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List of ~vrnoo!ls and Abbreviations 3

Symbol

Cp

E
F
G
g
gj
G9

I

g?
f1g i
gE
gF
f1G
baGO
f1gm

bag?
f1g~

H
h
hi
H9

I

h9
I

bah;
hE
hf?

I

f1H
baHo
!i.hm

!i.h~
bahov
K
kB
n

n j

N;
N°
Pi
P
P

Designation

activity of component i
number of components
molar heat capacity
electrical potential of a galvanic cell
degrees of freedom/variance
Gibbs energy in J
molar Gibbs energy in J/mol
partial molar Gibbs energy of i
standard Gibbs energy of i
standard molar Gibbs energy of i
relative partial Gibbs energy i
excess molar Gibbs energy
excess partial Gibbs energy of i
Gibbs energy change
standard Gibbs energy change
molar Gibbs energy of mixing
standard molar Gibbs energy of fusion
standard molar Gibbs energy of vaporization
enthalpy in J
molar enthalpy in l/mol
partial enthalpy of i
standard enthalpy of i
standard molar enthalpy of i
relative partial enthalpy of i
excess molar enthalpy
excess partial enthalpy of i
enthalpy change
standard enthalpy change
molar enthalpy of mixing
standard molar enthalpy of fusion
standard molar enthalpy of vaporization
equilibrium constant,
Boltzmann constant
number of moles
number of moles of constituent i
number of particles of i
Avogadro's number
partial pressure of i
total pressure
number of phases

extensive variable



R gas constant
S entropy in
s molar entropy in llmol K
s; partial entropy of i
sf standard entropy of i
s? standard molar entropy of i
I.1s? relative partial entropy of i
s E excess molar entropy
sf · excess partial i
6.S entropy change
1.1 SO standard entropy change
I.1sm molar entropy mixing

I.1se standard molar entropy of vaporization
T temperature
Tf temperature of fusion
Tc critical temperature
TE eutectic temperature
U internal energy
Vi molar volume of i
v~ standard molar volume of iI

I

Z coordination number

Yi activity coefficient of i
£ bond energy
1] empirical entropy parameter
J.li chemical potential of i
v number of moles of "foreign" particles contributed by a mole of solute
; molar metal ratio
a vibrational bond entropy
¢i generalized thermodynamic potential
w empirical enthalpy parameter

b.c.c. body-centered cubic
face-centered cubic
J&&_41L_,....,._J&IIlIl..lL.IL close-packed



1.2 Gibbs L-n~~,.t"'n.1 and C_ •• ilihll"l • 5

1.1.1 Notation

1.2 Gibbs Energy and Equilibrium

(1-1)

Extensive thermodynamic properties are
...... lloJ''"''''AA'''' .....''-& by case ex-

ample, G = Gibbs energy in J. Molar prop­
erties are represented case sym­
bols. For example, 9 = Gin = Ipolar Gibbs
energy in J/mol where n is the total number
of moles in the system.

...., .... .11.'104&&1...:7 are
able for the minimization of the Gibbs en­
ergy in systems of any number of phase"s,
components and species as outlined in Sec.
1.12. When coupled to extensive databases
of the thermodynamic properties of com-
pounds and multicomponent solutions,
these provide a powerful tool in the study
of materials science.

If the reaction proceeds with the formation
of drl moles of mullite then, from the stoi­
chiometry of the reaction, dnsi= (9/2) dn,
dn A l=-6dn, and dnsio

2
=-I3/2dn. Since

the fOUf substances are essentially immis­
cible at 500 we need consider only the

A system at constant temperature and pres­
sure will approach an equilibrium state that
minimizes G.

As an example, consider the question of
whether silica fibers in an aluminum ma­
trix at 500 °C will react to form mullite,
Al6Si20 13

G=H-T5

1.2.1 Gibbs Energy

The Gibbs energy of a system is defined
in terms of its enthalpy, H, entropy, 5, and
temperature, T:

An understanding of thermodynamics
and phase diagrams fundamental and es­
sential to .the study of materials science. A
knowledge of the equilibrium state under a
given set of conditions is the starting point
in the description of any phenomenon or
proc~ss.

The theme of this chapter is the relation­
ship between phase diagrams and thermo­
dynamics. A phase diagram is a graphical
representation of the values of thermody­
namic variables when equilibrium is estab­
lished among the phases of a system. Mate­
rials scientis~s are used to' thinking of phase
diagrams as plots of temperature versus com­
position. However, many other variables
such as total pressure and partial p'ressures
may be plotted on phase diagrams. In Sec.
1.3, for example, predominance diagrams
will be discussed, and in Sec. 1.8 chemical
potential-composition phase diagrams will
be presented. General rules regarding phase
diagram geometry are given in Sec. 1.9..

In recent years, a quantitative coupling
of thermodynamics and phase diagrams
has become possible. With the use of com­
puters, simultaneous optimizations of ther­
modynamic and phase equilibrium data can
be applied to the critical evaluation of bi­
nary and ternary systems as shown in Sec.
1.6. This approach often enables good esti­
mations to be made of the thermodynamic
properties and phase diagrams of multi­
component systems as discussed in Sec.
1.11. These estimates are based on structu­
ral models of solutions. Various models
such as the regular solution model, the sub­
lattice model, and models for interstitial
solutions, polymeric solutions, solutions of
defects, ordered solutions, etc. are dis­
cussed in Secs. 1.5 and 1.10.

The equilibrium diagram is always cal-
culated minimization of the Gibbs en-



(1-8)

(1-10)

(1-11)

(1-1

Proceeding as above, we can ,;vrite:

2CO =C + CO2

action continues
PH

2
S will increase while PH

2
and PS

2

will decrease. As a result, become
progressively less negative. Eventually an
equilibrium state will be reached when
dG/dn=~G=O.

For the equilibrium state, therefore:

~Go = - RT In K (1-7)

= - R T In (P~2S PH; Ps; )equilibrium

where K, the "equilibrium constant" of the
reaction, is the one unique value of ra­
tio (P~2S PH; Ps:) for which the system
be in equilibrium at the temperature T.

If the initial partial pressures are such
that f:1G>O, then the reaction, Eq. (1-5),
will proceed to the left in order to minimize
G until the equilibrium condition of Eq.
( 1-7) is attained.

As a further example, we consider the
possible precipitation of graphite fro·m a
gaseous mixture of CO and CO2 . The re-ac­
tion is:

dG/dn = ge + geo2- 2 geo

= (gg + gg02 - 2 ggo) + RT In (Peo2/P~o)

= D,.Go + RT In (Peo2/P~o) (1-9)

= D,.G = - RT In K + RT In (Peo2/P~o)

If (Peo2/P~o) is less than the equilibrium
constant K, then precipitation of graphite
will occur in order to decrease G.

Real situations are, of course, generally
more complex. To treat the deposition of
solid Si from a vapour of SiI4 , for example,
we must consider the formation of gaseous
12 , I and SiI2 so that three reaction equa­
tions must be written:

SiI4 (g) = Si(sol) + 212 (g)

SiI4 (g) =SiI2 (g) + 12 (g)

12 (g) 2I(g)

(1-4)

(1-5)

gj =g? + RT In Pi

D,.G, which is the Gibbs energy change of
the reaction, Eq. (1-5), is thus a function of
the partial pressures. If D,.G < 0, then the re-

.. ,............--.............. to the so as to
minimize In a closed as the re-

dG/dn =2 gH
2
S - 2 gH2- gS2

=(2 g~2S - 2 g~2 - g~2)

+ RT (2 In PH2S - 2 In PH2-In Ps2)

=f:1Go + RT In (P~2S PH; Ps~)
=D,.G (1-6)

standard molar
Gibbs energy

o 9 0 0
dG/dn =gA16Si20~3 + 2 gSi - 2 gSi02

- 6 g~l =~Go=- 830 kJ (1-3)

where ~Go is the standard Gibbs energy
change of reaction, Eq. (1-2), at 500°C.

Since ~Go<O, the formation of mullite
entails a decrease in Hence, the reaction
will proceed spontaneously so as to mini­
mIze

1.2.2 Chemical Equilibrium

The partial molar Gibbs energy of an
ideal gas is given by:

the reaction, Eq. (1-5), proceeds to the
right with the formation of 2 dn moles of
H2S, then the Gibbs energy of the system
varies as:

where g? is the standard molar Gibbs en­
ergy (at 1 bar), Pi is the partial pressure in

and R is gas constant. second
term in Eq. (1-4) is entropic. As a gas ex­
pands at constant T, its entropy increas.es.

Consider a gaseous mixture of H2 , S2
and H2S with partial pressures PH

2
, PS

2
and

PH
2
S. The gases can react according to



1.3 Predominance Diagrams 7

(1-13)

Hence, along this line:

S
ample, at point where Pso

2
= 10-2 and

Po = 10-7 bar, the stable phase is CU20.
2 '

conditions for c.oexistence two and
three solid phases are indicated respectively
by the lines and triple points on the diagram.

For example, along the univariant'line
(phase boundary) separating the CU20 and
CuS04 domains the equilibrium constant
K =Ps6

2
PO;'/2 of the following reaction is

satisfied:

(1-14)

log K = - 2 log Pso
2

- t log P0
2
=constant

This ~oundary is thus a straight line with a
slope of (- 3/2)/2 = - 3/4.

In constructing predominance diagrams,
we define a "base element", in this case Cu,
which must be present in all the condensed
phases. Let us further assume that there is
no mutual solubility among the condensed
phases.

Following the procedure of Bale et ale
(1986), we formulate a reaction for the for-

which minimizes the total energy
the system. This is equivalent to satisfying
simultaneously the equilibrium constants
of the reactions, Eqs. (1-10) to (1-12), as
will be shown in Section 1.12 where this
example is discussed further.

1.3.1 Calculation of Predominance
Diagrams

Predominance diagrams are a particu­
larly simple of which
have many applications in the fields of hot
corrosion, chemical vapor deposition, etc.
Furthermore, their construction clearly il­
lustrates the principles of Gibbs energy
minimization and the Gibbs Phase Rule.

A predominance diagram for the Cu­
S-O system at 1000 K is shown in Fig.
1-1. The axes .are the logarithms of the
partial pressures of S02 and O2 in the
gas phase. The diagram is' divided into
areas or domai'ns of stability of the various

1.3 Predominance Diagrams

Cu-S-O. 1000 K

CuO (5)

CUS04 (5)

Point Z
PS02 = 10- 2

Paz: 10-7

Cu (5)
Figure 1-1. Predomi­
nance diagranl. log Pso~

versus log Po.. (bar) at
-4 :.~2L-.--ol....--J-A.---.1L-&..__..!-g.-0-'--..J...-...J...--..L--&..-_--s'--.0--'----'---.A..-.....&..I.--&..--_3...L....-0 ..&--..a--.a.--~I-Jo. a 1000 K for the Cu - S- 0

10910 Paz et aI., 1986).

4.0

N

CU2S (5)0
(/)
c..
0-C1
0....

0.0
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( -1

1100900

Temperature (K)

1

-350
700

we

4

-50
rfl 2 (S04)3

PS02
=1.0 bar

-100

~

0
re2°.sE -150

~
~
'--/

OC'l-200

CL
C

.- fl- rfl 304

a:= -250

a-F· 30 4

FeS
-300

reS 2

The diagonal line in Fig. 1-3 is thus a plot
of the standard Gibbs energy of formation'
of CU20 versus T. The temperatures indi­
cated by the symbol M and fM}are the melt-
ing points of Cu and Cu20 respectively.

is a from
the well-known Ellilzghal11 DiagraIn or
~Go vs. T diagram for the formation of
oxides. How"ever, by drawing vertical lines
at the melting points of eu and Cu20 as
shown in Fig. 1-3, we convert the plot to a
true phase diagram. Stability donlains for
Cu (sol), Cu (I), Cu20 (sol), and CU20 (1)
are shown as functions of T and of imposed
po"!.- The lines and triple points indicate

~GO = - R T In K =R T In (P01 )equilibrium

= f:::,.Ho - T~SO (1-20)

Figure 1-2. Predolllinance diagrarn. RT In Po .. ver-
sus T at Pso~ = 1.0 bar for the Fe-S -0 -

(1-15)

(1-16)

( 1-18)

=

one
volving the gaseous specIes
sures are used as axes
this example):

Cu +t02 = CuO

~G = ~Go + RT In PO:12

Cli + 1.. O2 = 1..
4 2

~G = ~GO + RT In PO: 14

Cu + 502 = CuS + O2

Cu + 502 + O2 =CuS04

~G = /).CO+ RT In (p-I p-I)S01 0 1

and similarly for the formation of Cu2S,
Cu2504 and Cu2S0s.

The values of /).CO are obtained from ta­
bles of thermodynamic properties. For any
given values of Psoz and POz' ~G for each
formation reaction can be calculated.
The stable ·compound is simply the one
with the most negative ~G. If all the ~G
values are. positive, then pure Cu is the­
stable compound.

By reformulating Eqs. (1-15) to (1-18) in
tertTIS of, for example, S2 and O2 rather
than S02 and 02' a predominance diagran1
with In Ps! and In /)0

1
as axes can be con­

structed. Logarithms of ratios or products
of partial pressures can also be used as
axes.

1.3.2 Ellinghanl Diagrams
as Predominance Diagrams

Rather than keeping the temperature
_'-J II II oJ t..q,. ... 11 II 11. .. we can use it as an Figure
1-2 shows a diagran1 for the Fe-S-O sys­
tem in which RT In Po~ is plotted versus T
at constant Pso! = 1 bar. The diagrall1. is of
the same topological type as Fig. 1-1.

A similar phase diagram of RT In Po"!.
versus T the is c' ...... r-..............



1.4 hermodvrlarTllCS of Solutions

Figure 1-3. Predominance diagram
(also known as a Gibbs energy-tem­
perature diagram or Ellingham dia­
gram) for the Cu-O system. Points
M and ~ represent the melting
points of the metal and oxide re­
spectively.

Copper (liquid)

1200 1500

Copper (solid)

600 900

Temperature,
300

O..----------------r-------..

- 400 ""-- ..a...- -a...-........... ........I..-__-.Le...---L.-....a. ----"_---.J

a

conditions of two- and three-phase equilib­
rium.

1.3.3 Discussion of Predominance
Diagrams

In this section discussion is limited to
the assumption that there is no mutual sol­
ubility among the condensed phases. The
calculation of predominance phase dia­
grams in which mutual solubility is taken
into account is treated in Sec. 1.9, ~here

the general geometrical rules governing
predominance diagrams and their relation­
ship to other types of phase diagrams are
discussed.

We frequently encounter predominance
diagrams with domains for solid, liquid,
and even gaseous compounds which have
been calculated as if the compounds were
immiscible, even though they may actually
be partially or even totally miscible. The
boundary lines are then no longer phase
boundaries, but are lines separating regions

which one species "predominates". The
well known E- pH or Pourbaix diagrams of
aqueous chemistry are examples of such
predominance diagrams.

Predominance diagrams may also be con­
structed when there are two or more base
_"'_.lIoAlll_JlAlI.U .. as discussed by Bale (1990).

Predominance diagrams have found
many applications in the fields of hot cor­
rosion, roasting of ores, chemical vapor
deposition, etc. A partial bibliography on
their constr~ctionand applications .includes
Yokokowa (1999), Bale (1990), Bale et al.
(1986), Kellogg and Basu (1960), Ingra­
hanl and Kellogg (1963), Pehlke (1973),
Garrels and Christ (1965), Ingraham and
Kerby (1967), Pilg.rim·· and Ingraham
(1967), Gulbransen and Jansson (1970),
Pelton and Thompson (1975), Shatynski
(1977), Stringer and Whittle (1975), Spen­
cer and Barin (1979), Chu and Rahmel
(1979), and HarSfle and Venkatachalam
( 1984).

1.4 ThermodynaDlics of Solutions

1.4.1 Gibbs Energy of Mixing

Liquid gold and copper are completely
miscible at all compositions. The Gibbs en­
ergy of one mole of liquid solution, gl, at
1400 K is drawn in Fig. 1-4 as a function of
composition expressed as Inole fractiolz,
Xcu ' of copper. Note that XAu = l-Xcu . The
curve of gl varies between the standard mo­
lar Gibbs energies of pure liquid Au and

g~u and
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0.0 0.2 0.4 0.6 0.8 1.0

I

nent i,

( 1-24)

dG = d (G 1 + Gil) = - (g~u - g~u) dnb1u

constant.
the example of the Au-Cu binary liq-

solution, gcu = (acl/anCu)T.P.nAU' where
G1=(nCu+nAu) gl. That is, Bcu' which has
units of J/mol, is the rate of change of the
Gibbs energy of a solution- as Cu is added.
It can be seen that Bcu is an intensive prop­
erty of the solution which depends upon
the composition and temperature but not
upon the total amount of solution. That is,
adding bncu moles of copper to a solution
of given composition will (in the limit as
bncu -+ 0) result in a change in Gibbs en­
ergy, 6G, which is independent of the total
mass of the solution.

The reason that this property is called a
chemical potential is illustrated by the fol­
lowing thought experiment. Imagine two
.systems, .I and II, at the same temperature
and separated by a membrane that permits
only the passage of copper. The chemical
potentials of copper in systems I and II
are gl =aG 1/a/l 1 and gil =aGll/a/z lI

Cu cu. Cu cu·

Copper is transferre·d across' the membrane,
with dnl=-dn ll . The change in the total
Gibbs energy accompanying this transfer
is then:

(1-21 )

o ::J

9

CU

] t
II:»

(J

9 cu ~

t
o
E

"...., ------_-1-"

o ----T I_-- t I
gAu m I

1 :

Figure 1-4.. Molar Gibbs energy, gl, of liquid Au­
Cu alloys at constant temperature (1400 K) illustrat­
ing the tangent construction.

The function ~g~ shown on Fig. 1-4 is
called the molar Gibbs energy of mixing of
the liquid solution. It is defined as:

It can be seen that ~g:ll is the Gibbs energy
change associated with the isothermal mix­
ing of XAu moles of pure liquid Au and Xcu

moles of pure liquid Cu to form one mole
of solution:

If B~u> g~u, then d(G I + Gil) is negative
when dn~u is positive. That is, the total
Gibbs energy will be decreased by a trans­
fer of Cu from system I to system II.
Hence, Cu will be transferred spontane­
ously from a system of higher Bcu to a sys­
tem of lower gcu. Therefore Bcu is called
the chemical potential of copper.

An important principle of phase equilib­
rium can now be stated. ~Vllen t\-vo or nzore
phases are ill equilibrillln, the c}lelnical po­
tential of an)' cOlnponellt is the same ill all
phases.

(1-23)

( 1-22)

where G is the Gibbs energy of the solu-
is number

Note that for the solution to be stable it is
necessary that ~g~ be negative.

The partial molar Gibbs energy of com­
ponent i, gi' also known as the chelnical
potential, J.li' is defined as:

XAu Au (1) + Xcu Cu (1)

= 1mole liquid solution

Dua
Highlight

Dua
Highlight
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(1-30)

(1-31 )

( 1-32)

(1-36)

(1-37)

(1-34)

( 1-35)

(1

dg1= :dBAu + Xcu dgcu )

+ (gAU dXAu + gcu dXcu)

XAu d9Au + Xcu dgcu =0

Hence, the enthalpy and entropy of mixing
may be expressed as:

Comparison with Eq. (1-28)~then gives the
Gibbs-Duhem eqLlation at constant T and P:

1.4.5 Relative Partial Properties

The difference between the partial
energy gi of a component in solution and
the partial Gibbs energy gp of the same
component in a standard state is called the
relative partial Gibbs energy (or relative
chemical potential), ~g;. It is most usual to
choose as standard state the pure compo­
nent in the same phase at the same temper­
ature. The activity a; of the compo/lent rel­
ative to the chosen standard state is then
defined in terms of ~gi by the following
equation, as illustrated in Fig. 1-4.

Note that g; and J1i are equivalent symbols,
as are g? and J-l?, see Eq. (1-23).

From Fig. 1-4, it can be seen that:

LlgXll .= XAu !:lgAu + Xcu !:lgcu

=RT(XAulnaAu+Xculnacu) (1-33)

The Gibbs energy of mixing can be di­
vided into enthalpy and entropy terms, as
can the relative partial Gibbs energies:

!:lg. =g. - g~ = II. - 119 = RT Ina·
I I I r-'l r-'1 .t

!:lgm = !:lhn1 - T !:lsm

!:lg. = !:1h· - T !:ls·III

!:lhm= XAu !:lhAu + Xcu !:1hcu

!:lsm = XAu SAu + XCu SCu

(1-26)

( 1-28)

(1-27)

( 1-29)

Gl nAu "Cu

JdGI = JgAu dnAu + Jgcu dncu
000

G 1= gAu nAu + gcu ncu

dG}.p = ( dnAu ) dnAu + ( dncu ) dncu

=gAu dnAu + gcu dnCu (

and

Eq. (1-25) can be integrated as follows:

Tangent "' .., ...........""••" ...

An important "' ~ ..JL"" ........... "'JLJL

in Fig. 1-4. If a tangent is drawn to the
curve of gl at a certain composition
(Xcu·=0.6 in Fig. 1-4), then the intercepts
of this tangent on the axes at XAu = 1 and
Xcu=1 are equal to BAu and Bcu respec­
tively at this composition.

Tolprove this, we first consider that the
Gibbs energy of the solution at constant T
and P isa function of nAu and ncu. Hence:

dXAu=-dXcu ' it can be seen that
Eqs. (1-27) and (1-28) are equivalent to the
tangent construction shown in Fig. 1-4.

These equations may also be rearranged
to give the following useful expression for
a binary system:

gl = XAu gAu +,XCu gcu

where the integration is performed at con­
stant composition so that the intensive
properties gAu and gcu are constant. This /
integration can be thought of as describing
a process in which a pre-mixed solution of
constant composition is added to the sys­
tem, which initially contains no material.

Dividing Eqs. (1-26) and (1-25) by
(nAu + ncu) we obtain expressions for the
molar Gibbs energy and its derivative:

gi = 9 + (I-Xi) dg/dX;
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activity of in the
Xcu =0..6 is Qcu = 0.43 (Hultgren et al.;
1973). Substitution into Eq. (1-39) with
Po

2
=10-4 bar gives:

dG/dn = b.G = -50.. 84 kJ

and tangent _" v"' __ .a." v 1. _ ...

Fig. 1 can be used to relate
partial enthalpies and entropies llh; and
!.lSi to the integral molar enthalpy of mix­
ing llhm and integral molar entropy ofmix­
ing ~sm respectively.

( 1-40)

Hence under these conditions the reaction
entails a decrease in the total Gibbs energy
and so the copper will be oxidized.

An ideal sollition or RaOllltia/l Sollition
is usually defined as one in which the ac­
tivity ofa component is equal to its mole
fraction:

a~dcal =X.
I I

(With a judicious choice of standard state,
this definition can also encompass ideal
Henrian solutions, as discussed Sec.
1.5.11.)

However, this Raoultian definition of
ideality is generally only useful for silnple
substitutional solutions. Ther{~ are more
useful definitions for other types of solu­
tions such as interstitial solutions, ionic so­
lutions, solutions of defects, polymer solu­
tions, etc. That is, the most convenient def­
inition of ideality depends upon the solu­
tion model. This subject will be discussed
in Sec. 1.10. In the present section, Eq.
(1-40) for an ideal substitutional solution
will be developed with the Au-Cu solution
as example.

