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Abstract
Using a heat flow model of aDTA (differential thermal analyzer) and thermal characteristics obtained by fitting
experimental results for a pure metal, the response of the DTA is modeled for the melting and solidification of
alloys. The enthal py-temperature relation used for the alloy simulations is obtained by two different methods: 1)
equilibrium and Scheil considerations derived solely from thermodynamic information and 2) solute diffusion
micromodels coupled to the DTA heat flow equations. During the consideration of pure material melting, simple
expressions are obtained for the effect of sample size and heating rate on the DTA melting onset temperature, peak
temperature and peak height that assist in the proper calibration of aDTA. For aloys, the smearing effect of the
DTA heat flow at different heating and cooling rates is demonstrated for various solidification path features. In
particular, the DTA peak temperature during melting, which is often selected as the liquidus temperature
experimentally, is shown to be significantly higher than the liquidus temperature for small freezing range alloys
and/or for alloys with slow solid diffusion. DTA curves calculated for freezing with dendritic growth dueto
supercooling quantify the errors associated with of the determination of the liquidus temperature on cooling.
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I. Introduction

DTA (differential thermal analysis) measurements
are a standard method of determining transformation
temperatures of materials™. Accurate interpretation
of these measurements is essential when they are
used to infer the location of equilibrium phase
diagram boundaries. The accuracy of the
measurements is affected by the details of heat
transfer within the measurement cell and by
transformation kinetics. Simulations can provide
understanding into how thermal events from
transformations are reflected in the DTA signal and
can enable more accurate interpretation of DTA
results from samples with unknown characteristics.
While theoretical treatments and analysis of
measurements from DTA and other thermo-analytical
methods are not new!®™, errors of interpretation
continue to filter through the scientific literature and
industrial technology. It istimely to re-examine these
theoretical treatments and couple them with recent
progressin aloy thermodynamic descriptions and
solidification models.

Many early theoretical treatments of DTA were
focused on the optimization of apparatus
configuration. Heat exchange is analyzed between the
various parts of the apparatus; viz., sample, reference
material, containers, thermocouples, and furnace. The
major difference between the various analysesisthe
number of partsthat are considered and whether
radiation, conduction and convection are
distinguished for the heat exchange. The heat flow
between various objectsin the system istypically
modeled using systems of ordinary differential
equations (ODE). These methods assume that a
single temperature can represent each of the different
parts of the system. One exception to this approach,
Banerjee et a1, used a FEM (finite element method)
analysis of the temperature distribution within the
parts of aDTA that also included radiation view
factors. Cunningham and Wilburn'® included heat
loss along the thermocouple wiresin their very
detailed treatment. In addition to DTA, Gray!*!
applied the analysis to power-compensation DSC
(differential scanning calorimetry) and TGA
(thermogravimetric analysis). Heyroth!® developed



the apparatus function for DTA that included
radiation and convection in order to explain the
heating rate dependence of the time constants. Shull'®
showed that heat flow between sample/cup and
cup/wall resulted in an offset between the
temperatures of the beginning of the deviation from
the baseline in the DTA curve and the actual
temperature of an invariant reaction.

Within the sample, early work focussed on
deriving an expression for the heat of reaction!”? or
determining the factors affecting the DTA peak
shape, such as sample aspect ratio®. Kissinger!®
used homogeneous reaction kinetics for the analysis
of peak shape. This treatment was later expanded by
Meisel and Cote!'? for heterogeneous reaction
kinetics. Examples of analysis of other kinetic factors
can be found in the work of Ozawa™ (non-
isothermal diffusion), Flynn*? (reaction kinetics) and
Perepezko™ (nucleation and growth).
Fredriksson™**! presented analyses of different
solidification behavior, comparing results to
equilibrium (lever) and Scheil solidification models,
which represent the two limiting cases for
solidification*®. Recently Opfermann*” has
developed software to fit thermal analysis data with a
sizeable number of reaction types. None seems
appropriate to melting and solidification of metals
and alloys where interface attachment kinetics can
usually be ignored.

Wu and Perepezko!*® recently showed that using
the peak temperature during meltingin aDTA failed
to give areliable liquidus temperature for two
important commercial Ni-base alloys. The
experiments used small 180 mg samples heated at 20
K/min. Despite using careful calibration procedures
for the high heating rates, only interrupted cycle
experiments were able to reveal the true liquidus
temperature. This temperature was determined to be
more than 20 K |ower than the DTA peak. The cause
of such difficulty was unclear. Several authors used
direct immersion of the thermocouple in Al alloy!**?!
and solder melts?. Certainly, the direct immersion
of thermocouplesis known to avoid many defects of
the DTA instrument and is preferable when
thermocoupl e reaction can be avoided.

We first present a model and its analytical
solution for the melting of a pure element. When
combined with experimental DTA datafor a pure
metal at various heating rates, this solution provides a
method to determine the response times of the
instrument. Numerical solution of the model is then
obtained for an arbitrary enthal py-temperature
function such as can be obtained from a
thermodynamic analysis of multicomponent phase
equilibria. Finally we include the possibility that the
enthal py temperature behavior of the sampleistime
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Fig. 1 Schematic of DTA geometry (not to scale).

dependent through the inclusion of a solid diffusion
model in the melting solid during heating and a
dendritic solidification model during cooling.

Il. Heat Flow M odel

We employ an ODE based approach. Figure 1
shows atypical DTA geometry where Tg(t), Tc(t) Tt
(t) and Ty(t), the sample, sample cup, thermocouple
and furnace wall temperatures are noted. A similar
set of variables can be used to describe the
temperatures of the reference sample, cup and
thermocouple. In Appendix A, a system of ODE's
that describes these six temperature is given. For this
paper we use a reduced set that employs several
simplifications. We only consider heat flow: a)
between the sample and the sample cup; b) between
the sample cup and the furnace wall; and c) from the
sample cup to the thermocouple. We neglect small
heat flow from the thermocouple back to the sample
cup and heat flow from the thermocouple tip to the
thermocouple support rod as appropriate for awell
designed DTA. We also neglect heat flow between
the sample and reference cups. Examination of
experimental temperature-time data (described
below) for the reference thermocouple during the
melting of small (180 mg) samples of pure Ni at 5
K/min show less than 0.8 K variation from linearity.
Thisindicates that very little heat flows between the
reference and sample cups in these experiments.
Including the heat flow between the two cupsis
important whenever the temperature difference
between the two cups becomes large. This would be
most likely for the melting of pure materials at high
heating rates with large mass or heat of fusion. For
cooling DTA, large supercooling and rapid
solidification would cause large temperature
differencesto develop.



