance became the basis of multiobjective

optimization and are now known as the Pareto front [212].

Here, the principle of the Pareto Front (PF) is explained through an example without

any loss of generality. Let us consider a design as shown in Figure 4.1 with two

conflicting objective functions: F is to be maximized and G is to be minimized [213].

The term conflicting means that, there is no single solution that will maximize F and

minimize G at the same time.

Figure 4.1: A representative drawing of the Pareto Front

First, let us compare point A with point B. Although, A and B have the same values

for G, B has a higher value for F than A. In this case, B is said to dominate A. In

a similar way, by comparing point A with point D, one can realize that A and D
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have the same values for F but D has a smaller value for G than A. In this case,

D is said to dominate A. Now, let us compare point A with point C. In this case,

C is superior in both objectives; it has larger F and smaller G values than A. In

this case, C is also said to dominate A. Finally, considering points B, C and D, it is

clear that no single point is better in both objectives than the others, thus they are

called non-dominated points. Each non-dominated point is optimum, which means

that no improvement in one function can be achieved without deteriorating the other

function. The set of non-dominated points is called the Pareto front (PF). The PF

can then be considered as the set that includes all optimum solutions while trading

off between the different objectives. For example, in the present work, the PF will

include all possible maximum absorbed impact energy values and their associated

minimum weight values. The process of finding the Pareto front is explained in the

following section.

4.3 Finding the Pareto Front

The Pareto front is the solution of a multiobjective optimization problem, which can

be written as follows:

Find X∗that :

Minimizes Π(X) (4.1)

where,XL ≤ X ≤ XU

where X is the vector of design variables and X∗ is the vector of optimum values.

XL and XU are the lower and upper bounds on the design variables, and Π(X) is the

vector that includes all design objectives, which can be written as:
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Π(X) = [Fi(X) . . . . . . Fn(X)] (4.2)

The solution of a multiobjective optimization problem does not include one solution

only. Instead, it includes several solutions and each one is optimum. This means that,

for a given optimum solution, one cannot find another one that outperforms the first

optimum solution in all objectives. Instead, all the optimum solutions are trade-offs

between the design objectives. There are two approaches for solving multiobjective

optimization problems. A brief review of these approaches is presented here:

i Transforming the Problem into a Single Objective Problem

The objective functions are all combined into a single weighted function as follows:

Find X∗that :

Minimizes W (X) (4.3)

where,XL ≤ X ≤ XU

where W (X) is a function combining different objective functions. A popular ap-

proach to obtain this single objective function is through linearly summing weighted

functions. This can be expressed as (W (X) =
n∑
i=1

λi · Fi (X)

F̄i
), where λi is a weighing

factor such that
n∑
i=1

λi = 1, Fi is the ith objective function and F̄i is a normalizing

factor for Fi. One can refer to Ref. [214] for a description of other approaches to

transform multiobjective functions into a single objective function. After establish-

ing the optimization problem in Eq.(4.3), the multiobjective optimization problem

can be solved using different weighing factors. The different solutions obtained will

119



then constitute the Pareto front. This approach is simple and easy to implement,

however, it has two problems that can be summarized as:

(1) The approach will work only with functions in a completely convex region and

fails to find a solution in a non-convex region [213].

(2) The selection of the normalizing factor is subjective. It is not clear which value

to use for normalization of Fi. F̄i can be the average, the maximum, or the difference

between maximum and minimum. The selection of which normalizing factor to use

causes the so called inductive bias, which is favoring one hypothesis over the others.

For more discussion on the subject, one can refer to Ref. [215].

ii The Pareto Approach

The Pareto approach alleviates the previously mentioned drawbacks. It uses a multi-

objective optimization algorithm for solving the multiobjective optimization problem.

As Freitas [216] mentioned, it makes more sense to develop an algorithm to solve the

problem instead of adapting the problem itself to the available algorithms. Cur-

rently, the genetic algorithm is widely used for solving multiobjective optimization

problems [217]. The first algorithm was developed by Schaffer [218], and over the

years its performance has been improved significantly due to the works of many re-

searchers [219–222]. The genetic algorithm is a nature inspired search algorithm that

is based on the evolutionary principles [223]. The genetic algorithm searches for the

non-dominated points by populating many solutions. A schematic drawing of the

genetic algorithm is shown in Figure 4.2 and the algorithm can be summarized as

follows [213]:

1. The algorithm is initiated by generating random designs.

2. Each design is represented by a vector of bit strings with fixed length.
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3. Designs are allowed to mate to produce new designs, which is called crossover

and mutation.

4. The values of the objective functions are evaluated and recorded for each design.

5. The designs are sorted according to the recorded values of the objective func-

tions.

6. The algorithm stops if a convergence criterion is reached, otherwise it continues

to step 3.

7. The final solution is a set of optimum (non-dominated) designs.

Figure 4.2: A scheme of a typical genetic algorithm
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4.4 Proposed Methodology

The methodology developed in this work uses the genetic algorithm in order to find

the Pareto front. However, the genetic algorithm requires an exceptionally large

number of function evaluations. Hence, approximate models are used with the genetic

algorithm instead of the computationally expensive nonlinear FE models. Then, the

relation between minimum weight and maximum impact energy absorbed is derived

from the Pareto front. The methodology is explained in a flow chart as shown in

Figure 4.3 and applied to two crashworthiness design problems: (1) A thin walled

tube under axial impact loading and (2) A chassis frame using the response surface

model that has been developed in chapter 3.

Figure 4.3: A schematic drawing of the methodology
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4.5 Design Improvement of a Thin Walled Tube

Using the Pareto Front

To simply demonstrate the approach, the Pareto front is constructed to find the

relationship between maximum impact energy and minimum weight of a thin walled

tube under axial impact. As shown in Figure 4.4, the tube is divided into three parts.

Parts thicknesses are assumed to be the design variables. The model parameters

are provided in Table 4.1. The tube is modeled using a nonlinear FE model and

LS-DYNA is used for simulations.

Figure 4.4: View of the thin walled tube model

Table 4.1: Parameters of the nonlinear FE model of the thin walled tube

Dropped mass 80 kg
Pre-impact speed 10 m/s
Total length 235 mm
Number of elements 391
Elements type Belytschko-Lin-Tsay
Material Steel
Material model MAT PIECEWISE LINEAR PLASTICITY
Contact model CONTACT AUTOMATIC SINGLE SURFACE
Design variables Parts thicknesses (x1, x2, x3)
Design range XL [1, 1, 1] : XU [3, 3, 3]
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The nonlinear FE model is relatively simple and it takes a short time to analyze

(about 1 minute). To demonstrate the usefulness of the methodology, the model has

been simulated at 100 different design points. The values for mass and impact energy

absorbed are recorded at each point and plotted in Figure 4.5. As it can be seen,

a strong positive relation between Mass and IE exists. Now, the problem is to find

the exact correct form of the relationship between minimum Mass and maximum IE

as represented by the dotted line in Figure 4.5. Considering point A that is located

far away from the Pareto front, it is obvious that the design at this point is far from

being optimal.

For large size and complex structures such as automobile structures, simulation us-

ing nonlinear FE analysis is computationally expensive and thus it is not possible

to conduct 100 simulations to find the relative position of a design. To overcome

this problem, the response surface method combined with design of experiments as

discussed in chapter 3 may be employed to create simple approximate models instead

of the computationally expensive nonlinear FE models.

