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List of Symbols and Abbreviations

Symbol Designation

a; activity of component i

C number of components

Cp molar heat capacity

E electrical potential of a galvanic cell
F degrees of freedom/variance

G Gibbs energy in J

g molar Gibbs energy in J/mol

g; partial molar Gibbs energy of i

G? standard Gibbs energy of i

g° standard molar Gibbs energy of i
Ag; relative partial Gibbs energy i

gt excess molar Gibbs energy

gt excess partial Gibbs energy of i

AG Gibbs energy change

AG° standard Gibbs energy change

Ag, molar Gibbs energy of mixing

AgP standard molar Gibbs energy of fusion
Ag° standard molar Gibbs energy of vaporization
H enthalpy in J

h molar enthalpy in J/mol

h; partial enthalpy of i

H? standard enthalpy of i

h? standard molar enthalpy of i

Ah; relative partial enthalpy of i

hE excess molar enthalpy

hE excess partial enthalpy of i

AH enthalpy change

AH® standard enthalpy change

Ahg, molar enthalpy of mixing

AR? standard molar enthalpy of fusion
AR® standard molar enthalpy of vaporization
K equilibrium constant

kg Boltzmann constant

n number of moles

n; number of moles of constituent i

N; number of particles of i

N° Avogadro’s number

Pi partial pressure of i

P total pressure

P number of phases

q; general extensive variable
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gas constant

entropy in J/K

molar entropy in J/mol K
partial entropy of i
standard entropy of i
standard molar entropy of i
relative partial entropy of i
excess molar entropy
excess partial entropy of i
entropy change

standard entropy change
molar entropy of mixing
standard molar entropy of fusion
standard molar entropy of vaporization
temperature

temperature of fusion
critical temperature
eutectic temperature
internal energy

molar volume of i

standard molar volume of i
mole fraction of i
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activity coefficient of i
bond energy

empirical entropy parameter
chemical potential of i

number of moles of “foreign” particles contributed by a mole of solute

molar metal ratio

vibrational bond entropy

generalized thermodynamic potential
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1.1 Introduction

An understanding of thermodynamics
and phase diagrams is fundamental and es-
sential to the study of materials science. A
knowledge of the equilibrium state under a
given set of conditions is the starting point
in the description of any phenomenon or
process.

The theme of this chapter is the relation-
ship between phase diagrams and thermo-
dynamics. A phase diagram is a graphical
representation of the values of thermody-
namic variables when equilibrium is estab-
lished among the phases of a system. Mate-
rials scientists are used to thinking of phase
diagrams as plots of temperature versus com-
position. However, many other variables
such as total pressure and partial pressures
may be plotted on phase diagrams. In Sec.
1.3, for example, predominance diagrams
will be discussed, and in Sec. 1.8 chemical
potential—composition phase diagrams will
be presented. General rules regarding phase
diagram geometry are given in Sec. 1.9. -

In recent years, a quantitative coupling
of thermodynamics and phase diagrams
has become possible. With the use of com-
puters, simultaneous optimizations of ther-
modynamic and phase equilibrium data can
be applied to the critical evaluation of bi-
nary and ternary systems as shown in Sec.
1.6. This approach often enables good esti-
mations to be made of the thermodynamic
properties and phase diagrams of multi-
component systems as discussed in Sec.
1.11. These estimates are based on structu-
ral models of solutions. Various models
such as the regular solution model, the sub-
lattice model, and models for interstitial
solutions, polymeric solutions, solutions of
defects, ordered solutions, etc. are dis-
cussed in Secs. 1.5 and 1.10.

The equilibrium diagram is always cal-
culated by minimization of the Gibbs en-
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ergy. General computer programs are avail-
able for the minimization of the Gibbs en-
ergy in systems of any number of phases,
components and species as outlined in Sec.
1.12. When coupled to extensive databases
of the thermodynamic properties of com-
pounds and multicomponent solutions,
these provide a powerful tool in the study
of materials science.

1.1.1 Notation

Extensive thermodynamic properties are
represented by upper case symbols. For ex-
ample, G = Gibbs energy in J. Molar prop-
erties are represented by lower case sym-
bols. For example, g= G/n=molar Gibbs
energy in J/mol where n is the total number
of moles in the system.

1.2 Gibbs Energy and Equilibrium

1.2.1 Gibbs Energy

The Gibbs energy of a system is defined
in terms of its enthalpy, H, entropy, S, and
temperature, T .

G=H-TS (1-1)

A system at constant temperature and pres-
sure will approach an equilibrium state that
minimizes G.

As an example, consider the question of
whether silica fibers in an aluminum ma-
trix at 500°C will react to form mullite,
AlgSi,0,;

g SiO, + 6 Al = % Si+ AlgSi;03

(1-2)
If the reaction proceeds with the formation
of dn moles of mullite then, from the stoi-
chiometry of the reaction, dng;=(9/2) dn,
dny=-6dn, and dng;o,=—-13/2dn. Since
the four substances are essentially immis-
cible at 500°C, we need consider only the
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standard molar Gibbs energies, G?. The
Gibbs energy of the system then varies as:

9 13
'2‘ ggi - —2‘ ggio2

-69%,=AG°=-830K] (1-3)

dG/dn = g3, si,0,, +

where AGP° is the standard Gibbs energy
change of reaction, Eq. (1-2), at 500 °C.

Since AG°<0, the formation of mullite
entails a decrease in G. Hence, the reaction
will proceed spontaneously so as to mini-
mize G.

1.2.2 Chemical Equilibrium

The partial molar Gibbs energy of an
ideal gas is given by:

g;=9?+RT Inp; (1-4)

where ¢? is the standard molar Gibbs en-
ergy (at 1 bar), p; is the partial pressure in
bar, and R is the gas constant. The second
term in Eq. (1-4) is entropic. As a gas ex-
pands at constant 7, its entropy increases.
Consider a gaseous mixture of H,, S,
and H,S with partial pressures py,, ps, and
Pu,s- The gases can react according to

2H2+Sz=2H2S (1‘5)

If the reaction, Eq. (1-5), proceeds to the
right with the formation of 2dn moles of
H,S, then the Gibbs energy of the system
varies as:

dG/dn =2 gy,s — 2 gu, - s,
= (298,s — 29, - 45.)
+RT (21In py,s —2Inpy, —Inpg,)
= AG® + RT In(piy,s pii} ps,)
=AG (1-6)
AG, which is the Gibbs energy change of
the reaction, Eq. (1-5), is thus a function of
the partial pressures. If AG <0, then the re-

action will proceed to the right so as to
minimize G. In a closed system, as the re-

action continues with the production of
H,S, pu,s will increase while py, and ps,
will decrease. As a result, AG will become
progressively less negative. Eventually an
equilibrium state will be reached when
dG/dn=AG=0. -

For the equilibrium state, therefore:

AG°=-RT InK (1-7)
=—RT In (P%{zs p;lz pg;)equilibrium

where K, the “equilibrium constant” of the
reaction, is the one unique value of the ra-
tio (ph,s P Ps.) for which the system will
be in equilibrium at the temperature 7.

If the initial partial pressures are such
that AG >0, then the reaction, Eq. (1-5),
will proceed to the left in order to minimize
G until the equilibrium condition of Eq.
(1-7) is attained.

As a further example, we consider the
possible precipitation of graphite from a
gaseous mixture of CO and CO,. The reac-
tion is:

2CO=C+CO, (1-8)
Proceeding as above, we can write:

dG/dn = gc + gco, — 2 9co

=(ge+ gv?:o2 -292)+RT In (Pcoz/P%:o)
=AG°+RT In (Pcoz/Pcz:o) (1-9)
=AG=-RTInK+RT In (Pcoz/Ptz:o)

If (pco./po) is less than the equilibrium
constant K, then precipitation of graphite
will occur in order to decrease G.

Real situations are, of course, generally
more complex. To treat the deposition of
solid Si from a vapour of Sil,, for example,
we must consider the formation of gaseous
I,, I and Sil, so that three reaction equa-
tions must be written:

Sil,(g) = Si(sol) + 21,(g) (1-10)
Sil,(g) = Sil,(g) + I,(g) (1-11)
L(g) =2I(g) (1-12)




The equilibrium state, however, is still that
which minimizes the total Gibbs energy of
the system. This is equivalent to satisfying
simultaneously the equilibrium constants
of the reactions, Egs. (1-10) to (1-12), as
will be shown in Section 1.12 where this
example is discussed further.

1.3 Predominance Diagrams

1.3.1 Calculation of Predominance
Diagrams

Predominance diagrams are a particu-
larly simple type of phase diagram which
have many applications in the fields of hot
corrosion, chemical vapor deposition, etc.
Furthermore, their construction clearly il-
lustrates the principles of Gibbs energy
minimization and the Gibbs Phase Rule.

A predominance diagram for the Cu-
S-0O system at 1000 K is shown in Fig.
1-1. The axes are the logarithms of the
partial pressures of SO, and O, in the
gas phase. The diagram is divided into
areas or domains of stability of the various

Cu-S-0, 1000 K

1.3 Predominance Diagrams 7

solid compounds of Cu, S and O. For ex-
ample, at point Z, where pgo,= 1072 and
Po,=1077 bar, the stable phase is Cu,O.
The conditions for coexistence of two and
three solid phases are indicated respectively
by the lines and triple points on the diagram.

For example, along the univariant line
(phase boundary) separating the Cu,O and
CuSO, domains the equilibrium constant
K=psd, p52’* of the following reaction is
satisfied:

Hence, along EhlS line: (1-14)
log K = -2 log pso, — 5 log po, = constant

This boundary is thus a straight line with a
slope of (-3/2)/2 = -3/4.

In constructing predominance diagrams,
we define a “base element”, in this case Cu,
which must be present in all the condensed
phases. Let us further assume that there is

- no mutual solubility among the condensed
phases.

Following the procedure of Bale et al.
(1986), we formulate a reaction for the for-

8.0 B e e

CuS (s)

Cups (s) CupS0y (s)

Cup0 (s)

® Ppoint Z
= 10-2
Pso,* 10 :
Pgo 10"
0,710
| N

1

CuS0y4 (s) _

Figure 1-1. Predomi-
nance diagram. log psg.
versus log pg, (bar) at

o b . . , .
-12.0 -9.0 -6.0
’ logyo Pg,

1000 K for the Cu-S-0
system (Bale et al., 1986).
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mation of each solid phase, always from
one mole of the base element Cu, and in-
volving the gaseous species whose pres-
sures are used as the axes (SO, and O, in
this example):

AG = AG® + RT In p3'”? (1-15)
AG = AG® + RT In p3!** (1-16)
Cu + SO, = CuS + O,

AG = AG® + RT In(po, psb.) (1-17)
Cu + SOz + Oz = CUSO4

AG =AG®+RT In(psh, pgl)  (1-18)

and similarly for the formation of Cu,S,
Cu,S0O, and Cu,SO:s.

The values of AG? are obtained from ta-
bles of thermodynamic properties. For any
given values of pso, and pg,, AG for each
formation reaction can then be calculated.
The stable ‘compound is simply the one
with the most negative AG. If all the AG
values are. positive, then pure Cu is the
stable compound.

By reformulating Egs. (1-15) to (1-18) in
terms of, for example, S, and O, rather
than SO, and O,, a predominance diagram
with In ps and In pg, as axes can be con-
structed. Logarithms of ratios or products
of partial pressures can also be used as
axes.

1.3.2 Ellingham Diagrams
as Predominance Diagrams

Rather than keeping the temperature
constant, we can use it as an axis. Figure
1-2 shows a diagram for the Fe—S—-0 sys-
tem in which RT In pg, is plotted versus T
at constant pso,= 1 bar. The diagram is of
the same topological type as Fig. 1-1.