For the simple case, we let hscAsc, hwcAwc, and
hr cAr ¢ be the products of the heat transfer
coefficients hy y and areas Ay y for the heat flow a),
b), and c) described above, respectively. Because we
will lump these various heat transfer parametersin to
response times, an exact physical interpretation of
areais not necessary.. We also let mgand Hg be the
sample mass and enthal py/unit mass, mc and C,,C be
the crucible mass and heat capacity/mass and my, and
C," be the thermocouple mass and heat
capacity/mass. (See Nomenclature at the end of the
paper).

A heat balance gives

o . cS
ngHg = e (Tc = Ts)
O sC
. 1 1
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0 tsc twe
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Oy =——(Tc = Tr)
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where the dot represents time differentiation. The
instrument time constants tsc, twcand trc aregiven

by

Ets,c = mcCg IhgcAsc
Ow,c = mcCS IhyecAvc - (2]
%T,C = mTC-lp; Iy chrc

The parameter, tsc isthe characteristic response
time for heat flow between the metal sample and the
crucible cup; ty,cis the response time between the
furnace wall and the cup; and tr ¢ isthe response time
between the thermocouple and the cup. We will
assume that these response times are independent of
temperature. It is possible with numerical solutionsto
easily add radiation and/or temperature dependent
heat transfer coefficients However, this and other
generalizations require the use of more adjustable
parameters in the model. As seen below even with
these assumptions, the model successfully simulates
the DTA signal of the melting of pure Ni. We will
further assume that the furnace heating rate®, a, is
constant such that the interior furnace wall is given

by

# Some heat flux DSC (differential scanning calorimeter)
instruments employ the reference thermocouple as the control
thermocouple for the furnace. In this case one would assume that
the reference thermocouple increases linearly with time. The
furnace wall temperature would become an unknown in the system
of equations. In the case where heat flow between sample and
reference cup can be neglected, the two situations are identical.
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Fig. 2. Plot of calculated sample, sample cup, sample
thermocouple and furnace wall temperatures vs. time curves
for melting of 180 mg sample of pure Ni at 15 K/min.

Ty (t) = constant +at . [3]

For situations where transformation kinetics can
be ignored, the enthalpy is only afunction of
temperature and

He=—2=—""S5=S=H'(T))Ts . [4]

Inclusion of kinetic effects produce atime
dependent sample enthal py function that will be
considered in Section V.

I11. DTA Signal for Méelting of Pure M aterial

A. Analytical Solution

An analytical solution for the melting of a pure
material can be found. We pick t = 0 astheinitiation
of melting in the sample and t = ty as the termination
of melting in the sample. The solution must be
computed differently for the three time regimes: t <
0,0<t<ty,andt>ty. Let Ty, bethe sample melting
point, L be the heat of fusion/unit mass and C,™ be
the heat capacity/unit mass prior to melting. The
furnace wall temperature is assumed to follow Eq.
[3], throughout the three time regimes.

Prior to melting (t < 0) and after an initial
transient, the temperature solutionsto Eq. [1] are all
linear in time, with the same slope a , but with
different offsets:



Tg=Ty tat

Elrc =Ty ta (t+tsR)

%I_T =Ty +a (t+tsR-tyc)

Hw =Ty +a (t+tscR+tycR+1tyc)

where the ratio of the total heat capacity of the
sample prior to melting and the cup, R, is given by

R= mC,Y/mcC,C . [3]

At agiven time, the furnace wall temperature is
highest, followed by the cup and the sample. For the
instrument described below, the sign of the quantity
[tsc R- trc] is negative and thus the thermocouple
temperature is lower than the sample temperature
(Figure 2). The size of all temperature offsets are
proportional to the heating rate.

During melting, 0 <t < ty, the sample
temperature is assumed constant, Tg(t) = Ty. The
ODE for Tsis not solved. The three temperatures are
given by:

(2]
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During this regime both the cup and thermocouple
temperature-time curves exponentially approach
linear behavior with aslope of a tgc /(tsc + tsw) as
shown in Figure 2.

The melting time (ty) can be obtained by
substituting the solution for Tc (t) into Eq. [1] (top)
and integrating from zero to ty. The value of ty isthe
root of the equation

2 2
t +R(tgc +t
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For al practical cases, (L/tsct Utwc) tw>>1, the
exponential term can be dropped and
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Using the values for the response times determined
below (selected values, Table), the melting times
numerically calculated with the three expressions
(Egs. [8] through [10]) for a heating rate of 15K/min
are 124.00 s,123.96 s,and130.91 s, respectively. Thus
the approximations are quite reasonable. The
approximates inverse square root dependence on
heating rate in Eq. [10] is due to the fact that the
temperature difference between sample and cup
increases linearly with time after the initiation of
melting.

For t > ty,, the sample, sample cup and
thermocoupl e return exponentially with time to the
linear temperature behavior obtained during the first
regime t<ty. The solution is given in Appendix B and
involves sums of terms, exp(r; t), with inversetime
constants r; (Figure 2).

For DTA instruments, the 'DTA signal’ isthe
difference between the sample and reference
thermocouple temperatures. This differenceis
displayed vs. time or vs. atemperature. Some
instrument software packages use the sample
thermocoupl e temperature while others use the
reference thermocouple temperature for the x-axis of
DTA plots. The Perkin EImer DTA 1700 instrument’
used for the present paper, uses the sample

* Commercial products are referenced for completeness. Such
identification does not imply recommendation or endorsement by
the National Institute of Standards and Technology, nor does it
imply that these products are necessarily the best available for the
purpose.



Tablel. Summary of Parametersfor Pure Ni Calculations

Nominal Heating Rate Actual Heating Rate, o ms (Q) tsc (9) twc (9) tre (9)
(K/min) (K/s)

5 (0.833K/s) 0.081 0.184 5.88 4.74 5.52

10 (0.167 K/s) 0.163 0.186 5.47 4.69 6.37

15 (0.25K/s) 0.248 0.177 5.32 457 6.0

Selected values 5.67 4.65 55

mcC,”~ =0.257 JK

C,>  =0661J(gK), T<Ty

(ofy =0.734 J(gK), T>Ty

L =299 Jg

Tw =1728K

R = 0.49 (average sample mass and solid/liquid heat capacity)

thermocoupl e temperature, although it isasimple
matter to extract the data for alternate plots.

For the simple heat flow model presented here, an
alternate DTA signal is used. Because the heat flow
between the sample and reference side of the DTA
cell is neglected, the reference thermocouple
temperature is always linear with time. Thus the
difference between the sample thermocouple
temperature and the wall temperature; i.e.,

AT =T =Ty [11]

will only have a different baseline val ue than would
the instrument due to the constant temperature offset
between wall and reference temperatures. In al other
respects (amplitude) the signal would be the same.
The parameter AT can be considered either afunction
of time AT(t) or of sample thermocouple temperature
AT(Ty). Properties of the DTA signal derived from
the analytical solution will be given in Section I11-D.