Figure 4.5: IE vs Mass for the thin walled tube

Here, to create the response surface models for Mass and IE, the D-Optimality crite-

rion is used to generate 30 design points as provided in Table 4.2. LS-DYNA is then
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used to simulate the nonlinear FE model of the thin walled tube at each point. The

values of Mass and IE are evaluated after each FE analysis and used with each of the

four RSM model types (linear, interaction, quadratic and pure quadratic) discussed

before in chapter 3. The value of the adjR2 is calculated for each model type and

the the results are provided in Table 4.3. It is clear that the quadratic model has the

largest adjR2 value compared with other model types, hence it is the most accurate

model and is used here to model Mass and IE.

Table 4.2: The design matrix of the response surface model for thin-walled tube

ID x1 x2 x3 ID x1 x2 x3

1 2.00 2.00 2.00 16 1.35 2.18 2.05

2 2.46 1.89 1.52 17 1.77 2.22 2.40

3 2.92 2.17 2.11 18 1.84 2.56 2.78

4 2.35 2.49 1.67 19 1.90 1.72 2.86

5 2.81 2.20 2.07 20 1.11 1.15 1.87

6 2.14 2.81 2.16 21 2.71 2.78 2.70

7 1.65 1.38 1.87 22 2.70 1.66 2.19

8 1.74 2.75 2.99 23 1.95 1.85 2.97

9 2.66 2.34 2.33 24 2.81 1.50 1.53

10 1.69 1.77 2.78 25 2.08 2.89 1.49

11 1.49 2.88 1.25 26 2.94 2.38 2.35

12 1.62 1.65 2.67 27 2.93 2.16 2.20

13 2.42 1.12 2.06 28 2.91 2.20 1.82

14 1.46 2.77 1.95 29 2.97 1.47 2.65

15 2.55 1.67 2.53 30 1.79 1.51 1.39
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Table 4.3: Values for adjR2 for different RSM models for the thin walled tube

Mass IE

Linear 1 0.87

Interaction 1 0.88

Quadratic 1 0.94

Pure quadratic 1 0.9

Next, a multiobjective optimization problem is formulated in which Mass and IE are

represented by the quadratic RSM model. The optimization problem can be described

as:

Find X∗that :

Minimizes Mass(X) and (4.4)

Maximizes IE(X)

where,XL ≤ X ≤ XU

The problem is solved using the GA in MATLAB’s optimization tool box. The genetic

algorithm was able to locate the Pareto front after 12121 function evaluations. It

should be noted that in case the genetic algorithm has been directly applied to the

nonlinear FE model, running such a large number of nonlinear FE simulations would

have been impractical. Having found the Pareto front, the process of finding the

relationship between minimum weight and maximum absorbed impact energy can be

simply made using curve fitting. The Pareto front and the fitted function are shown

in Figure 4.6 and the relationships between minimum Mass and maximum IE can be

written as follows:

IE [J ] = 104 ·
(
−0.7896 ·Mass2 + 1.3937 ·Mass− 0.2019

)
(4.5)
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Mass [kg] = (1.2158 · 10−8 · IE2 + 7.5838 · 10−5 · IE + 0.1638) (4.6)

Figure 4.6: The PF and the fit for IE vs Mass for the thin walled tube

The weight of the design at point A is 0.4 kg and its associated IE is 1570 J. Now,

using Eq.(4.5), the maximum value that this design should achieve is 2292 J, which

is 46% more than the design actually absorbs. Also, according to Eq.(4.6), the design

can absorb the same amount of IE (1570 J) with only 0.3 kg, which is 21% lighter

than the original design at point A. Thus, it is clear that the design at point A is

far from being optimum and the designer can use the Pareto front data in Table 4.4

to improve the design. The designer can improve the design at point A using two

approaches: (1) Maintain the mass and maximize IE or (2) Maintain IE and minimize

the mass. The two approaches are describes next.

127



Table 4.4: Values for Mass, IE and their associated design variables for the PF of
the thin walled tube

ID x1 x2 x3 Mass IE ID x1 x2 x3 Mass IE
(kg) (J) (kg) (J)

1 1 1 1 0.189 289.48 22 2.31 1.34 1.54 0.32 1623.58

2 1 1.01 1 0.191 293.48 23 2.46 1.29 1.54 0.325 1666

3 1.01 1.01 1.03 0.192 331 24 2.2 1.75 1.65 0.349 1850

4 1.01 1 1.09 0.195 390 25 2.3 1.86 1.56 0.356 1902

5 1.03 1.02 1.13 0.2 450 26 2.43 1.89 1.64 0.37 2017

6 1.1 1.01 1.15 0.205 509 27 1.95 2.37 1.64 0.375 2057

7 1.14 1.05 1.16 0.211 563 28 2.06 2.37 1.62 0.38 2099

8 1.22 1.03 1.19 0.215 630 29 2.52 2.19 1.78 0.405 2292

9 1.01 1.02 1.44 0.219 697 30 2.76 2.35 1.69 0.422 2433

10 1.22 1.14 1.21 0.224 699 31 2.53 2.37 1.93 0.427 2448

11 1.36 1.02 1.28 0.228 783 32 2.21 2.83 1.81 0.432 2532

12 1.43 1.02 1.49 0.246 987 33 2.37 2.85 1.68 0.434 2556

13 1.38 1.12 1.56 0.255 1055 34 2.37 2.88 1.77 0.441 2616

14 1.56 1.07 1.5 0.258 1092 35 2.3 2.89 1.84 0.443 2623

15 1.88 1.09 1.32 0.264 1133 36 2.87 2.65 1.76 0.453 2677

16 1.39 1.57 1.43 0.277 1194 37 2.69 2.65 1.98 0.458 2691

17 1.59 1.27 1.61 0.28 1273 38 2.9 2.86 1.69 0.464 2777

18 2.12 1.12 1.45 0.289 1369 39 2.9 2.86 1.69 0.464 2778

19 2.11 1.03 1.61 0.292 1422 40 2.77 2.94 1.83 0.472 2844

20 1.99 1.03 1.85 0.302 1483 41 2.81 2.97 2.01 0.488 2937

21 2.35 1.14 1.58 0.311 1571 42 3 3 2.32 0.521 3060
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i Maintaining Mass and Maximizing IE

From Table 4.4, the nearest value to the weight of the design at point A is 0.405 kg

at point (29), at which the predicted value for maximum IE is 2292 J. The design

variables at point A are (1.69, 1.77, 2.78), where the design variables at point (29) are

(2.52, 2.19, 1.78). To verify the value of IE, the design variables at point (29) are used

to simulate the tube using LS-DYNA. The value of IE from the simulation is found

to be 2248 J, which means that IE has been increased by 43% while maintaining the

same weight of the tube.

ii Minimizing Mass and Maintaining IE

From Table 4.4, the nearest value to the energy absorbed in the design at point A

is 1571 J at point (21), at which the predicted value for minimum mass is 0.311 kg.

Thus, the design at point (21) is about 21% lighter than the original design at point

A. To verify the value of IE, the design variables at point (21) (2.35, 1.14, 1.58) are

used to to simulate the tube using LS-DYNA. The value of IE from the simulation

is found to be 1943 J, which is even 24% more than the value of IE in the original

design at point A. Using this approach, IE has been increased by 24% and mass has

been reduced by 22%.