In the ideal substitutional solution model
it is assumed that Au and Cu atoms are
nearly alike, with nearly identical radii and
electronic structures. This being the case,
there will be no change in bonding energy
or volume upon mixing, so that the en­
thalpy of mixing is zero:

( 1-38)

1.4.6 Activity

The total Gibbs energy then varies as:

= gCU10 - t gOl - 2 (dG1/dncu)

=gCu10 - t 901 - 2 gcu

= (ggul0 - t ggl - 2 ggu)

- t RT In P0
1

- 2 RT In Qcu

= + R T In (pO~/2 )

where the eu (I) is in solution. If the reac-
tion proceeds formation of
moles of CU20, then 2 dn moles of eu are
consumed, and the Gibbs energy of the
Au-eu solution changes by

The activity of a component a solution
was defined by Eq. (1-32).

it
follows that when two or more phases are

equilibriLlm the activity of any compo­
nent is the ~ame in all phases, provided that
the activity in every phase is expressed
with respect to the same standard state.

The use of activities in calculations of
chemical equilibrium conditions is illus­
trated by the following example. A liquid
solution of Au and eu at 1400 K with
Xcu =O.6 is exposed to an atmosphere in
which the oxygen partial pressure is
Po"!= I 0-4 bar. Will CU20 be formed? Th~

reaction is:

= (1 =0 (1 1)
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II

(1-47)

(1-40) has been """""AJlA'"' ..... 0.7Il.Jl'-l~Il."""""

substitutional solution.

1.4.8 Excess Properties

In reality, Au and Cu atoms are not iden­
tical, and so Au-Cu solutions' are not per­
fectly ideal. The difference between a solu­
tion property and its value in an ideal solu­
tion is called an excess property. The ex­
cess Gibbs energy, for example, is defined
as:

(1-42)
Ncu !=

Au and Cu atoms will be distrib­
uted over the lattice sites. (In the case of a
liquid solution we can think of the "lattice
sites" as the instantaneous atomic positions.)

For a random .distribution of NAu

gold atoms and Ncu copper atoms over
(NAu + Ncu ) sites, Boltzmann's equation
can be ,used to calculate the configurational
entropy of the solution. This is the entropy
associated with the spatial distribution of
the particles:

Therefore, since the ideal enthalpy of mix-

( 1-48)

( 1-49)

( 1-50)

( 1-51 )

Hence:

hE = ~h - ~/lideal =!:lh
01 01 III

Excess partial properties are defined sinli­
larly:

Since the ideal enthalpy of mixing is zero,
the excess enthalpy is equal to the enthalpy
of mixing:

g~ =~gi - ~g;d~al

=RTlna·-RTlnX·I I

gE = hE _ T sE

= ~/lfn - T SE

Also:

g~ =hf?- - T sf?-
I I I

= ~Jli - T sF (1-52)

Equations analogous to Eqs. (1-33),
(1-36) and (1-37) relate the integral and
partial excess properties. For exalnple, in

-eu solutions:

s~ = ~s· - ~s~dcal = ~s· + R InX·
I I I I I

(1-44)
~Slil~cal = - R (XAu In XAu + Xcu In XCu )

~s.\~cal = scontig = - kB (NAu + Ncu ) (1-43)

X (NAU In NAu + Ncu In Ncu
)

NAu + Ncu NAu + Ncu

where kB is Boltzmann's constant. The con­
figurational entropies of pure Au and Cu
are zero. Hence the configurational entropy
of mixing, ~sconfig, will be equal to sconfig.

Furthermore, because of the assumed close
similarity -of Au and Cu, there will be no
non-configurational contribution to the en­
tropy of mixing. Hence, the entropy of
mixing will be equal to sconfi£.

Applying Stirling's approximation, which
states that In N! =[(N In N) - N] if N is'
large, yields:

For one mole of solution, (NAu+Ncu)=N°,
where N°= Avogadro's number. We also
note that (kB N°) is equal to the ideal gas
constant R. Hence:

By comparing Eqs. (1-33) and (1-45) we
obtain:

(I-53)

( 1-54)

E_X E X Eg - Au gAu + Cu gcu
E _ E E

S - XAu SAu + XCu SCu

Tangent constructions similar to that of
1-4 can thus also be employed for ex-

cess properties, an equation analogous( 1-46)=RTln=RT

ing is zero:
( 1-45)

~g8\~cal = R T (XAu In XAu + Xcu In XCu )
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<
LJ''-'JL&_.II.J1.''- i is more stable in the solution
it would be in an ideal solution of the same
composition. If > 1, then 9f> 0 and
driving force for the component to enter
into solution is less than in the case of an
ideal solution.(1-56)

(1

( 1),

to (

9f = gE + (1­

The
also applies to ~xcess

XAu dg~u + Xcu dg~u = 0

In Au-Cu alloys, gE is negative. That is,
!igm is more and so
the solution is thermodynamically more
stable than an ideal solution. say that
Au-Cu solutions exhibit negative devia­
tions from ideality. then solu­
tion is less stable than an ideal solution and
is said to exhibit positive deviations.

1.4.9 Activity Coefficient

The activity coefficient of a component
in a solution is defined as:

1.4.10 Multicomponent Solutions

The equations of this section were
rived with a binary solution as an example.
However, the equations apply equally to

instance, in a solution of components
B-C-D ... , (1-33) becomes:

~gm =XA ~gA + XB ~gB + Xc 6.gc
+ XD~gD + ... (1-59)

1.5 Binary Phase Diagrams

In an ideal solution Yi= 1 and gF=O for
all components. If Yi < I, then gF< 0 and by

Y-= a-lX-I I I

From Eq. (1-50):

gf =R T In Yi

( I-57)

( I-58)

1.5.1 Systems Complete
and Liquid Miscibility

The temperature-composition (T - X)
phase diagranl of the CaO-MnO system is
shown in Fig. 1-5 (Schenck et aI., 1964;
Wu, 1990). The abscissa is the composi-

Figure 1-5. Phase dia­
gram of the CaO-MnO
system at P=1bar
(after Schenck et
1 and 1

MnO

0.9 1.0

f XMnO

0.4 0.5 0.6 0.7 0.80.30.2
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=
creased further, solid continues to precipi­
tate with the compositions of two
phases at any temperature being given by
the liquidus and solidus compositions at
that temperature and with their rel~tive

proportions being given by the' lever rule.
Solidification is complete at 2030°C, the
last liquid to solidify having composition
XMnO=0.60 (point C).

The process just described is known as
equilibrium cooling. At any temperature
during equilibrium cooling the solid phase
has a uniform (homogeneous) composition.
In the preceding example, the composition
of the solid phase during cooling varies
along the line APe. Hence, in order for the
solid grains to have a uniform composition
at any temperature, diffusion of eaO from
the center to the surface of the growing
grains must- occur. Since solid-state dif­
fusion is a relatively slow pr-ocess. equi­
librium cooling conditions are only ap­
proached if .the temperature is decreased
very slowly. If a saTDple ',of composition
XMnO = 0.60 is cooled very rapidly from the
liquid, concentration gradients will be ob­
served in the solid grains, with the concen­
tration of MnO increasing towards the sur­
face from a minimum of Xrv1nO = 0.28 (point
A) at the center. Furthermore, in this case
solidification will not be conlplete at
2030°C since at 2030°C the average 'con­
centration of MnO in the solid particles
will be less than XMnO = 0.60. These con­
siderations are discllssed more fully in
Chapter 2 of this volume (Mtiller-Krumb­
haar et aI., 2001).

At Xf\1nO= 0 and X rv1nO = 1 in Fig. I
liquidus and solidus curves nleet at the
equilibrium melting points, or telnpera­
lures offllSiol1 of CaO and MnO, which are
T o - 157? °C TO - 184? °Cf(CaO)-- .., , f(fv1nO)- .., ·

The phase diagram is influenced by the
Unless stated,

tion, as
Note that = 1- XCaO • Phase

'agrams are also often drawn with the com­
position axis expressed as weight percent.

At all compositions and temperatures in
the area above the line labelled liquidus, a
single-phase liquid solution will be ob­
served, while at all compositions and tem­
peratures below the line labelled solidus,
there will be a single-phase solid solution.
A sample at equilibrium at a temperature
and overall composition between these two
curves will consist of a mixture of solid
and liquid phases, the compositions of
which are given by the liquidus and solidus
compositions at that temperature. For ex­
ample, a sample of overall composition
XMnO = 0.60 at T= 2200°C (at point R in
Fig. 1-5) will consist, at equilibrium, of a
mixture of liquid of composition XMnO =
0.70 (point Q) and solid of composition
XMnO = 0.35 (point P).

The line PQ is called a tie-Ii/Ie or co­
node. As the overall composition is varied
at 2200°C between points Rand Q, the
compositions of the solid and liquid phases
remain fixed at P and Q, and only the'rela­
tive proportions of the two phases change.
From a simple mass balance, we can derive
the lever rule for binary systems: (moles of
liquid)/(moles of solid)=PR/RQ. Hence,
at 2200°C a sample with overall composi­
tion XMnO = 0.60 consists of liquid and solid
phases in the molar ratio (0.60-0.35)/
(0.70-0.60) = 2.5. Were the composition
axis expressed as weight percent, then the
lever rule would give the weight ratio of
the two phases.

Suppose that a liquid CaO-MnO solu­
tion with composition Xl\lnO= 0.60 is
cooled very slowly from an initial tempera­
ture of about 2500°C. When the tempera­
ture has decreased to the liquidus tenlpera~

ture 2270°C (point B), the first solid
a composition at point A
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to a
are independent of

mately a linear function of T. If T>
then is negative. T < TfO, then f).gf
positive. Hence, as seen in Fig. 1-6, as T
decreases, the g5 curve descends relative to
gl. At 1500°C, gl< gS at -all compositions.
Therefore, by the principle that a system
always seeks the state of minimum Gibbs
energy at constant T and P, the liquid phase
is stable at all compositions at 1500°C.

At 1300°C, the curves of gS and gl cross.

The line PI Ql' which is the COlnlnon tan­

gent to the two curves, di'vides the compo­
sition range into three sections. For compo­
sitions between pure Ge and PI' a single­
phase liquid is the state of minimum Gibbs
energy. For compositions between QI and
pure Si, a single-phase solid solution is the
stable state. Between PI and. QI' a total
Gibbs energy lying on the tangent line
P1QI nlay be realized if the systelTI adopts
a state consisting of two phases with com­
positions at PI and QI and with relative
proportions given. by 'the lever rule. Since
the tangent line PI QI lies below both gS and
gl, this two-phase state is more stable than
either phase alone. Furthermore, no other
line joining any point on gl to any point on
gS lies below the line PI Qt" Hence, this line
represents the true equilibriunl state of the
system, and the compositions PI a,od QI are
the liquidus and solidus compositions at
1300 oe.

As T is decreased to 1100 °C, the points
of common tangency are displaced to
higher concentrations of Ge. For T<937
gS < gl at all conlpositions.

It was shown in Fig. 1-4 that if a tangent
is drawn to a Gibbs energy curve, then the
intercept of this tangent on the axis at Xi =1
is equal to the partial Gibbs energy or
chemical potential gj of component i. The
COlnlllon talzgent COllstructioll of Fig. 1

ensures

(1-60)

VVll.&lJ.\""U.J.J.,,",~ are
order of a few of a degree per
bar change in P. Hence, the effect of pres­
sure upon the phase diagram is generally
negligible unless the pressure is of the or­
der of hundreds of bars. On the other hand,
if gaseous phases are involved then the ef­
fect of pressure is very important. The ef­
fect of pressure will be discussed in Sec.

1.5.2 Thermodynamic
of Phase Diagrams

In this section we first consider the ther­
modynamic origin of simple "lens-shaped"
phase diagrams in binary systems with
complete liquid and solid miscibility.

An example of such a diagram was given
in Fig. 1-5. Another example is the Ge-Si
phase diagram' in the lowest panel of Fig.
1-6 (Hansen, 1958). In th~ upper three pan­
els of Fig. "1-6, the 11101ar Gibbs energies of
the solid and liquid phases, gS 'and gl, at
three temperatures are shown to scale. As
illustrated in the top panel, gS varies with
composition between the standard molar
Gibbs energies of pure solid Ge and of pure
solid Si, gg~~) and g~fS), while gl varies

between the standard molar Gibbs energies
of the pure liquid components gg~1) and
gO(I)

Si .

The difference between gg~1) and g~~S) is
equal to the standard molar Gibbs energy
of fusion (melting) of pure Si, ~g~J(Si)=

(g~~l)_g~fS»)" Silnilarly, for Ge, ~g~)(GC)=

(gg~l)_gg~~»). The Gibbs energy of fusion of
a pure component may be written as:
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Figure 1-6. Ge-Si phase diagrarll at
P= I bar (after Hansen, 1958) and
Gibbs energy composition curves at
three temperatures, illustrating the com­
mon tangent construction (reprinted
from Pelton, 1983).
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Ge and Si are equal in the solid and liquid
phases at equilibrium. That is:

( 1-65)

(1-64)

(1-63)

~gbe - ~gGe = - ~g?(Ge)

or

Using Eq. (1-32), \ve can write Eq. (1-63)
as:

If we rearrange Eq. (1-61), subtracting
the Gibbs energy of fusion of pure Ge.,
~g~(Ge) =(gg~1) - gg~S»), from each side, we
get:

(gbe - gg~») - (gGe - gg~~»)

= _ (g0(l) _ gO(S»)
Ge Ge

(1-61 )

( 1-62)

gl _ gS
Ge - Ge

g l _ gS
Si - Si

This equality of chen1ical potentials was
shown in Sec. 1.4.2 to be the criterion for
phase equilibrium. That is, the common
tangent construction simultaneously mini­
mizes the total Gibbs energy and ensures
the equality of the chemical potentials,
thereby showing that these are equivalent

for equilibrium between phases.
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shown in 1 A 0
typical of most metals. However, when the
components are ionic compounds such as
ionic oxides, halides, etc., /lsP can be sig­
nificantly larger since there are several
ions per formula unit. Hence, two-phase
"lenses" in binary ionic salt or oxide phase
diagrams tend to be "fatter" than those
encountered in alloy systems. If we are
considering vapor-liquid equilibria rather
than solid-liquid equilibria,
shape is determined
vaporization, /ls~. Since t1s~ is usually an
order of magnitude larger
phase (liquid + vapor) lenses tend to be

Figure 1-7. Phase diagranl of a systenl A-B \vith
ideal solid and liquid solutions. Melting points of A
and Bare 800 and 1200 K. respectively. Diagrams

are calculated for entropies of fusion 6S.~A)= 6S:~B) =
10 and 30 llmol
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solid Ge as standard state) the solid solu­
'tion on the solidus. Starting with Eq. (1-
62), we can derive a similar expression for
the other component:

RT"lnaki - RT aSi = - (1-66)

Eqs. (1-65) and (1-66) are equivalent to the
common tangent construction.

It should be noted that absolute values of
Gibbs energies cannot be defined. Hence,
the relative positions of gg~l) and g~ll) in
Fig. 1-6 are completely arbitrary. However,
this is immaterial for the preceding discus­
sion, since displacing both g~P) and g~fS) by
the same arbitrary amount relative to gg~)

and gg~~) will not alter the compositions of
the points of common tangency.

It should also be noted that in the present
discussion of equilibrium phase diagrams
we are assuming that the physical dimen­
sions of the single-phase regions in th,e
system are sufficiently large that surface
(interfacial) energy contributions to the
Gibbs energy can be neglected. For very
fine grain sizes in the sub-micron range,
however, surface energy effects can notice­
ably influence the phase boundaries.

The shape of the two-phase (solid + liq­
uid) "lens" on the phase diagram is deter­
mined by the Gibbs energies of fusion,
~g~, of the components and by the mixing
terms, l:ig S and Dt.g l

• In order to observe
how the shape is influenced by varying
t1g?, let us consider a hypothetical systell1

B in which /lgS and !i.g 1 are ideal Raoul­
tian CEq. (1-45». Let Tt~A)=800 K and
T~B)= 1200 K. Furthermore, assume that
the entropies of fusion of A and B are equal
and temperature-independent. enthalp­
ies of fusion are then given from Eq. (1-60)
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( 1-67)

( 1-68)

Cl.gv(i) = ti.g~(i) + R T In P

( 1-69)
~gv(Zn)=(l15300-97.71 T)+RTlnP

where Cl.gv(i) is the standard Gibbs energy
of vaporization (when P = 1 bar), which is
given by:

the equilibrium vapor and liquid composi­
tions. The phase'diagram depends upon the
Gibbs en~rgies of va.porization of the com­
ponents ilgv(Zn) and Cl.gv(~fg) as shown in
Fig. 1-8.

To generate the isothermal pressure­
co~position (P-X) phase diagram in the
lower panel of Fig. 1-8 we require the
Gibbs energies of vaporization as functions
of P. Assuming monatomic ideal vapors
and assuming that pressure has negligible
effect upon the Gibbs energy of the liquid,
we can write:

A similar expression can be derived for the
other component Mg.

At constant temperature, then, the curve
of gV in Fig. 1-8 descends relative to gl as
the pressure is lowered, and the P-X phase
diagranl is generated by the comnlon tan­
gent construction. The diagram at 1250
in Fig. 1-8 was calculated under the as­
sUlnption of ideal liquid and vapor mixing
(gE(l)= 0, gE(v)= 0).

P-X phase diagrams involving liquid­
solid or solid-solid equilibria can be cal­
culated in a fashion through the fol-

For example, the enthalpy of vaporization
of Zn is D.h~(Zn)= 115300 llmol at its nor~
olal boiling point of 1180 K (Barin et aI.,
1977). Assuming that ~h~ is independent
of T, we calculate from Eq. (p -68) that
Cl.se(Zn) = 115300/1180 = 97.71 llmol K.
From Eq. (1-67), Cl.gv(Zn> at any T and P is
thus given gy:

1.0
Wg

0.8

UQUID
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VAPOUR

0.4 0.6

VAPOUR

0.2

two
solutions of different crystal structure, the
shape is determined entropy of
solid-solid transformation, which is usu­
ally smaller than the entropy of fusion by
approximately an· order of magnitude.
Therefore two-phase (solid + solid) lenses
tend to be very narrow.

1.5.3" Pressure-Composition Phase
Diagrams

Let us consider liquid - vapor equilib­
as an

example the Zn - Mg system. Curves of gV
and gl can be drawn at any given T and P,
as in the upper panel of Fig. 1-8, and the

XMg --....

Figure 1...8.. Pressure-composition phase diagram
of the Zn - Mg system at 1250 K calculated for ideal
vapor and liquid solutions. Upper panel illustrates
common construction at a constant pressure.
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state
both pure components. However,
system gE(l) < gE(s), so that gS presents a
flatter G.urve than ,does gl and there exists a
central composition region in which gl < if.
Hence, there are two common tangent
lines, PI QI and P2Q2. Such a situation
gives rise to a phase diagram with a mini­
mum in the two-phase region, as observed
in the Na2C03-K2C03 system (Dessu­
reault et al., 1990) shown in Fig. 1-10. At a
composition and temperature correspond­
ing to the minimum point, liquid
of the same composition in
rlum.

A two-phase region with a mInimum
point as in Fig. 1-1omay be thought of as a
two-phase "lens" which has been "pushed
down" by virtue of the fact that the liquid is
relatively more stable than the solid. Ther­
modynamically, this relative stability is ex­
pressed as gE(I) < gE(s).

Conversely, if gE(I) > gE(s) to a suffici·ent
extent, then a two-phase region with a
maximum will result. Such maxima in (liq­
uid + solid) or (solid + solid) two-phase re­
gions are nearly always associouted with the
existence of an intermediate phase, as will
be discussed in Sec. I .5.10.

effect of pressure energy
change for the transformation one
of pure component i from an a-phase to a
~-phase:

. p

~ga~~ = ~g~~~ + J(vf - v?,) dP (1-70)
P=l

where ~g~-+f3 is the standard (P= 1 bar)
Giobs energy of transformation, and vp and
vf are the molar volumes.

in Two-Phase Regions

As discussed in 1 the Gibbs en-
ergy of mixing ~gm may be expressed as
the sum of an ideal term ~g::;eal and an ex­
cess term gE. As has just ,been shown in
Sec. 1.5.2, if ~g~ and ~g~l for the solid
and liquid phases are both ideal, then a
"lens-shaped" two-phase region always re­
sults. However most systems even ap­
proximately ideal behavior is the exception
rather than the rule.

Curves of gS and gl for a hypothetical
system A-B are shown schematically in
Fig. 1-9 at a constant temperature (below
the melting points of pure A and B) such
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Figure 1-9. Isothernlal Gibbs energy-composition
curves for solid and liquid phases in a system A-B in
which gEO»gE(s). A phase diagram of the type of

1- 0 results.

Figure 1-10. Phase diagram of the K2C03-Na2C03

system at P=1 bar (Dessureault et at.. 1990).
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have less of an effect upon gE(I) in the liq­
uid phase owing to the greater flexibility
the liquid structure to accommodate differ­
ent atonlic sizes, valencies, etc. Hence, a
solid-solid miscibility gap is often asso­
ciated with a minimunl in the two-phase
(solid + liquid) region, as is the case in the
Au

Figure 1-11. Phase diagraln (after Hultgren et aI.,
1973) and Gibbs energy-composition curves of solid
solutions for the Au-Ni system at P= 1 bar. Letters
Io4 SH indicate spinodal points (Reprinted fronl Pelton,
1983).
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If ff> 0, then the solution is thermody­
namically less stable than an ideal solution.
This can result from a large difference in
size of the component atoms, ions or mole­
cules, which will lead to a (positive) lattice
strain energy, or from differences in elec­
troni~ structure, or from other factors.

In the Au-Ni system, gE is positive in
the solid phase. In the top panel of Fig. 1-11,
gE(s) is plotted at 1200 K (Hultgren et al.,
1973) and the ideal Gibbs energy of
mixing, ~g::eal, is also plotted at 1200 K.
The sum of these two terms is the Gibbs
energy of mixing of the solid solution,
~g;", which is plotted at 1200 K as well
as at other temperatures in the central panel
of Fig. 1-11. Now, from Eq. (1-45), ~g~~eal

is always negative and varies directly
with T., whereas gE varies less rapidly with
temperature. As a result, the sum D.g~l=
D.g~~cal + gE becomes less negative as T de­
creases. However, the limiting slopes to the
D.g~cal curve at XAu = 1 and XNi = 1 are both
infinite, whereas the limiting slopes of gE

are always finite (Henry's Law). Hence,
D.g~l will always be negative as XAu~ 1
and XNi~ 1 no matter how low the temper­
ature. As a result, below a certain tempera­
ture the curve of D.g~l will exhibit two neg­
ative "humps". Common tangent lines
PI QI' P2 Q2' P3 Q3 to the two humps at dif­
ferent temperatures define the ends of tie­
lines of a two-phase solid-solid miscibility
gap in the Au-Ni phase diagram, which is
shown in the lower panel in Fig. 1-11
(Hultgren et al., 1973). The peak of the gap
occurs at the critical or canso/lite tempera­
ture and composition, Tc and Xc.