B. Numerical Solution

Because the analytical solution is cumbersome
even for the pure material, and to simulate
complicated alloy behavior, numerical solutionsto
the ODE's are useful. Fortunately systems of ordinary
differential equations can be easily solved by various
desktop software packages readily availableto DTA
users. Using the furnace wall temperature given by
Eq.[3], the system of ODE's (Eq. [1]) is solved using
MATHEMATICA". For the numerical solution initial
values must be specified for the three temperatures
well below the melting point. In general, the results
include an initial transient as the three temperatures
adjust from their initial values and approach steady
state prior to melting. Theinitial transient will not be
discussed further.

i MATHEMATICA is atrademark of Wolfram Research, Inc.,
Campaign, IL 61820, USA.

C. Determination of time constants from data for
melting of pure Ni

The measurements were performed with 0.9999
mass fraction purity Ni at nominal heating rates of 5
K/min, 10 K/min and 15 K/min. Enthalpy-
temperature data for pure Ni were obtained from the
SGTE data bank!?. The Hg(Tg) function is expressed
as asingle function of temperature by connecting the
solid and liquid branches of the enthal py curves using
a hyperbolic tangent function with a0.1 K width
centered at Ty. The equivalent heat of fusion and
heat capacities above and below Ty, aregivenin
Tablel. Also givenin Table | are the measured
values of sample mass, heating rate (taken from the
measured reference thermocouple temperature vs.
time data). The cup heat content parameter, rrbCpC ,is
the sum of the products of the individual masses and
heat capacities of the alumina cup and platinum cup
holder.

Using a maximum time step of 0.05 s, the
numerical calculations agreed with the analytical
solutions (i.e., the melting times agreed to within 1
%). Thus, the numerical solution was used to fit the
experimental datain an automated procedure. The
mean square deviation of the T+ (t) numerical solution
from the T+ (t) data was minimized by iterating the
values of tsc, twc and ty ¢ that were used as input to
the ODE solver. The best fit values for each heating
rate are given in Table |. The small decrease in the
time constants tsc and tw,c with increasing heating
rate may indicate the minor need to include radiation
termsin the governing equations. However for the
present paper, this effect will be neglected and a
fixed set of time constants will be used (Tablel:
selected values). For the selected time constants, the
computed temperature histories for 15K/min are
shown in Figure 2 and the quality of the DTA fitsis
shown in Figure 3.
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Fig. 3. Comparison of measured DTA curves (AT(T7)=T+
Tre) With calculated curves (AT(T1)=T+Tw) at heating rates
of 5 K/min., 10 K/min. and 15 K/min. The noisy curveis
the experimental data.
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Fig. 4 Enlarged view of Fig. 2 near t=0.

D. Evaluation of Onset and Peak Temperatures
and Peak Height of DTA Curvefor Pure Material
from Analytical Solution

We digress from the main topic of alloy DTA to
indicate important features of the DTA plot for pure
metals using the analytical results. The first isthe
onset of melting temperature measured by the
thermocouple. Figure 4 shows an enlarged view of
the temperature histories near the initiation of melting
at t = 0. The onset temperature is the thermocouple
temperature at t =0 given by

\
0 R T extrap

\ T
\
i . L
\

peak
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Fig. 5 Plot of calculated DTA curve, AT(T+), corresponding
to Fig. 2.

TTonsa =T7(0) =Ty +a (tscR-trc) , [12]

which for the values of the time constants given in
Tablelis2.6 a (Kif aisinK/s) below Ty or 0.6 K
for a heating rate of 15 K/min. Figure 5 shows the
calculated DTA signal corresponding to Figure 4.

Dueto the trouble of picking the onset of the
DTA signal graphically, either on aT+(t) plot or a
AT(Ty) plot, an extrapolation procedure is commonly
used to determine an alternate melting onset. This
procedure takes advantage of the fact that the
thermocoupl e temperature vs. time, T+(t), curve
becomes linear quickly after the melting onset (Eq.
[7], bottom). The asymptote” is given by

TE™() =Ty +aftsc R-trc
twe [ts,ctw,c +igclr e +tW,CtT,C] [13]
(tsc +twc)?

}

tsc +twc

tgct

The alternate choice for the onset temperatureis
taken as the intersection of the asymptote and the
baseline (the extrapolation forward of the DTA curve
prior to melting). The intersection of the asymptote
with the line for the extrapol ated thermocouple
temperature prior to melting, Tt = Ty +a (t + Risc -
trc), occurs at time t* given by

* The slope of the AT vs. Tr curve after onset is -twc/tsc, whichis
independent of heating rate.



+ tS,CtT,C + tW,CtT,C

t* = tsclwc [14]

tS,C + tW,C
The melting onset picked in thisway is given by
(tscR+tywcR+tyc) @

TP =T =Ty +a —
SC W,C

[15]
whichis 5.2 a (K if a isinK/s) above Ty, or 1.3K at
aheating rate of 15 K/min.

Until now we have assumed that the thermocoupleis
perfectly calibrated. In reality the thermocoupleis
usually calibrated using the melting signal itself using
one of the two onset determination procedures. Then
the offset from Ty, in Eq. [12] or [15] is reduced to
zero, but only for the heating rate of the calibration
run. The DTA would require recalibration at each
heating rate.

Another DTA detail of interest is the peak
temperature. Clearly for a pure material it isfar
above the melting point and is given by Eq. [13]
evaluated at ty,

Tr(tym) =Ty +a[Rtsc —tr ¢
t [N +1ict + 1ty ot
N we (tsctwe Hisctre Ttwetrc) . [16]

2
(tsc *twe)

t
+ SC aty

tsc tiwc

Neglecting the small bracketed term and using the
approximation (Eq.[10]) for ty,

TP =T, +\/

ZtSVCZmSLa

mcCS (tsc +twc)

[17]

For the parametersin Table |, the peak temperature is
17.1 K above Ty for 15 K/min

The DTA peak height below the basdline is
another parameter of interest. Itis given by

AT (ty ) —AT(0) =
nefactus e ngd
E (tsc "’tw,c)z H

atwyctM E
ES,C e

Again, neglecting the small bracketed term and using
the approximation for ty,

2mgla ty ¢ 2

rnCC(p: (tsc +twc)

AT(ty ) —AT(0) = —\/ [19]

For the parametersin Table | the peak height is 14.7
K for 15 K/min. Note that while reducing a decreases
the difference between the onset and peak, it also
decreases the peak height. Thisisthe usual
compromise that must be reached with DTA
measurements between accuracy and sensitivity.