A similar phase diagram of RT In pg,
versus T for the Cu-0O system is shown in

Fig. 1-3. For the formation reaction:

4Cu+ O, =2Cu,0 (1-19)

we can write:

AGO =—RTInK=RTIn (poz)equilibrium
= AH® - TAS® (1-20)

The diagonal line in Fig. 1-3 is thus a plot
of the standard Gibbs energy of formation
of Cu,O versus 7. The temperatures indi-
cated by the symbol M and [M]are the melt-
ing points of Cu and Cu,O respectively.
This line is thus simply a line taken from
the well-known Ellingham Diagram or
AG® vs. T diagram for the formation of
oxides. However, by drawing vertical lines
at the melting points of Cu and Cu,O as
shown in Fig. 1-3, we convert the plot to a
true phase diagram. Stability domains for
Cu(sol), Cu(l), Cu,O(sol), and Cu,O(l)
are shown as functions of 7 and of imposed

~ Po,- The lines and triple points indicate

-50
-100
—~
o
E -150
-
hd
N’
o~
S¥-200
a
C
—
o -250
-300
-350 ! L
700 900 1100

Temperature (K)

Figure 1-2. Predominance diagram. RT In pg, ver-
sus Tat pgq, = 1.0 bar for the Fe~S-0 system.
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0
Cu,0
(liquid)
Cu, O (solid)
N
2 "
~ —200t
o~
QO
c Copper (liquid) Figure 1-3. Predominance diagram
— Copper (solid) (also known as a Gibbs.energy-t?m-
e perature diagram or Ellingham dia-
gram) for the Cu-0O system. Points
—400 . . . ; ; M and [M]represent the melting
0 300 600 900 1200 1500

Temperature, °C

conditions of two- and three-phase equilib-
rium.

1.3.3 Discussion of Predominance
Diagrams

In this section discussion is limited to
the assumption that there is no mutual sol-
ubility among the condensed phases. The
calculation of predominance phase dia-
grams in which mutual solubility is taken
into account is treated in Sec. 1.9, where
the general geometrical rules governing
predominance diagrams and their relation-
ship to other types of phase diagrams are
discussed.

We frequently encounter predominance
diagrams with domains for solid, liquid,
and even gaseous compounds which have
been calculated as if the compounds were
immiscible, even though they may actually
be partially or even totally miscible. The
boundary lines are then no longer phase
boundaries, but are lines separating regions
in which one species “predominates”. The
well known E-pH or Pourbaix diagrams of
aqueous chemistry are examples of such
predominance diagrams.

Predominance diagrams may also be con-
structed when there are two or more base
elements, as discussed by Bale (1990).

points of the metal and oxide re-
spectively.

Predominance diagrams have found
many applications in the fields of hot cor-
rosion, roasting of ores, chemical vapor
deposition, etc. A partial bibliography on
their construction and applications includes
Yokokowa (1999), Bale (1990), Bale et al.
(1986), Kellogg and Basu (1960), Ingra-
ham and Kellogg (1963), Pehlke (1973),
Garrels and Christ (1965), Ingraham and
Kerby (1967), Pilgrim- and Ingraham
(1967), Gulbransen and Jansson (1970),
Pelton and Thompson (1975), Shatynski
(1977), Stringer and Whittle (1975), Spen-
cer and Barin (1979), Chu and Rahmel
(1979), and Harshe and Venkatachalam
(1984).

1.4 Thermodynamics of Solutions

1.4.1 Gibbs Energy of Mixing

Liquid gold and copper are completely
miscible at all compositions. The Gibbs en-
ergy of one mole of liquid solution, g', at
1400 K is drawn in Fig. 1-4 as a function of
composition expressed as mole fraction,
Xcy, of copper. Note that X,,=1-Xc,. The
curve of ¢' varies between the standard mo-
lar Gibbs energies of pure liquid Au and
Cu, g3, and g¢,.
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Mole Fraction X o, —

Au Cu
00 02 04 06 08 1.0

T

— — 7

AgAu= RTlna,

Figure 1-4. Molar Gibbs energy, g', of liquid Au—
Cu alloys at constant temperature (1400 K) illustrat-
ing the tangent construction.

The function Ag!, shown on Fig. 1-4 is
called the molar Gibbs energy of mixing of
the liquid solution. It is defined as:

Agll'n = gl - (XAu ggu + XCu ggu) (1’21)

It can be seen that Ag), is the Gibbs energy
change associated with the isothermal mix-
ing of X,, moles of pure liquid Au and X,
moles of pure liquid Cu to form one mole
of solution:

Xauw Au(l) + X, Cu(l)

= | mole liquid solution (1-22)

Note that for the solution to be stable it is
necessary that Ag!, be negative.

1.4.2 Chemical Potential

The partial molar Gibbs energy of com-
ponent i, g;, also known as the chemical

potential, u,, is defined as:
g9; = 1 = (3G/9n)r.p n, (1-23)

where G is the Gibbs energy of the solu-
tion, n; is the number of moles of compo-

nent i, and the derivative is taken with all
n;(j = i) constant.

In the example of the Au—Cu binary liq-
uid solution, ge,=(0G'/0nc,)r. p.n,,» Where
G'=(nc,+nu,) ¢'. That is, gc,, which has
units of J/mol, is the rate of change of the
Gibbs energy of a solution as Cu is added.
It can be seen that g, is an intensive prop-
erty of the solution which depends upon
the composition and temperature but not
upon the total amount of solution. That is,
adding Onc, moles of copper to a solution
of given composition will (in the limit as
dnc,—0) result in a change in Gibbs en-
ergy, G, which is independent of the total
mass of the solution.

The reason that this property is called a
chemical potential is illustrated by the fol-
lowing thought experiment. Imagine two

systems, I and II, at the same temperature

and separated by a membrane that permits
only the passage of copper. The chemical
potentials of copper in systems I and II
are g&,=0G'/ont, and g¥,=0G"/ond,.
Copper is transferred across the membrane,
with dn'=-dn". The change in the total
Gibbs energy accompanying this transfer

is then: (1-24)
dG =d(G'+ G") =~ (g&, - g&u) dng,

If g&,>gl,, then d(G' + G") is negative
when dnf, is positive. That is, the total
Gibbs energy will be decreased by a trans-
fer of Cu from system [ to system II.
Hence, Cu will be transferred spontane-
ously from a system of higher g, to a sys-
tem of lower gc,. Therefore g¢, is called
the chemical potential of copper.

An important principle of phase equilib-
rium can now be stated, When two or more
phases are in equilibrium, the chemical po-
tential of any component is the same in all
phases.

- [,
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1.4.3 Tangent Construction

An important construction is illustrated
in Fig. 1-4. If a tangent is drawn to the
curve of g' at a certain composition
(Xcy=0.6 in Fig. 1-4), then the intercepts
of this tangent on the axes at X,,=1 and
Xc,=1 are equal to g, and g, respec-
tively at this composition.

To’prove this, we first consider that the
Gibbs energy of the solution at constant T
and P is a function of n,, and nc,. Hence:

1 1
dG;"p = (a—G*] dnAu + ( aG ) dncu

anAu anCu
=9JAu dnAu + 9cu dnCu (1‘25)
Eq. (1-25) can be integrated as follows:

G! nay ney

J dG'= J Gau dnay + J gcu dngy
0 0 0

G'= gay naw+ gcu Ncy (1-26)

where the integration is performed at con-
stant composition so that the intensive

properties g,, and gc, are constant. This -

integration can be thought of as describing
a process in which a pre-mixed solution of
constant composition is added to the sys-
tem, which initially contains no material.
Dividing Egs. (1-26) and (1-25) by
(na,+ nc,) We obtain expressions for the
molar Gibbs energy and its derivative:

gl = XAu gAu + XCu dcu (1'27)
and
dgl = Gau d}(Au + [/e dXCu (1'28)

Since dX,,=-dXc,, it can be seen that
Egs. (1-27) and (1-28) are equivalent to the
tangent construction shown in Fig. 1-4.

These equations may also be rearranged
to give the following useful expression for
a binary system:

gi= g+ (1-X,)dg/dX, (1-29)

1.4 Thermodynamics of Solutions 11
1.4.4 Gibbs-Duhem Equation
Differentiation of Eq. (1-27) yields:
dg' = (Xa;dgau + Xcudgcu)

+ (gAu dXAu + 9cu d‘XCu) (1'30)

Comparison with Eq. (1-28) then gives the
Gibbs—Duhem equation at constant 7 and P:

Xaudgay + Xcudgo, =0 (1-31)

1.4.5 Relative Partial Properties

The difference between the partial Gibbs
energy g; of a component in solution and
the partial Gibbs energy ¢° of the same
component in a standard state is called the
relative partial Gibbs energy (or relative
chemical potential), Ag;. It is most usual to
choose as standard state the pure compo-
nent in the same phase at the same temper-
ature. The activity a; of the component rel-
ative to the chosen standard state is then
defined in terms of Ag; by the following
equation, as illustrated in Fig. 1-4.

Agi=g,-g)=p—pi=RT Ina;  (1-32)

Note that g; and p; are equivalent symbols,
as are g and y?, see Eq. (1-23).
From Fig. 1-4, it can be seen that:
Agm = XAu AgAu + XCu AgCu
=RT (XayInau, + Xg, Inag,) (1-33)
The Gibbs energy of mixing can be di-

vided into enthalpy and entropy terms, as
can the relative partial Gibbs energies:

Ag, = Ah, - T As,, (1-34)
Ag; = Ah;—T As; (1-35)

Hence, the enthalpy and entropy of mixing
may be expressed as:

Ahm = XAu AhAu + Xcu Ahcu : (1‘36)
NSy, = Xny Asay + Xow Ascy (1-37)
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12 1 Thermodynamics and Phase Diagrams of Materials

and tangent constructions similar to that of
Fig. 1-4 can be used to relate the relative
partial enthalpies and entropies Ah; and
As; to the integral molar enthalpy of mix-
ing Ah,, and integral molar entropy of mix-
ing As,, respectively.

1.4.6 Activity

The activity of a component in a solution
was defined by Eq. (1-32).

Since a; varies monotonically with g; it
follows that when two or more phases are
in equilibrium the activity of any compo-
nent is the same in all phases, provided that
the activity in every phase is expressed
with respect to the same standard state.

The use of activities in calculations of
chemical equilibrium conditions is illus-
trated by the following example. A liquid
solution of Au and Cu at 1400 K with
Xcu=0.6 is exposed to an atmosphere in
which the oxygen partial pressure is
Po,= 107" bar. Will Cu,O be formed? The
reaction is:

2Cu(l) + 5 0,(g) = Cu,0(sol) (1-38)

where the Cu(l) is in solution. If the reac-
tion proceeds with the formation of dn
moles of Cu,0, then 2dn moles of Cu are
consumed, and the Gibbs energy of the
Au-Cu solution changes by

- 2(dG'/dnc,)dn
The total Gibbs energy then varies as:
dG/dn = gey,0 — 3 9o, — 2(dG'/dnc,)
=Jcu.,0 ~ %go_, - 29c,
= (98u,0 — 3 90, — 2 9&.)
-3 RT Inpo,—2RT Inac,
=AG°+ RT In(pg!*ags)

=AG (1-39)

For the reaction, Eq. (1-38), at 1400 K,
AG°=-68.35 kJ (Barin et al., 1977). The
activity of Cu in the liquid alloy at
Xc,=0.6 is ac,=0.43 (Hultgren etal,;
1973). Substitution into Eq. (1-39) with
Po,=107* bar gives:

dG/dn = AG =-50.84 kJ

Hence under these conditions the reaction
entails a decrease in the total Gibbs energy
and so the copper will be oxidized.