When gE(s) is positive for the solid phase
in a system it is usually also the case th~t

gE(I) < gE(s) since the unfavorable factors
(such as a difference in atomic dimensions)

are causing to be positive
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The mqre positive gE is in a system, the
higher is Tc and the wider is the miscibility

at
so positve that higher than

imum in the (solid + liquid) region. The re­
will Hbe a phase diagram such as that of

the MgO-CaO system shown in Fig. 1-12
(Doman et al., 1963; Wu, 1990).

The lower panel of Fig. -1-12 shows the
Gibbs energy curves at 2450°C. The two
common tangents define two two-phase re­
gions. As the .temperature is decreased be­
low 2450 °C, the g5 curve descends relative
to gl and the two points of tangency PI
and P2 approach each other at T =
2374°C, PI and P2 become coincident at
the composition E. That is, at T= 2374 °C

exhibits two ... 'V'II.....- .......... ,..,'"..1II,-.,• ...,. 1P""I>,"'1II1f"1l"'~

cated by
are as
phase diagram their locus traces out the
spinodal curve (Fig. 1-11). The spinodal
curve is not part of the equilibrium phase
diagram, but it is important in the kinetics
of P#hase separation, as discussed in Chap­
ter 6 (Binder and Fratzl, 2001).

1.5.6
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Figure 1-12.. Phase diagranl
at P= 1 bar (after Dornan et
411., 1963, and \Vu .. 1990) and
Gibbs cnergy-conlposition
curves at 2450°C for the
MgO-CaO system. Solid
MgO and CaO have the
sanle structure.



1.5 Binary Phase Ulaaralms

Under equilibrium conditions the tempera­
ture will constant at T = until all

(1-72)

(1

(1-73)

gl~ = xlCw -11 T)

All T SE(non-config)== /J. 01

1.5.7 Regular Solution Theory

Many years ago Van Laar (1908) showed
that the thermodynamic origin of a great
many· of the observed features of binary
phase diagrams can be illustrated at least
qualitatively by simple regular solution
theory. A simple regtllar solution is one for
which:

re­
action the compositions the phases
will remain fixed at A, Band E. For this
reason the eutectic re.action is called an in­
variant reaction. More details on eutectic
solidification may be found in Chapter 2
(Miiller-Krumbhaar et al., 2001).

g~ = X~ (w - 1] T) ,

where wan.d 1J are parameters independent
of temperature and composition. Substitut­
ing Eq. (1-72) into Eq. (I -29) yields, for
the partial properties:

Several liquid and solid solutions con­
form approximately to regular solution be­
havior, particularly if gE is small. Examples
may be found for alloys, molecular solu­
tions, and ionic solutions such as molten
salts and oxides, among others. (The very
low values of gE observed for gaseous·solu­
tions generally conform very closely to Eq_.
(1-72).)

To understand why this should be so, we
only need a very simple model. Suppose
that the atoms or molecules of the compo­
nents A and B mix substitutionally. If the
atomic (or molecular) sizes and electronic
structures of A and B are similar, then the
distribution will be nearly random, and the
configurational entropy will be nearly
ideal. That is:

(1-71)liquid -+ solidi + solid2

one con-
tacting the two portions of gS curve at
compositions A and B and contacting the gl
curve at This temperature is known as
the eutectic temperature, TE , and the com­
position E is the eutectic composition. For
temperatures below TE , gl lies completely
above the common tangent to the two por­
tions of the gS curve and so for T < TE a
solid":"solid miscibility gap is observed.
The phase boundaries of this two-phase re­
gion are called the solVtls lines. The word
eutectic is from the Greek for "to melt
well". since the system has its lowest melt­
ing point at the eutectic composition E.

This description of the thermodynamic
origin of simple eutectic phase diagrams is
strictly correct only if the pure solid com­
ponents A and B have the same crystal
structure. Otherwise, a curve for gS which
is continuous at all cOlnpositions cannot be
drawn.

Suppose a liquid MgO-CaO solution of
composition XCaO = 0.52 (composition PI)
is cooled from the liquid state very slowly
under equilibrium conditions. At 2450°C
the first solid appears with composition QI.
As T decreases further, solidification con­
tinues with the liquid composition follow­
ing the liquidus curve from PI to E and the
composition of the solid phase following
the solidus curve from QI to A. The rela­
tive proportions of the two phases at any T
are given by the lever rule. At a tempera­
ture just above TE , two phases are ob­
served: a solid of composition A and a liq­
uid of composition E. At a temperature just
below TE , two solids with compositions A
and B are observed. Therefore, at TE , dur­
ing cooling, the following binary ellteerie
reaetioll occurs:
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..,;r ..U'JA""'. (w-1J > 0 and gE>
Simple non-polar molecular

and ionic solutions as salts
ten exhibit approximately regular behavior.
The assumption of additivity of the energy
of pair bonds is probably reasonably realis­
tic for van der Wa'als or coulombic forces.
For alloys, the concept of a pair bond is, at
best, vague, and metallic solutions tend to
exhibit larger deviations from regular be­
havior.

In several solutions it is found
I1JTI < levi in Eq. (1-72). That is, gE=/j./lm

= WXAXB , and to a first approximation
gE is independent of T. This is more often
the case in non-metallic solutions than in
metallic solutions.

1.5.8 Thermodynamic Origin
of Simple Phase Diagrams .Illustrated
by Regular Solution Theory

Figure 1-13 shows several phase dia­
granls, calculated for a h·ypothetical system
A-B containing a solid and a liquid phase
with melting points of Tt~~A)=800 K and
TI~~B)= 1200 K and with entropies of fusion
of both A and B set to 10 Jfmol K, which is
a typical value for nletals. The solid and
liquid phases are both regular \vith temper­
ature-independent excess Gibbs ene~gies

gEes) = (V sXA XB and gE(l) = (VI XA XB _

The parameters (OS and (V' have been varied
systematically to generate the various pan­
els of Fig. 1-13.

In panel (n) both phases are ideal. Panels
(I) to (r) exhibit nlinima or maxima de­
pending upon the sign and magnitude of
(gE<I)_ gE<s»), as has been discussed in Sec.
1.5.4. In panel (h) the liquid is ideal but
positive deviations in the solid give rise to
a solid-solid miscibility gap as discussed
in .6. to

We now assume that energIes
EAA , EBB and CAB pairs
are independent of temperature and com­
position and that the average nearest­
neighbor coordination number, is also
constant. Finally, we assume that the en­
thalpy of mixing results mainly from the
change in the total energy nearest-neigh­
bor pair bonds.

In one mole of solution there are (N°
"-..I ""-I A A ..........Ja where

N° is Avogadro's number. Since the distri­
bution is assumed random, the probability
that a given bond is an A-A bond is equal
to Xi. The probabilities of B-B and A-B
bonds are, respectively, X~ and 2XA XB •

The molar enthalpy of mixing is then equal
to the sum of the energies of the nearest­
neighbor bonds in one mole of solution,
minus the energy of the A-A bonds in XA

moles of pure A and the energy of the B- B
bonds in XB moles of pure B:

~/lnl = (N° 2/2)

x (X~ EAA + Xa £BB + 2 XAB eAB )

- (N° 2/2) (XA £AA) - (N° 2/2) (XB £BB)

=(N° Z) [£AB - (£AA + £Bo)/2] XAXB

=WXAXB (1

We now define 0AB' GAA and GBB as the
vibrational entropies of nearest-neighbor
pair bonds. Following an identical argu­
ment to that just presented for the bond
energies we obtain:

sE(non-config) (1-76)

= (N° [OAB - (GAA + 0BB)/2] = I} XAXB

Eq. (1-72) has thus been derived. If A-B
bonds are stronger than A-A and B B
bonds, then (£AB-l}ABT)<[(£AA-l}AAT)/2

+ (£BB - 1}BB /2]. Hence, (ev - '} T) < 0
and < O. That the solution is 1P'".c::I>!I""llr1lL::arL::ar1l

more Bare
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Figure 1-13. Topological changes in the phase diagram for a systen1 A-B with regular solid and liquid phases~

brought about by systematic changes in the regular solution parameters (fi' and mI. Melting points of pure A and
Bare 800 K and 1200 K. Entropies of fusion of both A and Bare 10.0 Jhnol K (Pelton and Thompson, 1975).
The dashed curve in panel (d) is the metastable liquid miscibility gap (Reprinted from Pelton, 1983).

panel (c), an increase in gE(s) results in a
widening of the n1iscibility gap so that the
solubility of A in solid B and of B in solid
A decreases. Panels (a) to (c) illustrate that
negative deviations in the liquid cause a

U""""'''''''&4£J_'''''_.'' of the liquid with

sultant lowering of the eutectic tempera­
ture.

Eutectic phase diagrams are often dra\vn
with the maximun1 solid solubility occur­
ring at the eutectic temperature (as in Fig.
1-1 (d) Fig. 1-13,
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gap is ob­

served as shown in Fig. 1-13(d). For exam':'

(or "S-shaped") Si02 liquidus heralds the
existence of a metastable miscibility gap of
importance in glass technology.

1.5.10 Intermediate Phases

The phase diagram of the Ag-Mg
system (Hultgren et al., 1973) is

1-15(d). An intermetallic ~',

seen centered approximately about the
composition XMg =0.5. The Gibbs energy
curve at 1050 K for such an intermetallic
phase has the form shown schematically in
Fig. 1-15(a). The curve gf)' rises quite rap­
idly on either side of its minimum, which
occurs near XMg =0.5. As a result, the ~'

phase appears on the phase diagram only
over a limited composition range. This
form of the curve gB' results from the fact
that when XAg ::= XMg a particularly stable

, crystal structure exists in which Ag and Mg
atoms preferentially occupy different sites.
The two comnlon tangents PI QI and P2 Q2
give rise to a maximunl in the two-phase
(B' + liquid) region of the phase diagram.
(Although the maximum is observed very
near XM ,,=0.5, there is no thermodynamic

='

reason for the maximum to occur exactly at
this composition.)

Another intermetallic phase, the E phase,
is also observed in the Ag-Mg system,
Fig. 1-15. The phase is associated with a
peritectic invariant ABC at 744 K. The
Gibbs energy curves are shown u_a,D_ ....... _ ....

cally at the peritectic temperature in Fig.
1-15(c). One common tangent line can be
drawn to gl, gt\' and gEe

Suppose that a liquid alloy of composi­
tion XMo =0.7 is cooled very slowly

t::

the liquid state. At a temperature just
a .... _,_11._

(solid) (1Liquid B ~ Liquid +

mately T = 950
not the case even
lutions.

The temperature remains constant at
1692 °C and the compositions of the phases
remain constant until all of liquid B is con­
sumed. Cooling then continues with pre­
cipitation of solid Si02 with the equilib­
rium liquid composition following the liq­
uidus from point to the eutectic E.

to 1-13, we see in panel
(d) that the positive deviations in the liquid
in this case are not large enough to produce
immiscibility, but they do result in a flat­
tening liquidus, which indicates a
"'tendency to immiscibility". If the nuclea­

DnaSf~S can

1.5.9 Immiscibility -- Monotectics

In Eig. 1-13(e), positive deviations in
the liquid have given to a liquid-liquid
miscibility gap. The system
(Wu, 1990), shown in Fig. 1- exhibits

a a
composition XSi02 = 0.8 is cooled slowly
from high temperatures. T = 1815 °C the
miscibility g~p boundary 'is crossed and a
second liquid layer appears with a compo­
sition of XSi01=0.97. As the temperature is
lowered further, the composition of each
liquid phase follows its respective phase
boundary until, at 1692°C, the Si02-rich
liquid has a composition of XSi02 = 0.99
(point B), and in the CaO-rich liquid
XSi01 = 0.74 (point A). At any temperature,
the relative amounts of the two phases are
given by the lever rule.

At 1692°C the following invariant bi­
nary' t1l011otectic reactiol1 occurs upon cool­
Ing:
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with all three p~ases at fixed compositions
(at points A, B and For an alloy with

composition between points and
B the reaction proceeds until all the liquid
has been consumed. In the case of an alloy
with overall composition between Band C,
the ~' phase will" be the first to be com­
pletely consumed.

Peritectic reactions occur upon cooling
with formation of the product solid (E in
this example) on the surface of the reactant
solid (~'), thereby forming a coating which
can prevent further contact between the re­
actant solid and liquid. Further reaction
may thus be greatly retarded so that equi­
librium conditions can only be achieved by
extremely slow cooling.

The Gibbs energy curve for the E phase,
gE, in Fig. 1-15(c) rises more rapidly on ei­
ther side of its minimum than does the .
Gibbs energy gf)' for the ~' phase in' Fig. -1-
15(a). As a result, the width of the single­
phase region over which the E phase exists
(sometimes called its rallge of stoic/ziollle­

- tr)' or hOlnogelzeit), r(llll.:e) is narro\ver than
for the ~' phase.

In the upper panel of Fig. 1-14 for the
CaO-Si02 system, Gibbs energy curves at
1500°C for the liquid and CaSi03 phases
are sllown schematically. gO.5(CaSiO.d rises
extremely rapidly on either side of its min-
imum. (We write gO.5(CaSiO.d for 0.5 moles
of the compound in order to normalize toa
basis of one nl01e of components CaD and
SiO..,.) As a result, the points of tangency
QI ~nd Q:! of the common tangents PI QI
and P2 Q2 nearly (but not exactly) coincide.
Hence, the range of stoichiometry of the
CaSi03 phase is very narrow (but never
zero). The two-phase regions labelled
(CaSi03 + liquid) in Fig. 1-14 are the t\VO
sides of a t\vo-phase region that passes
through a maximum at 1540 °C just as the

b)
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(1
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E
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Figure 1-15. Ag-Mg phase diagranl at P= 1 bar (af­

ter Hultgren at aI., 1973) and Gibbs energy curves at
three tenlperatures.

a p' are
at equilibrium. At a temperature just below
744 K the two phases at equilibri~m are ~'

of conlposition A and E of composition B.
The following invariant billar.)' !Jeritectic

reaction thus occurs upon cooling:



mum In
single-phase region is so narrow, we refer
to CaSi03 as a stoichiometric compoLlnd.
Any deviation in composition from the
stoichiometric 1: 1 ratio of CaO to Si02

results in a very large increase in Gibbs
energy.

The E phase in Fig. 1-15 is based on the
stiochiometry AgMg3. The Gibbs energy
curve, Fig. 1-15(c), rises extremely rapidly
on the Ag side of the minimum, but some­
what less steeply on the Mg side. As a re­
sult, Ag is virtually insoluble in AgMg3 ,

whil~ Mg is sparingly soluble. Such a
phase with a narrow range of homogeneity
is often called a non-stoichiol1letric com­
potlnd. At low temperatures the ~' phase
exhibits a relatively narrow range of stoi­
chiometry about the I: 1 AgMg composi­
tion and can properly be called a com­
pound. However, at higher temperatures it
is debatable whether a phase with such a
wide range of composition should be called
a "'compound":

FrOIll Fig~ 1-14 it can be see'n that if stoi­
chiometric CaSi03 is heated it will melt
isothernlally at 1540°C to forlll a liquid of
the same composition. Such a compound is
called cOllgruefltly 11ze/til1g or simply a COIl­
grllellt COI11POllI1d. The compound Ca2Si04

in Fig. 1-14 is congruently melting. The ~'

phase in Fig. 1-15 is also congruently melt~

ing at the composition of the liquidus/sol­
idus maximum.

It should be noted with regard to the con­
gruent melting of CaSiO) in Fig. 1-14 that
the limiting slopes dT/dX of both branches
of the liquidus at the congruent melting
point (1540 °C) are zero since we are really
dealing with a maximum in a two-phase re­
gion.

The AgMg3 (E) compound in Fig. 1-15 is
said to I1zelt incongrllelztl.y. If solid AgMg)
is heated it will melt isothermally at 744 K

the reverse of the peritectic reaction,

1.5 Phase Diagrams

( to a
C and another solid phase, ~', of composi­
tion A.

Another example of an incongrtlent
compound is Ca3Si207 in Fig. 1-14, which
melts incongruently (or peritectically) to
form liquid and Ca2Si04 at the peritectic
temperature of 1469 °C.

An incongruent compound is always as­
sociated with a peritectic. However, the
converse is not necessarily true. A peritec­
tic is not always associated with an inter­
mediate phase. See, for example, Fig. 1­
13 (i).

For purposes of phase diagram calcula­
tions involving stoichiometric compounds
such as CaSi03 , we may, to a good approx­
imation, consider the Gibbs energy curve,
90.5 (CaSi0.l), to have zero width. All that
is then required is the value of gO.5(CaSiO~d

at the minilTIum. This value is usually
expressed in ternlS of the ·Gibbs el'zerg.v

· . 0of fllslon of the compound, tlg 1'(0.5 CaSiO.d

or the Gibbs energ.y of formatioll
o .,

L\gforrll(O.5CuSiO
J

) of .the compound from
the pure solid components CaO and Si02

according to the reaction: 0.5 CaO (sol) +
0.5 Si02 (sol) =0.5 CaSi03 (sol). Both these
quantities are interpreted graphically in
Fig. 1-14.

1.5.11 Limited Mutual Solubility ­
Ideal Henrian Solutions

In Sec. 1.5.6, the region of two solids in
the MgO-CaO phase diagram of Fig. 1-12
was described as a miscibility gap. That is,
only one continuous gS curve was assumed.
If, somehow, the appearance of the liquid
phase could be suppressed, then the two
solvus lines in Fig. 1-12, when projected
upwards, would meet at a critical point
above which one continuous solid solution
would exist at conlpositions.
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(Care mu~~ exercised for solutions other
than simple substitutional solutions. Henry's
Law applies only if the ideal activity is defined
correctly, as will be discussed in Sec. 1.10).

Treating, then, -the h.c.p. (Mg) phase
in the Ag-Mg system (Fig. l-15(b» as a
Henrian solution we write:

gh.cop. = (X go(rococo) + X gO(hocopo»
Ag Ag Mg Mg

+ R T (XAg aAg + XMg In a Mg )

=(X go(rocoCo) + X gO(h.copo» (1
Ag Ag Mg Mg

+ RT (XAg In (r2g XAg ) + Xl\tlg InXMg )

where aAg and r2g are the activity and ac­
tivity coefficient of silver with respect to
pure f.c.c. silver as standard state. Let us
now combjne terms as follows:

gh.c.p. = [XAg (gl(:·c.c.) + R T In. Y~g)

+ X Mg g~~oc.p.)] (1-81)

+ R T (XAg In XAg + XMg In XMg )

Since Y~(l is independent of cOlnposition,
e

let us define:

From Eqs. (1-81) and (1-82) it can be seen
that, relative to gOJ~~·c.P.) and to the hypothet­
ical standard stat~ g<J...(~.c.p.-Mg) defined in

:;, .

this way, the h.c.p. solution is ideal. Eqs.
(1-81) and (1-82) are illustrated in Fig. l­
IS (b). It can be seen that as y20 beconles

eo

larger, the point of tangency N moves
to higher Mg concentrations. That is, as
(g~\~'C'P.-f\1g)_ g~~'c.c.» becomes more posi-

e _

tive, the solubility of in 'h.c.p. (Mg)
creases.

It must be stressed that g~(t~·c.p.-Mg) as de-
e

fined by Eq. (1-82) is solvent-dependent.
That is, g~(;.c.p.-rvtg) is not the same as, say,
g~(tC.P.-Cd) for Ag in dilute h.c.p. (Cd) solid

gOCh.c.p.•Mg) = (g.()(f.c.c.·) + R T In yO) ( 1-82)
Ag Ag Ag

Phase

a ....... _'-,1_JI. '1L1J-''''JIl._&&

pure solid components
crystal structure, as is the case

CaD. However, consider the
system, Fig. 1-15, in which the terminal
(Ag) solid solution is face-centered-cubic
and the terminal (Mg) solid solution is hex­
agonal-close-packed. In this case, one con­
tinuo]Js curve for gS cannot be drawn. Each
solid phase must have its own separate
Gibbs energy curve, as shown schemati­
cally in Fig. 1-15(b) for the h.c.p. (Mg)
phase at 800 K. In this figure, gOJ~oc.po) and
g~<f,.c.c.) are the standard molar Gibbs ener-

eo

gies of pure h.c.p. Mg and pure f.c.c. Ag,
while g~<!,.copo.Mg) is the standard molar

o

Gibbs energy of pure (hypothetical) h.c.p.
Ag in the h~c.p. (Mg) phase.

Since the solubility of Ag in the h.c.p.
(Mg) phase is limited we can, to a good ap­
proxi~ation, describe it as a Henrian ideal
soltltion. That is, when a solution is suffi­
ciently dilute in one component, we can ap­
proximate g~ol~lc~ RT InYsolule by its value
in an infinitely dilute solution. That is, if
XSOIUIC is small we set YSOIUIC= Y~{)lutc where
Y~olute is the Henrian activity coefficiel1t at
~solule= O. Thus, for sufficiently dilute solu­
tions we assume that YSOIU1C is independent
of composition. Physically, this means that
in a very dilute solution there is negligible
interaction among solute particles because
they are so far apart. Hence, eachaddi­
tional solute particle added to the solution
produces the same contribution to the ex­
cess Gibbs energy of the solution and so g~

solute= dGE/dnsolute= constant.
From the Gibbs-Duhem equation, Eq.

(1-56), if dg~Olutc= 0, then dg~olvent = o.
Hence, in a Henrian solution YSOIU1C is also
constant and equal to its value in an
nitely dilute solution. That is, YSOIUlC= I and
the solvent behaves ideally. In summary
then, for dilute solutions (Xsolvent == 1)

's
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.5 Phase

Gibbs is """lft,4J1..II.""""'"

the number of degrees offreedoln or vari­
ance of the system and is the number of pa­
rameters ~hich can and must be specified
in order to completely specify the state of'
the system.

Binary temperature-composition phase
diagrams are plotted at a fixed pressure,
usually 1 bar. This then eliminates one de­
gree of freedom. In a binary system, C = 2.
Hence, for binary isobaric T - X diagrams
the phase rule reduces to:

F=3-P

Binary T - X diagrams contain single­
phase areas and two-phase areas. In the sin­
gle-phase areas, F =3 - I =2. That is, tem­
perature and composition can be specified
independently. These regions are thus
called bivarial1t. In two-phase regions,
F = 3 - 2 = 1. If, say, T is specified, then the
compositions of both phases are deter­
mined by the ends of the tie-lines. Two­
phase regions are thus termed ullivariant.
Note that the overall composition can be
varied within a two-phase region at con­
stant T, but the overall composition is not a
parameter in the sense of the phase rule.
Rather, it is the compositions of the indi­
vidual phases at equilibriuI11 that are the
parameters to be considered in counting the
number of degrees of freedom.