The peak "ared" is often used to measure the heat
of reaction, in this case the heat of fusion. The peak
area can be obtained either from the AT(t) curve or
the AT(T) curve with corresponding units of K-sor
K?, respectively. For the former, the areais

APEK = I [AT(t) -AT(0)]dt . [20]
0

The evaluation of thisintegral for the analytical
solution is complex. Numerical evaluation showed
A" t0 be proportional to the product of sample mass
and latent heat as expected. We note that the product
of the approximate forms for the peak height and the
difference between the peak position and the melting
point is also proportional to the product of sample
mass and latent heat.

IV.DTA Melting Signalsfor Alloys

A. Theeffect of freezing range on the
measur ement of liquidus

If we take asimple binary temperature vs.
composition phase diagram with straight line liquidus
and solidus curves
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Fig. 6 Plot of caculated sample, sample cup, sample
thermocouple and furnace wall temperatures vs. time for
melting at a heating rate of 15 K/min of a 180 mg binary
alloy sample that melts following the lever rule. T=1728 K,
me -10° K/mass fraction, k=0.5, C,;=0.02 mass fraction.
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Fig. 7. &) Caculated DTA curves for pure Ni and alloys
with Cp = 0.02 and 0.05 mass fraction following the lever
rule at 15 K/min.

b) Calculated DTA curves for aloy with Co= 0.05 mass
fraction following the lever rule at heating rates of 5, 10 and
15 K/min.

TLiq = TM + mCO

TSOl :TM + (m/k)CO [21]

with concentration Cy, liquidus slope m and
partition coefficient k, the enthal py-temperature for
an equilibrium liquid - solid mixture (lever law) is
given by

O 710
_~S _ s —Ts 0
HS(TS)_CPOTS+L§+§1 k)élﬁ% 5 .

[22]
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Fig. 8. @) DTA peak temperature calculated at a heating rate
of 15 K/min for different alloy compositionsusing a lever
assumption. Peak temperature is superimposed on the phase
diagram (Ty=1728 K, m= -10% K/mass fraction, k=0.5).

b) The difference between the peak temperature and the
liquidus temperature as a function of freezing range at three
heating rates. The freezing rangeis given by m Co[ (k-1)/K).

For aheat capacity H's(Tg) for all temperatures
defined as

(Ts) if Tgy <Tg<Tyq

23
5 otherwise [23]

Hs(Ts) = SI;

the numerical solution of Eq. [1] yieldsthe
temperature - time histories given in Figure 6. As for
the case of the pure material, various onsets can be
defined that all differ from the exact solidus
temperature. Here we focus however on the liquidus
temperature.



It is often difficult to measure the liquidus
temperature during freezing because of supercooling
(especially with Ni aloys). Melting datais often
preferred to determine the liquidus. It is therefore
important to note the behavior of the DTA signal as
the sample compl etes melting. At thistime, the
thermocoupl e temperature is higher than the liquidus
temperature. The simulated DTA signalsat 15 K/min
for hypothetical Ni-based aloys are shown in Figure
7(a). The phase diagramis given by Ty, =1728 K, m=
-10% K/mass frac. and k=0.5 and the compositions
are Cy = 0.0 mass fraction (pure Ni), 0.02 mass
fraction, 0.05 mass fraction. Figure 7(b) shows the
effect of heating rate for Co=0.05. The
peaktemperature as a function of alloy composition
for 15 K/min is shown superimposed on the phase
diagramin Figure 8(a). The difference between the
peak and the liquidus temperaturesis shown in
Figure 8(b) for different heating rates. The error
increases as the size of the freezing range decreases.
For large freezing range aloys, the latent heat
evolution is spread over alarge temperature range
and the offset between the sample temperature and
the sample thermocouple temperature is small. But
for alloys with small freezing ranges, care must be
taken in attempting to determine the liquidus
temperature from the melting peak. The error is
exacerbated by inclusion of the melting kinetics
described in Section V - A.

B. Melting of M ulticomponent Alloys

We now explore the DTA melting response of a
pair of complex aloys. Asinput to the calculation
we use enthalpy vs. temperature values obtained for
full equilibrium (lever law) and for Scheil freezing
assumptions. DTA melting simulations, using the
lever enthal py-temperature relation, would apply to
an aloy equilibrated prior to melting and where
diffusion was adequate to guarantee spatial
concentration uniformity of all phases during
melting. DTA melting simulations, using the Scheil
enthalpy calculations, would apply to a
microstructure that was solidified and remelted with
no solid diffusion. Clearly these are extreme cases.
The melting of an equilibrated alloy as well as an as-
cast sample requires an analysis of solid diffusion for
both the freezing process and the melting process.
For the lever and Scheil cases, the thermodynamic
parameters of Saunders’?2?! were used in conjunction
with the methods of Boettinger et al.' to give the
enthalpy - temperature relations.

Tablell. Sequence of phase formation during
lever and Scheil freezing of 2219 Al Alloy

Lever Scheil

L - fcc L - fcc

L - fcc+ AlgMn L - fcc+ AlgMn

L +AlgMn - fcc+ L - fcc+ Al;,CuFe
Al;.Cu,Fe L - fcc+ Al,Cu,Fet+Al,Cu

L - fcc+ Al;,CuFe L - fcc+

L o fcc+ AI7CU2Fe A|7CU2Fe+A|2CU+a'
+ AlzoCUzM N3 AlFeSi

L « fcc+ Al,.CuFe L - fcc+ Al,Cu,Fe+
+ Al2oCuMng Al,Cu+ a-AlFeS + Si

+Al,Cu (Invariant reaction at
797K)
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Fig. 9. Phasefraction vs. temperature computed using
thermodynamic database " for lever and Scheil conditions
for Al 2219 alloy.
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Fig. 10. Top) dH4dT obtained from the enthalpy -
temperature predictions for Al 2219 aloy computed using
thermodynamic database ' for lever and Scheil conditions
for Al 2219 aloy. The curve for 'Scheil’ is shifted up by
5x10° kJ/kg K for clarity.

Bottom) Corresponding DTA plots for melting at 5 K/min..
The curve for 'Lever' is shifted up 1 K for clarity.

1. Example: Al 2219

Al aloy 2219 has typical mass fractions of 0.0663
Cu, 0.003 Mn, 0.002 Fe and 0.001 Si. Table Il gives
the sequence of phase formation 'reactions' listed in
the order of decreasing temperature. More phases
occur, and the final solidification temperatureis
lower for the Scheil assumption due to the
microsegregation in the primary fcc phase. Figure 9
shows the phase fractions as a function of
temperature. Off of the scale of Figure 9 are the a-
AlSiFe and Si phases with maximum phase fractions
of 8 x 10 and 3 x10™ respectively.