1.4.7 Ideal Raoultian Solutions

An ideal solution or Raoultian solution
is usually defined as one in which the ac-
tivity of a component is equal to its mole
fraction:

a;dcnl = Xi

(1-40)

(With a judicious choice of standard state,
this definition can also encompass ideal
Henrian solutions, as discussed in Sec.
1.5.11.)

However, this Raoultian definition of
ideality is generally only useful for simple
substitutional solutions. There are more
useful definitions for other types of solu-
tions such as interstitial solutions, ionic so-
lutions, solutions of defects, polymer solu-
tions, etc. That is, the most convenient def-
inition of ideality depends upon the solu-
tion model. This subject will be discussed
in Sec. 1.10. In the present section, Eq.
(1-40) for an ideal substitutional solution
will be developed with the Au—Cu solution
as example.

In the ideal substitutional solution model
it is assumed that Au and Cu atoms are
nearly alike, with nearly identical radii and
electronic structures. This being the case,
there will be no change in bonding energy
or volume upon mixing, so that the en-
thalpy of mixing is zero:

Ahideal = 0 (1-41)

D e S e
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Furthermore, and for the same reason, the
Au and Cu atoms will be randomly distrib-
uted over the lattice sites. (In the case of a
liquid solution we can think of the “lattice
sites” as the instantaneous atomic positions.)
For a random distribution of N,,
gold atoms and N, copper atoms over
(Npy+ N¢,) sites, Boltzmann’s equation
can be used to calculate the configurational
entropy of the solution. This is the entropy
associated with the spatial distribution of

the particles:
(1-42)

Sconﬁg - kB ln(NAu+NCu) !/NAU!NCU!

where kg is Boltzmann’s constant. The con-
figurational entropies of pure Au and Cu
are zero. Hence the configurational entropy
of mixing, AS®""¢, will be equal to Se"fe,
Furthermore, because of the assumed close
similarity of Au and Cu, there will be no
non-configurational contribution to the en-
tropy of mixing. Hence, the entropy of
mixing will be equal to Seonfig,
Applying Stirling’s approximation, which

states that InN!=[(NInN)-N] if N is

large, yields:

ASi = S = — kg (Npy + Noy)  (1-43)

——NA—”———+NCU In

Au+ NCu

X NAu In __IV_CU___
NAu+ NCu

For one mole of solution, (N, + Ng,) =N,
where N°= Avogadro’s number. We also
note that (kg N°) is equal to the ideal gas
constant R. Hence: (1-44)

ASH = - R(Xay InXay + Xey InXey)

Therefore, since the ideal enthalpy of mix-
ing 1s zero: (1-45)

Agidesl = RT (X, In X ay + Xeu In Xey)

m

By comparing Eqs. (1-33) and (1-45) we
obtain:

Ag!dcul - R T ln a}deﬂl = R T ln X’- (1‘46)

t

1.4 Thermodynamics of Solutions 13

Hence Eq. (1-40) has been demonstrated
for an ideal substitutional solution.

1.4.8 Excess Properties

In reality, Au and Cu atoms are not iden-
tical, and so Au—Cu solutions are not per-
fectly ideal. The difference between a solu-
tion property and its value in an ideal solu-
tion is called an excess property. The ex-
cess Gibbs energy, for example, is defined
as:

g% =Ag, — Agi= (1-47)

Since the ideal enthalpy of mixing is zero,
the excess enthalpy is equal to the enthalpy
of mixing:

hE = Ah,, — Ah4 = Ah, (1-48)

Hence:

gE = hE - T SE . .
=Ah, - TsE (1-49)

Excess partial properties are defined simi-
larly:

g = Agi - g

=RTIna,—RT InX; (1-50)
sE=As,— Asi¥t = As, + RInX,  (1-51)
Also:
g9i=hi—Tst

= Ah,— T sE (1-52)

Equations analogous to Egs. (1-33),
(1-36) and (1-37) relate the integral and
partial excess properties. For example, in
Au-Cu solutions:

9% = Xau 0w + Xcu 96, (1-53)
SE=XAu SE\U'*_XCU S(Ffu (1'54)

Tangent constructions similar to that of
Fig. 1-4 can thus also be employed for ex-
cess properties, and an equation analogous
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14

to Eq. (1-29) can be written:

gF = ¢f + (1-X,)dg®/dX, (1-55)

The Gibbs—Duhem equation, Eq. (1-31),
also applies to excess properties:

XAu dgEu + XCu dggu = 0 (1'56)

In Au-Cu alloys, g€ is negative. That is,
Ag,, is more negative than Agi%® and so
the solution is thermodynamically more
stable than an ideal solution. We say that
- Au-Cu solutions exhibit negative devia-
tions from ideality. If g¢>0, then the solu-
tion is less stable than an ideal solution and

is said to exhibit positive deviations.

1.4.9 Activity Coefficient

The activity coefficient of a component
in a solution is defined as:

vi=a,lX (1-57)
From Eq. (1-50):
gE=RTny, (1-58)

In an ideal solution y;=1 and gE=0 for
all components. If y;<1, then gE<0 and by

1 Thermodynamics and Phase Diagrams of Materials

Eq. (1-50), Ag;< Agi®?. That is, the com-
ponent i is more stable in the solution than
it would be in an ideal solution of the same
composition. If y;>1, then gE>0 and the
driving force for the component to enter
into solution is less than in the case of an
ideal solution. E

1.4.10 Multicomponent Solutions

The equations of this section were de-
rived with a binary solution as an example.
However, the equations apply equally to
systems of any number of components. For
instance, in a solution of components
A-B-C-D ..., Eq. (1-33) becomes:
Agm=XaAga+ XgAgp + XcAgc

+ XpAgp + ... (1-59)

1.5 Binary Phase Diagrams

1.5.1 Systems with Complete Solid
and Liquid Miscibility

The temperature—composition (7-X)
phase diagram of the CaO-MnO system is
shown in Fig. 1-5 (Schenck et al., 1964;
Wu, 1990). The abscissa is the composi-

2600

«— 2572°
Liquidus line
o
o 2400 + LIQUID LIQUID
- ” +
(] Solidus line SOLID
5 L@ e B
o 2200 \P. ,\. a
— R
[+))
Q \ \
E ®—  —— @D
()] 2000 SOLID c
’—.
18425 > Figure 1-5. Phase dia-
1800 . L L : L : L L L gram of the CaO-MnO
00 01 02 03 04 05 06 07 08 09 1.0 system at P=1 bar
Ca0 MnO (after Schenck et al.,

Mole fraction Xy,o

1964, and Wu, 1990).
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tion, expressed as mole fraction of MnO,
Xmno- Note that Xy 0=1- Xc,0. Phase di-
agrams are also often drawn with the com-
position axis expressed as weight percent.

At all compositions and temperatures in
the area above the line labelled liquidus, a
single-phase liquid solution will be ob-
served, while at all compositions and tem-
peratures below the line labelled solidus,
there will be a single-phase solid solution.
A sample at equilibrium at a temperature
and overall composition between these two
curves will consist of a mixture of solid
and liquid phases, the compositions of
which are given by the liquidus and solidus
compositions at that temperature. For ex-
ample, a sample of overall composition
Xmno=0.60 at T=2200°C (at point R in
Fig. 1-5) will consist, at equilibrium, of a
mixture of liquid of composition Xy,0=
0.70 (point Q) and solid of composition
Xmno=0.35 (point P).

The line PQ is called a tie-line or co-
node. As the overall composition is varied
at 2200°C between points R and Q, the
compositions of the solid and liquid phases
remain fixed at P and Q, and only the rela-
tive proportions of the two phases change.
From a simple mass balance, we can derive
the lever rule for binary systems: (moles of
liquid)/(moles of solid)=PR/RQ. Hence,
at 2200 °C a sample with overall composi-
tion Xy,0= 0.60 consists of liquid and solid
phases in the molar ratio (0.60-0.35)/
(0.70-0.60)=2.5. Were the composition
axis expressed as weight percent, then the
lever rule would give the weight ratio of
the two phases.

Suppose that a liquid CaO-MnO solu-
tion with composition Xy,0=0.60 is
cooled very slowly from an initial tempera-
ture of about 2500 °C. When the tempera-
ture has decreased to the liquidus tempera-
ture 2270°C (point B), the first solid
appears, with a composition at point A

1.5 Binary Phase Diagrams 15

(Xmn0=0.28). As the temperature is de-
creased further, solid continues to precipi-
tate with the compositions of the two
phases at any temperature being given by
the liquidus and solidus compositions at
that temperature and with their relative
proportions being given by the lever rule.
Solidification is complete at 2030 °C, the
last liquid to solidify having composition
Xmno=0.60 (point C).

The process just described is known as
equilibrium cooling. At any temperature
during equilibrium cooling the solid phase
has a uniform (homogeneous) composition.
In the preceding example, the composition
of the solid phase during cooling varies
along the line APC. Hence, in order for the
solid grains to have a uniform composition
at any temperature, diffusion of CaO from
the center to the surface of the growing
grains must occur. Since solid-state dif-
fusion is a relatively slow process, equi-
librium cooling conditions are only ap-
proached if the temperature is decreased
very slowly. If a sample-of composition
Xmno=0.60 is cooled very rapidly from the
liquid, concentration gradients will be ob-
served in the solid grains, with the concen-
tration of MnO increasing towards the sur-
face from a minimum of Xy,o=0.28 (point
A) at the center. Furthermore, in this case
solidification will not be complete at
2030°C since at 2030°C the average con-
centration of MnO in the solid particles
will be less than Xy,o=0.60. These con-
siderations are discussed more fully in
Chapter 2 of this volume (Miiller-Krumb-
haar et al., 2001).

At Xyno=0 and Xy, 0=1 in Fig. 1-5 the
liquidus and solidus curves meet at the
equilibrium melting points, or tempera-
tures of fusion of CaO and MnO, which are
T{icaoy=2572°C, T{iano,= 1842 °C.

The phase diagram is influenced by the
total pressure, P. Unless otherwise stated,
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T-X diagrams are usually presented for
P=const.=1 bar. For equilibria involving
only solid and liquid phases, the phase
boundaries are typically shifted only by the
order of a few hundredths of a degree per
bar change in P. Hence, the effect of pres-
sure upon the phase diagram is generally
negligible unless the pressure is of the or-
der of hundreds of bars. On the other hand,
if gaseous phases are involved then the ef-
fect of pressure is very important. The ef-
fect of pressure will be discussed in Sec.
1.5.3.

1.5.2 Thermodynamic Origin
of Phase Diagrams

In this section we first consider the ther-
modynamic origin of simple “lens-shaped”
phase diagrams in binary systems with
complete liquid and solid miscibility.

An example of such a diagram was given
in Fig. 1-5. Another example is the Ge-Si
phase diagram in the lowest panel of Fig.
1-6 (Hansen, 1958). In the upper three pan-
els of Fig. 1-6, the molar Gibbs energies of
the solid and liquid phases, ¢g* and g¢', at
three temperatures are shown to scale. As
illustrated in the top panel, g* varies with
composition between the standard molar
Gibbs energies of pure solid Ge and of pure
solid Si, g2 and %™, while g¢' varies
between the standard molar Gibbs energies
of the pure liquid components g&» and

O(l)

gsi-
The difference between g3 and g% is

equal to the standard molar Gibbs energy
of fusion (melting) of pure Si, Agps;,=
(92— g2 Similarly, for Ge, Ag{ge,=
(g2~ g2®). The Gibbs energy of fusion of
a pure component may be written as:

Agd=Ah) = TAs (1-60)

where AhP and As? are the standard molar -

enthalpy and entropy of fusion.