When three phases are at equilibrium in
a binary system at constant pressure,
F = 3 - 3 = O. Hence, the compositions of
all three phases, as well as T, are fixed.
There are two general types of three-phase
illvarial'zts in binary phase diagranls. These
are the eutectic-1)'pe and peritectic-t.ype
invariants as illustrated in Fig. 1-16. Let
the three phases concerned be called a .. ~
and y, with ~ as the central phase as sho\vn
in Fig. 1-16. The phases a, ~ and y can be
solid, liquid or gaseous. At the eutectic­
type invariant, the following invariant re-

(1-83)

(1-84)

RT In rio = a - b T

(l(T P Xu Xu. xu. )gi , , l' 2' 3'· · ·

1.5.12 Geometry of Binary Phase
Diagrams

The geometry of all types of phase dia­
of any number of components is

governed ,by the Gibbs Phase Rule.
Consider a system with C components in

which P phases are in equilibrium. The
system is described by the temperature, the
total pressure and the composition of each
phase. In a C-component system, (C- 1) in­
dependent mole fractions are required to
describe the composition of each phase
(because LXi = I). Hence, the total number
of variables required to describe the system
is [P(C -1) + 2]. However, as shown in Sec.
1.4.2, the chemical potential of any compo-
nent is the same in all phases (a, ~. y, ... )'
since the phases are in equilibrium. That is:

where a and b are constants. If data are lim­
ited, it can further be assumed that b == 0 so
that R T In y? == constant.

"""...." .... .L.L.I.""".a.""'.uu... ..:J! can ..... V ....IIolft,4JLA

be expressed as functions of temperature:

F = P (C - 1) + 2 - C (P - I)

=C-P 2 (1

where g11.(T, P, Xf, Xf, Xf, ... ) is a func­
tion of temperature, of total pressure, and
of the mole fractions Xr, Xf, Xf, ... in
the a phase; and similarly for the other
phases. Thus there are C (P - 1) indepen­
dent equations in Eq. (1-84) relating the
variables.

Let F be the differences between the
number of variables and the number of
equations relating them:

= gf(T, P, xp, x!~, xJ\ ...)
- yeT P xY XY xy ) -- 9i , , I , 2' 3'· · · -. · ·

'-"; }
1



1-13(k) a=
y = liquid2 • The syntectic

11 +12~ s; (iii) p.eritectoids in which a.=
solid I' ~ =solid2 , Y=solid3 • The peritec­
toid reaction is s I + S3 -+ S2.

An important rule of construction which
applies to invariants in binary phase dia­
grams is illustrated in Fig. 1-16. This ex­
tension rlile states that at an invariant the
extension of a boundary of a two-phase re­
gion must pass into the adjacent two-phase
region and not into a single-phase re"gion.
Examples correct
constructions are given in Fig. 1-16. To
understand why the "incorrect extensions"
shown are not right consider that the (a + y)
phase boundary line indicates the composi­
tion of the y-phase in equilibrium with the
a-phase, as determined by the COlnmon
tangent to the Gibbs energy curves. Since
there is no reason for the Gibbs energy
curves or their derivatives to change dis­
continuously at the invariant tenlperature,
the extension of the (a + y) phase boundary
also represents the stable phase boundary
under equilibrium conditions. Hence, for
this line to extend into a region labeled as
single-phase y is incorrect.

Two-phase regions in binary phase dia­
grams can terminate: (i) on the pure com­
ponent axes (at XA =1 or XB = I) at a trans­
formation point of pure A or B; (i i) at a
critical point of a miscibility gap; (iii) at an
invariant. Two-phase regions can also ex­
hibit maxima or minima. In this case, both
phase boundaries must pass through their
maXimUI11 or mininlum at the same point as
sho\vn in Fig. 1-16.

All the geol1zetricCllllllits of construction
of binary phase diagrams have now been
discussed. The phase diagram of a binary
alloy system will usually exhibit several of
these units. As an example, the Mo
phase (Kubaschewski, 1982) is

11~f"Il""'5l""'''''' of Materials

correct
extensions

( 1-87)

( 1-88)

Maximum
ex

Peritectic-type

invariant

a+fJ
p

I'

~---------l'/~ Incorrec!
I~ extensfons
I

a+fJ

-----~------==-

ex

a~aMinimum

correct
extensions

correct
extensions

Figure 1-16. Some geonletrica) units of binary phase
diagrams, illustrating rules of construction.

whereas at the peritectic-type invariant the
invariant reaction upon cooling is:

a+y~~

action occurs isothermally as the system is
cooled:

Some examples of eutectic-type invari­
ants are: (i) elltectics (Fig. 1-12) in which
a = solid I' ~ = liquid, Y= solid2 ; the eutectic
reaction is I -+ S1+ S2; (ii) nlOllotectics (Fig.
1-14) in which a=liquid t , ~=liquid2' y=­
solid; the monotectic reaction is 12-+ II + s;
(iii) elltectoi{ls in which a =
solid I' ~ = solid:!, Y= solid3 ; eutectoid
reaction is S2-+SI+S3; (iv) cailitectics in
which a = liquid, ~ = solid I' Y= solid2 ; the
catatectic reaction is s I -+ I + S2. .

Some examples of peritectic-type invari­
ants are: (i) peritectics (Fig. 1-15) in which
a=liquid, ~=solidl' y=solid2 • The
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1.5 Binary Phase Diagrams
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L.. Figure 1-17. Fe-Mo

700 phase diagralTI at P= 1 bar
0.0 0.2 0.4 0.6 0.8 1.0 (Kubaschewski,. 1982).

X Mo

shown in Fig. 1-17. The invariants in this
system are peritectics at 1540, 1488 and
1450 ac; eutectoids at 1235 and 1200°C;
peritectoids at 1370 and 950 ac. The two­
phase (liquid +y) region passes through a
minimum at XMo = 0.2.

Between 910°C and 1390 ac is a two­
phase (a+y) y-loop. Pure Fe adopts the
f.c.c. y structure between these two temper­
atures but 'exists as the b.c.c. a phase at
higher and lower temperatures. Mo, how­
ever, is more soluble in the b.c.c. than
in the f.c.c. structure. That is, g~}~.c.c.-Fe)

< gRJ~·c.c.-Ft:) as discussed in Sec. 1.5.11.
Therefore, small additions of Mo stabilize
the b.c.c. structure.

In the CaO-Si02 phase diagram,
1- we eutectics at 1439, 1

and 2051 °C; a monotectic at 1692°C; and
a peritectic at 1469 ac. The compound
Ca3SiOs dissociates upon heating to CaO
and Ca2Si04 by a peritectoid reaction at
1789 ac and dissociates upon cooling to
CaG and Ca2Si04 by a eutectoid reaction at
1250 ac. Maxima are observed at 2130 and
1540 ac. At 1470 °c there is an invariant
associat~d with the tridymite --+ cristobalite
transition of Si02 • This is either a peritec­
tic or a catatectic depending upon the rela­
tive solubility of eaO in tridymite and cris­
tobalite. However, these solubilities are
very small and unknown.
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1.6.2 Polynomial Representation
of Excess Properties

Empirical equations are required to ex­
press the excess thermodynamic properties
of the solution phases as functions of com­
position and temperature. For many simple
binary substitutional solutions, a good rep­
resentation is obtained by expanding the
excess enthalpy and entropy as polynomi­
als in the mole fractions XA and Xs the
components:

hE =XA XB [ho + hi (XB - XA ) (1-89)

+ 1,2 (XS - XA)2 + h3 (XB - XA)3 + ... ]

5E=XAXB[SO+SI(XB-XA) (1-90)

+ 52 (Xs - XA)2 + 53 (XB - XA )3 + ... ]

where the /1; and 5 i are empirical coeffi­
cients. As many coefficients are used as .
are required to represent the data in a
given system. For nlost systems it is a good
approximation to assulne that the coeffi­
cients hi and Sj are independent of tempera­
ture.

If the series are truncated after the first
term, then:

This is the equation for a regular solution
discussed in Sec. 1.5.7. Hence, the polyno­
mial representation can be considered to be
an extension of regular solution theory.
When the expansions are written in terms
of the composition variable (XB-XA ), as in
Eqs. (1-89) and (1-90), they are said to be
in Redlich-Kister fOrl1l. Other equivalent
polynomial expansions such as orthogonal
Legendre series have been discussed by
Pelton and Bale (1986).

Differentiation of Eqs. (1 (1-90)
. (1 )

Diagram Analysis

1.6.1 Thermodynamic/Phase
Optimization

In recent years the development of
solution models, numerical methods and
computer software has permitted a quanti­
tative application of thermodynamics to
phase diagram analysis. For a great many

it now to a
simultaneous critical evaluation of avail­
able phase diagram measurements and of
available therf!lodynamic data (calorimet­
ric data, measurements of activities, etc.)
with a view to obtaining optimized equa­
tions for the Gibbs energies of each phase
which best represent all the data. These
equations are consistent with thermody­
namic principles and with theories of solu­
tion behavior.

The phase diagram can be calculated
from these thermodynatnic equations, and
so one set of self-consistent equations de­
scribes all the thermodynamic properties
and the phase diagram. This technique of
analysis greatly reduces the amount of ex­
perimental data needed to fully character­
ize a system. data can be tested for
internal consistency. The data can be inter­
polated and extrapolated more accurately
and metastable phase boundaries can be
calculated. All the thermodynamic proper­
ties and the phase diagram can be repre­
sented and stored by means of a small set
of coefficients.

Finally, most importantly, it is often
possible to estimate the thermodynamic
properties and phase diagralns of ternary
and higher-order systems from the assessed
parameters for their binary sub-systems, as

II be discussed in Sec. 1.11. analysis
IS most
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each pure component at temperature T is
given by:

.6g? = .6h?(Tc) (1- T/]f)
T

+ J(c~ - c~) (I-liT) dT
Tr

Figure 1-18. LiF-NaF phase diagram at P= 1 bar
calculated from optimized thermodynamic parame­
ters (Sangster and Pelton, 1987). Points are experi­
mental from Holm (1965). Dashed line is theoretical
limiting liquidus slope for negligible solid solubility.

Thermodynamic properties along the liq­
uidus and solidus are related by equations
like Eqs. (1-64) and (1-65). Taking the
ideal activities to be equal to the mole frac­
tions:

R T In 1_ R T In X~ + g~(1) _ g~(S)
I I I

( 1-99)

6t.9°C

OJ-

.2
o
Q; 800
Q.
E
ell....

. where tlIZ~(Tr> is the enthalpy of fusion at
the melting point Tr, and c~ and .c~ are the
heat capacities of the pure liquid and solid.
The following values are taken frool Burin
et ale (1977):

tlg?(LiF) = 14.518 + 128.435 T

+ 8.709 x lO-JT 2 -21.494TlnT

-2.65xI05 T- 1 l/mol (1-97)

~g?(NaF) = 10.847 + 156.584 T

+ 4.950 X 10-3 T'J. - 23.978 T In T

-1.07xI05 T- 1 llmol (1-98)

nerlmo(]ync:lmltCS to Phase Diagram 1"\11i:1IY~II~

excess

1

following expansions

E 2" ihA =XB ~ hj[(XB -XA )
;=0 . 1

- 2; XA(XB-XA )'-] (1-92)

h~ =xl L h,,[(XB - XA)i
i=O . 1

+2;XB (XB-XA )'-] (1-93)

E 2" .
SA =X,a ~ Si[(XB - XA )'

;=0 . I
- 2i XA (XB-XA )'- ] (1-94)

s~ = xl L s;[(XB - XA)i
;=0 . I

+2iXB (XB-XA)'-] (1-95)

Partial excess Gibbs energies, 9f, are
then given by Eq. (1-52).
. Eqs. (1-89) and (1-90), being based upon

regular solution theory, give an adequate
representation for most simple substitu­
tional solutions in which deviations from
ideal behavior are not too great. In other
cases, more sophisticated models are re­
quired, as discussed in Sec. 1.10.

1.6.3 Least-Squares Optimization

Eqs. (1-89),· (1-90) and (1-92) to (1-95)
are linear in terms of the coefficients.
Through the use of these equations, all
integral and partial excess properties (gE,
liE, SE, 9T, h~, sf) can be expressed by
linear equations in terms of the one set of
coefficients {hi's;}. It is thus possible to
include all available experimental data for
a binary phase in one simultaneous linear
least-squares optimization. Details have
been discussed by Bale and Pelton (1983),
Lukas et al. (1977) and Dorner et ale
(1980).

The technique of coupled thermody­
namic/phase diagram analysis is best illus­
trated by examples.

The phase diagram of the LiF-NaF
system is shown in Fig. I -18. Data points
measured by Holm (1965) are shown on

diagram. The Gibbs energy fusion
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(1-104)

(1-105)

state.
saturation,

R T In r~iF = R (922) In (11.76)

= 18 900 = ",",'-'4A ...J ... 4Io4&&II.

Using the notation of Eq. (1-82):

aLiF = Y~iFXLiF ~ r~iF(I- 0.915) = 1

Hence, the Henrian act.ivity coefficient
in the NaF-rich solid solution at 649°C
is rEiF= 11.76. Since no solubilities have
been measured at .other temperatures, we
assume that:

Materials

where gE1;} is the standard Gibbs energy of
solid LiF, and gEfF' NaF) is the hypothetical
standard Gibbs energy of LiF dissolved in
solid NaF.

The phase diagram drawn in Fig. 1-18
was calculated from Eqs. (1-97) to (1-104).
Complete details of the analysis of the
LiF-NaF system are given by Sangster and
Pelton (1987).

As a second example of thermodynamicl
phase diagranl optimization, consider the
Cd-Na system. The phase diagram, with
points Ineasured by several authors (Math­
ewson, 1906; Kurnakow and Kusnetzow,
1907; Weeks and Davies, 1964) is shown in
Fig. 1-19.

From electromotive force 111easurements
on alloy concentration cells, several au­
thors have measured the activity coeffi­
cient of Na in liquid alloys. The data
are shown in Fig. 1-20 at 400 cC. From
the temperature dependence of g~a =
RT In YNa' the partial enthalpy of Na in the
liquid \vas obtained via Eq. (1-52). The re­
sults are shown in Fig. 1-21. Also, /l E of the
liquid has been measured by Kleinstuber
(1961) direct calorimetry. These ther-

were

(1-100)

(1-101)

Phase UlaCJranns1

R T I XI E(I) - A 0n LiF + BLif - - L:1Bf(LiF)

From experimental values of XLiF on the
liquidus and with Eq. (1-97) for ~B?(LiF)'

values of BEiV) at the measured liquidus
points can be calculated from Eq. (1-100).

Along the NaF-rich solidus the solid so­
lution is sufficiently concentrated in NaF

11) can
assumed. That is, for the solvent, g~~~=O.
Hence, Eq. (1-99) '...,..tII.AA ...... OJ.

R T InX~~F - R T InX~~F + g~~~

=- !::,.g?(NaF)

Thus, from the experimental liquidus and
solidus compositions and with the Gibbs
energy of fusion from Eq. (1-98), values of
g~~~ can be calculated at measured liq­
uidus points trom Eq. (1-101).

Finally, enthalpies of mixing, Iz E
, in the

liquid have been measured by calorimetry·
by Hong and Kleppa (1976).

Combining all these data in a least­
squares optimization, the following expres­
sions' for the liquid were obtained by Sang­
ster and Pelton (1987):

hE(1) = XLiF XNaF (1-102)

x [-7381 + 184(XNaF-XLiF)] llmol

E(I) - X X (1 103)S - LiF NaF -

X [- 2.169 - 0.562 (XNaF - X LiF)] llmol

Eqs. (1-102) and (1-103) permit all
other integral and partial properties of the
liquid to be calculated.

For the NaF-rich Henrian solid solution,
the solubility ofLiF has been measured by
Holm (1965) at the eutectic temperature
where the NaF-rich solid solution
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Figure 1-19. Cd-Na phase diagram at P= I bar calculated from optimized thermodynalnic. parulneters (Re­
printed from Pelton, 1988 Kurnakow and Kusnetzow (1907), ~ Mathewson (1906), x Weeks and Davies
(1964).

Figure 1-20. Sodiunl ac­
tivity coefficient in liquid
Cd-Na alloys at 400°C.
Line is calculated from
optinlized thermodynanlic
parameters (Reprinted
from Pelton, 1988a).
o Hauffe (1940) .
• Lantratov and

fvlikhailova (1971),
6. Maiorova et a1. (1976),

" Alabyshev and
Morachevskii (1957),

o Bartlett et al. (1970).t NoAtomic
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1
data within \200 J/mol~l. Eqs. (1-52), (1-
58), (1-93) and (1-95) can be used to calcu­
late h~a and rNa" The calculated curves are
compared to the measured points in Figs.
1-20 and 1-21.

For the two compounds; Gibbs energies
of fusion were c'alculated (Pelton, 1988 a)
so as to best reproduce the measured phase
diagram:

~g~(1/13CdIINa:!)= 6816 - 10.724 T JIg-atom
(1-108)

T JIg-atom
(1-109)

The optimized enthalpies of fusion of 6816
and 8368 JIg-atom -agree within error lim­
its with the values of 6987 and 7878 J/g­
atom measured by Roos (1916). (See Fig.
1-14 for' an illustration of the relation
between the Gibbs energy .of fusion of a
compound .and the phase diagram.)

The phase diagram shown in Fig. 1-19
was calculated from Eqs. (1-106) to (I­
-109) along with the Gibbs' energies of fu­
sion of Cd and Na taken from the literature
(Chase, 1983). Complete details of the
analysis of the Cd-Na system are given by
Pelton (1988 a).

It can thus be seen that one simple set of
equations can simultaneously and self-con­
sistently describe all the thermodynamic
properties and the phase diagram of a .bi­
nary system.

The exact optImIzation procedure \vill
vary from system to system depending
upon the type and accuracy of the avail­
able data, the number of phases present, the
extent of solid solubility, etc. large num­
ber of optimizations have been published
in the Calplzad ]oLlrllal (Pergamon) since
1977.

100
No

lft~"'lr~n"",e- of Materials

806040

Atomic Percent No

20o
Cd

optimized simultaneously (Pelton, 1988 a)
to obtain the following expressions for hE

and of the liquid:

hE(I) = XCd XNa [-12508 + 20316 (1-106)

X (XNa - XCd) - 8714 (XNa - XCd )2] J/moI

sE(I)=XCd XNa [-15.452+ 15.186 (1-107)

X (XNa - XCd) - 10.062 (XNa - XCd )2

1

Figure 1-21. Partial excess enthalpy of sodium in
liquid Cd-Na alloys. Line is calculated from opti­
mized thermodynamic parameters (Reprinted from
Pelton, 1988'1).• Lantratov and Mikhailova (1971),
!:l Maiorova et al. (1976), 0 Bartlett et a1. (1970).
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and Multicompooent Phase Ula,aralms

(1-1 10)

and constant
mole fraction XBi are parallel to the Sn-Cd
edge, while lines of constant XSn and XCd

are parallel to the Cd-Bi and Bi-Sn edges.
respectively. For example, at point a in Fig.
1-22, XBi =O.05, XSn =O.45 and Xcd =O.50.

Similar equilateral composition triangles
can be drawn with coordinates in terms of
wt. % of the three components.

F=4-P

1.7.2 Ternary Space Model

A ternary temperature-composition
"phase diagram" at constant total pressure
may be plotted as a three-dimensional
"space model" within a right triangular
prism with the equilateral composition tri­
angle as base and temperature as vertical
axis. Such a space model for a simple eu­
tectic ternary system A-B-C is illustrated
in Fig. 1-23. On the three vertical faces of
the prism we find the phase diagrams of the
three binary subsystems, A-B, B-C and
C-A which, in this example, are all sinlple
eutectic binary systenls. The binary eutec­
tic points are e l , e2 and e3. Within the
prism we see three liquidus slli!czces de­
scending from the melting points of pure
A, Band C. Compositions on these sur­
faces correspond to conlpositions of liquid
in equilibrium with A-, B- and C-rich solid
phases.

In a ternary system at constant pressure,
the Gibbs phase rule, Eq. (1-85), becoInes:

When the liquid and one solid phase are in
equilibrium P=2. Hence F=2 and the
systenl is bivariant. A ternary liquidus is
thus a t\\'o-dimensional surface. We may
choose two variables, say T and one
composition coordinate of the liquid, but
then the other liquid composition cO,ordi­
nate and the composition of the solid are
fixed.

In the Cd-Na system just discussed, the
liquid exhibits positive deviations from
ideal mixing. That is, gE(l» O. This fact is
reflected in the very flat liquidus in Fig.
1-19 as was discussed in Sec. 1.5.9.

By simply not including any solid phases
in the calculation, the metastable liquid
miscibility gap as well as the spinodal
curve (Sec. 1.5.5) can be calculated as
shown in Fig. 1-19. These curves are im­
portant in the glasses
by rapid quenching.

Other metastable phase boundaries such
as the extension of a liquidus curve below a
eutectic can also be calculated thermody­
namically by simply excluding one or more
phases during the computations.

Boundaries

This section provides an introduction to
ternary phase diagrams. For a more de­
tailed treatment, see Prince (1966); Ricci
(1964); Findlay (1951); or West (1965).

1.7 Ternary and Multicomponent
Phase Diagrams

1.7.1 Tile Ternary Composition Triangle

In a ternary system with components
A-B-C, the sum of the mole fractions is
unity, (XA + XB + Xc) =1. Hence, there are
two independent composition varia'bles. A
representation of composition, symmetri­
cal with respect to all three components,
may be obtained with the equilateral "com­
position triangle" as shown in Fig. 1-22 for
the Bi-Sn-Cd system. Compositions at
the corners of the triangle correspond to the
pure conlponents. Along the edges of the
triangle compositions corresponding to
three subsystems Bi-Sn, Sn-
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Figure 1-22. Projection of the liquidus surface of the Bi-Sn-Cd systetn onto the ternary composition triangle
(after Bray et aI., 1961-1962). Small arrows show the crystallization path of an alloy of overall composition at
point Q. (Reprinted from 1996.)

i

Figure 1-23. Perspective view of ternary space
model of a simple eutectic ternary system. e" e2' e3

are the binary eutectics and E is the ternary eutectic.
The base of the prism is the equilateral composition

~nrlnt,~rt from
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(1-111)liquid -+ SI + S2 + S3

where s l' S2 and S3 are the three solid
phases and where the compositions of all
four phases (as well as T) remain fixed un­
til all liquid is solidified.

In order to illustrate several of the fea­
tures of polythermal projections of liquidus
surfaces, a projection of the liquidus of a
hypothetical system A-B-C is shown in

1 For the of simplicity, iso-

this cannot
duced from Fig. alone.) Therefore, as
solidification proceeds, the liquid becomes
depleted in Cd, but the ratio XSn/XBi in the
liquid remains constant. Hence, the compo­
sition path followed by the liquid (its Cl}'S­

tallization path) is a straight line passing
through point a and projecting to the Cd­
corner of the triangle. This crystallization
path is shown on Fig. 1-22 as the line a b.

In the general case in which a solid solu­
tion rather than a pure component or stoi­
chiometric compound is precipitating, the
crystallization path will not be a straight
line. However, for equilibrium cooling, a
straight line joining a point on the crystal­
lization path at any T to the overall compo­
sition point a will extend through the com­
position, on the solidus surface, of the solid
phase in equilibrium with the liquid at that
temperature.

When the composition of the liquid has
reached point b in Fig. 1-22 at T == 435 K,
the relative proportions of the solid Cd and
liquid phases at equilibrium are given by

. the lever rllle applied to the tie-line dab:
(moles of liquid)/(moles of Cd). = da/a b.
Upon further cooling, the liquid composi­
tion follows the univariant valley from b to
E while Cd and Sn-rich solids coprecipitate
as a binary eutectic mixture. When the
liquidus composition attains the ternary eu­
tectic composition E at T == 380 K the invar­
iant ternary elltectic reaction occurs:

.~rll""."=lI",",' and MUllticc)m~)onent Phase·7

A-
23 intersect along the linee1 Liquids
with compositions along this line are
fore in equilibrium with A-rich and B-rich
solid phases simultaneously. That is, P = 3
and so F -1. Such '~valleys" are thus called
univariant lines. The three univariant lines
meet at the ternary eutectic point E at
which P=4 and F=O. This is an invariant
poinf since the temperature and the compo­
sitions of all four phases in equilibrium are
fixed.