Figure 10 shows the values of dH</dT obtained
from the calculated enthal py temperature - curves and
the DTA simulation for 5 K/min. Comparison of
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Fig. 11. Calculated DTA plots for melting and freezing at 5
K/min of Al 2219 alloy using the Scheil enthalpy-
temperature rel ation.

Figure 9 with the dH¢/dT curves alows one to
recognize the cause of the various peaksinthe DTA
signal. During melting, a peak occurs when all of a
particular phase has completely melted. For example
for the lever melting, the first peak on heating
indicates that all of the Al,Cu phase has melted. The
second peak indicates that all of Al;Cu,Fe has melted
and similarly for other peaks. Note that for the Scheil
DTA calculation, apeak isvisible at approx. 797 K.
Thisis dueto the melting of the invariant quinary
eutectic at 797K (Table 1) wherethe Si phase
completely disappears and importantly reductions
also occur in the phase fractions of the other phases.
The aloy under consideration has five components,
the reaction involves six phases, and there are zero
degrees of freedom. Thus despite the small fraction
of Si phase, the signal from the invariant eutectic
melting is large. We note that the DTA time
constants, should be re-assessed using melting of a
pure metal whose melting point is closer to that of Al
for future quantitative comparisons to experiment.

Simulations of alloy freezing were performed by
changing the sign of a and the values of the start
temperatures. Figure 11 compares the melting and
freezing signals for the Al 2219 alloy at 5 K/min
(Scheil enthalpy used for both). The vertical dashed
lines are the liquidus temperature and the temperature
where the Al,Cu phase disappears, or first appears,
on melting or solidification, respectively. The peak
temperatures are clearly offset from these dashed
lines and should not used to characterize the melting
or freezing process.



2. UDIMET 700

A second exampleisthe Ni alloy, UDIMET" 700,
with composition in mass fractions of 0.15 Cr, 0.185
Co, 0.05 Mo, 0.035 Ti, 0.044 Al, 0.0007 C, and
0.00025 B. The thermodynamic parameters were
taken from Saunders®?. The phase formation
sequences are given in Table 11, the phase fractions

in Figure 12 and dH¢/dT and the DTA signalsin
Figure 13. To be noted hereisthe very large

difference between the size of the freezing ranges of
the two cases. The particular peaks and their sizes for

real DTA signals for this alloy would be difficult to
predict given the large difference between the
diffusion rates of the interstitials and the
substitutional elementsin the fcc phase.
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Fig. 12 Phasefraction vs. temperature computed using

thermodynamic database ¥ for lever and Scheil conditions

for UDIMET 700 alloy.

T UDIMET isatrademark of Special Metals Corporation, New
Hartford, NY.
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Tablelll - Sequence of phase formation during
lever and Scheil freezing of UDIMET 700

Lever Scheil
L L - fcc
L +fcc L - fcc+ MC
L +fcc+MC L - fcc+ MC+ MB,
L +fcc+MC+ L - foc+ MC + MsB,
MB, L - fcc+ MC + MsB,+ o
fec+MC + MB, L - fcc+ MC+MgpB,+0
+y
L - fcc+ MC +0 +
y+ MB;
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Fig. 13. Top) dH4dT obtained from the enthalpy -
temperature predictions for Udimet 700 alloy computed
using thermodynamic database [ for lever and Scheil
conditions for Udimet 700 alloy.

Bottom) Corresponding DTA plots for melting of 180 mg
sample at 15 K/min



One can now recognize possible confusion that
occurs on the interpretation of DTA for complex
alloys. Real DTA traces would likely lie somewhere
between the Lever and Scheil cases depending on
many factors. What is the state of the alloy when
melting begins? Has it been solidified by aprior DTA
run? What was the segregation produced by that run?
How long hasit been held in the solid state prior to
the initiation of the next melting run? How much
diffusion occurs during the melting process? Is there
enough time to ensure spatial uniformity of all
components in each phase?

V. Inclusion of Kineticsin DTA Response

A. Mdlting

Until now, the enthalpy of the sample for the
melting process has been a specified function of
temperature. In reality the speed of solute diffusion
can alter the enthalpy evolution of the sample. Asa
first step to treat diffusion, amodel can be
constructed along the lines presented by Basak et
al.® for melting of asingle phase solid. The time
rate of change of the enthalpy of the sample (Eq. [4])
isreplaced by

_dHs _
s =&
where fy(t) isthe fraction solid. This expression
provides the coupling between the DTA heat flow
equations and the kinetic micromodel. Assumptions
about the melting geometry and a consideration of
diffusion equations are required to describe the
temperature and the fraction of solid at each instant
during the melting process.

In Figure 14, we consider of a 1-D solid slab of
initial uniform composition C, with melting
beginning at one side and proceeding to the other (or
acylindrical or spherical region where melting begins
at the outside and proceeds inward). We further
assume that the liquid concentration is uniform and
given by C,(t) and that the solid concentration Cg(r,t),
although initially uniform, varies with time and
position, r, during the melting process. The melting
interface islocated at rq(t) and changes from avalue
of Ry (al solid) to O (all liquid) as melting
progresses, i.e., 2Ry isameasure of the distance
between adjacent liquid regions within the sample.

A value for Ry can only be estimated. Melting
usually starts at grain boundariesin a homogenized
sample, Ry would be the grain size radius and a
spherical geometry would be appropriate. If the
sample were asingle grain, then Ry, would equal the
sample radius, 1.5 mm for a 180 mg sample of Ni.

Ts - Lfs, [24]
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CLQ

Fig. 14. Diffusion geometry analyzed during melting. Slab
geometry (n=1) isshown.

This can serve as an upper bound on Ry. If some
dlight residual dendritic coring is present in the
homogenized sample, a much smaller value would be
appropriate; viz., the dendrite arm spacing from
previous solidification of the sample (~150 pm).