4.5.1 The Anti Pareto Front (APF)

As important as it is to find the Pareto front of the best possible designs, it may also

be important to find the Pareto front of the worst possible designs, which is called

here the Anti Pareto Front (APF). Finding the APF can be made by simply reversing

the objectives in the multiobjective optimization problem. This means that instead

of searching for the designs with minimum weight and maximum impact energy, one
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searches for designs with maximum weight and minimum impact energy. The new

multiobjective optimization problem can be written as:

Find X∗that :

Maximizes Mass(X) and

Minimizes IE(X) (4.7)

where,XL ≤ X ≤ XU

Again, the genetic algorithm is used to solve the multiobjective optimization problem

stated in Eq.(4.7) and the APF is found after 7501 function evaluations. The Pareto

front and the anti Pareto front can be plotted on the same figure where the area

between them constitutes the design space as shown in Figure 4.7. The designer can

use Figure 4.7 to visually check how far a design is from being a best or a worst

design as demonstrated using point A. It is clear that point A is very close to the

APF curve, which means it is far from being optimum.

Figure 4.7: The PF and the APF for the thin walled tube
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4.6 Design Improvement of a Vehicle Chassis Frame

Using the Pareto Front

In chapter 3, the chassis frame has been identified as the major influencing structural

part to the crashworthiness performance of the whole vehicle. Then, a reliable RSM

model has been developed to model the chassis frame’s weight (Mass) and its impact

energy absorbed (IE). In this section, the same RSM model of the chassis frame is

employed to improve the crashworthiness performance of the chassis and the whole

vehicle. A multiobjective optimization problem is formulated using the previously

developed RSM model of the chassis frame. Then, the solution of the multiobjective

optimization problem is used to create the Pareto front. Table 4.5 provides the

associated values of the Pareto front and Figure 4.8 shows the Pareto front and

its fitted curve. The derived relationships between minimum weight and maximum

energy absorbed in the chassis frame can be written as:

IE [MJ ] = 10−3 ·
(
−0.0013 ·Mass2 + 0.4781 ·Mass+ 74.1417

)
(4.8)

Mass [kg] = 105 · (1.8236 · IE2 − 0.3423 · IE + 0.0166) (4.9)

Table 4.5: Values for Mass, IE and associated design

variables for the PF of the chassis frame

ID x1 x2 x3 x4 x5 Mass (kg) IE (kJ)

1 1.05 1.00 1.00 1.00 1.03 52.5 95.19

2 1.44 1.03 1.01 1.01 1.09 55.8 96.27

continued on next page
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ID x1 x2 x3 x4 x5 Mass (kg) IE (kJ)

3 1.50 1.04 1.13 1.04 1.07 57.1 96.72

4 1.51 1.17 1.20 1.08 1.08 59.4 97.41

5 2.17 1.23 1.08 1.07 1.07 63.0 98.00

6 3.17 1.02 1.23 1.00 1.06 67.3 100.80

7 3.56 1.09 1.07 1.20 1.04 70.5 102.06

8 3.07 1.57 1.10 1.10 1.08 72.2 102.21

9 3.31 1.72 1.09 1.01 1.04 74.1 103.03

10 3.20 1.80 1.11 1.18 1.14 76.5 103.29

11 3.75 1.75 1.32 1.02 1.11 79.5 104.46

12 4.62 1.87 1.11 1.21 1.10 85.6 106.70

13 4.62 1.88 1.10 1.25 1.14 86.4 106.77

14 3.90 2.59 1.32 1.22 1.14 90.6 107.23

15 4.65 2.78 1.04 1.14 1.07 93.7 108.66

16 3.87 3.14 1.39 1.46 1.33 100.0 108.84

17 4.93 2.98 1.73 1.29 1.17 104.7 110.61

18 4.87 3.66 1.13 1.61 1.09 108.3 111.48

19 4.90 4.25 1.31 1.06 1.10 111.7 111.98

20 4.94 3.91 1.46 1.39 1.39 114.6 112.13

continued on next page
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ID x1 x2 x3 x4 x5 Mass (kg) IE (kJ)

21 4.94 4.18 1.31 1.63 1.22 116.6 112.65

22 4.93 3.96 1.56 1.76 1.55 120.0 112.71

23 4.65 4.75 1.81 1.56 1.10 122.9 113.38

24 4.79 4.79 1.81 1.77 1.28 127.2 113.85

25 4.91 4.93 1.81 2.00 1.13 129.8 114.26

26 4.92 4.91 1.59 1.87 1.88 133.4 114.38

27 4.98 4.97 1.77 2.02 1.80 136.2 114.72

28 4.97 4.98 1.83 2.05 2.73 145.2 115.52

29 4.80 4.75 1.16 2.14 3.98 148.0 115.84

30 4.93 4.43 1.61 2.37 3.96 150.7 115.94

31 3.32 4.98 1.26 2.45 4.88 152.3 116.88

32 4.07 4.99 1.32 2.30 4.88 156.3 117.42

33 4.32 4.99 1.26 2.43 4.95 158.8 117.81

34 4.88 4.86 1.64 2.21 4.87 161.6 117.99

35 4.41 4.99 1.68 2.57 4.97 163.9 118.41

36 4.79 5.00 1.42 2.87 4.97 166.6 118.70

37 4.97 5.00 1.86 2.78 4.93 170.0 118.98

38 4.97 5.00 2.01 2.99 5.00 173.3 119.23

continued on next page
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ID x1 x2 x3 x4 x5 Mass (kg) IE (kJ)

39 4.97 5.00 2.56 2.85 5.00 176.6 119.28

40 4.97 5.00 2.56 2.98 5.00 177.6 119.29

Figure 4.8: The PF of the chassis frame

The Pareto and the anti Pareto fronts are also shown in Figure 4.9, on which a

suggested design is represented at point A. Using Figure 4.9, the designer can clearly

conclude that the design at point A is one of the worst possible designs since it lies

directly on the APF. The weight of the chassis frame at point A is 151 kg and the

amount of absorbed impact energy is 0.099 MJ. Also, the total amount of impact

energy absorbed in the whole vehicle structure is 0.165 MJ. Similar to the thin walled

tube example, the designer can use the data provided in Table 4.5 to improve the

design at point A following one of the two approaches explained below.
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Figure 4.9: The PF and the APF of the chassis frame

i Maintaining Mass and Maximizing IE

Using the data in Table 4.5, the designer can pick the nearest value to the weight

at point A, which occurs at point (30). The design at point (30) absorbs 0.116 MJ,

which is 17 % higher than that at point A. The design variables are (1, 1, 5, 4, 2.5) at

point A and (4.93, 4.43, 1.61, 2.37, 3.96) at point (30). To verify the improvement in

the whole vehicle design, LS-DYNA simulation is conducted at the design variables at

point (30). The simulation results show that the amount of impact energy absorbed

in the whole vehicle structure is 0.192 MJ. This means that the total amount of

impact energy absorbed in the whole vehicle structure for the same weight has been

improved by 16%.

ii Minimizing Mass and Maintaining IE

The nearest value for IE of the design at point A occurs at point (6) in Table 4.5.