1.7.3 Polythermal Projections
of Liquidus Surfaces

A two-dimensional representation of the
ternary liquidus surface may be obtained as
an orthogonal projection upon the base
composition triangle. Such a polytherlnal
projection of the liquidus of the Bi-Sn-Cd
system (Bray et al., 1961-62) is shown in
Fig. 1-22. This is a simple eutectic ternary
system with a space model like that shown
in Fig. 1-23. The constant temperature
lines on Fig. 1-22 are called liqllidlls iso­
therms. The univariant valleys are shown
as heavier lines. By convention, the large
arrows indicate the directions of decreas­
ing temperature along these lines.

Let us consider the sequence of events
occurring during the equilibrium cooling
from the liquid of an alloy of overall com­
position a in Fig. 1-22. Point a lies within
the field of primary crystallization of Cd.
That is, it lies within the composition re­
gion in Fig. 1-22 in which Cd-rich solid
will be the first solid to precipitate upon
cooling. As the liquid alloy is cooled, the
Cd-liquidus surface is reached at T==465 K
(slightly below the 473 K isotherm). A
solid Cd-rich phase begins to precipitate at
this temperature. Now, in this particular
system, Bi and Sn are nearly insoluble

so that phase is

Dua
Highlight
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Figure 1..24. Projection of
the liquidus surface of a
system A-B-C. The binary
subsystems A-B and C-A
are simple eutectic

B-C is shown in the insert.
All solid phases are assumed
pure stoichiometric compo­
nents or compounds. Small
arrows show crystallization
paths of alloys of composi­
tions at points a and b. (Re­
printed from Pelton, 1983.)8

1

therms are not shown, only the univariant
lines with arrows to show the directions of
decreasing temperature. The binary sub:..
systems A-B and C-A are simple eutectic
systems, while the binary subsystem B-C
contains one congruent binary phase, E,

and one incongruent binary phase, 0, as
shown in the insert in Fig. 1-24. The letters
e and p indicate binary eutectic and peritec­
tic points. The E and 0 phases are called bi­
nary compoullds since they have composi­
tions within a binary subsystem. Two ter­

Ilary COll1POLlflds, 11 and ~, with composi­
tions within the ternary triangle, as indi­
cated in Fig. 1 are also found in this
system. compounds, as well as
solid A, Band C (the u a , ~ and y" phases),
are assumed to be stoichiometri~ (i.e., there
is no solid solubility). The of pri­
mary crystallization all the solids are in­
dicated in parentheses 1-24. The

E

field, since E is a congruent compound,
while. the composition of the b phase lies
outside of its field since b is incongruent.
Similarly for the ternary com.pounds, 11 is a
congruently melting compound while ~ is
incongruent. For the congruent compound
'1, the highest temperature on the 11 liquidus
occurs at the composition of 11.

The univariant lines meet at a number of
ternary elltectics E (three arrows converg­
ing), a lerna!}' peritectic P (one arrow en­
tering, two arrows leaving the point), and
several ternary quasi-peritectics P' (two
arrows entering, one arrow leaving). Two
saddle poi/Its s are also shown. These are
points of maximum T along
line but of minimum T on the liquidus sur­
face along a section joining the composi­
tions of two solids. For example, s I is at
a maximum along the univariant E 1 p~, but
is a minimum point on the liquidus along
the ~s

1

...0{"
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ing cooling from the liquid of an alloy of
overall composition a in Fig. 1-24. The pri­
mary crystallization product will be the E

phase. Since this is a pure stoichiometric
solid the crystallization path of the liquid
will be along a straight line passing
through a and extending to the composition
of E as shown in the figure.

Solidification of E continues until the
liquid attains a composition on the univari­
ant valley. Thereafter the liquid composi­
tion,follows the valley towards the point P;
in co-~xistence with E and ~. At point P;
the invariant ternary qtlasi-peritectic reac­
tion occurs isothermally:

Since there are two reactants in a quasi­
peritectic reaction, there are two possible
outcomes: (i) the liquid is completely con­
sumed before the E phase; in this case, so­
lidification will be complete at the point PI';
(ii) E is completely consumed before the
liquid. In this, case, solidificatlon will con­
tinue with decreasing T along the univari­
ant line P; E1 with co-precipitation of 6 and
~. until, at E, the liquid will solidify eutecti­
cally (liquid -+ 6 + ~+11). To determine
whether outcome (i) or (ii) occurs, we use
the mass balance criterion that, for three­
phase equilibrium, the overall composition
Q must always lie within the tie-triangLe
formed by the compositions of the three
phases. Now, the triangle joining the com­
positions of 6, E and ~ does not contain the
point Q, but the triangle joining the compo­
sitions of 6, ~ and liquid at Pt' does contain
the point Q. Hence, outcome (ii) occurs.

An alloy of overall composition b in Fig.
1-24 solidifies with E as primary crystal­
lization product until the liquid composi­
tion contacts the univariant line. There-'
after, co~precipitation of E and ~ occurs
with the liquid composition following

I

. i
I

I

i

i

I

: i

Since there are three reactants, there are
three possible outcomes: (i) the liquid is
consumed before either E or ~ and solidifi­
cation terminates at P; (ii) E is consumed
first, solidification then continues along
the path PP~; or (iii) .~ is consumed first
and solidification continues along the path
PP{. Which outcome occurs depends on
whether the overall composition b lies
within the tie-triangle (i) E ~ ~; (ii) B~ P, or
(iii) E~P. In the example shown, outcome
(i) will occur.

the peritectic composition ,Po The invariant
ternary peritectic reaction then occurs iso­
thermally: .

liquid + E + ~ --+ ~ (1-113)

1.7.4 Ternary Isothermal Sections

Isothermal projections of the liquidus
surface do not provide information on the
composition~of the solid phases at equilib­
rium. However, this information can be
presented at anyone temperature on an iso­
tJlerlnal section such as that shown for the
Bi-Sn-Cd system at 423 K in Fig. 1-25.
This phase diagram is a constant tempera­
ture slice through the space model of Fig.
1-23.

The liquidus lines bordering the .one­
phase liquid region of Fig. 1-25 are identi­
cal to the 423 K isotherms of the projection
in Fig. 1-22. Point c in Fig. 1-25 is point c
on the univariant line in Fig. 1-22. An alloy
with overall composition in the one-phase
liquid region of. Fig. 1-25 at 423 K will
consist of a single liquid phase. If the over­
all composition lies within one of the two­
phase regions, then the compositions of the
two phases are given by the ends of the tie­
li,le which passes through the overall com­
position. For exanlple, a sample with over­
all composition p 1-25 will consist

(1-112)liquid + E -+ 6 + ~
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Cd
d ..-{Cd)

T = 423 K

Bi Sn

Figure 1-25. Isothermal section of the °Bi-Sn-Cd system at 423 K at P= 1 bar (after Bray et aI., 1961-1962).
Extents of solid solubility in Bi and Sn have been exaggerated for clarity of presentation. (Reprinted from Pel­
ton, 1996.)

is somewhat exaggerated in Fig. 1-25 for
the sake of clarity of presentation.) Alloys
with overall compositions rich enough in
Bi or Sn to lie within the single-phase (Sn)
or (Bi) regions of Fig. 1-25 will consist at
423 K of single-phase solid solutions.
loys with overall compositions at 423 in
the two-phase (Cd + Sn) region will consist
of two solid phases.

Alloys with overall compositions within
the three-phase triangle d cf will, at 423 K,
consist of three phases: solid Cd- and Sn-

__ F~"""A"'l"'lI,rll_lr"'t:" at d

of a liquid of composition q on the liquidus
and a solid Bi~rich alloy of composition r
on the solidus. The relative proportions of
the two phases are given by the lever rule:
(moles of liquid)/(moles of solid) = p r/pq,
where p rand p q are the lengths of the tie­
line segments.

In the case of solid Cd, the solid phase is
nearly pure Cd, so all tie-lines of the (Cd+
liquid) region converge nearly to the corner
of the triangle. In the case of Bi- and" Sn­
rich solids, some solid solubility is ob-

lLoIL""'lI.lI.olIlLoIL.II. extent
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,.","'JlLJl.Jl.IJ"'U,a, ..... .....,'A& c.
IIJv ..... - ... ., ,.","'Jl.JL..,;pJl.llo.6VJI. an alloy of a
in Fig. 1-25, which is same composi-
tion as the point a in 1 Sec.
1.7.3 we saw that when an alloy of this
composition is cooled, the liquid follows
the path ab in Fig. 1-22 with primary pre­
cipitation of Cd and then follows the uni­
varia!1t line with co-precipitation of Cd and
Sn so that at 423 K the liquid is at the com­
position point c, and two solid phases are in
equilibrium with the liquid.

1.7.4.1 Topology of Ternary Isothermal
Sections

At constant temperature the Gibbs en­
ergy of each phase in a ternary system is
represented as a function of composition
by a surface plotted in a right triangular
prism with Gibbs energy as vertical axis
and the composition triangle as base. Just
as the compositions of phases at equilib­
rium in binary systems are determined
by the points of contact of a common tan­
gent line to their isothermal Gibbs energy
curves, so the compositions of phases at
equilibrium in a ternary system are given
by the points of contact of a common tan­
gent plane to their isothermal Gibbs energy
surfaces. A common tangent plane can
contact two Gibbs energy surfaces at an in­
finite number of pairs of points, thereby
generating an infinite number of tie-lines
within a two-phase region on an isothermal
section. A common tangent plane to three
Gibbs energy surfaces contacts each sur­
face at a unique point, thereby generating a
three-phase tie-triangle.

Hence, the principal topological units of
construction of an isothermal ternary phase
diagram are three-phase (a + ~+ y) tie-tri­
angles as in Fig. 1-26 with their accompa­
nying two-phase and single-phase areas.
Each corner of the tie-triangle contacts a

Figure 1..26. A tie-triangle in a ternary isothermal
section illustrating the lever rule and the extension
rule.

single-phase region, and from each edge of
the triangle there extends a two-phase re­
gion. The edge of the triangle is a limiting
tie-line of the two-phase region.

For overall compositions within the tie­
triangle, the compositions of the three
phases at equilibrium are fixed at the cor­
ners of the triangle. The relative propor­
tions of the three phases are given by the
lever rille oJtie-triangles, which can be de­
rived from mass balance considerations. At
an overall composition q in Fig. 1-26 for
example, the relative proportion of the y
phase is given by projecting a straight line
from the y corner of the triangle (point c)
through the overall composition q to th~

opposite side of the triangle, point p. Then:
(n101es of y)/(total moles) = q pIcp if com­
positions are expressed in mole fractions,
or (weight of y)/(total weight) =q pIcp if
compositions are in weight percent.

Isothermal ternary phase diagrams are
generally composed of a number of these
topological units. An example for the AI­
Zn-Mg system at 25°C is shown in Fig.
1-27 (Koster and Dullenkopf, 1936). The

y, b, 8, 11 ~ phases are binary inter-
metallic with (- 1 to 6 %)
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1.7.5 Ternary Isopleths
(Constant C~mpositionSections)

A vertical isopletJz, or constant composi­
tion section through the space model of
Bi-Sn-Cd system, is shown Fig. 1-28.
The section follows the line AS in Figo
1-22.

The phase' fields on Fig. 1 indicate
which phases are present when an alloy
with an overall composition on the line AB
is equilibrated at any temperature. For ex­
ample, consider the cooling, from the liq­
uid state, of an alloy of composition a
which is on the line AS (see Fig. 1-22). At
T == 465 K, precipitation of the solid (Cd)
phase begins at point a in Fig. 1-28. At
T == 435 K (point b in Figs. 1-22 and 1-28)
the solid (Sn) phase begins to appear. Fi­
nally, at the eutectic temperature TE , the
ternary reaction occurs, leaving solid (Cd)
+ (Bi) + (Sn) at lower temperatures. The
intersection of the isopleth with tIle univar­
iant lines on Fig. 1-22 occurs at pointsjand
9 which are also indicated on Fig. 1-28.
The intersection of this isopleth with the
isothernlal section at 423 K is shown in
Fig. 1-25. The points s, t, II and v of Fig.
1-25 are also shown on Fig. 1-28.

It is inlportant to note that on an isopleth
the tie-lines do not, in general, lie in the
plane of the diagranl. Therefore, the dia­
graIn provides inforl11ationonly on
phases are present, not on their c0l11posi­
tions. The boundary lines on an isopleth do
not general indicate the phase composi­
tions, only the tenlperature at which a
phase appears or disappears for a gi yen
overall cOlnposition. The lever rule cannot

on an Jl,d'''-JL.IlL"-",lLlLlim

ranges of stoichiometry which can dissolve
a limited amount (- 1 to 6%) of the third
component. The L is a ternary phase
with a single-phase region existing over a
fairly extensive oval-shaped central com­
position range. Examination of Fig. 1~27
shows that it consists of the topological
units of Fig. 1-26.

An eA·tel1SioJl rllle, a case of Sc/zreilze­

111l1kers' Rule (Schreinemakers, 1915), see
Sec. 1.7.5, fo"r ternary tie-triangles is illus­
trated in Fig. 1-26. At each corner, the
extension of the boundaries of the single­
phase regions, indicated by the broken
lines, must either both project into the tri­
angle as at point Q, or must both project
outside the triangle as at point Further­
more, the angle between these extensions
must be less than 1800

• For a proof, see
Lipson and Wilson (1940) or Pelton
(1995).

Many published phase diagrams violate
this rule. For exalnple, it is violated in Fig.
1-27 at the b-corner of the (E + 6 + 1')

AI 10 20 30 40 50 60 70 80 90 Z n

Wt % Zn

Figure 1-27. Ternary isothermal section of the AI­
Zn-Mg system at 25°C at P= 1 bar (after Koster and
Dullenkopf, 1936). (Reprinted from Pelton, 1983.)
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Figure 1-28. Isopleth (constant composition section) of the Bi-Sn-Cd system at P= 1 bar following the line
AB at XSn =0.45 of Fig. 1-22. (Reprinted from Pelton, 1996).

Certain geometrical rules apply to iso­
pleths. As a phase boundary line is crossed,
one and only one phase either appears o~

disappears. This Law of Adjoinilzg P/1{ISe

Regiolls (Palatnik and Landau, 1964) is il­
lustrated by Fig. 1-28. The only apparent
exception occurs for the horizontal invari­
ant line at TE • However, if we consider this
line to be a degenerate infinitely narrow
four-phase region (L+(Cd)+(Bi)+(Sn»,
then the law is also obeyed here.

Three or four boundary lines meet at in­
tersection points. At an intersection point,
such as point for g, Schreinelnakers' Rule
applies. This is discussed in Sec. 1.9.

Apparent exceptions to these rules (such
as, for example, five boundaries meeting at
an intersection point) can occur if the sec­
tion passes exactly through a node (such
as a ternary eutectic point) of the space
model. However, these apparent exceptions
are really only lilniting cases (see Prince,
1963 or 1966).

1.7.5.1 Quasi-Binary Pilase Diagranls .

Several of the binary phase diagrams
in the preceding sections (Figs. 1-5, 1-10,
1-12, 1-14, 1-18) are actually isopleths
of ternary systems. For example, Fig. 1-12
is an isopleth at constant Xo = llO/(fl rv1u +

e

nCa + 120) = 0.5 of the Mg-Ca-O system.
However, all tie-lines lie within (or virtu­
ally within) the plane of the diagram be­
cause Xo = 0.5 in every phase. Therefore,
the diagram is called a quasi-billar." phase
diagran1.

1.7.6 l\'lulticomponent Phase Diagrams

Only an introduction to multicomponent
phase diagrams will be presented here.
For more detailed treatments see Palatnik
and Landau (I 964), Prince (1963), Prince
(1966) and Hillert (1998).

For systems of four or lTIOre components~

two-dimensional sections are usually plot-
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lying on the ~ection. do not,
general, lie in the plane of the' diagram, so

diagram does not provide information
on the compositions or amounts of the
phases present. As a phase boundary is
crossed, one and only one -phase appears or
disappears (Law' of Adjoining Phase Re­
gions). If temperature is an axis, as in Fig.
1-29, then horizontal invariants like the
line AB in Fig. 1-29 can appear. These can
be considered as degenerate infinitely nar­
row phase fields of (C + 1) phases,
is the number of components (for ALI''''''-'''' ..... A

diagrams). For example in Fig. 1-29, on the
line AB, five phases are present. Three or
four phase boundaries meet at intersection
points at which Schreinemakers' Rule ap­
plies. It is illustrated by the extrapolations
in Fig. 1-29 at points Q, band c and in Fig.
I-3D at points b, c, 11, i and s (see discus-
sions in Sec. 1.9).

Phase Ula.aralms

one
abIes held constant. A.JL_jL.III.__

are similar to ternary isopleths
cussed in 1.7.5. certain cases, sec­
tions at constant chemical potential of one
or more components (for example, at con­
stant oxygen partial pressure) can be use­
ful. These are discussed in Sec. 1.8.

Two sections of the Fe-Cr-V-C system
(Lee and Lee, 1992) are shown in Figs. 1­
29 and 1-30. The diagram in Fig. 1 is a
T-composition section at constant Cr and V
content, while Fig. 1-30 is a section at con­
stant and constant content of
0.3 wt. %. The interpretation and topologi­
cal rules of construction of these sections
are the same as those for ternary isopleths,
as discussed in Sec. 1.7.5. In fact, the same
rules apply to a two-dimensional constant­
composition section for a system of any
number of components. The phase fields
on the diagram indicate the phases present

1.5 wt% Cr and 0.1 wt% V
950

1.0

c __ Y+Cem+MC

~// Y+M7C3+ Cem+MC
B a +Y+ CeFrl

a +Cem + Me

o
Weight Percent Carbon

600 ..............~------- ..............._-......_............_--'--_-.a..-_.......

o

u
Y

o

Figure 1-29. Section of the Fe-Cr- V-C systenl at 1.5 \vt.% Cr and 0.1 wt. % V at P= 1 bar (Lee and Lee,
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Figure 1-30. Section of
the Fe-Cr- V-C system
at 850°C and 0.3 wt. % C
at P=1 bar (Lee and Lee,
J992).
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1.7.7 Nomenclature for Invariant
Reactions

Asd.iscusse~ in Sec. 1.5.12, in a binary
isobaric temperature-composition phase
diagram there are two possible types of
invariant reactions: "'eutectic-type" (~ -+ n
+ y), and "peritectic type" (n + y -+ ~). In
a ternary system, there are "eutectic-type"
(a -+ B+ y + 6), "peritectic-type" (n + ~ +
y -+ 6), and "quasiperitectic-type" (a + ~

-+y+6) invariants (Sec. 1.7.3)." In a
system of C components, the number of
types of invariant reaction is equal to C. A
reaction with one reactanJ, such as
(a -+ ~ + y + 6 + E) is clearly a "'eutectic­
type" invariant reaction but in general there
is no standard terminology. These reactions
are conveniently described according to the
numbers of reactants and products (in the
direction which occurs upon cooling).
Hence the reaction (n + ~ -+ y + b + E) is a
2 3 the reaction (n -+ ~ + y

+ b) is a 1~3 reaction; and so on. The ter­
nary peritectic-type 3~ 1 reaction (a + ~

+ y -+ b) is an invariant reaction in a ter-
-nary system, a'univariant reaction in a qua­
ternary system, a bivariant reaction in a
quinary system, etc.

1.7.8 Reciprocal Ternary Phase
Diagrams

A reciprocal ternar.,V salt systefl1 is one
consisting of two cations and two anions,
such as the Na+, K+/F-, CI- system of Fig.
1-31. The condition of charge neutrality
(II Na++ IIK+= fIF-+ IICI-) removes one degree
of freedom. The system is thus quasiter­

nar}' and its composition can be repre­
sented by two variables, usually chosen
as the cationic Inole fraction XK = 12K /

(n Na + IlK) and the afzionic nlole fractio11

XCI=nCI/(nF+nCl), where n;=number of
moles of ion i. Note that XNa=(I-XK ) and
XF =(I-XcI)·



ponent system, and
no longer necessarily lie in the plane
diag'raI1l.

In Fig. 1-31 the cationic and anionic
fractions are plotted as axes of a square.
Compositions corresponding to the four
neutral salts (KF, KCI, NaCI, NaF) are
found at the corners of the square. Edges of
the square correspond to the binary sub­
systems such as NaF-NaCl. ternary
space model (analogous to Fig. 1-23) can
be constructed with temperature as
axis. The phase diagram of 1 1 is a
polythermal projection of the liquidus sur­
face upon the composition square.

In this system, three of the binary edges
are simple eutectic systems, while the
NaCI- KCI binary system exhibits a sol­
idus/liquidus minimum. There is a ternary
eutectic at 570°C in Fig. 1-31 (b). Th~

NaF-KCI diagonal contains a saddle point
at 648°C in Fig. 1-31 (b). This saddle point
is a eutectic of the qUQsibilZQ/}' s)~steln

NaF-KCI. That is, a binary phase diagram
NaF-KCI could be drawn with one simple
eutectic at 648°C. However, the NaCI-KF
system, which forms the other diagonal, is
not a quasibinary system. If compositions
lying on this diagonal are cooled at equilib­
rium from the liquid, solid phases whose
compositions do not lie on this diagonal
can precipitate. Hence, a simple binary
phase diagram cannot be drawn for the
NaCI-KF system.

For systems such as Ca2+, Na+/F-, SO}-
in which the ions do not all have the same
charge, composition axes are conveniently
expressed as equivalent ionic fractions
(e.g. Yea = 211ea/(2nea+l1Na»)' see Sec.
1.9.2.1.

The concept of reciprocal systems can be
generalized beyond simple salt systems
and is closely related to the sublattice
model 1 10.1).

Min,
660°·

U~"'llI"4"5lIll"ll'''1f''o of Materials

Noel
(SOO·)

Mol. %

Mol. OJo

KF
(850·)

The assumption has, of been
made that the condition (nN~l+nK=I1F+l1cl)

holds exactly in every phase. If there "is a
deviation from this exact stoichiometry,

. .
,....".,.,~,.." ..,n~ IS no quasi-

b) NoF
(990·)

Figure 1-31. Projection of the liquidus surface of
the Na+, K+/F"', CI- reciprocal ternary system.
a) Calculated fronl optimized binary thennodynamic

paranleters.
'b) As reported by Polyakov (1940).



The usual isothermal section of the ter­
nary Co-Ni-O system at 1600 K is shown
in the top panel of Fig. 1-32. There are two
single-phase regions with a two-phase re­
gion between them. The single-phas~areas
are very narrow because oxygen is only
very slightly soluble in the solid alloy
and CoO and NiO are very stoichiometric
oxides. In the central panel of Fig. 1-32
this same diagram is shown with the com­
position triangle "opened up" by putting
the oxygen corner at infinity. This can be
done if the vertical axis becomes 1} = 1101

(nco + nNi ) with the horizontal axis as
;=11Ni /(/l co +llNi). These are known as
Jiinecke coordillates. It can be seen in Fig.
1-32 that each tie-line, ef, of the isothermal
section a tie-line cd of the

1lj~"'lr!:ll"'~ with Potentials as Axes

Co solid solut ion Ni
~-

- .

z NiOc
+
8
c
~

"0 0C
II Co Ni
r:

b
-6.6

~.....
C
.0

-7.0..............
0
a.