Since, to a first approximation, Ak and
As? are independent of T, Agf is approxi-
mately a linear function of T. If T>TY,
then Ag? is negative. If T< T;°, then Agy is
positive. Hence, as seen in Fig. 1-6, as T
decreases, the g° curve descends relative to
g'. At 1500°C, g'< ¢° at all compositions.
Therefore, by the principle that a system
always seeks the state of minimum Gibbs
energy at constant 7 and P, the liquid phase
is stable at all compositions at 1500 °C.

At 1300°C, the curves of g° and g' cross.
The line P,Q,, which is the common tan-
gent to the two curves, divides the compo-
sition range into three sections. For compo-
sitions between pure Ge and P,, a single-
phase liquid is the state of minimum Gibbs
energy. For compositions between @, and
pure Si, a single-phase solid solution is the
stable state. Between P, and Q,, a total
Gibbs energy lying on the tangent line
P, O, may be realized if the system adopts
a state consisting of two phases with com-
positions at P, and Q, and with relative
proportions given by the lever rule. Since
the tangent line P, Q, lies below both g* and
g', this two-phase state is more stable than
either phase alone. Furthermore, no other
line joining any point on g' to any point on
g* lies below the line P, Q,. Hence, this line
represents the true equilibrium state of the
system, and the compositions P, and O, are
the liquidus and solidus compositions at
1300 °C.

As T is decreased to 1100 °C, the points
of common tangency are displaced to
higher concentrations of Ge. For T<937°C,
g°< ¢' at all compositions.

It was shown in Fig. 1-4 that if a tangent
is drawn to a Gibbs energy curve, then the
intercept of this tangent on the axis at X;=1
is equal to the partial Gibbs energy or
chemical potential g, of component i. The
common tangent construction of Fig. 1-6
thus ensures that the chemical potentials of
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Ge and Si are equal in the solid and liquid
phases at equilibrium. That is:

(1-61)
(1-62)

| _ S
9Ge = gE}e
| I
gsi = 0s;
This equality of chemical potentials was
shown in Sec. 1.4.2 to be the criterion for
phase equilibrium. That is, the common
tangent construction simultaneously mini-
mizes the total Gibbs energy and ensures
the equality of the chemical potentials,

thereby showing that these are equivalent
criteria for equilibrium between phases.

from Pelton, 1983).

If we rearrange Eq. (1-61), subtracting
the Gibbs energy of fusion of pure Ge,
AglGe=(g2P-g2%"), from each side, we
get:

o)

(95— 92 — (g5, — 92
=— (g - g&) (1-63)

Using Eq. (1-32), we can write Eq. (1-63)
as:

AGoe — AgG. = - AGlGe (1-64)
or
RTInds, - RTlnas, = - Agle., (1-65)
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where al,. is the activity of Ge (with re-
spect to pure liquid Ge as standard state) in
the liquid solution on the liquidus, and ag,
is the activity of Ge (with respect to pure
solid Ge as standard state) in the solid solu-
tion on the solidus. Starting with Eq. (1-
62), we can derive a similar expression for
the other component:

RTinal, - RTInag =-Aglsy,  (1-66)

Egs. (1-65) and (1-66) are equivalent to the
common tangent construction.

It should be noted that absolute values of
Gibbs energies cannot be defined. Hence,
the relative positions of g2 and g2® in
Fig. 1-6 are completely arbitrary. However,
this is immaterial for the preceding discus-
sion, since displacing both g2 and g2{* by

the same arbitrary amount relative to g&&

and g2 will not alter the compositions of
the points of common tangency.

It should also be noted that in the present
discussion of equilibrium phase diagrams
we are assuming that the physical dimen-
sions of the single-phase regions in the
system are sufficiently large that surface
(interfacial) energy contributions to the
Gibbs energy can be neglected. For very
fine grain sizes in the sub-micron range,
however, surface energy effects can notice-
ably influence the phase boundaries.

The shape of the two-phase (solid +1lig-
uid) “lens” on the phase diagram is deter-
mined by the Gibbs energies of fusion,
AgP, of the components and by the mixing
terms, Ag* and Ag'. In order to observe
how the shape is influenced by varying
AgP, let us consider a hypothetical system
A-B in which Ag® and Ag' are ideal Raoul-
tian (Eq. (1-45)). Let T{A,=800 K and
T{gs,=1200 K. Furthermore, assume that
the entropies of fusion of A and B are equal
and temperature-independent. The enthalp-
ies of fusion are then given from Eq. (1-60)
by the expression AhP=TPAs{ since

Ag?=0 when T = T. Calculated phase dia-
grams for As?=3, 10 and 30 J/mol K are
shown in Fig. 1-7. A value of As?=10 is
typical of most metals. However, when the
components are ionic compounds such as
ionic oxides, halides, etc., As{ can be sig-
nificantly larger since there are several
ions per formula unit. Hence, two-phase
“lenses” in binary ionic salt or oxide phase
diagrams tend to be “fatter” than those
encountered in alloy systems. If we are
considering vapor-liquid equilibria rather
than solid-liquid equilibria, then the
shape is determined by the entropy of
vaporization, As?. Since As? is usually an
order of magnitude larger than As?, two-
phase (liquid + vapor) lenses tend to be

1300
4s% =30 J/mol K
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Figure 1-7. Phase diagram of a system A-B with
ideal solid and liquid solutions. Melting points of A
and B are 800 and 1200 K. respectively. Diagrams
are calculated for entropies of fusion AS{A,= ASig, =
3. 10 and 30 J/mol K.




very wide. For equilibria between two solid
solutions of different crystal structure, the
shape is determined by the entropy of
solid—solid transformation, which is usu-
ally smaller than the entropy of fusion by
approximately an. order of magnitude.
Therefore two-phase (solid +solid) lenses
tend to be very narrow.

1.5.3 Pressure—Composition Phase
Diagrams

Let us consider liquid—vapor equilib-
rium with complete miscibility, using as an
example the Zn—-Mg system. Curves of g*
and g¢' can be drawn at any given T and P,
as in the upper panel of Fig. 1-8, and the
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g
>
o
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Q
S
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Figure 1-8. Pressure—composition phase diagram
of the Zn—-Mg system at 1250 K calculated for ideal

vapor and liquid solutions. Upper panel illustrates
common tangent construction at a constant pressure.
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common tangent construction then gives
the equilibrium vapor and liquid composi-
tions. The phase diagram depends upon the
Gibbs energies of vaporization of the com-
ponents Ag,z, and Ag,n, as shown in
Fig. 1-8.

To generate the isothermal pressure-—
composition (P-X) phase diagram in the
lower panel of Fig. 1-8 we require the
Gibbs energies of vaporization as functions
of P. Assuming monatomic ideal vapors
and assuming that pressure has negligible
effect upon the Gibbs energy of the liquid,
we can write:

Agyiy=0g%:+RTInP (1-67)

where Ag,;, is the standard Gibbs energy
of vaporization (when P=1 bar), which is
given by:

Ag(\)/(i) = Ah(\)/(i) =T AS?:(:‘) (1-68)
For example, the enthalpy of vaporization
of Zn is AhYz,,= 115300 J/mol at its nor-
mal boiling point of 1180 K (Barin et al.,
1977). Assuming that Ah? is independent
of T, we calculate from Eq. (!-68) that
AsYzq = 115300/1180 = 97.71 J/mol K.
From Eq. (1-67), Agy(z, atany T and P is

thus given gy: (1-69)
Agyzny=(115300-97.71 T)+ RT InP

A similar expression can be derived for the
other component Mg.

At constant temperature, then, the curve
of ¢* in Fig. 1-8 descends relative to g' as
the pressure is lowered, and the P—X phase
diagram is generated by the common tan-
gent construction. The diagram at 1250 K
in Fig. 1-8 was calculated under the as-
sumption of ideal liquid and vapor mixing
(g5"=0, g5'=0).

P-X phase diagrams involving liquid—
solid or solid-solid equilibria can be cal-
culated in a similar fashion through the fol-
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lowing general equation, which gives the
effect of pressure upon the Gibbs energy
change for the transformation of one mole
of pure component i from an a-phase to a
B-phase:
P
Agap=0g0p+ [ WP-ve)dP  (1-70)
P=1
where Agl_.p is the standard (P=1 bar)

Gibbs energy of transformation, and vf and
v are the molar volumes.

1.5.4 Minima and Maxima
in Two-Phase Regions

As discussed in Sec: 1.4.8, the Gibbs en-
ergy of mixing Ag, may be expressed as
the sum of an ideal term Agl%** and an ex-
cess term gE. As has just been shown in
Sec. 1.5.2, if Ag: and Ag!, for the solid
and liquid phases are both ideal, then a
“lens-shaped” two-phase region always re-
sults. However in most systems even ap-
proximately ideal behavior is the exception
rather than the rule.

Curves of ¢g* and ¢' for a hypothetlcal
system A-B are shown schematically in
Fig. 1-9 at a constant temperature (below
the melting points of pure A and B) such

gx(f)

gX(s)

Figure 1-9. Isothermal Gibbs energy-composition
curves for solid and liquid phases in a system A-B in
which gE">gE® A phase diagram of the type of
Fig. 1-10 results.

that the solid state is the stable state for
both pure components. However, in this
system gEM< gE®) so that g° presents a
flatter curve than does g' and there exists a
central composition region in which g'< g°.
Hence, there are two common tangent
lines, P,Q, and P,Q,. Such a situation
gives rise to a phase diagram with a mini-
mum in the two-phase region, as observed
in the Na,CO;-K,CO; system (Dessu-
reault et al., 1990) shown in Fig. 1-10. At a
composition and temperature correspond-
ing to the minimum point, liquid and solid
of the same composition exist in equilib-
rium.

A two-phase region with a minimum
point as in Fig. 1-10 may be thought of as a
two-phase “lens” which has been “pushed
down” by virtue of the fact that the liquid is
relatively more stable than the solid. Ther-
modynamically, this relative stability 1s ex-
pressed as g5V < g&®).

Conversely, if g5®>gE® 10 a sufﬂclent
extent, then a two-phase region with a
maximum will result. Such maxima in (lig-
uid + solid) or (solid + solid) two-phase re-
gions are nearly always associated with the
existence of an intermediate phase, as will
be discussed in Sec. 1.5.10.
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Figure 1-10. Phase diagram of the K,CO,;-Na,CO,
system at P=1 bar (Dessureault et al., 1990).




1.5.5 Miscibility Gaps

If g&> 0, then the solution is thermody-
namically less stable than an ideal solution.
This can result from a large difference in
size of the component atoms, ions or mole-
cules, which will lead to a (positive) lattice
strain energy, or from differences in elec-
tronic structure, or from other factors.

In the Au-Ni system, gF is positive in
the solid phase. In the top panel of Fig. 1-11,
g=® is plotted at 1200 K (Hultgren et al.,
©1973) and the ideal Gibbs energy of
mixing, Agid? is also plotted at 1200 K.
The sum of these two terms is the Gibbs
energy of mixing of the solid solution,
Ag;,, which is plotted at 1200 K as well
as at other temperatures in the central panel
of Fig. 1-11. Now, from Eq. (1-45), Agid!
is always negative and varies directly
with T, whereas gF varies less rapidly with
temperature. As a result, the sum Ag} =
Agide + gE becomes less negative as T de-
creases. However, the limiting slopes to the
Agid curve at X,,=1 and Xy;=1 are both
infinite, whereas the limiting slopes of gt
are always finite (Henry’s Law). Hence,
Ag;, will always be negative as X,,— 1
and Xy; — | no matter how low the temper-
ature. As a result, below a certain tempera-
ture the curve of Agjy, will exhibit two neg-
ative “humps”. Common tangent lines
P,Q,, P,Q,, P;0Q5 to the two humps at dif-
ferent temperatures define the ends of tie-
lines of a two-phase solid—solid miscibility
gap in the Au-Ni phase diagram, which is
shown in the lower panel in Fig. I-11
(Hultgren et al., 1973). The peak of the gap
occurs at the critical or consolute tempera-
ture and composition, 7, and X_.