The design at point (6) absorbs almost the same amount of impact energy as the
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design at point A. However, the design at point (6) is 56% lighter than the original

design at point A. To verify the improvement in the whole vehicle design, LS-DYNA

simulation is conducted at the design variables at point (6), which are (3.17, 1.02,

1.23, 1, 1.06). The results show that the total amount of impact energy absorbed in

the whole vehicle structure is 0.17 MJ, which is even slightly (3%) higher than the

0.165 MJ of the original design at point A. Considering this, not only the total vehicle

weight has been reduced (5%) but also the amount of impact energy absorbed in the

whole vehicle structure has been increased by 3%.

Finally, the values of IE and Mass obtained from the two approaches are normalized

with respect to the initial design at point A. The results are shown in Figure 4.10.

Figure 4.10: Comparison between IE and Mass for the two approaches

4.7 Summary

A new methodology for vehicle structure design has been introduced. The method-

ology has been applied to the design of a thin walled tube under axial loading and

to the design of a chassis frame. The results showed that the methodology enabled
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the designer to verify the goodness of any suggested design. Moreover, one may use

the approach to find the optimum design variables required to improve the original

suggested design. Ultimately, this facilitates the whole vehicle design process.
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Chapter 5

Magnesium for Crashworthiness

Improvement

5.1 Introduction

In this chapter, the crashworthiness performance of magnesium alloys is studied using

nonlinear FE analysis. A new concept to improve vehicle crashworthiness is also

introduced. The new concept is formed on the basis that, a conventional vehicle

structure is made of one material only (usually steel). And as previously discussed,

a conventional method to improve the design is to find best feasible values for parts

thicknesses for optimum performance. However, the design can be improved further

by combining more than one material, which adds another dimension to the design

space as shown in Figure 5.1. Considering this, there are more design alternatives

added to the design space, thus allowing more freedom to the designer. The designer

can then vary both thickness and material type to find more suitable solutions to

improve performance.
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Figure 5.1: The design space after using the proposed concept

Recently, magnesium has been recognized as a strong candidate for automobile man-

ufacturing due to its attractive low density (78% lighter than steel). Thus, using

magnesium to replace steel in automobile structures will reduce their weight. Con-

sequently, fuel economy will improve, and carbon emissions will decrease. Another

important advantage of magnesium is that, it is strain rate sensitive [102], which

means that its strength increases as the load rate increases. This also means that,

magnesium can absorb more energy under dynamic loads compared to static loads.

Thus, making structural parts of magnesium may improve vehicle crashworthiness

performance.

The objective here is to investigate the potentials of magnesium for reducing vehi-

cle weight and at the same time improving safety as much as possible. Moreover,

it is required to investigate the effect of using combinations of steel and magnesium

on weight and the amount of impact energy absorbed. Finally, direct optimization

using the genetic algorithm is conducted to find optimum steel/magnesium combi-

nation and optimum parts thicknesses for increasing the amount of impact energy
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absorbed without increasing weight. The approach has been demonstrated through

two illustrative examples: (1) A thin walled tube under axial impact and (2) Vehicle

structure design using the modified nonlinear FE model of the chassis frame that has

been developed in chapter 3.

5.2 Design Optimization of a Thin Walled Tube

A thin walled tube is divided into three parts as shown in Figure 5.2. A base design

is assumed to be an all steel tube with a constant wall thickness of 2 mm. First,

it is required to investigate the effect of using magnesium instead of steel on the

crashworthiness performance of the tube under axial impact loading. A nonlinear FE

model is created according to the model parameters in Table 5.1.

Figure 5.2: View of the nonlinear FE model of the thin walled tube
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Table 5.1: Model parameters of the nonlinear FE model of the thin walled tube

Dropped mass 100 kg

Pre-impact speed 10 m/s

Total length 235 mm

Number of elements 391

Elements type Belytschko-Lin-Tsay

Contact model CONTACT AUTOMATIC SINGLE SURFACE

Design variables Parts thicknesses (x1, x2, x3)

Design range XL [1, 1, 1] : XU [3, 3, 3]

Steel

Material model MAT PIECEWISE LINEAR PLASTICITY

Density (kg/m3) 7820

Young’s modulus (GPa) 207

Poisson’s ratio 0.3

Yield strength (MPa) 200

Magnesium

Material model MAT PLASTIC KINEMATIC

Density (kg/m3) 1770

Young’s modulus (GPa) 45

Poisson’s ratio 0.35

Yield strength (MPa) 165

Cowper-Symonds
Parameters (D & q) 1000, 3 taken from Ref. [224]

Let us establish two different designs of the tube made of magnesium: (1) Maintaining

the same thickness as the base design, which is referred to as (ST) and (2) Maintaining

the same weight as the base design, which is referred to as (SW). A nonlinear FE

model is created for each design and simulated using LS-DYNA. The values of the

total weight and the total absorbed impact energy are then evaluated. The results are
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provided in Table 5.2, which also includes the percentage of increase (+) or reduction

(-) with respect to the base design.

Table 5.2: Comparison between Mass and IE of the base, ST, and SW designs for
thin walled tube

Design Mass (kg) % IE (kJ) %

Base 0.38 0 2.15 0

ST 0.09 -78 1.35 -37

SW 0.38 0 4.93 129

As shown in Table 5.2, the (ST) design yields 78% reduction in weight but at a

reduction in IE by 37%, and the (SW) design yields a 129% increase in IE. However,

when considering the final deformed shapes as shown in Figure 5.3, it is clear that

the SW design did not fully deform. This means that the full tube length has not

been fully used. This may mean that the reaction force (RWF) can be high compared

to other designs since the impact energy was absorbed in a smaller deformed length.

To verify this, RWF has been evaluated for all three configurations at each instant

of time. The maximum value is evaluated for each configuration and the results are

shown in Figure 5.4. As it can be realized, the SW design has a peak RWF value

that is 5 times the value of peak of the base design, while the highest RWF value for

the ST design is only one half of it.

Figure 5.3: Final deformed shapes of the base, ST and SW designs of thin walled
tube
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Figure 5.4: Comparison between max (RWF) for the three configurations of thin
walled tube

5.2.1 Material Variation of a Thin Walled Tube

In this section, the effect of combining steel and magnesium into the same structure is

investigated. The thickness is held constant for all parts at 2 mm. Having three parts

and two materials, the number of all combinations is 23 = 8. LS-DYNA simulation is

conducted at each material combination and the value of the total energy absorbed

is recorded and provided in Table 5.3.

The symbols M1, M2 and M3 refer to the type of the material for each part. For

example, M1 refers to the material type used in part1. Figure 5.5 shows the values of

IE and Mass normalized with respect to the base design for each configuration. It is

clear that, although the value of IE has not been increased, there has been reduction

in weight at various degrees. For example, changing the material of the third part

from steel to magnesium (second design in Table 5.3) yields a 29% reduction in

weight with only 3% loss in IE. Considering this, magnesium can be effectively used

in crashworthiness design optimization.
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Table 5.3: Results for material variation for thin walled tube

Variables Responses

ID M1 M2 M3 Mass (kg) IE (kJ)

1 Steel Steel Steel 0.38 2.15

2 Steel Steel Mg 0.27 2.10

3 Mg Steel Steel 0.29 1.98

4 Mg Steel Mg 0.19 1.65

5 Steel Mg Steel 0.27 1.63

6 Steel Mg Mg 0.17 1.80

7 Mg Mg Steel 0.19 1.30

8 Mg Mg Mg 0.09 1.35

Figure 5.5: Comparison between Mass and IE for the different material combinations
of the thin walled tube
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5.2.2 Thickness and Material Optimization of a Thin Walled

Tube

An optimization problem can be formulated to find the optimum material type and

thickness combination. In chapter 3, approximation techniques have been explained

and used to alleviate the high computational cost of simulating nonlinear FE models.