-7.4
0
0

a

Co 0.2 0.4 0.6 O.B Ni

~=nNi/(nCo+ nNi )

Figure 1-32. Corresponding phase diagrams for the
Co-Ni-O system at 1600 K (from Pelton and
Thompson, 1973).

1.8 Phase

· further
see (1988b) and

1.8 Phase Diagrams
with Potentials as Axes

So far we have considered mainly iso­
baric temperature-composition phase dia­
gram·s. However there are many other
kinds of phase diagrams of interest in ma­
terials science and technology with pres­
sure, chemical potentials, volume, etc. as
axes~ These can be classified into geomet­
rical types according to their rules of con­
struction.

For instance, binary isothermal P-X di­
agrams as in Fig. 1-8 are members of the
same type as binary isobaric T- X diagrams
because they are both formed from the
same topological units of construction.
Other useful phase diagrams of this same
geometrical type are isothermal chemical
potential-composition diagrams for ter­
nary systems. An example is shown in
the lowest panel of Fig. 1-32 (Pelton and
Thompson, 1975) for the Co.;..Ni-O
system at T'= 1600 K (and at a constant to­
tal hydrostatic pressure of 1 bar). Here the
logarithm of the equilibrium partial pres­
sure of O2 is plotted versus the metal ratio
~=nNi/(/lco+nNi)' where n;=number of
moles of i. There are two phases in this
system under these conditions, a solid alloy
solution stable at lower Po~~ and a solid so­
lution of CoO and NiO stable at higher Po

1
•

For instance, point a gives P0
1

for the equi-.
librium between pure Co and pure CoO at
1600 K. Between the two single-phase re-
gions is a two-phase (alloy + oxide) region.
At any overall composition on the tie-line
cd between points c and d, two phases will
be observed, an alloy of composition d and
an oxide of composition c. The lever rule
applies just as binary T-x
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__ ; rtllf"]an1f"'~n4l

+ (Fe, + cor-
ners at points a, band C corresponds to the
"eutectjc-like" or eLltecLllar invariant
the same phase compositions a, band C at
log Po:! =: -10.7. We can see that within a
three-phase tie-triangle, Po:! is constant.

An example of ye,t another kind of phase
diagram of this same geometrical type is
shown in Fig. 1-34. For the quaternary
Fe-Cr-02-S02 system at T= 1273 K and
at constant Pso:!= 10-7 bar, Fig. 1-34 is a
plot of log P0

2
versus the molar metal

po
2

..... ; -.a._,_ .... _............

fact that a .,.o~nf"]al''''' AUO'loJ&.Jl.ll_lI.

mal section corresponds to a constant
ical potential of each of components.

Another example of a log P0
2

- ; diagram
is shown for the Fe-Cr-O system at
1573 K in the lower panel of Fig. 1-33
(Pelton and Schmalzried, 1973). The corre­
sponding ternary isothermal section in
Jailecke coordinates is shown in the upper
panel. Each of the invariant three-phase
tie-triangles in the isothermal section
corresponds to an invariant line in the

Fe20:s

alloy
....................-.~.......---------~_ .........._"""-----""'-"'"""""--"'--....d..---'_.....c.-................. O
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'-""
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o
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(re.Cr)O
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~"igurc 1-33. Correspond~

ing phase diagrulTIs for the
Fe-Cr-O system at 1573 K
(Pelton and Schmalzried,
1973). Experimental points
from Katsura and Muan
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C'
o
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Cr
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Fe { = nCr /( n Fe+ nCr)

Figure 1-34. Calculated phase diagram of log Po., versus molar metal ratio at T= 1273.15 K and Pso., = 10-7 bar
for the Fe-Cr-S02-02 system." -

g. Since log Po:! varies as -1/2 log Ps~ when
Pso.. and T are constant, Fig. 1-34 is also a
plot of log Ps., versus ~.

Plotting T versus ~ at constant P0
2

in the,
Fe-Cr-O system, or at constant [Jo

2
and

Pso:! in the Fe-Cr-S02-02 system, will
also result in phase diagrams of this same

geometrical type. Often for ceramic
systems, we encounter "binary" phase dia­
grams such as that for the "CaO-Fe20 3"

system in Fig. 1-35, which has been taken
from Phillips and Muan (1958). How are
we to interpret such a diagram? How, for
instance, do we interpret the composition

CoO+
1200 2Co(l Feto,

1600

1400

CoO
+

Uq.

• 1438-

ITo CoO
2570-

liq.

Mocan. ss + liq.

1000

°
CoO

FeZOJ +
CoO.FezO, CoO' FezO,+ Hem.

60 70 80

2CoO CoO FezQ, CoO

Figure 1-35. Phase diagranl for the
"CaO-Fe:!0J" system in air (PO., =
0.21 bar) frorTI Phillips and Muan­
(1958) (Reprinted by perillission of the
American Ceramic Society from Levin
et 1964).
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Figure 1-36. Pressure-temperature phase diagralTI of
H20.

light it can
seen that are really ~

plots at constant ~ the
ratio in any phase. diagram will be dif-
ferent at different oxygen partial pressures.
If Po,- is not fixed, the diagram cannot be
interpreted.

It can be seen that the diagrams dis­
cussed above are of same geometrical
type as binary diagrams because they

.are all composed of the same geometrical
uni ts of construction as in 1-16. Their
interpretation is thus immediately clear
to anyone familiar with binary T-x dia­
grams. Chemical· potential-composition

Liquid iron Liquid iron + liquid oxide

Liquid
iron

6-lron
1700

Hematite

Wustite
+

Magne ti fe

1500 Y-Iron /
+

~ Wus ti fe

CD
1300

.....
::J......
0

!"-
CD 1100c..
E a -Iron Hematite
CD + +
I- Wus ti te + oxygen

900 Magnetite

a-Iron + Magnetite

700
0 0.62 - 500 - 400 - 300 - 200 -100 0

XO~ RT In p .......
(a) ( b)

Figure 1-37. Corresponding phase diagrams for the Fe-O systenl at
I

= 1 bar (after Muan and Osborn,
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diagrams (Figs. to are _...,_'&_ ....
the study of hot corrosion, metallurgical
roasting processes, chemical vapor deposi­
tion, and many aspects of materials pro­
cessing.

Another important geometrical type of
phase diagram is exemplified by P - T
phase diagrams for one-component sys­
tems, as shown for H20 in Fig. 1-36. In
such #diagrams (see also Chapter 10 by
Kunz (2001» bivariant single-phase re­
gions are indicated by areas, univariant
two-phase regions by lines, and invariant
three-phase regions by triple points. An
important rule of construction is the e.x:ten­
SiOll rtlle, which is illustrated by the broken
lines in Fig. 1-36. At a triple point, the
extension of any two-phase line must pass
into the single-phase region of the third
phase. Clearly, the predominance diagrams

of 1 are of this same nro'...... 1I"'r'Il~~t-

rical type.
As yet geomet-

rical type ,of diagram, a plot of R T In Po~

versus T for the Fe-O system is shown in
Fig. 1-37(b). Again, one-, two- and three­
phase regions are indicated ~y areas, lines
and triple points re.spectively. Fig. 1-37 (a)
is the binary T-composition phase diagram
for the Fe-O system. The correspondence
between Figs. 1-37(a) and 1-37(b) is evi­
dent. Each two-phase line of Fig. 1-37 (b)
"opens up" to a two-phase region of Fig.
1 (a). Each tie-line of a two-phase re-
gion in Fig. 1-37 (a) can thus be seen to
correspond to a constant PO"1.. Triple points
in Fig. 1-37 (b) become horizontal invari­
ant lines in Fig. 1-37 (a).

Yet another type of phase diagram is
shown in Fig. 1-38. This is an isothermal

0

-1

-2

-3

-4
,-...

N
(J)
a.
"-" -5
~

Cl
..Q

-6

-7

T=1273 K,

(Fe .Cr)S

Spinel + (Fe.Cr)S

SpinelSpinel + FCC Alloy
-8
""'--------.f FCC AUoy

+
Cr20 3
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Cr20 3
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-9 1:::::---------(
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Figure }-38. Phase diagran1 of log Ps"!. versus log Po"!. at 1273 K and constant molar metal ratio I1Cr /(l1Fc + IlCr) =
0.5 in the Fe-Cr- -02
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Table 1..1. __".A~.:II'VVIIUlill::.

extensive variables q;.

where U is the internal energy of the
system. The corresponding potentials and
extensive variables are listed in Table 1-1.
It may also be noted that the correspondino

. 0

paIrs are found together in the terms of
general"Gibbs-DLlhenl eqLlation:

ner'moavrlarrli~~ and Phase1 '

at
+

system. This diagram was calculated ther-
modynamically
The axes are the equilibrium sulfur and
oxygen partial' pressures. Three or four
boundary lines can meet at an intersection
point. Some of the boundary lines on Fig.
1-..38 separate a two-phase region (a + ~)

from another two-phase region (a + y).
These lines thus represent the conditions
for three-phase (a + ~+ y) equilibrium.

(1-115)SdT - VdP + 'Ln;dj.Li = 0

1.9.1 General Geometrical Rules
for All True Phase Diagram Sections

The La'tv ofAdjoining Pilase Regiolls ap­
plies to all true sections. As a phase boun-­
dary line is crossed, one and ·only· one
phase either appears or disappears.

If the vertical axis is a potential (T. P,
Pi)' then horizontal invariant lines like the
eutectic line in Fig. 1-12 or the line AB in
Fig. 1-29 will be seen \vhen the maximum
nunlber of phases permitted by the phase
rule are at equilibriunl. However, if these
are considered to be degenerate infinitely
narrow phase fields, then the Law of Ad-
joining Phase Regions still applies. This is
illustrated schematically in Fig. 1-39 where
the three-phase eutectic line has been
"opened up". Similarly, if both" axes are po­
tentials, then many phase boundaries may
be degenerate infinitely narro\v regions.
For example, all phase boundaries on.....Figs.
I-I to 1-3,1-36 and 1-37(b) are degener~te
two-phase regions which are schenlatically
shown "opened up" on Fig. 1-40.

All phase boundary lines in a true phase
diagram meet at nodes \vhere exactly four
lines converge, as Fig. 1-41. N phases
(ai' ~l common( 1-1(j;e; )=(a

Although the various phase diagrams
shown in the preceding sections may ap­
pear to have quite different geometries, it
can be shown that, in fact, all true phase di­
agram obey the same set of oeo-o

metrical rules. Although these rules do not
apply directly to phase diagranl projec~ions

such as Figs. 1-22, 1-24 and 1-31, such di­
agrams can be considered to consist of por­
tions of several phase diagram sections
projected onto a common plane.

By "true" phase diagram we mean one in
which each point of the diagram represents
one unique equilibrium state. In the present
section we give the general geometrical
rules that apply to all true phase diagram
sections, and we discuss the choices of
axes and constants that ensure that the dia­
gram is a true diagram.

must first make some definitions. In
a system we can
(C + 2) Ilzerlllod",Vllalllic poreillials ¢i e These
are T, P, Ill' J1-?, ... , Pc, where Pi is the
chemical potential defined in Eg. (1-23).
For each potential there is a corres/Jollding

extensive variable q; related by:

1.9 General
Geometry



1.9 General

L

a+~

A B

Figure 1-39. An isobaric binary T-X
phase diagram (like Fig. 1-12) with the
eutectic line "opened up" to illustrate that
this is a degenerate 3-phase region.
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-I
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I
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I

(at +0.2 + ... +aN)

+y .

(0. 1 +0.2 + ... +aN)

+P

Figure 1-41. A node in a true phase diagram sec­
tion.

(at +0.2 + .... +a.N)

+P+Y

components was noted by Hillert (1985)
and proved by Pelton (1995). In the case of
d'egenerate phase regions, all nodes can
still be considered to involve exactly four
boundary lines if the degenerate boundar­
ies are "opened up" as in Figs. 1-39 and
1-40.

An objection might be raised that a
minimum or a maximum in a two-phase re­
gion in a binary temperature-composition
phase diagram, as in Fig. 1-10 or in the
lower panel of Fig. 1-16, represents an ex-

to all four regions. SC/lreinemakers 9 Rlile
states that the extensions of the boundaries
of the N-phase region must either both lie
within the (N+ 1)-phase regions as in Fig.
1-41 or they must both lie within the
(N + 2)-phase region. This rule is illustrated
by the extrapolations in Fig. 1-29 at points
a, band C and in Fig. 1-30 at points b, c, 11,

land s. The applicability of Schreine-
to systems of number

Figure 1-40. A potential-potential phase diagralll
(like Fig. I-lor Fig. 1-36) with the phase boundaries
1040pened up'" to illustrate that they are degenerate 2­
phase regions.
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Figure 1-42. Schematic P- V diagram for H20. This
is not phase _ ......... 111.4.1&.

---.......... V

line concept is very -...,-' .... - ....
development of general algorithms for

the thermodynamic calculation of phase di­
agrams as discussed in Sec. 1-1

1.9.2 Choice of Axes and Constants
of True Phase Diagrams

In a system of C components, a two­
dimensional diagram is obtained by choos­
ing two axis variables and holding 1)
other'variables constant. However, not all .
choices of variables will result in a true
phase diagram. For example on the P - V
diagram for H20 shown schematically in
Fig. 1-42, at any point in the area where the
(S + L) and (L + G) regions overlap there
are two possible equilibrium ~tates of the
system: Similarly, the diagram of carbon
activity versus XCr at constant T and P in
the Fe-Cr-C system in Fig. 1-43 (Hillert,
1997) e~hibits a region in which there is no
unique equilibriulJl state.

In order to be sure that a diagrarTI is a .
true phase diagram, we must choose one
alld ollly 01ze variable (either ¢i or qi) from

p

to
extremum

tually a node where four phase boundaries
converge, a where two
boundaries touch. extrema in which
two phase boundaries touch with zero
slope may occur for a C-phase region in a
phase diagram of a C-component system
when one axis is a potential .. For example,
in an isobaric temperature-composition
phase diagram of a four-component sys­
tem, we may observe a maximum or a min-

a two
three-phase regions. A similar maximum
or a
where n > 0, may also occur, but only for
a degenerate or special composition path ..
For further discussion, see Hillert (1998).

1.9.1.1 Zero Phase Fraction Lines

All phase boundaries on true phase dia­
gram sections are zero p/lase fraction
(ZPF) lilles, a very useful concept intro­
duced by Gupta et al. ('1986). There are
ZPF lines 'associated with each phase. On
one side of its ZPF line the phase occurs,
while on the other side it does not. For ex­
ample, in Fig. 1-30 the ZPF line for the a
phase is the abcdef,The line for
the y phase is 9 h ijk I. For the MC phase the
ZPF line is nlnciopq. The ZPF line for
M7C3 is rnb/lspket, and for M23C6 it is
tldjosv.These five ZPF lines yield the en­
tire two-dimensional phase diagram. Phase
diagram sections plotted on triangular co­
ordinates as in Figs. 1 and 1 also
consist of lines.

In case phase diagrams with
generate regions, ZPF lines for two differ­
ent phases may be coincident over
of their lengths. For example, in Fig. 1.-1
line CABD is the ZPF line of the liquid,
while CEBF and DEAG are the ZPF lines

a ~



nFe . 1 a' plot
of J.Ls

2
versus Jlo

2
at constant .T, P and

nFe/(nFe+ nCr)·
In Fig. 1-28 the selected variables are T,

P, nBi' nSn and nCd' and ratios are (ormed
from the selected extensive-- variables as

nCd/(nCd + nBi) and nSn/(nCd + nBi + nSn)

=XSn • Fig. 1-28 is a plot of T versus
nCd/(nCd+ nSi) at constant P and XSn •

Fig. 1-42, the P - V diagram for H20, is
not a true phase diagram because P and V
are same conjugate
For the diagram shown in Fig. 1-43, we can
choose one variable from each pair as fol­
lows: T, P, J.Lc, nFe' nCr. However the verti­
cal axis is XCr=nCr/(nFe+ l1Cr+ nc). This ra­
tio is not allowed because it contains nc

which is not on the list of chosen variables.
That is, since we have chosen J.lc to be an
axis variable, we cannot also choose l1C.

Hence, Fig. 1-43 is not a true phase dia­
gram. A permissible choice for the vertical
axis would be l1Cr/(11rc: + nCr) (see Fig.

/ 1-33). Note that many regions 'of Figs. 1-42
and 1-43 do represent unique equilibrium
states. That is, the procedure given here is a
sufficient, but not necessary, condition for
constructing true phase diagrams.

To apply this procedure simply, the com­
ponents of the system should be formally
defined to correspond to the desired axis
variables or constants. For example, in Fig._
I-I we wish to plot Pso:! and log Po! as
axes. Hence we define the components as
Cu-S02-02 rather than Cu-S-O.

In several of the phase diagrams in this
chapter, log Pi or R T In Pi has been substi­
tuted Jli as axis variable or constant.
From Eq. (1-32), this substitution can
clearly be made if T is constant. However,
even when T is an axis of the phase dia­
gram as Fig. 1-37 (b), this substitution is
still permissible since Jl? is a monotonic
function T. of In Q i for

1.9 General Phase' lD~n,.~,," l:ielom.3trv
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Figure 1-43. Carbon activity versus mole fraction
of Cr at constant T and P in the Fe-Cr-C system.
This is not a true phase diagram (from Hillert, 1997).

1.0 ---------------------..,

each of the (C+ 2) conjugate pairs in Table
1-1. (Also, at least one of these must be an
extensive variable q;.) From among the
11(l~n~C+2) selected extensive vari­
ables, (/2-1) independent ratios are then
formed. These (12- 1) ratios along with the
(C + 2- n) selected potentials are the (C + 1)
required variables. Two are chosen as axis
variables and the remainder are held con­
stant.

As a first example, consider a binary
system with components A-B. The conju­
gate pairs are (T, S), (P, - V), (}-LA' nA ) and
(}lB, 12B)· Let us choose one variable from
each pair as follows: T, P, nA , ns. From the
selected extensive variables, l1 A and 118' we
form a ratio such as nB/(nA+ nB) = XB. The
resultant phase diagram variables are
XB • Choosing any two as .axes and holding
the third constant will give a true phase di­
agram as in Fig. 1-6 or Fig. 1-8.

As a second example, consider Fig. 1-38
for the Fe-Cr-S2-02 system. We choose
one variable from each conjugate pair as

T, J.ls!, J10 2 , nFe' nCr· From
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tions, nNa/(nNa + 2nca) and nCI/(nCI + no),
whose denominators are equal becaus.e
charge neutrality.

1.9.2.2 Corresponding Phase Diagrams

When only potentials are held constant
and when both axes are also potentials,
then'the geometry exemplified by Figs. 1
to 1-3, 1-26 and 1-37(b) results. Such dia­
grams were called "type-l phase diagrams"

Pelton and Schmalzried (1
potentials are held constant and one axis is
a potential while the other is a composition
variable, then the geometry exemplified
by Figs. 1-8, l-I~, 1-34, 1-37(a), and the
lower panel of Fig. 1-33 results. These
were termed "'type-2" diagrams. Finally, if
only potentials are held constant and both'
axes are compositions, then a "type-3" dia­
gram as in the upper panels of Figs. 1-32
and 1-33 results.

If the l/J; axis of a p~ase diagram is re­
placed by a conlposition variable that var­
ies as its conjugate variable qi (ex: q;/qj'
q;/(q;+qj»' then the new diagram and the
o~iginal diagranl are said to fornl a pair of
corres/Jondillg phase diagral11s. For in­
stance, Figs. 1-37 (a) and 1-37 (b) are cor­
responding type-I" and type-2 phase dia­
grams, while Fig. 1-33 shows a corre­
sponding pair of type-2 and type~3 dia­
grams. It is useful to draw correspondino

diagrams beside each other as in Figs. 1-37
or 1-33 because the information contained
in the two diagrams is tonlplementary.

1.9.2.3 Theoretical Considerations

A complete rigorous proof that the pro­
cedure described in this section will always
generate a true phase diagram is beyond
the of chapter. an outline of

we

1.9.2.1 Tie-lines

If only potentials (T, P, J-Li) are held con­
~tant, then all tie-lines lie in the plane of
the phase diagram section. In this case, the
compositions of the individual phases at
equilibrium can be read from the phase

that preserves
diagram.

example, in Figs. 1-6, 1-25, 1-33 or 1-34.
However, if a variables,
such as a composition, is held constant as
in the isopleths of Figs. 1-28 to 1-30, then
in general, tie-lines do not lie in the plane.

If both axes are composition variables
(ratios of n;), and if only potentials are held
constant, then it is desirable that the tie­
lines (which lie in the plane) be straioht
lines. It can be shown (Pelton and Tho~p­
son, 1975) that this will only be the case if
the denominators of the two composjtion
:ariable ratios are the same. For example,
In the central panel of Fig. 1-32, which is in
Janecke coordinates, the composition vari-
ables, nco/(nCo+nNi) and no /(nco+l1Ni)'
have same denominator. This same dia-
gram can be plotted on triangular coordi­
nates as in the upper panel of Fig. 1-32 and
such a diagram can also be shown (Pelton
and Thompson, 1975) to give straioht tie-
l
" 0

Ines.
Similarly, in the quasiternary reciprocal

phase diagram of Fig. 1-31 the vertical and
horizontal axes are 11Na/(nNa+11K) and
ncl/(nCI+nF). preserve charge neutral­
ity, (nNa+nK)=(llcl+llF), and so the tie­
lines are straight. Generally, in quasiter­
nary reciprocal salt phase diagrams,
straight tie-lines are obtained by basing the
composition on one equivalent of ,.......,.n, __ ...



-H delfT) - (VIT) dP + n;d(J.l;IT) = 0
( 1-11

1.9.2.4 Other Sets of Conjugate Pairs

The set of conjugate pairs in Table 1-1 is
only one of many such sets. For example, if
we make the substitution (H = TS +L 11; J.li)
in Eq. (1-115), then we obtain another form
of the general Gibbs-Duhem equation:

values. For example, in the predominance
diagram 1:--1, components are
chosen as S02-02, then the com-
pound CU2S is writ~en as CU2(S02)0_2;
that is n0

2
= -1. This is no problem in Fig.

1-1, since Jlo
2

rather than n0
2

was chosen
from the conjugate pair and is'plotted as an
axis variable. How'ever, suppose we wish
to plot a diagram of J1·cu versus J.ls0

2
at con­

stant T and P in this system. In this case,
the chosen variables would be T, P, J.ls0

2
,

no
2

• Since one of the selected extensive
variables must always be positive, and
since n0

2
is the only selected extensive var­

iable, it is necessary that n02 be positive
everywhere. For instance, a phase field for
Cu2S is not permitted. In other words, only
compositions in the CU-S02-02 subsys­
tem are permitted. A different phase dia­
gram would result if we plotted J-Lcu versus
Jls0

1
in the CU-S02-S2 subsystem with 11S;!

always positive. Cu20 -would then not ap- 0

pear, for example. That is, at a given J1·cu .
and Pso

2
we could have a low Po;! and a

high /)S2 in equilibrium with, for example,
Cu2S, or we could have a high Po;! and a
low PS

2
in equilibrium with, for example,

Cu20. Hence the diagram will not be a true
diagram unless compositions are limited to
the Cu-S02-02 or CU-S02-S2 triangles.
As a second example, if J-LSiO and J1co are
chosen as variables in the SiO-CO-O
system, then the diagram must be limited
to no> 0 (SiO-CO-O subsystem) or to
120< 0 (SiO-CO-Si-C subsystem).