Assuming local equilibrium at the melting
interface and ignoring the Gibbs-Thomson effect, the
temperature of the interface (and hence the sample
temperature, T4(t)) isrelated to the (uniform) liquid
concentration by

Ts(t) =Ty +mC (1) . [29]

The solid concentration at the interface is related to
the liquid concentration (at the interface) by

Cs(ro(t),) =kC,(1) . [26]

Ontheinterval [0, ro(t)], the solid concentration
profile is governed by the solid diffusion equation

— D.02C. = Ds 0 0n10Cg0
P sd"Cs -

r" 1 or or H

o [27]

where Dsisthe solid diffusion coefficient and the
geometrical factor, n, isequal to 1, 2, 3 denoting a
dab, cylinder or sphere respectively. Theinitial
condition is C«r,0)=C, and a no flux condition is
applied at r=0. The boundary condition at r=r(t) is
obtained by considering a solute balance at any time
during melting over the entire domain [0, Ry]; viz.,

fo(t)

n ICS(r,t)r”"ldr +C (M- f)=Cy  [28]

Ry "

with the fraction solid, fg(t) = [ro(t)/Ry "
Differentiation of Eq. [28] with respect to t and
substituting Eq. [27] to eliminate dCs/dt yields the
boundary condition at the melting interface (r=rq(t))
given by



f (n-h/n DS aCS

+(k=DfsC +1-f)CL =0
Ry or

=)
[29]

In the spirit of using only ordinary differential
equations in this paper, an approximeate solution to
the solute diffusion equation can be obtained. Along
lines similar to those of Wang and Beckermann'®"! for
freezing, the solute profile in the solid is assumed to
be a polynomial in r with time dependent coefficients
of the form a(t)+b(t)r". For asolute profile that
satisfies the no flux condition at r=0 and Eqgs.[260
and [28], the gradient termin Eq. [29] can be
evaluated as

dCs

_(n+p) LGy
or E

RME

-[1-fs(1- k)]CL

f (n+1)/n [30]
S

r=ry(t)

Equation [29] then becomes an ODE for f(t) and
C.(t). Combining this ODE and Eg. [25] in
differential form to thethree DTA heat flow
equations, one obtains:

C
gns[cSOTs L] ="eCe (10 - Tq)
SC
%‘Lc :t—(Ts‘Tc)"‘t—(Tw ~Te)
0 SiC W,C
E)FT :T_C(TC_TTC) [31]
O = mCL
E{k 1)fsC +1-f5)C, =
O Ds FCo - -~ fsa-Kc B
n(n+ p) O
0 RiH " O

The equations areill-posed at t=0 (fs=1), and only a
small error isintroduced by using the following
conditions at the beginning of melting,

s(o) 1-¢

CL(0)=Co/t-£ 1-Kk)] [32]

where € <<1

The equations involve the important ratio,
Ds/Ry, 2 In dimensionless form, a solid diffusion
Fourier number, F,=Dsty,®'% /Ry, can be defined
where t, @' is the alloy melting time

oy _ [2Ms(L+CR(TL ~Te))(tsc +
aloy
ameC§

twe)

[33]

determined in analogy with Eq. [10]. The coefficient
Ds at the solidus temperature of a substitutional solid
solution is at most 10 cm?/s and t,2'* = 500s, 400,
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Fig. 15. Effect of solid diffusion on melting DTA signal of
single phase dloy, n=3, a=15 K/min., Ty=1728 K, m= -
10° K/mass fraction, k=0.5, C4=0.05 mass fraction. Results
for various values of the Fourier Number, F, and DyRv?
are shown.

300 s (for a180 mg Ni alloy sample with a50 K
freezing range heated at 5, 10 and 15 K/min,
respectively). Using the values for Ry, discussed
above, 4x107 s* <Ds/R,, °><4x10° s, and the Fourier
Number for ty?'¥=300 s liesin the range,
IX10<F<1.

We show results for an alloy with T,=1728 K,
me= -10° K/mass fraction, k=0.5 and C,=0.05 mass
fraction, the spherical geometry (n=3) and p=3. The
results are not very sensitive to the value of p. The
calculated DTA signal for F= 10 (plenty of
diffusion) isindistinguishable from that for melting
following the lever law and is not shown. This
agreement provided a good check on the calculation
procedure. The DTA signals shown in Figurel5
exhibit three changes as the F, decreases: 1) the
change in slope at the solidus becomes smaller; 2) the
peak shiftsto higher temperatures; and 3) the peak
height increases. These changes are caused by the
fact that solid diffusion limitations cause alarger
fraction of the solid to melt at temperatures closer to
the liquidus compared to what occurs when the solid
composition remains spatialy uniform. Thusitis
harder to establish an onset of melting. At the end of
melting, alarger temperature offset occurs between
the sampl e temperature and the sampl e thermocouple
temperature than would occur for melting with a
lever enthalpy. Thus the peak temperature becomes
even more unreliable as a measure of the liquidus
temperature when diffusion limitations are present.
Table 1V summarizes the effect of solid diffusion on



Table 1V - Effect of Solid Diffusion Limitation
During Melting on " Liquidus' DTA Peak

Dy/Ry” (s7) Fo TPRT AT
(tu®'™=3009) (K) (K)
0 (Ie\/er) 00 8.1 6.3
5x10° 15 7.9 6.4
1x10°3 0.3 9.2 7.2
5x10™ 0.15 11.7 8.4
2x10* 0.06 14.4 10.7
0 (asapure 0 17.6 16.1
material
W/TM:TL)

a= 15 K/min, C;=0.05 mass fraction, k=0.5, m= -
10°K/mass fraction, Ty=1728 K (T.;;=1678 K.
T5y=1628 K).

the liquidus peak temperature for a 180 mg Ni alloy
with a50 K freezing range alloy melted at 15 K/min.

During the numerical calculationsfor F,< 0.2, the
approximation of Eq. [30] leadsto liquid
compositions lower than Coduring melting. Thisis
not possible for abinary aloy and is an artifact of the
approximate solution to the diffusion equation. In
such cases, the diffusion calculation was truncated at
the time when the liquid composition decreasesto C,.
The DTA temperatures after that time are computed
assuming the sample temperature remains at the
liquidus temperature until the fraction solid reaches
zero. With this procedure, the DTA curve at the
higher temperatures approaches that for melting of a
pure metal with a melting point equal to the alloy
liquidus temperature. This would also happenin a
rigorous calculation of the diffusion processas F,
becomes very small. While this limiting situation is
unlikely physically, it demonstrates the worst case for
solid diffusion restrictions during melting.

Thus if a substitutional aloy sampleis
homogenized and consists of only a few grains (F, <
103, the diffusion limitation should make a
considerable change in the shape of the DTA curve.
Only rarely would the observed DTA curve resemble
that for lever melting. Residual microsegregation
from prior solidification might reduce the length
scale Ry, increase the value of F,, and reduce the
peak error, but it would also lower the melting onset
temperature below the true solidus. A fast diffusion
mechanism could also mitigate the cal culated effect
of diffusion restrictions during melting. One possible
fast mechanism might be liquid film migration during
melting. Nonetheless, because the freezing range of
the alloy simulated (50 K) is not unlike the
commercial aloys studied by Wu and Perepezko™®,
the present melting model may provide an
explanation for their observation that the DTA peak

14

temperature was 20 K higher on melting at 20 K/min
than the actual liquidus temperature. Thisis
especialy so given the slow diffusion of the
refractory elementsin superalloys. We note that for
an interstitial binary aloy, F, would be about 2
orders of magnitude larger.