However, there are two challenges with implementing this approach to the current

problem:

1. To create an approximate model to represent all material combinations, an

exceptionally large number of data points will then be required. This is due to

the fact that, for each case of material combination, data points are required

to represent the variation of parts thicknesses. Moreover, the number of data

points will increase rapidly if a new variable is added.

2. There are two physically different types of variables: continuous (thickness) and

discrete (material type), which constitutes a combinatorial problem. Combina-

torial optimization problems are very difficult to solve and time consuming [225].

Formal gradient based algorithms depend on derivatives calculation which can

not be applied with discrete variables. Moreover, most of the algorithms deal

with linear combinatorial optimization problem [226], where this problem is

highly nonlinear.

Considering the aforementioned challenges with using approximation techniques, it is

inescapable that direct optimization will be used. The genetic algorithm, which has

been described in chapter 4, can be directly combined with the nonlinear FE model.

However, the genetic algorithm requires a tremendous number of iterations in order

converge to a solution. This will largely increase the computational cost even for the

current simple tube model. Therefore, the number of iterations is limited to 100,
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which is 10 populations with 10 generations.

The results of the 100 simulations are normalized with respect to the base design

and plotted in Figure 5.6. The intersection point between the bolded horizontal and

vertical lines represents the base design. The figure is divided into four regions, where

region 1 represents the favorable designs with larger IE and smaller Mass values, and

on the other hand region 3 represents the unfavorable designs with smaller IE and

larger Mass values. Finally, regions 2 and 4 are trade-off designs between Mass

and IE. For example, both IE and Mass increase in region 2 and decrease in region

4. There are 8 different designs in region 1, among which the value of IE has been

increased by maximum of 20% and the value of Mass has been decreased by maximum

of approximately 40%. In region 2, the largest increase in IE is 52%, with only 8%

increase in Mass. This design will be called the (TM) design. In the next section,

conventional thickness optimization is conducted.

Figure 5.6: Normalized IE versus normalized Mass for the genetic algorithm results
for the thin walled tube
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5.2.3 Thickness Optimization of a Thin Walled Tube

The D-Optimality criterion is used to generate 15 points as provided in Table 5.4 and

nonlinear FE analysis has been conducted at each point. The results of IE and mass

are recorded and used to fit each of the four different RSM models (linear, interaction,

quadratic and pure quadratic). The value of the adjR2 is calculated for each model

type and provided in Table 5.5. Again, the results show that the quadratic model is

the most accurate and is used here to model both IE and mass in the optimization

problem.

Table 5.4: Design matrix of the RSM model for the thin walled tube

ID T1 T2 T3

1 2.00 2.00 2.00

2 1.74 1.79 2.13

3 2.19 2.35 2.07

4 2.60 2.40 2.09

5 2.45 1.41 1.03

6 1.54 2.97 2.11

7 2.90 2.92 2.04

8 2.50 1.80 1.09

9 1.23 1.75 1.50

10 2.35 2.96 2.23

11 1.93 1.12 2.35

12 1.39 2.59 1.48

13 2.93 1.29 2.30

14 2.51 1.94 1.92

15 2.12 1.03 1.50

147



Table 5.5: The adjR2 values for the different RSM models for thin walled tube

Mass IE

Linear 1 0.82

Interaction 1 0.85

Quadratic 1 0.91

Pure quadratic 1 0.88

The optimization problem is formulated to search for the optimum thickness values

that maximize IE while maintaining the same weight as the base design and the

problem can be written as:

Find X∗that :

Maximizes IE

Subjec to: Mass−Massoriginal ≤ 0 (5.1)

where, xL ≤ x ≤ xU

Using the SQP algorithm, starting from the base design at X = (2 2 2), an optimum

solution was found after 15 iterations at X∗= (3 1.36 1.8) and the iteration history

is shown in Figure 5.7. The design at the optimum solution, which will be called the

(T) design, absorbs 2.75 kJ, which is about 28% larger than that of the base design

(2.15 kJ).
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Figure 5.7: Iteration history of the thickness optimization problem for thin walled
tube

5.2.4 Comparing the Solutions of a Thin Walled Tube

The Specific Energy Absorbed (SEA) is usually used to compare different designs.

SEA is defined as the ratio between the amount of impact energy absorbed and weight.

Here, SEA is calculated for the (base, T and TM) designs. The values are shown in

Figure 5.8. It is clear that the TM design has the highest SEA value. This proves

that using the proposed approach improves the design to a larger extent than using

the conventional thickness optimization approach.
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Figure 5.8: Comparison between SEA for the base, T and TM designs for thin walled
tube

5.3 Design Optimization of a Vehicle Chassis Frame

In this section, the concept of combining steel and magnesium for crashworthiness

improvement is applied to the modified nonlinear FE model that has been developed

in chapter 3. The results are then used to improve the crashworthiness performance

of the whole vehicle structure. For the sake of clarity, a view of the chassis frame

showing the different parts is again shown in Figure 5.9.

Figure 5.9: Design variables on the chassis frame
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5.3.1 Material Variation of a Vehicle Chassis Frame

First, all possible combinations between steel and magnesium while maintaining parts

thicknesses as the base design (first design in Table 5.6) are simulated using LS-

DYNA. The impact energy absorbed in the chassis frame and its associated mass are

evaluated. The results are provided in Table 5.6. The results are normalized with

respect to the base design which is made of steel only, and are shown in Figure 5.10.

Table 5.6: Results for material variation for the chassis

frame

Variables Responses

Point No. M1 M2 M3 M4 M5 Mass (kg) IE (MJ)

1 Steel Steel Steel Steel Steel 140.0 0.1160

2 Mg Steel Steel Steel Steel 127.3 0.1058

3 Steel Mg Steel Steel Steel 115.3 0.0778

4 Mg Mg Steel Steel Steel 102.5 0.0770

5 Steel Steel Mg Steel Steel 120.8 0.1078

6 Mg Steel Mg Steel Steel 108.1 0.0985

7 Steel Mg Mg Steel Steel 96.1 0.0747

8 Mg Mg Mg Steel Steel 83.3 0.0749

9 Steel Steel Steel Mg Steel 121.4 0.1133

10 Mg Steel Steel Mg Steel 108.6 0.1055

continued on next page
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Variables Responses

Point No. M1 M2 M3 M4 M5 Mass (kg) IE (MJ)

11 Steel Mg Steel Mg Steel 96.6 0.0792

12 Mg Mg Steel Mg Steel 83.9 0.0778

13 Steel Steel Mg Mg Steel 102.2 0.1092

14 Mg Steel Mg Mg Steel 89.4 0.1004

15 Steel Mg Mg Mg Steel 77.4 0.0762

16 Mg Mg Mg Mg Steel 64.7 0.0728

17 Steel Steel Steel Steel Mg 115.5 0.1096

18 Mg Steel Steel Steel Mg 102.8 0.0969

19 Steel Mg Steel Steel Mg 90.8 0.0767

20 Mg Mg Steel Steel Mg 78.0 0.0750

21 Steel Steel Mg Steel Mg 96.3 0.1100

22 Mg Steel Mg Steel Mg 83.6 0.0932

23 Steel Mg Mg Steel Mg 71.6 0.0716

24 Mg Mg Mg Steel Mg 58.9 0.0675

25 Steel Steel Steel Mg Mg 96.9 0.1089

26 Mg Steel Steel Mg Mg 84.1 0.0983

27 Steel Mg Steel Mg Mg 72.2 0.0776

continued on next page
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Variables Responses