611.9 General Phase Diagram l::ielDmE:urv

stability criterion:

This equation states that a potential tPi al­
ways increases as its conjugate variable qi
increases when either tPj or qj from every
other conjugate pair is held constant. For
instance, J.li of a component always in­
creases as that component is added to a
system (that is, as nj is increased) at con­
stant T and P, when either the number of
moles or the chemical potential of every
other component is held constant. In a bi­
nary system, for example, this means that
the equilibrium Gibbs energy envelope is
always convex, as shown in Fig. 1-6. If the
envelope were concave, then the system
would be unstable and would separate into
two phases, as shown in Fig. 1-1 1.

Consider first a phase diagram with axes

¢I and tP2 with tP3' tP4' ... , tPC+1 and QC+2
constant. Such a diagram is always a true
phase diagram. If the potential tPl is now re­
placed by q I' the diagram still remains a
true phase diagram because of Eq. (1-116) ..
The sequence of equilibrium states that oc­
curs as q I is increased will be the same as
that which occurs as ¢I is increased when
all the other variables (¢i or q;) are held
constant.

A true phase diagram is therefore ob­
tained if the axis variables and constants
are chosen from the variables ¢1' ¢2' ... ,

¢N' qN+I' QN+2' ... , qC+1 with QC+2 held
constant. The extensive variables can be
normalized as (q;fqc+2) or by any other in­
dependent and unique set of ratios.

It should be noted that at least one exten­
sive variable, QC+2' is considered to be con­
stant across the entire diagram. In practice,
this means that one of the extensive vari­
ables must be either positive or negative
everywhere on the diagram. For certain
formal choices of components, extensive
composition variables can have negative

, I

I
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the site fractions and XCa of and
Ca2 + 'cations on the cationic sublattice are
numerically equal to the oyerall component
mole fractions XMgO and ~CaO. Solid and liq­
uid MgO-CaO solutions have been shown
(Wu et al., 1993) to be well represented by
simple polynomial equations for gE.

As a second example, the intermetallic E­

FeSb phase exhibits non-stoichiometry to­
ward excess Fe. This phase was JlIlIl"-J''L.II.''-JJI''-JlLJI.

(Pei et al., 1995) as a solution
stoichiometric FeSb by assuming two sub­
lattices: an "Fe sublattice" occupied only
by Fe atoms and an "Sb sublattice" occu­
pied by both Fe and Sb atoms such that, per
gram atom,

~g'll =0.5 R T (YFe In J'Fe + YSb InYSb)

+a'\'FcYsh (1-118)

where )'Sh =(1 - YFc) =2XSb is the site frac­
tion of Sb atoms on the "Sb sites" and a is
an empirical polynomial in J'Sh.

9 = (XN~l XCI g~aCI + XF g~F

+XNaXFg~aF+XKXCIg~CI) (1-119)

+ R T (XNa In XN41 + XK In XK )

+ R T (XFInXF+ XCI InXc, ) + gE

Let us take as an example a solution,
solid or liquid, of NaF~ KF, NaCI and KCI
as introduced in Sec. 1.7.8. If the cations
are assumed to mix randomly on a cationic
sublattice while the anions mix randomly
on an anionic sublattice, then the molar
Gibbs energy of the solution can be mod­
eled by the following equation which con­
tains an ideal mixing term for each sublat­
tice:

1.10.1.2 Ionic Solutions

gate potentials
(lIT, -H), (P, - (}-LilT, ni). Choosing
one and only one from each pair,
we can constrllct a true phase diagram by
the procedure described above. However,
these diagrams may be of limited practical
utility. Thi~ is discussed by Hillert (1997).

1 expres-
sions for simple ideal substitutional solu­
tions were derived and in Secs. 1.5.7 and
1.6.2, the regular solution model and poly­
nomial extensions thereof were discussed.
For other types of solutions such as ionic
mixtures, interstitial solutions, polymeric
solutions, etc., the most convenient defini­
tion of ideality may be different. In the
present section we examine some of these
solutions. We also discuss structural order­
ing and its effect on the phase diagram. For
further discussion, see Pelton (1997).

1.10 Solution Models

1.10.1 Sublattice Models

1.10.1.1 All Sublattices Except One
One Species

In the simplest limiting case, only one
sublattice is occupied by more than one
species. For example, liquid and solid
MgO-CaO solutions can be modeled by
assuming an anionic sublattice occupied

0 2- while Mo2+ and
. t::J

on a cationic sublattice.

The sublattice concept has proved to be
very useful in thermodynamic modeling.
Sublattice models, which were first devel­
oped extensively for molten salt solutions,
find application in ceramic, interstitial so­
lutions, intermetallic solutions, etc.



1.10 Solution Models

accounts the
of Na+-F- and nearest-neighbor
pairs be higher than the number of
such p~irs in a random mixture. This term
is usually not negligible.

The phase diagram in Fig. 1-31 (a) was
calculated by means of ~qs. (1-119) and
(1-122) solely. from optimized excess
Gibbs energies of the binary systems and
from compiled data for the pure salts.
Agreement with the measured diagram is
very good.

Eqs. (1-119) and (1-122) can easily be
modified for solutions in which the num­
bers of sites on the two sublattices are not
equal, as in MgCI2-MgF2-CaC12-CaF2

solutions. Also, in liquid salt solutions the
ratio of the number of lattice sites on one
sublattice to that on the other sublattice
can vary with concentration, as in molten
NaCI-MgCI2-NaF-MgF2 solutions. In
this case, it has been proposed (Saboungi
and Blander, 1975) that the molar ionic
fractions in all but the random mixing
terms of these equations should be replaced
by equivalent ionic fractions. Finally, the
equations can be extended to ~ulticompo­

nent solutions. These extensions are all dis­
cussed by Pelton ( 1988 b).

For solutions such as liquid NaF-KF­
NaCI-KCl for which ~GCXCh~1I1g~ is not too
large, these equations are often sufficient.
For solutions with larger exchange Gibbs
energies, however, in which liquid immis­
cibility appears, these equations are gener­
ally unsatisfactory. It was recognized by
Saboungi and Blander (1974) that this is
due to the effect of non-randomness upon
the second nearest-neighbor cation-cation
and anion-anion interactions. To take
account of this, Blander proposed addi­
tional terms in Eq.( 1-122). Dessureault and
Pelton (1991) modified Eqs. (1-119) and
(1-122) to account more rigorously for

ll.4 .. A' "' ,,11>,1.&&,..... effects, with good re-

(1-121)NaCI + KF = NaF + KCl;

where ~Gexchange is the Gibbs energy
change for the following exchange reaction
among the pure salts:

where, for example, g~aCI-NaF is the excess
Gibbs energy in the NaCI-NaF binary
system at the same cationic fraction XNa as
in the ternary, and where Z is the, first coor­
dination number. That is, gE contains a
contribution from each binary system. 'The
final term in Eq. (1-122) is a first-order

non-random

... _r1IIlIllnlrY a a 'as &&._ .......... _,..., ....

neighbors. Differentiation of Eq. (1-119)
gives the following expression for the ac­
tivity of NaP:

RTlnaNaF=-XKXCI ~Gexchange (1-120)

+ R T In (XNa XF) + g~aF

In this example, ~Gexchange<O. The salts
NaF and KCI are thus said to form the
stable pair. The first term on the right of
Eq. (1-120) is positi vee The members of the
stable pair thus exhibit positive deviations,
and in Fig. 1-31 this is reflected by the flat
liquidus surfaces with widely spaced iso­
therms for NaF and KCI. That is, the mix­
ing of pure NaF and KCl is unfavorable be­
cause it involves the formation of K+ - F-,
and Na+-CI- nearest-neighbor pairs at the
expense of the energetically preferable·
Na+-F- and K+-CI- pairs. If ~Gcxchangc is

sufficiently large, a miscibility gap will be
formed, centered close to the stclble diago­
nal joining the stable pair.

Blander (1964) proposed the following
expression for gE in Eq. (1-119):

gE = XNag~aCI-NaF + XKg~CI-KF (1-122)

+ XF g~aF-KF + XCI g~;\CI-KCl

- X
Na

X
K

XF XCI (~Gcxchange)~iZRT

I:!Gexchange = g~aF +

~.

: I
\

,~ t



(1-125)

Materials

tion can represented as
T·3 +) h · thI-x Ix B were x IS e

fraction of ions are assumed
mix randomly on each sublattice so that:

L\sideal = -2R [(I-x) In (I-x) + x In.x]

(1-124)

Deviations from ideal mixing are as­
sumed to occur due to interlattice cation­
cation iilteractions according to

(Fel+ - Ti~+) + (Tii+ - Ti~+)

= (Fei+ - Ti~+) + (Ti~+ -

L\G=a+bT

where a and b are the adjustable parameters
of the model. The probability that an A-B
pair is an (Fei+ - Ti~+) or a (Ti~+ - Ti~+)

pair is equal to x (1 - .,r). Hence, gE =
.x(l-x)(a+bT). .

Similar models can be proposed for
other ceramic solutions such as spinels,
pseudobrookites, etc. These ITIodels can
rapidly beCOllle very complex mathemati­
cally as the nunlber of possible species on
the lattices increases. For instance, in
Fe30 4 -Co30 --l spinel solutions, Fe2+, Fe3

+,

C02+ and C03+ ions are all distributed over
both the tetrahedral and octahedral subIat­
tices. Four independent equilibrium con­
stants are required (Pelton et aI., 1979) to
describe the cation distribution even for the
ideal mixing approximation. This com­
plexity has been rendered much more tract­
able by the "compound energy model"
(Sundman and A.gren~ 1981; Hillert et al.,
1988). This is not actually a model, but is
rather a mathematical formalism permit­
ting the formulation of various models in
terms of the Gibbs energies, gO , of "pseu­
docomponents" so that equations similar to
Eq. (1-119) can be used directly.

As an example of the application of the
sublattice model to interstitial solutions we
will take the f.c.c. phase of the Fe-V-C
system. Lee and Lee (1991) have modeled
this solution using two sublattices: a metal­
lic sublattice containing Fe and atoms,
and an interstitial lattice containing
atoms and vacancies, va. The numbers of
sites on each are equal. equa­
tion identical to Eq. (1-119) can be written
for the molar Gibbs energy:

9 = (XFe Xva g~eva + XFe Xc g~ec

+ XyXvag~va + XyXcg~c) (1-123)

+ R T (XFc InXFe + Xy InXy )

+ RT (Xc InXc + Xva InXva ) + gE

where XFc=(I-Xy ) and Xc=(l-Xva ) are
the site frac.tions on the two sublattices and
"Feva" and "Vva" are simply pure Fe and
V" i.e., g~cva= g~c. An expression for gE as
in Eq. (1- i22), although without the final
non-random mixing term, was used by Lee
and Lee with optimized binary gE parame­
ters. Their calculated Fe-V-C phase dia­
gram is in good agreeme~twith experimen­
tal data. The sublattice model has been
similarly applied to many interstitial solu­
tions by several authors.

Many ceramic solutions contain two or
more cationic sublattices. As an example,
consider a solution of Ti 20 3 in FeTiO) (il­
menite) under reducing condit~ons. There
are two cationic sublattices, the A and B
sublattices. In FeTiO), Fe2+ ions and Ti 4 +
ions occupy the A and B sublattices, re-

With li,4,.."",dI ... LA'...,Il.&tJ

1.10.1.4 Ceramic Solutions



a conceptual framework for treati~g many
different phases with different structures.
This facilitates the development of com­
puter software and'databases because many
different types of solutions can be treated
as cases of one general formalism.

1.10.1.6 Non...Stoichiometric Compounds

1.10 Solution MO(JeIS

where g~B is the molar Gibbs energy of
(hypothetical) defect-free stoichiometric
AB the defect concentrations at equi­
librium are those that minimize g. There­
fore, setting (dg/d;t) = (dg/dy) = 0 at con-

stant D, we obtain (1-129)

(
/).gl + l:.ig, )

=exp -(l-x-)') RT-
(1

Non-stoichiometric compounds are gen­
erally treated by a sublattice model. Con­
sider such a compound A l- 6B 1+6 . The sub­
lattices normally occupied by A and B at­
oms will be called, respectivel~y,the A-sub­
lattice and the B-sublattice. Deviations
from stoichiometry (where 6= 0) can occur
by the formation of defects such as B atoms
on A sites, vacant sites, atoms occupying
interstiti"l sites, etc. Generally, <;>ne type of
defect will predominate for solutions with
excess A and another type will predomi­
nate for solutions with excess B. These are
called the majority defects.

Consider first a solutio·n in which the
majority defects are A atoms on B sites and
B atoms on A sites: (A1-xBx)A (AyB l-y)B. It
follows that b=(x-y). In the compound
energy formalism we can write, for the mo­
lar Gibbs energy,

g= (l-x)(l-)')g~B+ (l-x)yg~A

+x(I-)')ggB +X)'ggA (1-128)

+ RT [x In.:( + (I-x) In(l-x)

+)' lny + (l-y) In(l-y)]

(1-127)

1.10.1.5 The L:OJnD()UnO~,nel

As an example, the model for the
FeTi03-Ti20 3 solution in Sec. 1.10.1.4
will be reformulated. By taking all com­
binations of an A-sublattice species and
a B-sublattice species, we define two
real components, (Fe2+)A (Ti4+)803 and
(Ti?+)A (Ti3+)8°3' as well as two "pseudo­
components", (Fe2+)A (Ti3+)803 and
(Ti3+)A (Ti4+)8°3.

Pseudocomponents, as the present ex-
ample, may to
(1-119) the molar Gibbs energy can be
written

if = (1- X)2 g~eTi03 + x2 g~i203 (1-126)

+ x (I-x) g~eTio;+ X (I-x) g~i20; - T ~sideal

Note that charge neutrality is maintained in
Eq. (1-126). The Gibbs energies of the two
pseudocomponents are calculated from the
equation

~G=a+bT

where !::t.G is the Gibbs energy change of
Eq. (1-125) and is a parameter of the
model. One of g~eTio; or g~i20; may be as­
signed an arbitrary value. The other is then
given by Eq. (1-127). By substitution of
Eq. (1-127) into Eq. (1-126) it may be
shown that this formulation is identical to
the regular solution formulation given in
Sec. 1.10.1.4. Note that excess terms, gE,
could be added to Eq. (1-126), thereby giv­
ing more flexibility to the model. In the
present example, however, this was not re-

The compound energy formalism is de­
scribed and developed by Barry et ale
e1992), who give many more examples. An
advantage of formulating the sublattice
model in terms of the compound
formalism is that it is easily extended
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can to
vidual segments of the polymer molecule ~..
have- considerable freedom of movement.
Flory (1941, 1942) and Huggins (1942)
proposed a model in which the polymer
segments are_ distributed on the solvent
sites. A large polymer molecule can thus be
oriented (i.e. bent). in many ways, thereby
greatly increasing the entropy. To a first ap­
proximation the model gives an ideal mix­
ing term with mole fractions

(1

mation of the majority defects and where
ggA has been set equal to g~B. a given
composition D= (x-y), and given val-
ues of the parameters I1g1 and I1g2 , Eq.
(1-129) can be solved to give x and y,
which can then be substituted into Eq.
(1-128) to give g. The more positive are
I1g 1 and I1g2 , the more steeply 9 rises on ei­
ther side of its minimum, and the narrower
is the range of stoichiometry of the com-

(1-1RTRT

Lewis and Randall (1961) have com­
pared the Flory-Huggi~s equation with
experim.entaI data in several solutions.
In general, the measured activities lie be­
tween those predicte~ by Eq. (1-131) and
by the Raoultian ideal equation, Eq. (1-45).
A recent review of the thermodynamics
of polymer solutions is given by Trusler
(1999).

From the measured limiting slope
(dTldX)xA=1 of the liquidus at the melting
point of a pure component A, much infor­
mation about the extent of solid solubility,
as well as the structure of the liquid, can be
inferred. Similar information can be
tained from the limiting slopes of phase
boundaries at solid-state transformation
points of pure components.

Eq. (1-65) relates the activities along the
liquidus and the solidus to the Gibbs en­
ergy of fusion:

1.10.3 Calculation of Limiting Slopes
of Phase Boundaries

Consider another model in which the
majority defects are on the
sublattice and B atoms on interstitial sites.
We now have three sublattices with occu­
pancies (A)A(BI_yVay)B(Bxval_x)1 where
"I" indicates the interstitial sublattice. The
A-sublattice is occupied exclusively by A
atoms. ·A vacancy is indicated by va. Stoi­
chiometric defect-free AB is represented
by (A) (B) (va) and (x-y)=2b/(I-b).
Per mole of A1-<5BI+<5, the Gibbs energy is:

g= (I-b) {[(I-x) (l-y)g~Bva

+ (l-x)yg~vava +x(I-)')g~BB +xJ'g~vaB

+ RT [x lnx + (I-x) In (I-x)

+ y In y + (1-y) In (1-y)]} (1-130)

Eq. (1-130) is identical to Eq. (1-128) apart
from the factor (1- b), and gives rise to an
equilibrium constant as in Eq. (1-129).
Other choices of majority defects result in
very similar expressions. The model can
easily be modified to account for other
stoichiometries AIlIB", for different num­
bers of available interstitial sites, etc., and
its extension to multicomponent solutions
is straightforward.

1.10.2 Polymer Solutions

For solutions of polymers in monomeric
solvents, very large deviations from simple

(1



(1-134)

o Solution Models

uidus slope very good, thereby showing
that the solid solubility of NaF in LiF is not
large.

In the general case, the solute B may dis­
solve to form more than one "particle". For
example, in dilute solutions· of Na2S04 in
MgS04, each mole of Na2S04 yields two
moles of Na+ ions which mix randomly
with the Mg2+ ions on the cationic sublat­
tice. Hence, the real mole fraction of sol­
vent, XA , is (l-vXB ) where vis the number
of moles of foreign "particles" contributed
by one mole of solute. In the present exam­
ple, v=2.

Eq. (1-133) now becomes:

lim (dXl/dT - dX~/dT)
XA-l

The broken line in Fig. 1-44 is the limiting
liquidus slope calculated from Eq. (1-134)
under the assumption of negligible solid
solubility.

It can be shown (Blander, 1964) that Eg.
(1-134) applies very generally with the fac­
tor v as defined above. For exulnple, add­
ing LiF to NaF introduces only one foreign

limit
converge at
assume that, in the limit, Raoult's Law,
(1-40), holds for both phases. That is,
a~ ==X~ and a~ == X.l.. Furthermore, from
Eq. (1-60),

b.g~(A) -+ !:1hf (A) (1 - T/Tf(A»

FinaLly, we note that

lim (InXA ) = lim (In(l-XB)) =-XB
XA-l XA-l

Substituting these various limiting values
into Eq. (1-132) yields:

lim (dXl/dT dX~/dT~
XA-l

== D.h~(A/R(Tf(A»2 (1-133)

If the limiting slope of the liquidus,
lim (dXl/dT), is known, then the limiting

XA-l

slope of the solidus can be calculated, or
vice versa, as long as the enthalpy of fusion
is known.

For the LiF-NaF system in Fig. 1-18,
the broken line is the limiting liquidus ~

slope at XLiF = 1 calculated from Eq. (1­
133) under the assumption that there is no
solid solubility (that is, that dX~/dT=O).

:.4:.

Figure 1...44. Phase dia­
gram of the MgS0-l­
Na~SO-l systen1 calculated
for an ideal ionic liquid so­
lution. Broken line is the
theoretical lin1iting liquidus
slope calculated for negli­
gible solid solubility taking
into account the ionic nature
of the liquid. Agreement
\vith the measured diagram
(Ginsberg, 1909) is good.
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(1-141)

(1-139)

as

solution of Eqs~ (1-

IILJIIII __ .. mass IlILAAu"J.J.".. _

1] T) =0,
1-141)

Materials

__ =4 exp (- (w -17T))
XII X22 RT

= ..2n 1 + n12

Z2 X2 = 2n22 + n12 (1-136)

where n·· is the number of i- j bonds in one
I) _'

mole of solution,. "Coordination equivalent
fractions" may be defined as:

Y1 = 1- Y2 =ZIX1l(ZIX1 + Z2X2) (1-137)

where the total number of pairs in one mole
of solution is (ZIX1+Z2X2)/2. Letting

i
(1-136) may be written as:

2Yl=2XII+XI2

2 y2 =2 X22 + XI 2 ( 1- 138)

The molar enthalpy and excess entropy of
mixin o are assumed to be directly relatedb

to the number of 1-2 pairs:

An approximate expression for the config­
urational entropy of mixing i~ given by a
one-dimensional Ising model:

!:i.h - TsE(non-config)
m

= (ZIX1 + Z2 X2) X I2 (w- 17T )/4

!:i.s~~nfig=- R(X) In XI + X2 In X2 )

R
- 2 (21 XI + 2z Xz)

x[Xllln(Xll/~2)+ X221n(X22IY22)

+ X12 In (X12 /211 Y2)] (1-140)

The equilibrium distribution is calculated
by minimizing !:i.gn1 with respect to X I2 at
constant composition. This results in a
"quasichelnical" equilibrium constant

(1-135):(1-1=2(1

Hence, v= 1
MgS04 , v= 2 since
are supplied per
CaCl2 dissolved in water, v= 3, and so on.
For dissolving interstitially in, solid Fe,
v= 1. The fact that the solution is intersti­
tial has no influence on the validity of Eg.
(1-134). Eq. (1-134) is thus very general
and very useful. It is independent of the so­
lution model and of the excess properties,
which become zero at infinite dilution.

An equation identical to (1-134) but
with the enthalpy of transition, !:1h~r' re­
placing the enthalpy of fusion, relates the
limiting phase boundary slopes at a trans­
formation' temperature of a component.

Let the molar Gibbs energy _JI,a"".... lIIa_

this reaction be (w-1] T). Let the nearest­
neiohbor coordination numbers of 1 and 2o

atoms or molecules be and . The
an i atom

(1-1)+

1.10.4 Short-Range Ordering

The basic premise of the regular solution
model (Sec. 1.5.7) is that random mixing
occurs even when gE is not zero. To ac­
count for non-random mixing, the regular
solutio"n model has been extended thoug~
the qLlasicilell1icai 1110del for sllort-rarlge
orderilzg developed by Guggenheim (1935)
and Fowler and Guggenheim (1939) and
modified by Pelton and Blander (1984,
1986) and Blander and Pelton (1987). The
model is outlined below. For a more com­
plete development, see the last two papers
cited above, Degterov and Pelton (1996),
Pelton et ale (2000) and Pelton and Char­
trand (2000).