When gE® is positive for the solid phase
in a system it is usually also the case that
gEM< gB® since the unfavorable factors
(such as a difference in atomic dimensions)
which are causing g&® to be positive will
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Figure 1-11. Phase diagram (after Hultgren et al.,
1973) and Gibbs energy —composition curves of solid
solutions for the Au-Ni system at P=1 bar. Letters
“s” indicate spinodal points (Reprinted from Pelton,
1983).

have less of an effect upon ¢g&" in the lig-
uid phase owing to the greater flexibility of
the liquid structure to accommodate differ-
ent atomic sizes, valencies, etc. Hence, a
solid—solid miscibility gap is often asso-
ciated with a minimum in the two-phase
(solid +liquid) region, as is the case in the
Au-Ni system.

e i - S e v o

Gona e aa L a l a


Dua
Highlight
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Below the critical temperature the curve
of Ag:, exhibits two inflection points, indi-
cated by the letter “s” in Fig. 1-11. These
are known as the spinodal points. On the
phase diagram their locus traces out the
spinodal curve (Fig. 1-11). The spinodal
curve is not part of the equilibrium phase
diagram, but it is important in the kinetics
of phase separation, as discussed in Chap-
ter 6 (Binder and Fratzl, 2001).

1.5.6 Simple Eutectic Systems

The more positive gt is in a system, the
higher is 7, and the wider is the miscibility

gap at any temperature. Suppose that g&®

is so positve that T is higher than the min-
imum in the (solid + liquid) region. The re-
sult will.be a phase diagram such as that of
the MgO-CaO system shown in Fig. 1-12
(Doman et al., 1963; Wu, 1990).

The lower panel of Fig.-1-12 shows the
Gibbs energy curves at 2450°C. The two
common tangents define two two-phase re-
gions. As the temperature is decreased be-
low 2450 °C, the g° curve descends relative
to g' and the two points of tangency P,
and P, approach each other until, at T=
2374 °C, P, and P, become coincident at
the composition E. That is, at T=2374°C
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Figure 1-12. Phase diagram
at P=1 bar (after Doman et
al., 1963, and Wu, 1990) and
Gibbs energy —composition
curves at 2450°C for the
MgO-CaO system. Solid
MgO and CaO have the
same crystal structure.




there is just one common tangent line con-
tacting the two portions of the g° curve at
compositions A and B and contacting the g'
curve at E. This temperature is known as
the eutectic temperature, Tg, and the com-
position E is the eutectic composition. For
temperatures below Tg, ¢' lies completely
above the common tangent to the two por-
tions of the g°® curve and so for T<T¢ a
solid—solid miscibility gap is observed.
The phase boundaries of this two-phase re-
gion are called the solvus lines. The word
eutectic is from the Greek for “to melt
well” since the system has its lowest melt-
ing point at the eutectic composition E.

This description of the thermodynamic
origin of simple eutectic phase diagrams is
strictly correct only if the pure solid com-
ponents A and B have the same crystal
structure. Otherwise, a curve for g* which
is continuous at all compositions cannot be
drawn.

Suppose a liquid MgO-CaO solution of
composition Xc,o=0.52 (composition P,)
is cooled from the liquid state very slowly
under equilibrium conditions. At 2450°C
the first solid appears with composition Q,.
As T decreases further, solidification con-
tinues with the liquid composition follow-
ing the liquidus curve from P, to E and the
composition of the solid phase following
the solidus curve from Q, to A. The rela-
tive proportions of the two phases at any T
are given by the lever rule. At a tempera-
ture just above Tg, two phases are ob-
served: a solid of composition A and a lig-
uid of composition E. At a temperature just
below Tg, two solids with compositions A
and B are observed. Therefore, at Tg, dur-
ing cooling, the following binary eutectic
reaction occurs:

liquid — solid, + solid, (1-71)

Under equilibrium conditions the tempera-
ture will remain constant at 7=Tg until all
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the liquid has solidified, and during the re-
action the compositions of the three phases
will remain fixed at A, B and E. For this
reason the eutectic reaction is called an in-
variant reaction. More details on eutectic
solidification may be found in Chapter 2
(Miiller-Krumbhaar et al., 2001).

1.5.7 Regular Solution Theory

Many years ago Van Laar (1908) showed
that the thermodynamic origin of a great
many of the observed features of binary
phase diagrams can be illustrated at least
qualitatively by simple regular solution
theory. A simple regular solution is one for
which:

=X\ Xg(w-0T) (1-72)

where w and 7 are parameters independent
of temperature and composition. Substitut-
ing Eq. (1-72) into Eq. (1-29) yields, for
the partial properties: ' (1-73)

g5 =Xi(w-nT), g5=Xi(w-nT)

Several liquid and solid solutions con-
form approximately to regular solution be-
havior, particularly if gF is small. Examples
may be found for alloys, molecular solu-
tions, and ionic solutions such as molten
salts and oxides, among others. (The very
low values of gt observed for gaseous solu-
tions generally conform very closely to Eq.
(1-72).)

To understand why this should be so, we
only need a very simple model. Suppose
that the atoms or molecules of the compo-
nents A and B mix substitutionally. If the
atomic (or molecular) sizes and electronic
structures of A and B are similar, then the
distribution will be nearly random, and the
configurational entropy will be nearly
ideal. That is:

gE ~ Ahm _ T SE(non-conﬁg) (1_74)

fe bt
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More will be said on this point in Sec.
1.10.5.

We now assume that the bond energies
Ean> Epp and g, Of nearest-neighbor pairs
are independent of temperature and com-
position and that the average nearest-
neighbor coordination number, Z, is also
constant. Finally, we assume that the en-
thalpy of mixing results mainly from the
change in the total energy of nearest-neigh-
bor pair bonds.

In one mole of solution there are (N°
Z/2) neareast-neighbor pair bonds, where
N° is Avogadro’s number. Since the distri-
bution is assumed random, the probability
that a given bond is an A—A bond is equal
to X3. The probabilities of B—B and A-B
bonds are, respectively, X3 and 2X, Xg.
The molar enthalpy of mixing is then equal
to the sum of the energies of the nearest-
neighbor bonds in one mole of solution,
minus the energy of the A—A bonds in X,
moles of pure A and the energy of the B—B
bonds in Xz moles of pure B:

Ah,, = (N°Z/2)

X (X% €an + X§ €ap + 2 Xap Ean)
= (N®Z/2) (Xp Exn) ~ (N° Z12) (X E55)
=(N°Z) [enp — (Ean + €8)/2] Xa Xp

= WX, X, (1-75)

We now define 0,5, Oaa and Ogg as the
vibrational entropies of nearest-neighbor
pair bonds. Following an identical argu-
ment to that just presented for the bond
energies we obtain:

E (non-config)

(1-76)
= (N°Z) [Oap — (Oan+ 0gp)/2] = 1) Xp X

Eq. (1-72) has thus been derived. If A-B
bonds are stronger than A—-A and B-B
bonds, then (Eag—1ap?) <[(Eaa—1anT)/2
+ (egg—Mes T)/2]. Hence, (w-nT)<0
and ¢g8<0. That is, the solution is rendered
more stable. If the A-B bonds are rela-

\)

tively weak, then the solution is rendered
less stable, (w-nT)>0 and g&>0.

Simple non-polar molecular solutions
and ionic solutions such as molten salts of-
ten exhibit approximately regular behavior.
The assumption of additivity of the energy
of pair bonds is probably reasonably realis-
tic for van der Waals or coulombic forces.
For alloys, the concept of a pair bond is, at
best, vague, and metallic solutions tend to
exhibit larger deviations from regular be-
havior.

In several solutions it is found that
nT|<|w| in Eq. (1-72). That is, g5=Ah,,
=wX,Xg, and to a first approximation
g® is independent of 7. This is more often
the case in non-metallic solutions than in
metallic solutions.

1.5.8 Thermodynamic Origin -
of Simple Phase Diagrams Illustrated
by Regular Solution Theory

Figure 1-13 shows several phase dia-
grams, calculated for a hypothetical system
A-B containing a solid and a liquid phase
with melting points of Tfj,=800 K and
T s,=1200 K and with entropies of fusion
of both A and B set to 10 J/mol K, which is
a typical value for metals. The solid and
liquid phases are both regular with temper-
ature-independent excess Gibbs energies

P =X, Xy and ¢V = 0' X, X;

The parameters w* and ' have been varied
systematically to generate the various pan-
els of Fig. 1-13.

In panel (n) both phases are ideal. Panels
(I) to (r) exhibit minima or maxima de-
pending upon the sign and magnitude of
(g5~ g&®), as has been discussed in Sec.
1.5.4. In panel (h) the liquid is ideal but
positive deviations in the solid give rise to
a solid-solid miscibility gap as discussed
in Sec. 1.5.6. On passing from panel (h) to
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Figure 1-13. Topological changes in the phase diagram for a system A-B with regular solid and liquid phases,
brought about by systematic changes in the regular solution parameters @* and w'. Melting points of pure A and
B are 800 K and 1200 K. Entropies of fusion of both A and B are 10.0 J/mol K (Pelton and Thompson, 1975).
The dashed curve in panel (d) is the metastable liquid miscibility gap (Reprinted from Pelton, 1983).

panel (c), an increase in g&® results in a
widening of the miscibility gap so that the
solubility of A in solid B and of B in solid
A decreases. Panels (a) to (c) illustrate that
negative deviations in the liquid cause a
relative stabilization of the liquid with re-

sultant lowering of the eutectic tempera-
ture.

Eutectic phase diagrams are often drawn
with the maximum solid solubility occur-
ring at the eutectic temperature (as in Fig.
1-12). However, panel (d) of Fig. 1-13, in
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which the maximum solubility of A in the
B-rich solid solution occurs at approxi-
mately 7=950 K, illustrates that this need
not be the case even for simple regular so-
lutions.

1.5.9 Immiscibility — Monotectics

In Fig. 1-13(e), positive deviations in
the liquid have given rise to a liquid—liquid
miscibility gap. The CaO-SiO, system
(Wu, 1990), shown in Fig. 1-14, exhibits
such a feature. Suppose that a liquid of
composition Xs;0,=0.8 is cooled slowly
from high temperatures. At T=1815 °C the
miscibility gap boundary is crossed and a
second liquid layer appears with a compo-
sition of Xg;0,=0.97. As the temperature is
lowered further, the composition of each
liquid phase follows its respective phase
boundary until, at 1692 °C, the SiO,-rich
liquid has a composition of Xg;5,=0.99
(point B), and in the CaO-rich liquid
Xsi0,=0.74 (point A). At any temperature,
the relative amounts of the two phases are
given by the lever rule.