Point No. M1 M2 M3 M4 M5 Mass (kg) IE (MJ)

28 Mg Mg Steel Mg Mg 59.4 0.0734

29 Steel Steel Mg Mg Mg 77.7 0.1046

30 Mg Steel Mg Mg Mg 65.0 0.0954

31 Steel Mg Mg Mg Mg 53.0 0.0721

32 Mg Mg Mg Mg Mg 40.2 0.0684

Figure 5.10: Normalized IE versus normalized Mass for material variation for the
chassis frame

There are some interesting observations in Figure 5.10, which can be summarized as:
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i. Maintaining the thickness and replacing steel with magnesium will decrease IE.

In fact, a chassis frame that is all made of magnesium (point 32) will absorb

the least amount of IE.

ii. The amount of IE at point 9 is 98% of the one at point 1, which is all made

of steel. However, it offers a 13% weight reduction, which was achieved by

changing the material of part 4 from steel to magnesium.

iii. The 32 points can be divided to two groups, A and B according to the value of

IE as shown in Figure 5.10. In group A, the second part of the chassis frame

(front part of the longitudinal rails) is made of steel, while in group B, it is

made of magnesium.

iv. Points 5 and 9, have almost the same weight, however, there is 5% difference

in the value of IE. Both designs have one component made of magnesium. The

difference is that, this component is part 3 at point 5 while it is part 4 at point

9.

v. Points 7, 8 and 20 have almost the same values for IE, however, they have

different values for mass. This means that IE can be obtained with lower mass

at point (20) than at point (7) or (8).

5.3.2 Thickness and Material Optimization of a Vehicle Chas-

sis Frame

Considering the aforementioned observations, it can be concluded that the design can

be improved further by allowing both material type and thickness to vary. To find

best material combination and thickness values that can improve the crashworthiness

performance, the nonlinear FE model of the chassis is combined with the genetic

algorithm. The algorithm is limited to 100 iterations and the process is repeated in
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the same way as has been done in the previous section. It should be noted that,

the computational cost of running 100 simulations is manageable since the reduced

modified model has been used. The upper bound on the thickness values is increased

from 5 mm to 10 mm since magnesium is lighter than steel. Thus thicker magnesium

components can then be used. LS-DYNA simulation is conducted at each point and

the values of IE and mass are evaluated, then normalized with respect to the base

design. The results are shown in Figure 5.11.

Figure 5.11: Normalized IE versus normalized Mass for the genetic algorithm results
for the chassis frame

Figure 5.11 is divided into four regions in the same way as has been done in the

previous example. There are three interesting designs named A, B and C as shown

in Figure 5.11. Point (A) represents the maximum reduction (60%) in the chassis

mass with a slight increase in the value of IE (4%), point (B) represents the largest

increase (33%) in the value of IE in the whole design space and point (C) represents
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the largest increase (26%) in the value of IE in region 2.

To investigate how these designs will affect the crashworthiness performance of the

whole vehicle, LS-DYNA simulation is conduced at each point. The values of IE and

Mass are evaluated for each design. The percentage difference between IE for each

design and that of the base design (∆IE) is calculated. The difference between the

mass of each design and that of the base design (∆Mass) is also calculated. The

results are provided in Table 5.7, which also includes the associated design variables

for each design.

Table 5.7: ∆IE and ∆Mass and associated design variables for designs A, B and C
for the chassis frame

M1 M2 M3 M4 M5 T1 T2 T3 T4 T5 ∆ Mass ∆ IE

mm mm mm mm mm kg %

Base Steel Steel Steel Steel Steel 2.7 3.1 3.1 3.1 3.6 0 0

A Mg Mg Mg Mg Mg 2.11 9.3 8.5 1.6 4.0 -80 -2.2

B Steel Mg Mg Mg Mg 9.46 9.2 8.4 9.5 9.5 -8.4 3.0

C Steel Mg Mg Steel Steel 6.61 8.5 7.1 1.9 9.8 32.2 7.4

The results show that a maximum reduction in weight (80 kg) has been accomplished

at point A with 2.2% reduction in IE. The mass at point B has been reduced by

8.4 kg while IE has been increased by 3%. The largest increase in IE (7.4%) is at

point point C but with an additional mass of 32.2 kg. It can be concluded that point

A represents the best trade off between IE and mass, where 80 kg were reduced at

only 2.2% loss in IE. Point C can be used when increasing IE is required even at the

expense of weight increase. It is interesting to note that point B achieved almost the

same increase in IE as that of Design 2 in chapter 3 (3.3%), that was obtained using

conventional thickness based optimization. However, point B reduced 8.4 kg of mass

compared to zero weight reduction for Design 2. Finally, it can be concluded that
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through thickness and material optimization, more and better design alternatives can

be obtained compared to using thickness optimization alone.

5.4 Summary

A new design approach has been proposed to improve vehicle crashworthiness. The

approach adds an extra dimension to the design space through including material

type (magnesium) as a variable in the design process. The approach has been applied

to two examples and encouraging results have been obtained.
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Chapter 6

Investigation of Imperfection in

Crush Elements

6.1 Introduction

In this chapter, an important add-on energy absorber system in the form of thin

walled columns, known as crush element will be investigated. The objective here is

to demonstrate the effect of imperfection on the reaction force and the amount of

energy absorbed in these crush elements.

An energy absorber system converts kinetic energy into plastic deformation. Thin

walled columns have been identified as very efficient energy absorbing systems [227].

A well designed energy absorber system must satisfy the following two requirements:

(1) It must absorb as much Impact Energy as possible by plastically deforming in a

controllable manner. Thus, the remaining kinetic energy can be handled by the re-

straint system. (2) It must maintain the reaction forces transmitted to the occupants

within the human tolerable limits.

The system is typically attached to the frontal vehicle structure to absorb impact
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energy and minimize the reaction forces on the occupants. Some researchers studied

the design of energy absorber systems. For example, Sharpe et al. [228] describe the

development process of an energy absorber system attached to a mid-size sedan. They

used aluminum extrusions to absorb impact energy in frontal impact. Simulations

and prototype testing proved that this system is effective in improving the safety of

vehicles under frontal impact. Also, Motzawa and Kamei [229] suggested changing

the cross section of a thin walled tube used in an energy absorber system to control

the deformation modes for improved performance.

The deformation modes of thin wall tubes under impact loading have been studied

by many researchers [230–233]. They concluded that the most efficient (and the

most difficult to acquire) mode of deformation is the progressive buckling mode, in

which the tube deforms progressively into multiple folds in an accordion-like style.