B. Inclusion of Dendrite Tip Kinetics
(Supercooling) in DTA Response During Freezing

A common occurrence in DTA analysis during
cooling from the fully molten state is supercooling. In
Ni base alloys, supercoolings aslarge as 100 K are
common before nucleation of the solid phase. The
DTA response to this situation can be modeled from
a knowledge of the nucleation temperature, Ty, the
number of nuclel (or final grain size) and the kinetics
of the growing solid. Often in supercooled samplesin
the DTA, only one grainis formed.

Here we briefly describe a model for the kinetics
of abinary aloy freezing in a dendritic manner. The
approach of Wang and Beckermann'® is employed
and the reader is referred to this work for amore
complete discussion of the model. To the three
equations for the DTA response, we append five
ODE's that describe the liquidus slope, the dendritic
growth kinetics, the liquid diffusion, the solid
diffusion and an overall solute balance. Thefive
equationsinvolve the five variables fy(t), fy(t), C.(t),
<C_>(t) and <Cgs>(t) for the fraction of grain, the
fraction solid, the liquid concentration in the mushy
region of the grain, the average liquid concentration
outside of the mushy region (extradendritic liquid)
and the average solid concentration, respectively. The
fraction of grain variableis fraction of the final grain
volume (sphere of radius Ry) that is occupied by the
growing dendrite envelope at each instant. For this
simple model, the speed of the dendrite tipsis taken
to depend on the square of the tip supercooling. The
supercooling is taken as the difference between the
tip temperature (i.e., sample temperature) and the
liquidus temperature for the average liquid
concentration outside of the mushy region. Theliquid
concentrations are governed by the solute rejection
within the mush and by the solute diffusing into the
extradendritic envelope. Diffusion in the solid is
modeled with an equation that describes this average
solid composition at each instant and estimates the
solid concentration gradient in much the same way as
in equations during melting (Egs. [27] through [29]).
Combining these five equations with the three for the
heat flow in the DTA gives asystem of eight ODE's
for eight variables,



TableV - Parametersused for dendritic growth DTA simulations

r D, m k Co L C,Y Ry mcC,” Ms Ds
10° 10” -10° 0.5 005 1728K 290  0.75 1.5 0.257 180 0
cmK  cmf/s  K/mass mass Jg  JgK mm JK mg cmé/s

fraction fraction
C
. .1 mGCy
Pt - =1 Ty
0 SC 1690 —

. 1 1 a

T = (Ts =To) +—— (T ~Te) )
B tsc W,C ]
Or= 1 (Te-Tre) 1680 —
g Tc S i
T s =MC, §
T 1670 —

0. 3723 ) ©
fg = ° 2"\_D|_ [CL_<CL >] =
O Rg mT(k-1)C, % 7

. . —
Hk-DfC Ty~ fo)CL = - °~lc.-<c. ] 1660 —
0 (=fg)" ]
O . . . f 7 a=-15K/min
M1-fy) <C L >+f,C —fy<C >= (1_gf )[CL_<CL ] T Ty=0K
0 1650 — i i

120, kG~ <G5

0. ) .
<Ce>+fe<Ce>=kC fo+
HS Cs s<Lls C.fs iR fs

[34]

The parameter " isthe ratio of liquid-solid
surface energy per unit volume to the heat of fusion
L. The parameter A, isthe secondary dendrite arm
spacing. An important quantity in the Wang-
Beckerman!®”! approach is the extradendritic
diffusion length, l;4 (their symbol). For simplicity,
rather than use their expression, we have let

[39]

where V is the dendrite tip speed. The factor (1-fg) is
used to reduce the diffusion length when little
extradendritc liquid remains. These equations are
solved with theinitial conditions

Ts(0) =Ty

CL(O)=(Ty —Ty)/m
fs(0) =0 '
f4(0)=0

_DbL
lig —7(1‘ fg)

[36]

The solution to these equations was obtained for
the parameters specified in Table V. Solid diffusion
was neglected and R, was taken to be the sample
radius; i.e., only one grain formed.

Theinitia parts of the sample, cup, thermocouple
and wall temperatures histories are shown in Figure
16(a) for aninitial supercooling of 0 K. Also shown
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Figure 16. &) Plot of calculated sample, sample cup,

sampl e thermocouple and furnace wall temperatures vs.
time curves for freezing of a 180 mg sample of aloy with
Co=0.05 at 15 K/min with a supercooling of 20 K.

b) Effect of supercooling on the freezing DTA signal of the
samedloy. Thecurvesarefor 0K, 5K, 10K, 15K, 20K,
30 K supercooling.



is the sample temperature (dashed curve) for aDTA
calculation performed using a Scheil solidification
path for the same alloy. Several feature can be noted:
1) Even for the case of zero supercooling, a dight
recal escence of the sample temperature occurs due to
the finite speed at which the dendrites can propagate
across the sample; 2) After the recalescence, the
sample temperature converges to the sample
temperature calculated for the Scheil path. This
agreement provided a good check on the
computational approach. 3) The cup and
thermocoupl e temperatures exhibit no recalescence
due to the heat transfer restrictions of the DTA cell.

Theinitia portions of DTA curvesfor initial
supercoolingsof 0K, 5K, 10K, 15K, 20K and 30
K are shown in Figure 16(b) along with the DTA
curve for the Scheil path. The initia rise of the DTA
signal departs the baseline at lower temperatures and
rises more rapidly as the supercooling increases. This
is due the recal escence of the sample due to the rapid
initial dendritic growth. The rise has a backward
(positive) slope only for supercoolings of 10 K and
above. Here the sample recalescence is large enough
that the thermocoupl e temperature al so recal esceces.
However, the absence of a backward DTA riseis not
proof that supercooling is absent and that a valid
liquidus temperature has been determined.