At 1692°C the following invariant bi-
nary monotectic reaction occurs upon cool-

ing:
Liquid B — Liquid A + Si0, (solid) (1-77)

The temperature remains constant at
1692 °C and the compositions of the phases
remain constant until all of liquid B is con-
sumed. Cooling then continues with pre-
cipitation of solid SiO, with the equilib-
rium liquid composition following the lig-
uidus from point A to the eutectic E.
Returning to Fig. 1-13, we see in panel
(d) that the positive deviations in the liquid
in this case are not large enough to produce
immiscibility, but they do result in a flat-
tening of the liquidus, which indicates a
“tendency to immiscibility”. If the nuclea-
tion of the solid phases can be suppressed

by sufficiently rapid cooling, then a meta-
stable liquid—liquid miscibility gap is ob-
served as shown in Fig. 1-13(d). For exam-
ple, in the Na,O-Si0, system the flattened
(or “S-shaped”) SiO, liquidus heralds the
existence of a metastable miscibility gap of
importance in glass technology.

1.5.10 Intermediate Phases

The phase diagram of the Ag-Mg
system (Hultgren et al., 1973) is shown in
Fig. 1-15(d). An intermetallic phase, B, is
seen centered approximately about the
composition Xy, =0.5. The Gibbs energy
curve at 1050 K for such an intermetallic
phase has the form shown schematically in
Fig. 1-15(a). The curve g rises quite rap-
idly on either side of its minimum, which
occurs near Xy,=0.5. As a result, the '
phase appears on the phase diagram only
over a limited composition range. This

form of the curve g results from the fact "

that when X,,= X\, a particularly stable

. crystal structure exists in which Ag and Mg

atoms preferentially occupy different sites.
The two common tangents P,Q, dnd P, Q>
give rise to a maximum in the two-phase
(B' +liquid) region of the phase diagram.
(Although the maximum is observed very
near Xy,=0.5, there is no thermodynamic
reason for the maximum to occur exactly at
this composition.)

Another intermetallic phase, the € phase,
is also observed in the Ag—Mg system,
Fig. 1-15. The phase is associated with a
peritectic invariant ABC at 744 K. The
Gibbs energy curves are shown schemati-
cally at the peritectic temperature in Fig.
1-15(c). One common tangent line can be
drawn to ¢', g" and g°.

Suppose that a liquid alloy of composi-
tion Xy,=0.7 is cooled very slowly from
the liquid state. At a temperature just above
744 K a liquid phase of composition C and

el e o R R PR A T S it R,

Foooplifia AE wldli

v,

Thi Mo TR S R 2 Aasd e oo L.l

RRIETE T SO S S SRR S




b A B

PR

1.5 Binary Phase Diagrams 27
1500 °C ols)
- 90.5 CasiO; 9sio,
rd
ols)
gCaO
A .
La, __l 29¢(0.5CaSi03) _v_
2200 [ T T T T T T T T T T T T T T
CaO + L ]
[ 2051° LIQUID h
[ Co,Si0, ]
2000 |- 2m 2
Ca0+Ca,Si0, (CazSi0s + L) Tc=1990°
3} F ]
°_ 1800 = 1789° i
o L 2 LIQUIDS ]
: r
© [ Ca3Si05 +C0,Si0, 1692°
a-) r \ congruent compound A Bl
a [ . : :
E 1600 | a0 (CasSiOz + L) -
2 F o L + CRISTOBALITE ]
C + o ]
. w
c ]
L 0351 05 o 1469° 1470° ]
[ © T + TRIDYMITE
i 1439° ]
1400 |- -
C c025i04 +C03Si207 ]
r + CaSiOy + TRIDYMITE ]
C 1250° CoSiO3 ]
¥ Ca0 + Ca,Si0, ]
1200 Lo 100 5 582 el VTN N Leviiiins L,
0.0 0.4 0.2 0.3 Co3Si20/CuSiO3 0.6 0.7 0.8 0.3 1.0

Stiochiometric

—p
compound 5102

Figure 1-14. CaO-Si0, phase diagram at P=1 bar (after Wu, 1990) and Gibbs energy curves at 1500 °C illus-
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a [}’ phase of composition A are observed
at equilibrium. At a temperature just below
744 K the two phases at equilibrium are {3’
of composition A and € of composition B.
The following invariant binary peritectic
reaction thus occurs upon cooling:

Liquid + 3’ (solid) — € (solid) (1-78)

1 Thermodynamics and Phase Diagrams of Materials

This reaction occurs isothermally at 744 K
with all three phases at fixed compositions
(at points A, B and C). For an alloy with
overall composition between points A and
B the reaction proceeds until all the liquid
has been consumed. In the case of an alloy
with overall composition between B and C,
the B’ phase will be the first to be com-
pletely consumed.

Peritectic reactions occur upon cooling
with formation of the product solid (€ in
this example) on the surface of the reactant
solid (B'), thereby forming a coating which
can prevent further contact between the re-
actant solid and liquid. Further reaction
may thus be greatly retarded so that equi-
librium conditions can only be achieved by
extremely slow cooling.

The Gibbs energy curve for the € phase,
g%, in Fig. 1-15(c) rises more rapidly on ei-

ther side of its minimum than does the -

Gibbs energy g for the ' phase in Fig.1-
15(a). As a result, the width of the single-
phase region over which the € phase exists
(sometimes called its range of stoichiome-
try or homogeneity range) is narrower than
for the 3’ phase.

In the upper panel of Fig. 1-14 for the
Ca0O-Si0, system, Gibbs energy curves at
1500°C for the liquid and CaSiO; phases
are shown schematically. gy 5.casio,) rises
extremely rapidly on either side of its min-
imum. (We write g scasio, for 0.5 moles
of the compound in order to normalize to a
basis of one mole of components CaO and
SiO,.) As a result, the points of tangency
Q, and Q, of the common tangents P, Q,
and P, 0, nearly (but not exactly) coincide.
Hence, the range of stoichiometry of the
CaSiO; phase is very narrow (but never
zero). The two-phase regions labelled
(CaSiO;+1liquid) in Fig. 1-14 are the two
sides of a two-phase region that passes
through a maximum at 1540 °C just as the
(B’ +liquid) region passes through a maxi-
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mum in Fig. 1-15(d). Because the CaSiO,
single-phase region is so narrow, we refer
to CaSiO; as a stoichiometric compound.
Any deviation in composition from the
stoichiometric 1:1 ratio of CaO to SiO,
results in a very large increase in Gibbs
energy.

The € phase in Fig. 1-15 is based on the
stiochiometry AgMg;. The Gibbs energy
curve, Fig. 1-15(c), rises extremely rapidly
on the Ag side of the minimum, but some-
what less steeply on the Mg side. As a re-
sult, is virtually insol in AgMg-,
while Mg is sparingly soluble. Such a
phase with a narrow range of homogeneity
is often called a non-stoichiometric com-

pound. At low temperatures the ' phase
exhibits a relatively narrow range of stoi-
chiometry about the 1:1 AgMg composi-
tion and can properly be called a com-

pound) However, at higher temperatures it
is debatable whether a phase with such a
wide range of composition should be called
a “compound™:

From Fig. 1-14 it can be seen that if stoi-
chiometric CaSiO, is heated it will melt
isothermally at 1540 °C to form a liquid of
the same composition. Such a compound is
called congruently melting or simply a con-
gruent compound. The compound Ca,SiO,
in Fig. 1-14 is congruently melting. The '
phase in Fig. 1-15 is also congruently melt-
ing at the composition of the liquidus/sol-
idus maximum. ‘

It should be noted with regard to the con-
gruent melting of CaSiO; in Fig. 1-14 that
the limiting slopes d7/dX of both branches
of the liquidus at the congruent melting
point (1540 °C) are zero since we are really
dealing with a maximum in a two-phase re-
gion.

The AgMg, (¢) compound in Fig. 1-15 is
said to melt incongruently. If solid AgMg,
is heated it will melt isothermally at 744 K
by the reverse of the peritectic reaction,
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Eq. (1-78), to form a liquid of composition
C and another solid phase, ', of composi-
tion A.

Another example of an incongruent
compound is Ca;Si,0, in Fig. 1-14, which
melts incongruently (or peritectically) to
form liquid and Ca,SiO, at the peritectic
temperature of 1469 °C.

An incongruent compound is always as-
sociated with a peritectic. However, the
converse is not necessarily true. A peritec-
tic is not always associated with an inter-
mediate phase. See, for example, Fig. I-
13(i).

For purposes of phase diagram calcula-
tions involving stoichiometric compounds
such as CaSiO;, we may, to a good approx-
imation, consider the Gibbs energy curve,
9o.s(casio,)» t0 have zero width. All that
is then required is the value of g¢5casio,)
at the minimum. This value is usually
expressed in terms of the ‘Gibbs energy
of fusion of the compound, Ag{scasio,)
or the Gibbs energy of formation

AGPemw.scasioy Of the compound from
the pure SQ!idLngancms CaO and SiO,
according to the reaction: 0.5 CaO(sol) +
0.5 Si0,(sol)=0.5 CaSiO;(sol). Both these
uantities are inter g ically i
Fig. 1-14.

1.5.11 Limited Mutual Solubility —
Ideal Henrian Solutions

In Sec. 1.5.6, the region of two solids in
the MgO—-CaO phase diagram of Fig. 1-12
was described as a miscibility gap. That is,
only one continuous g* curve was assumed.
If, somehow, the appearance of the liquid
phase could be suppressed, then the two
solvus lines in Fig. 1-12, when projected
upwards, would meet at a critical point
above which one continuous solid solution
would exist at all compositions.
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Such a description is justifiable only if
the pure solid components have the same
crystal structure, as is the case for MgO
and CaO. However, consider the Ag—Mg
system, Fig. 1-15, in which the terminal
(Ag) solid solution is face-centered-cubic
and the terminal (Mg) solid solution is hex-
agonal-close-packed. In this case, one con-
tinuous curve for g* cannot be drawn. Each
solid phase must have its own separate
Gibbs energy curve, as shown schemati-
cally in Fig. 1-15(b) for the h.c.p. (Mg)
phase at 800 K. In this figure, gR{2<?” and
g% are the standard molar Gibbs ener-
gies of pure h.c.p. Mg and pure f.c.c. Ag,
while g3®<P"M® is the standard molar
Gibbs energy of pure (hypothetical) h.c.p.
Ag in the h.c.p. (Mg) phase.

Since the solubility of Ag in the h.c.p.
(Mg) phase is limited we can, to a good ap-
proximation, describe it as a Henrian ideal
solution. That is, when a solution is suffi-
ciently dilute in one component, we can ap-
proximate g%, .=RT In Y., by its value
in an infinitely dilute solution. That is, if
Xeotue 18 small we set Yo=Y %ue Where
Y2 e 1S the Henrian activity coefficient at
Xoowe=0. Thus, for sufficiently dilute solu-
tions we assume that ... 1S independent
of composition. Physically, this means that
in a very dilute solution there is negligible
interaction among solute particles because
they are so far apart. Hence, each addi-
tional solute particle added to the solution
produces the same contribution to the ex-
cess Gibbs energy of the solution and so gt
colue=dGE/dn .. = constant.

From the Gibbs—Duhem equation, Eq.
(1-56), if dgiue=0, then dgijen=0.
Hence, in a Henrian solution ¥, 1S also
constant and equal to its value in an infi-
nitely dilute solution. That is, ¥,..=1 and
the solvent behaves ideally. In summary
then, for dilute solutions (X.gen=1)
Henry's Law applies:

YSolvent =1

= ¥ |ue = COnstant (1-79)

Ysolute

(Care must be exercised for solutions other
than simple substitutional solutions. Henry’s
Law applies only if the ideal activity is defined
correctly, as will be discussed in Sec. 1.10).