For a binary system, consider the for-
mation of two nearest-neighbor 1 pairs
from a I-I and a 2-2 pair:



following
1998) polynomial:

(1­

(W--1J T)::= -(70017.+ 9T) -74042 Ys

- (798 - 15 T) Y£ + 40791 Yl J/mol-1

1.10 Solution Models

Far fewer parameters are required than if a
polynomial expansion of gE (as in Sec.
1.6.2) were used. Furthermore, and more
importantly, the model permits successful
predictions of the properties of multicom­
ponent systems as illustrated in Fig. 1-47,
where measured sulfur activities in quater­
nary liquid Fe-Ni-Cu-S solutions are
compared with activities calculated (Kon­
goli et al., 1998) solely from the optimized
model parameters for the Fe-S, Ni-S
and Cu-S binary systems. A pair exchange
reaction like Eq. (1-135) was assumed
for each M-S pair (M = Fe, Ni, eu), and
an optimized polynomial expansion of .
(wMS -17MS T) as a function of Ys , similar to
Eq. (1-142), was obtained for each binary_

. Three equilibrium constant equations like
Eq. (1-141) were written, and it was as­

. sumed that (W~1S - "7MS T) in the quaternary
system was constant at constant Ys . No ad-
justable ternary or quaternary parameters
were required to obtain the agreenlent
shown in Fig. (1-47), although the model
perlnits the inclusion of such terms if re­
quired.

Silicate slags are known to exhibit such
short-range ordering. In the CaO-Si02

system, !1Jzn1 has a strong negative V-shape,
as in Fig. 1-45, but with the minimum at
XSiO~=1/3 which is the composition corre­
sponding to Ca2Si04 - That is, the ordering
is associated with the forlnation of ortho­
silicate anions SiO;-. In the phase diagram,
Fig. 1-14, the CaO-liquidus can be seen to
descend sharply near the composition
XSiO~= 1/3. The quasichemical model has
been extended by Pelton and Blander
(1984) to treat slags. The diagram

0----------------

with 1­

Eq. ( 140)
entropy of mixing. When (w-TJT) be­
comes very negative, 1 pairs predomi­
nate. A plot of ~hm or sE(non-config) versus

composition then becomes V-shaped and a
plot of .6.s~nfig becomes m-shaped, with
minima at Y1= Y2 = 1/2, which is the com­
positi.on of maximum ordering, as illus­
trated in Fig. 1-45. When (w-1JT) is quite
negative, the plot of gE also has a negative
V-shape.

For
coefficients of sulfur as measured by sev­
eral authors are plotted in Fig. 1-46. It is
clear in this case that the model should be
applied with ZFe = Zs. The curves shown in
Fig. 1-46 were calculated from the quasi­
chemical model with (w-1J T) expanded as

e
.&:.
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Figure 1-45. Molar enthalpy and entropy of mixing
curves for a systen1 AB calculated at IOOO°C with
2 1 froln the quasichemical model for short­
range ordering with (m- 1] T)=O, -21, -42, and
-84 kJ.
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Figure 1-46. Activity coefficient of sulfur in liquid Fe-S solutions calculated from optimized quasichemical
model parameters and comparison with experimental data (Kongoli et aI., 1998).

Figure }...47. Equilibriunl partial pressure of sulfur at 1200°C over Fe-Ni-Cu-S mattes predicted by the
quasichemical model from binary data (Kongoli et aI., 1998) and comparison with experimental data

and 1996).



shown is thermodynamically

calculated
Many liquid alloy solutions exhibit

short-range ordering. The ordering is
strongest when one component is relatively
electropositive (on the left side of the peri­
odic table) and the other is relatively elec­
tronegative. Liquid alloys such as Alk-Au
(Hensel,. 1979), Alk-Pb (Saboungi et al.,

. 1985) and Alk-Bi (Petrie et al., 1988 a),
where Alk= (Na, K, Rb, Cs), exhibit curves
of ~hm and t1sm similar to those in Fig.
1 one
ordering., For example, in the Au-Cs sys­
tem the minima occur near the composition
Aues; in Mg-Bi alloys the minima occur
near the Mg3Bi2 composition, while in
K-Pb alloys the maximum ordering is at
K4Pb.

It has also been observed that certain liq-
uid alloys. exhibit more than one composi­
tion of ordering. For example, in K-Te al­
loys, the "excess stability function", which
is the second derivative of Llgn1 , exhibits
peaks near the compositions KTes , KTe
and K2Te (Petrie et al., 1988 b) thereby
providing evidence of ordering centred. 'on
these compositions. The liquid might be con­
sidered as consisting of a series of mutually
soluble "liquid intermetallic compounds".

When (w-1J T) is expanded as a polyno­
mial as in Eq. (1-142), the quasichemical
model and the polynomial model of Sec.
1.6.2 become identical as (w - 1] T) ap­
proaches zero. That is, the polynomial
model is a limiting case of the quasichemi­
cal model when the assumption of ideal
configurational entropy is made.

(w-1JT) is positive, (1-1) and
(2-2) pairs predominate. The quasichemi­
cal model can thus also treat such cluster­
ing, which accompanies positive devia­
tions from ideality.

Recent work (Pelton et al., 2000; Pelton
and Chartrand, 2000) has rendered the

1.10 Solution Models 71

model more flexible by permitting the to
vary with composition and by expanding
the (w-1] T) as polynomials in the bond
fractions Xij rather than the overall compo­
nent fractions. A merger of the quasichem­
ical and sublattice models has also been
completed (Chartrand and Pelton, 2000),
permitting nearest-neighbor and second­
nearest neighbor short-range-ordering to
be treated simultaneously in molten salt so­
lutions.

1.10.5 Long-Range Ordering

In solid solutions, long-range ordering
can occur as well as short-range ordering.
In Fig. 1-15 for the Ag- Mg system, a
transformation from an a' to an a phase is
shown occurring at approximately 665 K
at the composition Ag3Mg. This is an
order-disorder transformation. Below the
transformation temperature, long:ral'lge or­
derillg (superlattice formation) is observed.
An order paranleter may be ~efined which
decreases to zero at the transformation
temperature. This type of phase transfor­
mation is not a first-order transformation
like those considered so far in this chapter.
Unlike first-order transformations which
involve a change of state (solid, liquid, gas)
and also involve diffusion over distances
large compared with atomic dimensions,'
order-disorder transformations, at least at
the stoichiometric composition (Ag3Mg in
this example), occur by atomic rearrange­
ment over distances of the order of atomic
dimensions. The slope of the curve of
Gibbs energy versus T is not discontinuous
at the transformation temperature. Order­
ing and order-disorder transformations are
discussed in Chapter 8 (Inden, 200 I).

A type of order-disorder transformation
of importance in ferrous metallurgy is the
magnetic transformation. Below its Cllrie
tel11peratllre of is ferromagnetic.
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(Ivanov, 1953) and estiInated (Lin et
1979) liquidus of the
MgC12-CaC12 system are shown in Fig.
1-48. The estimated phase diagram was'
calculated from the thermodynamic prop-~:

of the three binary subsystems with
-......&lL.lLJL' energy the ternary liquid ap-

Figure 1-48. Projection of the liquidus surface of
the KCl- MgC12 - CaC12 system.
a) Calculated from optimized binary thermodynamic -

parameters (Lin et aI., 1979). .
b) As reported by Ivanov (1953).

a 'liIo"&& .....&&jioo,'liIo"

the atomic spins and is not first order.
ditions of alloying elements will change
the temperature transformation. Mag­
netic transformations are treated in Chapter
4 (Binder, 2001). See also Miodownik
(1982) and Inden (1982).

Among 70 metallic elements 70 !/3 !67!
=54 740 ternary systems and 916895 qua­
ternary systems are formed. In view of the
amount of work involved in measuring
even one isothermal section of a relatively
simple ternary phase diagram, it is very im­
portant to have a means of estimating ter­
na~y and higher-order phase diagrams.

The most fruitful approac,h to such pre­
dictions is via thermodynamic methods. In
recent years, great advances have been
made in this area by the international Cal­
phad group. Many key papers have been
published in the C~lphad Journal.

As a first step in the thermodynamic ap­
proach, we critically analyze the experi­
mental phase diagrams and thermodynamic
data for the three binary subsystems of the
ternary system in order to obtain a set of
mathematical expressions for the Gibbs
energies of the binary phases, as was dis­
cussed in Sec. 1.6. Next, interpolation pro­
cedures based on solution models are used
to estimate the Gibbs energies of the ter­
nary phases from the Gibbs energies of the
binary phases. Finally, the ternary phase di­
agram is calculated by computer from
these estimated ternary Gibbs energies by
means of common tangent plane o~ total
Gibbs energy minimization algorithms.

As an example of such an estimation

1.11 Calculation ofTernary Phase
Diagrams From Binary Data



component phase diagrams.
Reviews of various interpolation proce~

dures and computer techniques for estimat-.
ing and calculating· ternary aI1:d higher-or­
der phase diagrams are given by Ansara
(1979), Spencer and Barin (1979) arid Pel­
ton (1997).

Other equations, similar to the Kohler
Eq. (1-143) in that they are based on exten­
sion of regular solution theory, are used to
estimate the thermodynamic properties of
ternary solutions from the properties of the
binary subsystems. For a discussion and
references, see Hillert (1980). However,
for structurally more complex solutions
involving more than one sublattice or with
significant structural ordering, other esti­
mation techniques must be used. For a re­
view, see Pelton (1997).

An example, the calculation of the
phase diagram of the NaCI-KCI-NaF-KF
system in Fig. 1-31, has already been pre­
sented in Sec. 1.10.1.2.

The quasichemical model for systems
with short-range ordering was discussed
for the case of binary systems in Sec.
1.10.4. The model has been extended to
permit the estimation of ternary and multi­
component phase diagrams (Pelton and
Blander, 1986; Blander and Pelton, 1987;
Pelton and Chartrand, 2000). Very good re­
sults have been obtained in the case of sili­
cate systems. The liquidus surface of the
Si02-MgO-MnO system, estimated from
optimized binary data with the quasichem­
ical model for the liquid and under the
assumption of ideal mixing for the solid
MgSi03-MnSi03 and Mg2Si04-Mn2Si04
solutions, is shown in Fig. 1-49. Agree­
ment with the measured phase diagram
(Glasser and Osborn, 1960) is within ex­
perimental error limits.

(1-143)

E
gC/A

(

gE =(l ~ XA)2 g~/c + (l ­

+ (1 ..... XC)2 g~/B

In this equation, gE is the excess molar
Gibbs energy at a composition· point in the
ternary liquid phase and g~/c, g~/A and g~/B

are the excess Gibbs energies in the three
binary systems at the same ratios XB/Xc ,
XCIXA and XAIXB as at the ternary point. If
the ternary liquid phase as well as the three
binary liquid phases are all regular solu­
tions, then Eq. (1-143) is exact. In the
general case, a physical interpretation of
Eq. (1-143) is that the contribution to gE
from, say, pair interactions between A and
B particles is constant at a constant ratio
XAIXB apart from the dilutive effect of the
C particles, which is accounted for by the
term (1-XC )2 taken from regular solution
theory.

Ternary phase diagrams estimated in this
way are quite acceptable for many pur­
poses. The agreement between the experi­
mental and calculated diagrams can be ~

greatly improved by the inclusion of one
or two "ternary terms" with adjustable
coefficients in the interpolation equations
for gEe For example, the ternary term
aXKC1 XMgC1 :2 XCaC1 :2' which is zero in all
three binaries, could be added to Eq. (1­
143) and the value of the parameter a
which gives the "best" fit to the measured
ternary liquidus could be determined. This,
of course, requires that ternary measure­
ments be made, but only a very few (even
one or two in this example) experimental
liquidus points will usually suffice rather
than the larger number of measurements
required for a fully experimental determi­
nation. In this way, the coupling of the
thermodynamic approach with a few well
chosen experimental measurements holds
promise of greatly reducing the experimen-

1.11 Calculation of Ternary Phase Diagr~ms From Data
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MNO

solution phases a, ~, y, .... The total Gibbs, 3'
energy of the system may be written ~s: '

G =(nAg~ + nBgg + _.. )

+ (nagu. + n(3gJ3 + ... )

where nA, nB, etc. are the number of moles "
of the pure solid or liquidus; g~, gg, etc~ .. '
are the molar Gibbs energies of the pure

/~

solids or liquids (which are functions of T :;:
and P); no, nJ3' etc. are the total number of,:_
moles of the solution phases;ga' gf!' etc...
are the molar Gibbs energies of the solution ~.

phases (which are function of P and .,;
set

WeightX

MOO - MnO
soli d sol u t ion

MGO

M02 Si 04 - Mn2Si 04
solid solution

Figure 1-49. Projec'tion of liquidus surface of the Si02-MgO-MnO system calculated from optimized binary J
parameters with the quasichemical model for the liquid phase.

Throughout this chapter it has been
shown that phase equilibria are calculated
by Gibbs energy minimization. Computer
software has developed in recent
years to perform such calculations in sys­
tems of any number of components, phases
and species.

Consider a system in which several stoi-
chiometric solid or liquid compounds B,

. could be present at equilibrium
a or

1.12 Minimization of Gibbs
Energy
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lI".:

as
the free energy· minimization

rithms find the set of mole numbers nA , nB'
etc., na , nf3' etc. (some may be zero) as well
as the compositions of all solution phases
which globally minimize G. This is the
equilibrium phase assemblage. Other con­
straints such as constant volume or a fixed
chemical potential (such as constant Po

2
)

may be applied.
A discussion of the strategies of such al­

gorithms is beyond the scope of the present
chapter. One of the best known general
Gibbs energy minimization programs is
Solgasmix written by Eriksson (1975) and
constantly updated.

When coupled to a large thermodynamic
database, general Gibbs energy minimiza­
tion programs provide a powerful tool for
the calculation of phase equilibria. Several
such expert database systems have been
developed. They have been reviewed by
Bale and Eriksson (1990).

An example of a calculation performed
by the F *A *C *T (Facility for the Analy-·
sis of Chemical Thermodynamics) expert
system, which the author has helped to de­
velop, is shown in Table 1-2. The program

Table 1...2. Calculation of equilibrium state when
1 mole SiI4 is held at 1400 K in a volume of 10" I.
Calculations performed by minimization of the total
Gibbs energy.

5iI.. =
2.9254(0.67156 I

+0.28415 SiI2

+0.24835E-OI 12

+0.19446E-01 SiI4

+0.59083E-05 SiI
+0.23039E-07 Si
+0.15226E-IO Si2
+0.21462EE-ll Si3)

( 1400.0,O.336E- 0 I,G)
+0.11182 Si

(1400.0,O.336E-0 1,51, 1.0000)

1.12 Minimization of Gibbs .... lI"lIJI"'l.III"I"'III"

has been asked to calculate equilibrium
state when 1 mol of SiI4 is held at 1400
in a volume of 104 1. The thermodynamic
properties of the possible product species
have been automatically retrieved from
the database and the total Gibbs energy
has been minimized by the Solgasmix
algorithm. At equilibrium there will be
2.9254 mol of gas of the composition
shown and 0.11182 mol of solid Si will
precipitate. The total pressure will be
0.0336 bar.

Although the calculation was performed
by minimization of the total Gibbs energy,
substitution of the results into the equilib­
rium constants of Eqs. (1-10) to (1-12) will
show that these equilibrium constants are
satisfied.

Another example is shown in Table 1-3
(Pelton et al., 1990). Here the program has
been asked to calculate the equilibrium

Table 1-3. Calculation of equilibrium state when re­
actants shown (masses in g) are held at 1873 K at a
pressure of I atm. Calculations performed by mini­
mization of the total Gibbs energy.

100. Fe+0.08 0+0.4 Fe+0.4Mn+0.3Si+0.08 Ar=

0.30793 litre (99.943 vol% Ar
+0.24987E-OI vol% Mn
+0.24069E-Ol \'01% SiO
+0.82057E-02 vol% Fe
+0.79044E-07 vol% 0
+ 0.60 192E-08 vol% Si
+0.11200E-08 vol% O2

+0.35385E-15 vol% Si2 )

(1873.0, 1.00 ,G)

+ 0.18501 granl ( 49.948 \vt.% Si02

+42.104 wt.% MnO
7.9478 wt.% FeO)
(1873.0, 1.00 . ,50LN 2)

+ 100.99 gram (99.400 wt.% Fe
+ 0.33630 wt.% Mu
+ 0.25426 wt.% Si
+ 0.98375E-02 wt.% 02)

(1873.0, 1.00 ,SOLN 3)

Ii...
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any properly ~.lI..lI.V''''''''''·1I.4

constants.

1.13.1 Phase Diagram Compilations

The classic compilation in the field of bi­
nary alloy phase diagrams is that of Hansen
(1958). This work was continued by Elliott
(1965) and Shunk (1969). These compila­
tions contain critical commentaries. A non­
critical compilation of binary alloy phase
diagrams is supplied in looseleaf form with
a continual up-dating service by W.O. Mof­
fatt of the General Electric Co., Schenec­
tady, N.Y. An extensive non-critical compi­
lation of binary and ternary phase diagrams.
of metallic systems has been edited by
Ageev (1959 - 1978). An index to all com­
pilations of binary alloy phase diagrams up
to 1979 was prepared by Moffatt (1979). A
critical conlpilation of binary phase dia­
grams involving Fe has been published by
Kubaschewski (1982). Terr,ary alloy phase

. diagrams were cOlnpiled by Ageev (1959­
1978).

Froln 1979 to the early 1990s, the Amer­
ican Society for Metals undertook a project
to evaluate critically all binary and ternary
alloy phase diagrams. All available litera­
ture on phase equilibria, crystal structures,
and often thermodynamic properties were
critically evaluated in detail by interna­
tional experts. Many evaluations have ap­
peared in the }OllrlZ(11 of Phase E(/uilibria
(formerly Blilletin of AIlv..\' P}zClse Dia­
graIns), (ASM Int'I., Materials Park, OH),
\vhich continues to publish phase diagram
evaluations. Condensed critical evalua­
tions of 4700 binary alloy phase diagrams

been published in three volumes
.... -"-lI"-lI_&lU!&"" .. et ., 1

Phase

state 1
0.4 g g

brought together at 1 at a total pres­
sure of 1 bar. database contains data
for a large number of solution phases as
well as for pure compounds. These data
have been automatically retrieved and the
total Gibbs energy has been minimized. At
equilibrium there are 0.30793 I of a gas
phase, 0.18501 g of a molten slag, and
100.99 g of a molten steel of the composi­
tions shown.

the solution
phases are represented as functions of com­
position by various solution models (Sec.
1.10). As discussed in Sec. 1.11, these
models can be used to predict the thermo­
dynamic properties of N-component solu­
tions from evaluated parameters for binary
(and possibly ternary) subsystems stored in
the database. For example, in the calcula­
tion in Table 1-3, the Gibbs energy of the
molten slag phase was estimated by the
quasichemical model from optimized pa­
rameters for the binary oxide solutions.

Gibbs energy nlinimization is used to
calculate general phase diagram sections
thermodynamically using the zero phase
fraction line concept (Sec. 1.9.1.1), with
data retrieved from databases of model co­
efficients. For example, to calculate the di­
agram of Fig. 1-30, the program first scans
the four edges of the diagram to find the
ends of the ZPF lines. Each line is then fol­
lowed frool beginning to end, using Gibbs
energy minimization to determine the point
at which a phase is just on the verge of be­
ing present. When ZPF lines for all phases
have been drawn, then the diagram is com­
plete. Because, as shown in Sec. 1.9, all
true phase diagram sections obey the same

one to

1.12.1 Phase Diagram Calculation
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Compilations of properties
enthalpies of mixing, etc.) are

much more difficult to find. Hultgren et ale
(1973) present the properties of a number
of binary alloy solutions. An extensive bib­
liography of solution properties of all types
of solutions was prepared by Wisniak and
Tamir (1978).' .

Thermodynamic/phase diagram optimi­
zation as discussed in Sec. 1.6.1 has been
carried out for a large number of alloy, ce­
ramic and other systems. Many of these
evaluations have been published in the
international Calp/zad JOlll';11al, published
since 1977 by Pergamon Press. Several of
the evaluations in the JOllrllal of Phase
Eqllilibria discussed above include ther­
modynamic/phase diagram optimizations,
as do a number of the evaluations in Vol. 7
of Phase Diagralns for Ceralnists.

Extensive computer databases of the .
thermodynamic properties of compounds
and solutions (stored as coefficients of

. model equations) are available. These in­
clude F * A * C * T (http://www'.crct.poly-

. mtl.ca), Thermocalc (http://www.met.
kth.se), ChemSage (http://gttserv.1th.rwth­
aachen.de), MTS-NPL (http://www.npl.
co.uk), Thermodata (http://www.grenet.fr).
HSC (http://www.outokumpu.fi). and
MALT2 (http://www.kagaku.com). Gibbs
energy minimization software permits the
calculation of complex equilibria from the
stored data as discussed in Sec. 1.12 as
well as the thermodynamic calculation of
phase diagram sections. A listing of these
and other available databases is maintained
at http://ww\v.crct.polymtl.ca .

A bibliographic database known as
Thermdoc, on thermodynamic properties
and phase diagrams of systems of interest
to materials scientists, with updates, is
available through Thermodata (http://
www.grenet.fr).

diagrams 7380
been in a
(Villars et al., 1995). Both binary and ter-
nary compilations are available from ASM
on CD-ROM. Many of the evaluations
have also been published by ASM as
monographs on phase diagrams involving a
particular metal as a compon.ent.
Ea~h year, MSI Services (http://www.

msiwp.com) publishes The Red Book,
which contains abstracts on alloy phase
diagrams from all sources, notably from

provides a CD-ROM with extensive alloy
phase diagram compilations and reports.

Phase diagrams for over 9000 binary, ter­
nary and multicomponent ceramic systems
(including oxides, halides, carbonates, sul­
fates, etc.) have been compiled in the 12­
volume series, Ph~se Diagramsfor. Ceram­
ists (1964-96, Am. Ceramic Soc., Colum­
bus, OH). Earlier volumes were non-criti­
cal compilations. However, recent volumes
have included c·ritical commentaries.

Phase diagrams of anhydrous salt sys­
tems have been compiled by Voskresen­
skaya (1970) and Robertson (1966).

An extensive bibliography of binary
and multicomponent phase diagrams of all
types of systems (metallic, ceramic, aque­
ous, organic, etc.) has been compiled by
Wisniak (1981).

1.13.2 Thermodynamic Compilations

Several extensive compilations of ther­
modynamic data of pure substances of
interest in materials science are available.
These include the JANAF Tables (Chase
et al., 1985) and the compilations of Barin
et al. (1977), Barin (1989), Robie et al.
(1978) and Mills (1974), as well as th~

series of compilations of the National Insti­
tute of Standards and Technology (Wash­
ington, D.C.).
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great many texts. a can be listed
here. A recent text by Hillert (1998) pro­
vides a complete thermodynamic treatment
of phase equilibria as well as solution mod­
eling and thermodynamic/phase diagram
optimization.

A classical discussion of phase diagrams
in metallurgy was given by Rhines (1956).
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AAIl ....iLA'"A'..... '\J'II.AI.IJV.l.l~...... I..l" phase
diagrams. A series of five volumes edited
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pects of phase diagrams in materials sci­
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ticular attention to applications in ceramic
systems, see also Findlay (1951), Ricci
(1964) and West (1965).
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It has ·been beyond the scope of the
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reader is referred to Kubaschewski and
Alcock (1979). For techniques of measur­
ing phase diagrams, see Pelton (1996),
Raynor (1970), MacChesney and Rosen­
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