V1. Conclusions and Future Work

DTA iswidely used for the measurement of alloy
solidification and melting behavior. This study
indicates the care that must be taken in order to
extract meaningful data from experiments. A heat
flow model combined with kinetic models
appropriate for metallic systemsis used to simulate
DTA data during melting and freezing. An analytical
solution of the model for a pure material is used to
show how the melting onset and peak temperatures
depend on sample mass and heating rate and thus
how they affect calibration procedures. In particular,
sample and sample thermocoupl e temperatures in the
DTA instrument can exhibit large differences that are
often forgotten in the interpretation of DTA signals.
Numerical solutions of the heat flow model
employing enthal pies obtained from a Calphad-type
thermodynamic assessments are used to simulate
DTA signasfor atwo multicomponent engineering
alloys. The simulations show the differences between
thermodynamic points and features on the DTA curve
caused by heat flow limitationsinthe DTA. Assuch
the method provides atool to enable amorereliable
interpretation of signals from unknown materials.
[The MATHEMATICA script will be made available
at www.metallurgy.nist.gov/phase/].
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In addition to heat flow effects, the DTA signal is
influenced by diffusion kinetics within melting and
freezing samples. A methodology for including
kineticsinto the ssimulation of DTA signalsis
established. For melting, the simulations show that
the use of the temperature of the final peak in the
DTA curveisof limited validity to determine the
liquidus temperature of aloyswith small freezing
ranges ( <50K) and with sluggish solid diffusion. For
freezing, the simulations show the quantitative
relationship between supercooling and the shape of
the DTA curve.

Future work should include a detailed comparison
of the predictions of the diffusion based melting
model to experimental data and extension of the
model to multicomponent alloys. The appropriate
diffusion length scale, whether it be grain size or
residual microsegregation length, needs to be studied.
Deconvol ution methods based on redlistic melting
and solidification models should be developed to
extract reliable solidification information from DTA
signals.

Acknowledgement

The authors would like to express their
appreciation to N. Saunders for the use of the
thermodynamic data bases for Al and Ni alloys. Also
thanks arein order to D.K. Banerjee for early work
on this subject and to J.H. Perepezko for stimulating
the authors' interest in DTA.

Appendix A -Coupling between sample and
refer ence cups

The system of governing ODE's can be
generalized to include heat flow on the reference side
of the cell and also heat flow between the sample and
reference cups and heat flow between the
thermocouple and its holder environment at fixed
temperature Tg. Let Tsand Tgbe the sample and
reference temperatures and Ty v bethe Y (cup (C),
thermocouple (T ) or thermocouple holder (H))
temperature onthe X (Sor R) side of the DTA . Let
Tw be the furnace wall temperature with Ty, =
constant + at.

We include time constants, ty v that characterize
the various heat flows. In particular atime constant t
sr Characterizes the heat flow between the two cups
on the sample and reference sides of the cell. A
constant R = meC, / myC' ) is defined identically for
both sides.

A system of ordinary differential inhomogeneous
equations applies,
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For large tsr values, the first three equations
decouple from the last three. Equation [1] can be
obtained by letting R'=co for small thermocouple
mass and tr =0 if heat flow down the thermocouple
support rods is heglected.

Appendix B- Solution after Completion of Melting

The time constants are

. where
d1=-1trc
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- _ _(tw,c +t5,CR+tw,c R)+\/(tw,c +t5,CR+tw,C R)2 _4ts,ctw,cR % = ( . = r2) ( S’(t: - V:’C)+: S’Cg M— +( > - W’C) A
§3 - ot t. R O scltsc ttwc)R(r; = 13)
sewe o.__ (1+ts,cRr3){(ts,c iy c)F ttgcaty ﬁ-"' (tsc "'tw,c)er}
tsc(tsc ttwc)R(r —13)
The temperatures are
DT B with
Ols =Tw tat+ . exp[ry (t—ty )]
. C e U tectycla Do, 10 O
E +—————exp[r3(t—ty )] EF : A -exp +——n, [
D]_ 1+tS,C Rr3 D (tSC +tW,C) a E sS.C tWC E %
Ofc =Ty +a (t+tscR)+Bexp[ry(t—ty )] tecty cF
0 +Cenplr(t-ty )] G W
STT =Ty *a (t+tgcR-tr o)+ Aexplr (t—ty )] + B scwe Tse T’Cz weTe .
B twelrc a t
0 el -ty I+ ———explra(t-ty)] L= —e £ %—exp& 5
B IHtrers I+t crs H tsctwe ~tsctre “twelre B e
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Nomenclature for Heat Flow M odel

tm
tsc

tw,c

try

furnace wall heating rate (K/s)

DTA signd: AT = T1 - Tw (K)

"ared’ of DTA signal (K s) or (K?

"effective” areafor heat flow between X
and Y (mP)

bulk composition of the sample (mass
fraction)

sample cup heat capacity (J/(kg K))

heat capacity of sample prior to melting

thermocouple heat capacity (J(kg K))

heat transfer coefficient between X and Y
(J(K sm?)

enthalpy of reference (J/kg)

enthalpy of sample (Jkg)

partition coefficient

extradendritic diffusion length (m)

latent heat (J/kg)

liquidus slope (K/mass fraction)

sample cup mass (kg)

sample mass (kg)

thermocouple mass (kg)

heat capacity ratio between sample prior
to melting and sample cup

heat capacity ratio between thermocouple
and sample cup

time ()

time at intersection of thermocouple
temperature asymptote with
extrapolated thermocouple
temperature prior to melting (s)

melting time ()

response time of heat flow between
sample and sample cup (s)

response time of heat flow between
furnace wall and sample cup (s)

response time of heat flow between
thermocouple and thermocouple
holder (s)

response time of heat flow between
thermocouple and sample cup (s)

response time of heat flow between
reference cup and sample cup (s)

sample cup temperature (K)

thermocouple support environment
temperature (K)

liquidus temperature (K)

melting temperature of sample (K)

reference temperature (K)

reference cup temperature (K)

reference thermocouple temperature (K)

sample temperature (K)

sample cup temperature (K) (in Appendix
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A)

sample thermocouple temperature (K) (in
Appendix A)

solidus temperature (K)

thermocouple temperature (K)

furnace wall temperature (K)

asymptotic approximation of
thermocoupl e temperature during
melting (K)

thermocouple temperature at t* (K)

begin of deviation of thermocouple
temperature after begin of melting (K)

peak temperature of the thermocouple (K)

Additional Nomenclaturefor Kinetic M odels

r

A
<C>

<Cg
C

Cs

Do

ratio of liquid-solid surface energy to the
heat of fusion

secondary dendrite arm spacing (m)

average extradendritic liquid
concentration (mass fraction)

average solid composition (mass fraction)

concentration of the liquid phase (mass
fraction)

concentration of the solid phase (mass
fraction)

diffusion coefficient in the liquid phase
(m?ls)

diffusion coefficient in the solid phase
(m?ls)

fraction of grain

fraction solid

fourier Number for melting

extradendritic diffusion length (m)

geometric factor

degree of polynomial for solute profile
during melting

position in solid phase

position of the melting interface

final grain size for dendrite model (m)

half distance between adjacent liquid
regions within the sample for melting
model (m)

aloy melting time (s)

nucleation temperature (K)

dendrite tip speed (m/s)
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