Crush initiators are intentionally embedded stress concentrators used to trigger and

maintain this mode of deformation. The most widely used type of triggers is to

chamfer the end of the tube [234]. Crush initiators not only help in minimizing

occupants injuries, but they also indirectly help in reducing the weight of other vehicle

structures behind the rails. This can be explained as, reducing initial peak force

values will subsequently cause these structures to endure lower load values than they

would have if crush initiators have not been included and hence, their weight can be

reduced [235]. Furthermore, since air bag triggering sensors are usually located on

the longitudinal rails, large forces may accidentally trigger them and cause injuries.

Therefore, crush initiators are very important in vehicle design for crashworthiness.

Figure 6.1 represents a typical load curve in progressive buckling of a thin wall tube

under impact loading [235]. As the tube is loaded, the stress at the tube cross section

increases uniformly until it reaches point ’A’, which marks the elastic buckling load.

If the buckled region is to be represented by plate like segments, then the stress at

the centers of those segments will remain constant while the stresses around their
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corners start to increase. The corners then plastically deform forming the first fold

at point ’B’, which marks the crippling load. The crippling load is the maximum

load carrying capacity of the tube. After point ’B’, the load decreases until point ’C’

after which, the load starts to increase again and the second fold is formed at point

’D’. The process then continues and folds are formed in the same manner until the

end of the tube is reached or until the kinetic energy of the dropped weight is fully

absorbed [235]. Point ’B’ is of significant importance as it marks the maximum load

that the tube can withstand before it starts to form its first fold.

Figure 6.1: A typical load curve [235]

The objective of crush initiators is to decrease the value of the peak force and to

maintain a steady force along the allowable deformed distance. Thus, a sufficient

amount of impact energy is absorbed in the plastic deformation process. The amount

of absorbed impact energy is computed by calculating the area under the load dis-

placement curve. It can also be calculated by multiplying the average crashing force

by the total distance traveled by the end of the tube.
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6.2 Methodology

Here, the same square tube that was modeled in chapter 2 is used as a typical energy

absorber system. Crush initiators are introduced in the form of sine wave imperfection

along the walls of the tube. The imperfection can be represented as:

P (z) = ampl · Sin(
2π · z
wvl

) (6.1)

where, P is the imperfection function, ampl is the amplitude value, wvl is the wave

length of the harmonic wave and z is the value of the distance along the z direction

at which the tube wall is perturbed. ampl and wvl are the two design variables

considered in this study. Lower and upper bounds of the design variables are assumed

to be 0 and 2 mm respectively. The imperfection function P is coded in LS-DYNA.

Different imperfection configurations are introduced by applying the imperfection to

different locations on tube’s wall sides. They can be grouped as:

Group A: This group includes perturbing one corner (1C) as shown in Figure 6.2

or four corners (4C) of the tube as shown in Figure 6.3.

Figure 6.2: A view of the 1-C class model
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Figure 6.3: A view of the 4-C class model

Group B In this group, two opposite sides of the tube are perturbed as shown in

Figure 6.4. This includes perturbing two opposite sides with the same ampl and wvl

values (2S S), or perturbing them with different ampl and wvl values (2S D).

Figure 6.4: A view of the 2-S class model

Group C In this group, four sides of the tube are perturbed as shown in Figure

6.5. The group contains different configurations as follows:

(1) The four sides are perturbed with the same (ampl and wvl) values (4S AS).

(2) Each pair of two opposite sides is perturbed with the same (ampl and wvl) values,

but each pair has a different value (4S 2S).
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(3) Each side of the four sides is perturbed with different (ampl and wvl) values

(4S AD).

Figure 6.5: A view of the 4-S class model

The baseline design of the tube with no imperfection is modeled with LS-DYNA under

a dropped weight of 73.6 kg at 10.3 m/s pre-impact speed. The peak reaction force

and the amount of impact energy absorbed (IEb) were found to be 35 kN and 3.8 kJ,

respectively. Figure 6.6 shows the load variation at the base of the tube versus time.

Figure 6.6: Load vs time of the baseline design

The objective here is to compare the effect of the aforementioned imperfection config-

urations on the amount of impact energy absorbed IE and peak reaction force RWF.
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An optimum imperfection configuration should minimize RWF without decreasing IE

below the initial value of the baseline design (IEb). The problem then is to find the

optimum set of the design variables (ampl and wvl). The optimization problem can

be formulated as:

Find X∗that :

Minimizes RWF

Subjec to: IE − IEb ≤ 0 (6.2)

where, xL ≤ x ≤ xU

where X∗ is the optimum design vector, x is the vector of the design variables and

xL and xU are the lower and upper bounds on the design space. Since the nonlinear

FE model is relatively simple, hence the analysis model is directly combined with

an optimization algorithm based on the Genetic Algorithm (GA) to find the optimal

solution. The reasons for selecting GA as the optimization algorithm are:

1. It does not require computation of the derivatives as in gradient based algo-

rithms. This is important since numerical methods can give spurious results

due to the round off errors and the complexity of the nonlinear FE models.

2. It has the ability to resolve itself from being trapped into a local minima region.

Although, the nonlinear FE model of the tube is relatively simple, the main drawback

of GA is that it requires an extremely large number of computations. Thus, the

settings of the GA is limited to a population size of 10 and 3 generations (iterations).

It should be noted that an overview of the GA has been presented in chapter 4.
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6.3 Results and Discussion

The GA runs 30 FE analysis for each configuration. The values of impact energy

absorbed (IE) and peak reaction force (RWF) are evaluated at each analysis. The

results are then analyzed and the design with minimum RWF is selected. The values

of minimum RWF, associated IE and design variables for all configurations as well

as the base design are provided in Table 6.1. For the sake of clarity, the values of IE

and RWF are normalized with respect to the base design. The results are shown in

Figure 6.7. It is clear that all configurations succeeded in reducing RWF and at the

same time, slightly increased IE. It is interesting to note that the 4C configuration

has the maximum reduction in RWF (22%) and the maximum increase in IE (2.3%).

Table 6.1: Values for IE, RWF and design variables for the different configurations

ampl wvl IE RWF
mm mm kJ kN

Base 0 0 3.831 35.213

1C 1.78 1.19 3.856 29.1

4C 1.12 0.54 3.919 27.612

2S S 1.23 0.11 3.877 28.134

2S D (0.54, 0.91) (0.17, 0.05) 3.871 29.996

4S AS 1.09 0.6 3.874 28.688

4S 2S (0.21, 1.07) (0.17, 1.06) 3.903 29.465

4S AD (1.04, 1.44, 1.22, 1.09) (0.74, 0.92, 0.25, 1.46) 3.875 28.744
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Figure 6.7: A comparison between RWF and IE for all configurations

From the foregoing results, it is clear that introducing the proper values of imperfec-

tion to energy absorber systems, improves their performance by reducing the peak

reaction force and consequently reducing the transmitted loads to other vehicle struc-

tural parts. However, it is important to note that, the amount of introduced imperfec-

tion should be selected properly. In this work, the GA was employed to find optimum

values of the design variables ampl and wvl. To prove the need for an optimization

algorithm, the design of the (1C) configuration is manually changed and the results

are analyzed in the following section.

6.3.1 Manual Design of the (1C) Configuration

The (1C) configuration is the simplest of all configurations. It introduces imperfection

to only one corner of the tube. Three design points are selected from the design space

which is bounded between 0 and 2 mm. The first design point is selected at [ampl =

0.01, wvl = 0.01] and will be referred as Extreme 1. The second design point is

selected at [ampl =0.5, wvl =0.5] and will be referred as Mid Case. Finally, the third

design point is selected at [ampl = 2, wvl = 2] and will be referred as Extreme 2.