Treating, then, -the h.c.p. (Mg) phase
in the Ag—Mg system (Fig. 1-15(b)) as a
Henrian solution we write:

GhP = (Xpg 02055 + Xy, glibePY)
+ RT (Xng Inpg + Xygg Inayy)

= (Xag gO(fcc) + Xy g%/(lg.c.p.)) (1-80)
+ RT (Xag In (79, Xag) + Xugg I Xprg)

where a,, and y2, are the activity and ac-

tivity coefficient of silver with respect to

pure f.c.c. silver as standard state. Let us
now combine terms as follows:

h(.p _ [XA"(gO(fcc)+RTln‘y2g)
+X g()(hcp)] (1_81)
+ RT (Xpo InXa, + Xy In Xi)

Since yg, is independent of composition,
let us define:

(1-82)

From Eqs. (1-81) and (1-82) it can be seen
that, relative to g}ip“" and to the hypothet-
Oth.c.p.-Mg) defined in

g()(h .c.p-Mg) _ (g(}\(g.c.c.) +RT In ,/Xg)

ical standard state—g4
this way, the h.c.p. solution is ideal. Egs.
(1-81) and (1-82) are illustrated in Fig. 1-
15(b). It can be seen that as ygg becomes
larger, the point of tangency N moves
to higher Mg concentrations. That is, as
(gO(th -Mg) g%(g.c.c.)) becomes more posi-
tive, the solubility of Ag in h.c.p. (Mg) de-
creases.

It must be stressed that gQ{f<P-M) as de-
fined by Eq. (1-82) is solvent-dependent.
That is, g33-<?"™#) is not the same as, say,
gAF<P-C9 for Ag in dilute h.c.p. (Cd) solid
solutions.
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Henrian activity coefficients can usually
be expressed as functions of temperature:

RTIny?=a-bT (1-83)

where a and b are constants. If data are lim-
ited, it can further be assumed that b=0 so
that RT In y?= constant.

1.5.12 Geometry of Binary Phase
Diagrams

The geometry of all types of phase dia-
grams of any number of components is
governed by the Gibbs Phase Rule.

Consider a system with C components in
which P phases are in equilibrium. The
system is described by the temperature, the
total pressure and the composition of each
phase. In a C-component system, (C—1) in-
dependent mole fractions are required to
describe the composition of each phase
(because X, X;=1). Hence, the total number
of variables required to describe the system
is [P(C-1)+2]. However, as shown in Sec.

1.4.2, the chemical potential of any compo-

nent is the same in all phases (o, B, v, ...)
since the phases are in equilibrium. That is:

g(T, P, X, X5, X5, ...)
=gP(T, P, XP, X5, XB, ..)
=gX(T, P, X!, X4, X3, ...))=... (1-84)

where g*(T, P, X*, X5', X3, ...) is a func-
tion of temperature, of total pressure, and
of the mole fractions X, X3*, X3, ... in
the a phase; and similarly for the other
phases. Thus there are C(P-1) indepen-
dent equations in Eq. (1-84) relating the
variables.

Let F be the differences between the
number of variables and the number of
equations relating them:

F=P(C-1)+2-C(P-1)
F=C-P+2 (1-85)
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This is the Gibbs Phase Rule. F is called
the number of degrees of freedom or vari-
ance of the system and is the number of pa-
rameters which can and must be specified

in order to completely specify the state of’

the system.

Binary temperature—composition phase
diagrams are plotted at a fixed pressure,
usually 1 bar. This then eliminates one de-
gree of freedom. In a binary system, C=2.
Hence, for binary isobaric 7- X diagrams
the phase rule reduces to:

F=3-P (1-86)

Binary T-X diagrams contain single-
phase areas and two-phase areas. In the sin-
gle-phase areas, F =3 —1=2. That is, tem-
perature and composition can be specified
independently. These regions are thus
called bivariant. In two-phase regions,
F=3-2=1.1If, say, T is specified, then the
compositions of both phases are deter-
mined by the ends of the tie-lines. Two-
phase regions are thus termed univariant.
Note that the overall composition can be
varied within a two-phase region at con-
stant T, but the overall composition is not a
parameter in the sense of the phase rule.
Rather, it is the compositions of the indi-
vidual phases at equilibrium that are the
parameters to be considered in counting the
number of degrees of freedom.

When three phases are at equilibrium in
a binary system at constant pressure,
F=3-3=0. Hence, the compositions of
all three phases, as well as 7, are fixed.
There are two general types of three-phase
invariants in binary phase diagrams. These
are the eutectic-type and peritectic-tvpe
invariants as illustrated in Fig. 1-16. Let
the three phases concerned be called a. 8
and vy, with 3 as the central phase as shown
in Fig. 1-16. The phases a,  and v can be
solid, liquid or gaseous. At the eutectic-
type invariant, the following invariant re-
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Eutectic—type
invariant

correct N
extensions \

/
> incorrect
a+y | extensions

Peritectic—type

invariant
- a+y N
AN
c:frrac! v correct
extensions | a+B extensions
\ B+y
B
Maximum

Figure 1-16. Some geometrical units of binary phase
diagrams, illustrating rules of construction.

action occurs isothermally as the system is
cooled:

P—a+y (1—875

whereas at the peritectic-type invariant the
invariant reaction upon cooling is:

a+y—p (1-88)

Some examples of eutectic-type invari-
ants are: (1) eutectics (Fig. 1-12) in which
a=solid,, B =liquid, y=solid,; the eutectic
reaction is | = s, +5,; (i1) monotectics (Fig.
[-14) in which a=liquid,, B=liquid,, y=-
solid; the monotectic reaction is I, — 1, +s;
(111) eutectoids in which a=
solid,, B =solid,, y=solid;; the eutectoid
reaction is s»—>s,+S;; (1v) catatectics in
which a=liquid, f=solid,, y=solid,; the
catatectic reaction is §,—> | +5,.

Some examples of peritectic-type invari-
ants are: (i) peritectics (Fig. 1-15) in which
a=liquid, f=solid,, y=solid,. The peri-

tectic reaction is 1+s,—s,; (ii) syntectics
(Fig. 1-13(k)) in which a=liquid,, f=
solid, v =1liquid,. The syntectic reaction is
l,+1,—s; (iii) peritectoids in which a=
solid,, B=solid,, y=solid;. The peritec-
toid reaction is s, + 53 —>s,.

An important rule of construction which
applies to invariants in binary phase dia-
grams is illustrated in Fig. 1-16. This ex-
tension rule states that at an invariant the
extension of a boundary of a two-phase re-
gion must pass into the adjacent two-phase
region and not into a single-phase region.
Examples of both correct and incorrect
constructions are given in Fig. 1-16. To
understand why the “incorrect extensions”
shown are not right consider that the (a+7)
phase boundary line indicates the composi-
tion of the y-phase in equilibrium with the
a-phase, as determined by the common
tangent to the Gibbs energy curves. Since
there is no reason for the Gibbs energy
curves or their derivatives to change dis-
continuously at the invariant temperature,
the extension of the (o +y) phase boundary
also represents the stable phase boundary
under equilibrium conditions. Hence, for
this line to extend into a region labeled as
single-phase v is incorrect.

Two-phase regions in binary phase dia-
grams can terminate: (i) on the pure com-
ponent axes (at X,=1 or Xg=1) at a trans-
formation point of pure A or B; (ii) at a
critical point of a miscibility gap; (iii) atan
invariant. Two-phase regions can also ex-
hibit maxima or minima. In this case, both
phase boundaries must pass through their
maximum or minimum at the same point as
shown in Fig. 1-16.

All the geometrical units of construction
of binary phase diagrams have now been
discussed. The phase diagram of a binary
alloy system will usually exhibit several of
these units. As an example, the Fe—Mo
phase diagram (Kubaschewski, 1982) is
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Figure 1-17. Fe—Mo

700 .

phase diagram at P=1 bar

0.0 0.2 0.4 0.6 0.8 1.0  (Kubaschewski, 1982).

shown in Fig. 1-17. The invariants in this
system are peritectics at 1540, 1488 and
1450°C; eutectoids at 1235 and 1200°C;
peritectoids at 1370 and 950 °C. The two-
phase (liquid+Y) region passes through a
minimum at X,,=0.2.

Between 910°C and 1390°C is a two-
phase (a+7y) y-loop. Pure Fe adopts the
f.c.c. y structure between these two temper-
atures but exists as the b.c.c. a phase at
higher and lower temperatures. Mo, how-
ever, is more soluble in the b.c.c. than
in the f.c.c. structure. That is, gHo<ccFe
< g)tecFo) a5 discussed in Sec. 1.5.11.
Therefore, small additions of Mo stabilize
the b.c.c. structure.

In the CaO-SiO, phase diagram, Fig.
1-14, we observe eutectics at 1439, 1466

and 2051 °C; a monotectic at 1692 °C; and
a peritectic at 1469°C. The compound
Ca,SiO; dissociates upon heating to CaO
and Ca,Si0, by a peritectoid reaction at
1789 °C and dissociates upon cooling to
CaO and Ca,SiO, by a eutectoid reaction at
1250 °C. Maxima are observed at 2130 and
1540°C. At 1470°C there is an invariant
associated with the tridymite — cristobalite
transition of SiO,. This is either a peritec-
tic or a catatectic depending upon the rela-
tive solubility of CaO in tridymite and cris-
tobalite. However, these solubilities are
very small and unknown.
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1.6 Application of
Thermodynamics to Phase
Diagram Analysis

1.6.1 Thermodynamic/Phase Diagram
Optimization

In recent years the development of
solution models, numerical methods and
computer software has permitted a quanti-
tative application of thermodynamics to
phase diagram analysis. For a great many
systems it is now possible to perform a
simultaneous critical evaluation of avail-
able phase diagram measurements and of
available thermodynamic data (calorimet-
ric data, measurements of activities, etc.)
with a view to obtaining optimized equa-
tions for the Gibbs energies of each phase
which best represent all the data. These
equations are consistent with thermody-
namic principles and with theories of solu-
tion behavior.

The phase diagram can be calculated
from these thermodynamic equations, and
so one set of self-consistent equations de-
scribes all the thermodynamic properties
and the phase diagram. This technique of
analysis greatly reduces the amount of ex-
perimental data needed to fully character-
ize a system. All data can be tested for
internal consistency. The data can be inter-
polated and extrapolated more accurately
and metastable phase boundaries can be
calculated. All the thermodynamic proper-
ties and the phase diagram can be repre-
sented and stored by means of a small set
of coefficients.

Finally, and most importantly, it is often
possible to estimate the thermodynamic
properties and phase diagrams of ternary
and higher-order systems from the assessed
parameters for their binary sub-systems, as
will be discussed in Sec. 1.11. The analysis
of binary systems is thus the first and most

irﬁpo'rtant step in the development of data-
bases for multicomponent systems.

1.6.2 Polynomial Representation
of Excess Properties

Empirical equations are required to ex-
press the excess thermodynamic properties
of the solution phases as functions of com-
position and temperature. For many simple
binary substitutional solutions, a good rep-
resentation is obtained by expanding the
excess enthalpy and entropy as polynomi-
als in the mole fractions X, and Xy of the
components:

hE=XAXB[ho+h|(XB—XA) (1‘89)
+ (X = Xa)? + by (X = Xa) + ...

sE=XAXB[SO+s,(XB—XA) (1-90)
+5:(Xg = Xa)> + 535(Xg = Xa)* +...]

where the h; and s; are empirical coeffi-

cients. As many coefficients are used as -

are required to represent the data in a
given system. For most systems it is a good
approximation to assume that the coeffi-
cients h; and s; are independent of tcmpera-
ture.