Nonlinear FE analysis is conducted at each of the three points to evaluate the value
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of RWF and IE. The values are normalized with respect to the base design and the

results are shown in Figure 6.8. The three designs slightly increased the value of IE

(about 1%). However, none has succeeded in reducing the value of RWF. On the

other hand, the Extreme 2 design increased RWF by 67%. This proves that an ad-

hoc approach to the problem is not practical and it is necessary to conduct formal

optimization to find the optimal solution.

Figure 6.8: A comparison between RWF and IE for different design cases

6.3.2 The Deformation States

Studying the deformation states of each configuration can be helpful in understanding

the effect of each configuration on the crash performance of the energy absorber

system. There are two important deformation states: (1) The state at which the first

fold starts to form and (2) The final state at the end of the deformation process. The

two states for each configuration are shown in Figure 6.9.
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Figure 6.9: States of deformation for all configurations

The observations from Figure 6.9 can be summarized as:

1. The final form of the deformed folds is different between every configuration.
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2. The place at which the first fold started to form is near the bottom of the tube

for all configurations. Only in the (1C) configuration, the first fold started to

form near the middle of the tube.

3. The final deformed state for all the configurations show the effect of the pro-

gressive buckling mode. Only the (2S D) shows that the tube has gone through

a global bending mode during the deformation process. Figure 6.10 shows the

deformed state of the (2S D) configuration at the time when global bending

started to occur at 0.025 sec, and the final deformed state at 0.043 sec. The

global bending mode is an undesirable mode that can significantly reduce the

crashworthiness performance of a structure. To evaluate this effect, the reaction

force versus time during the whole deformation process of the (2S D) configu-

ration is shown in Figure 6.11. It is clear that the value of the reaction force

rapidly decreases at the moment of occurrence of the global bending mode.

Consequently, this also reduces IE, since it is represented by the area under the

RWF curve.

Figure 6.10: Two deformed states of the (2S D) configuration: (a) Start of the global
bending mode (b) Final deformed state
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Figure 6.11: The reaction force history for the (2S D) configuration

6.4 Summary

In this chapter, the effect of imperfection on the crash performance of crash energy

absorbers has been investigated. The optimum imperfection values have been found

using design optimization algorithm in which nonlinear FE analysis was combined

with the genetic algorithm. The results showed that introducing proper imperfection

into energy absorbers may significantly improve their performance by reducing the

values of peak reaction forces.
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Chapter 7

Summary, Contributions, and

Future Work

7.1 Summary and Conclusions

The complicated nature of the physical crash processes of complex vehicle structures

makes the design optimization process for crashworthiness a very challenging mission.

Although, approximation techniques such as the response surface method, have been

used successfully for design optimization of vehicle structures for crashworthiness.

However, it is still difficult and impractical to apply approximation techniques to full

vehicle structures due to the very expensive computational cost. Moreover, applying

approximation techniques becomes computationally demanding when the number of

design variables increases, which is known as the curse of dimensionality. Considering

this, new methods are required to enable the designer to practically and accurately

conduct design optimization of vehicle structures for crashworthiness. In this research,

a practical and efficient methodology for design optimization of vehicle structures for

crashworthiness has been developed. The developed methodology was successfully

used to improve the crashworthiness performance of a pickup truck model, and the
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results were achieved at a very manageable computational cost. It should be noted

that the present study has been limited to the load case of full frontal impact with a

rigid wall barrier at a speed of 56 km/hr. Also, the maximum amount of impact energy

absorbed has been considered as the design metric. However, the basic principles on

which the methodology has been based can be applied to other load cases using other

design metrics, such as when studying side impact considering intrusion as the design

metric.

Also, the problem of evaluating the goodness of a design quickly and easily has been

examined. A new methodology was proposed to derive the relation between maximum

impact energy absorbed and minimum structural weight. The methodology is based

on the Pareto front principle and multiobjective optimization. It can be concluded

that the proposed methodology can enable the designer to evaluate any design quickly

and optimize its performance using optimum design variables. It should be noted that

both the Pareto and Anti-Pareto fronts represent an envelope over the design space.

Hence, only designs that fall within the design space can be examined. In case a

design that lies outside this design space, both the Pareto and Anti-Pareto fronts

must be created again based on the new limits.

Furthermore, the crashworthiness behavior of a pickup truck structure made of mag-

nesium has been studied. A new approach has been proposed to improve the crashwor-

thiness performance of vehicle structures using thickness and material optimization.

The approach included material type as a design variable in addition to parts thick-

nesses. It can be concluded that magnesium can improve vehicle crashworthiness

performance and by applying the proposed approach, design alternatives better than

through formal thickness optimization only can be found.

Finally, the effect of imperfections on the performance of crush elements has been

studied. Different configurations have been proposed and the optimum imperfection

values were found through direct optimization using the genetic algorithm. It has been
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shown that the effect of imperfection has slight effect on the amount of impact energy

absorbed. Adding imperfection to tubes will increase manufacturing costs. However,

these costs will be traded off with increased occupant protection. Besides, the costs

will decrease with mass production. It can be concluded that the crashworthiness

performance of crush elements can be significantly improved by introducing the proper

values of imperfection.

7.2 Contributions

The major contributions of this research can be summarized as follows:

1. Developing an effective and practical methodology for design optimization of

vehicle structures for crashworthiness improvement.

2. Developing a new approach to enable the designer to quickly and efficiently

evaluate the optimality of a current design.

3. Deriving the relationship between minimum structural weight and maximum

absorbed impact energy and the associated design variables using the Pareto

front principle and multiobjective optimization.

4. Introducing the Anti-Pareto front terminology for the first time in vehicle crash-

worthiness design.

5. Developing a new approach in which material type is included as a design vari-

able.

6. Studying vehicle structural components made of magnesium under impact loads.

7. Developing a systematic approach for studying the role of imperfection in de-

signing efficient crush elements.
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7.3 Future Work

This thesis includes a fundamental and systematic study of the design optimization

of vehicle structures for crashworthiness improvement. However, there are other in-

teresting aspects, which are identified for future work that can be summarized as:

Applying the methodology to other vehicle types:

In this research, the methodology has been applied to a pickup truck. The method-

ology can then be applied to other vehicle types such as a sedan. This can reveal

differences in application between different vehicle types.

Including the effect of uncertainty:

In this research, deterministic optimization was used, which means that values of

design variables and model parameters were assumed to be exact. In reality, values

are uncertain, for example, material properties can be given with a certain statistical

distribution. Optimization under uncertainty will then be more realistic, yet more

challenging.

Including more design variables:

In this research, parts thicknesses were used as design variables (size optimization).

Nevertheless, different design variables such as shape parameters can also be used

(topology optimization).

Including more design objectives:

In this research, weight and the amount of impact energy absorbed, the two most

important design objectives, were considered. However, the methodology can be
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expanded by including other design objectives, such as noise and vibration.

Finding strain rate sensitivity parameters of magnesium:

Although, material properties are very important for accurate modeling, very few

research has been published on the behavior of thin-walled structures made of mag-

nesium. It is suggested that more experimental research should be devoted to deriving

the important strain rate sensitivity parameters of different magnesium alloys.
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