If the series are truncated after the first
term, then:

gE=hE —TsE=X, Xg(hy—-Ts,)  (1-91)

This is the equation for a regular solution
discussed in Sec. 1.5.7. Hence, the polyno-
mial representation can be considered to be
an extension of regular solution theory.
When the expansions are written in terms
of the composition variable (Xz—X,), as in
Eqgs. (1-89) and (1-90), they are said to be
in Redlich—Kister form. Other equivalent
polynomial expansions such as orthogonal
Legendre series have been discussed by
Pelton and Bale (1986).

Differentiation of Egs. (1-89) and (1-90)
and substitution into Eq. (1-55) yields the

P ";q,»;:p,-,:.xw,-.;»j
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following expansions for the partial excess
enthalpies and entropies:

hﬁ = X§ -20 h[(Xg - XA)‘
T S 2i X (Xp-Xa)"'] (1-92)

hg = X} ,20 hi[(Xg — XA
T 2i Xp(Xe—XA)"1] (1-93)

SE = Xg ; 5 ((Xp — XA)i
T L 2i XA (Xg—-Xa)"'] (1-94)

sg = XX ; 5i[(Xp = Xa)'
- +2i Xg(Xg—X2)"'1 (1-95)

Partial excess Gibbs energies, gF, are
then given by Eq. (1-52).
. Eqgs. (1-89) and (1-90), being based upon
regular solution theory, give an adequate
representation for most simple substitu-
tional solutions in which deviations from
ideal behavior are not too great. In other
cases, more sophisticated models are re-
quired, as discussed in Sec. 1.10.

1.6.3 Least-Squares Optimization

Egs. (1-89), (1-90) and (1-92) to (1-95)
are linear in terms of the coefficients.
Through the use of these equations, all
integral and partial excess properties (gF,
hE, sE, g, hE, sE) can be expressed by
linear equations in terms of the one set of
coefficients {h;, s;}. It is thus possible to
include all available experimental data for
a binary phase in one simultaneous linear
least-squares optimization. Details have
been discussed by Bale and Pelton (1983),
Lukas et al. (1977) and Dorner et al.
(1980).

The technique of coupled thermody-
namic/phase diagram analysis is best illus-
trated by examples. '

The phase diagram of the LiF-NaF
system is shown in Fig. 1-18. Data points
measured by Holm (1965) are shown on
the diagram. The Gibbs energy of fusion of
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Figure 1-18. LiF-NaF phase diagram at P=1 bar
calculated from optimized thermodynamic parame-
ters (Sangster and Pelton, 1987). Points are experi-
mental from Holm (1965). Dashed line is theoretical
limiting liquidus slope for negligible solid solubility.

each pure component at temperature 7 is
given by:

T
+ [ (ch=c3) (1-1T)dT
T;

(1-96)

- where AhY, is the enthalpy of fusion at

the melting point T, and ¢}, and c} are the
heat capacities of the pure liquid and solid.
The following values are taken from Barin
et al. (1977):

Ag®uir, = 14.518 + 128.435T
+8.709 x 103T2-21.494T InT
—2.65x105T"! (1-97)

AP nar, = 10.847 + 156.584 T
+4.950 x 10°3T2-23.978 T InT
~1.07 x 1057 (1-98)

J/mol

J/mol

Thermodynamic properties along the lig-
uidus and solidus are related by equations
like Eqs. (1-64) and (1-65). Taking the
ideal activities to be equal to the mole frac-
tions:

RT In X,l —RTIn X‘\ + giE(l) _ giE(s)

= —Ag%, (1-99)
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where i=LiF or NaF. Along the LiF-rich
liquidus, the liquid is in equilibrium with
essentially pure solid LiF. Hence, X} ;z=1
and gE$®=0. Eq. (1-99) then reduces to:

RT InX{;+ gEi(fl) =- Ag(f)(LiF) (1-100)

From experimental values of X!,z on the
liquidus and with Eq. (1-97) for AgfLir)
values of gE{" at the measured liquidus
points can be calculated from Eq. (1-100).

Along the NaF-rich solidus the solid so-
lution is sufficiently concentrated in NaF
that Henrian behavior (Sec. 1.5.11) can be
assumed. That is, for the solvent, gE§=0.

Hence, Eq. (1-99) becomes:

RTInXQe-RT InX{e + gER

=—Ag?(NaF) (1-101)

Thus, from the experimental liquidus and
solidus compositions and with the Gibbs
energy of fusion from Eq. (1-98), values of
g&iP can be calculated at the measured lig-
uidus points from Eq. (1-101).

Finally, enthalpies of mixing, A&, in the

liquid have been measured by calorimetry"

by Hong and Kleppa (1976).

Combining all these data in a least-
squares optimization, the following expres-
sions for the liquid were obtained by Sang-
ster and Pelton (1987):

REO = X, - Xyor (1-102)
x [= 7381 + 184 (Xnap — XLie)] J/mol

sEY = Xiie Xnar (1-103)
% [= 2.169 = 0.562 (Xnur — X,ie)] J/mol

Eqgs. (1-102) and (1-103) then permit all
other integral and partial properties of the
liquid to be calculated.

For the NaF-rich Henrian solid solution,
the solubility of LiF has been measured by
Holm (1965) at the eutectic temperature
where the NaF-rich solid solution is in
equilibrium with pure solid LiF. That is,

ay ;=1 with respect to pure solid LiF as
standard state. In the Henrian solution at
saturation,

aLir = }/([).iF XLiF = }’?,iF(l -00915)=1

Hence, the Henrian activity coefficient
in the NaF-rich solid solution at 649°C
is y2,=11.76. Since no solubilities have
been measured at other temperatures, we
assume that:

RT Iny?.r = R(922) In(11.76) (1-104)
= 18900 J/mol = constant

Using the notation of Eq. (1-82):

g NP = g% 4 18900 J/mol  (1-105)

where g?{2 is the standard Gibbs energy of
solid LiF, and g% NP is the hypothetical
standard Gibbs energy of LiF dissolved in
solid NaF.

The phase diagram drawn in Fig. 1-18
was calculated from Eqgs. (1-97) to (1-104).
Complete details of the analysis of the
LiF-NaF system are given by Sangster and
Pelton (1987).

As a second example of thermodynamic/
phase diagram optimization, consider the
Cd-Na system. The phase diagram, with
points measured by several authors (Math-
ewson, 1906; Kurnakow and Kusnetzow,
1907; Weeks and Davies, 1964) is shown in
Fig. 1-19.

From electromotive force measurements
on alloy concentration cells, several au-
thors have measured the activity coeffi-
cient of Na in liquid alloys. The data
are shown in Fig. 1-20 at 400°C. From
the temperature dependence of g&, =
RT Inyy,, the partial enthalpy of Na in the
liquid was obtained via Eq. (1-52). The re-
sults are shown in Fig. 1-21. Also, hF of the
liquid has been measured by Kleinstuber
(1961) by direct calorimetry. These ther-
modynamic data for g, hE, and hE were
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Figure 1-21. Partial excess enthalpy of sodium in
liquid Cd-Na alloys. Line is calculated from opti-
mized thermodynamic parameters (Reprinted from
Pelton, 1988a). @ Lantratov and Mikhailova (1971),
A\ Maiorova et al. (1976), O Bartlett et al. (1970).

optimized simultaneously (Pelton, 1988a)
to obtain the following expressions for A&
and sE of the liquid:

hE® = Xy Xna[-12508 + 20316 (1-106)
X (Xna — Xcq) — 8714 (Xna — Xca)?] J/mol
SEM = Xy Xna[-15.452 +15.186  (1-107)
X (Xna— Xca) — 10.062 (Xna = Xca)?
—1.122 (Xna — Xcq)?] J/mol K

Eq. (1-106) reproduces the calorimetric
data within 200 J/mol~'. Egs. (1-52), (1-
58), (1-93) and (1-95) can be used to calcu-
late AE, and yy,. The calculated curves are
compared to the measured points in Figs.
1-20 and 1-21.

For the two compounds, Gibbs energies
of fusion were calculated (Pelton, 1988a)
so as to best reproduce the measured phase
diagram:

Ag?(l/l?;Cd,.Na:) = 6816 - 10.724 TJ/g‘atom
(1-108)

= 8368 — 12.737T J/g-atom
(1-109)

The optimized enthalpies of fusion of 6816
and 8368 J/g-atom agree within error lim-
its with the values of 6987 and 7878 J/g-
atom measured by Roos (1916). (See Fig.
1-14 for -an illustration of the relation
between the Gibbs energy of fusion of a
compound and the phase diagram.)

The phase diagram shown in Fig. 1-19
was calculated from Egs. (1-106) to (I-
109) along with the Gibbs energies of fu-
sion of Cd and Na taken from the literature
(Chase, 1983). Complete details of the
analysis of the Cd—Na system are given by
Pelton (1988 a).

It can thus be seen that one simple set of
equations can simultaneously and self-con-
sistently describe all the thermodynamic
properties and the phase diagram of a bi-
nary system.

The exact optimization procedure will
vary from system to system depending
upon the type and accuracy of the avail-
able data, the number of phases present, the
extent of solid solubility, etc. A large num-
ber of optimizations have been published
in the Calphad Journal (Pergamon) since
19717.
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1.6.4 Calculation of Metastable Phase
Boundaries

In the Cd—Na system just discussed, the
liquid exhibits positive deviations from
ideal mixing. That is, g5®>0. This fact is
reflected in the very flat liquidus in Fig.
1-19 as was discussed in Sec. 1.5.9.

By simply not including any solid phases
in the calculation, the metastable liquid
miscibility gap as well as the spinodal
curve (Sec. 1.5.5) can be calculated as
shown in Fig. 1-19. These curves are im-
portant in the formation of metallic glasses
by rapid quenching.

Other metastable phase boundaries such
as the extension of a liquidus curve below a
eutectic can also be calculated thermody-
namically by simply excluding one or more
phases during the computations.

1.7 Ternary and Multicomponent
Phase Diagrams

This section provides an introduction to

ternary phase diagrams. For a more de-
tailed treatment, see Prince (1966); Ricci
(1964); Findlay (1951); or West (1965).

1.7.1 The Ternary Composition Triangle

In a ternary system with components
A-B-C, the sum of the mole fractions is
unity, (Xpo+Xg+ Xc)=1. Hence, there are
two independent composition variables. A
representation of composition, symmetri-
cal with respect to all three components,
may be obtained with the equilateral “com-
position triangle” as shown in Fig. 1-22 for
the Bi—Sn-Cd system. Compositions at
the corners of the triangle correspond to the
pure components. Along the edges of the
triangle compositions corresponding to the
three binary subsystems Bi-Sn, Sn-Cd

and Cd-Bi are found. Lines of constant
mole fraction Xp; are parallel to the Sn—Cd
edge, while lines of constant Xg, and X4
are parallel to the Cd-Bi and Bi—Sn edges.
respectively. For example, at point a in Fig.
1-22, X5;=0.05, X5,=0.45 and Xc4=0.50.

Similar equilateral composition triangles
can be drawn with coordinates in terms of
wt.% of the three components.

1.7.2 Ternary Space Model

A ternary temperature—composition
“phase diagram” at constant total pressure
may be plotted as a three-dimensional
“space model” within a right triangular
prism with the equilateral composition tri-
angle as base and temperature as vertical
axis. Such a space model for a simple eu-
tectic ternary system A—-B-C is illustrated
in Fig. 1-23. On the three vertical faces of
the prism we find the phase diagrams of the
three binary subsystems, A-B, B-C and
C—A which, in this example, are all simple
eutectic binary systems. The binary eutec-
tic points are ¢,, ¢, and e;. Within the
prism we see three liquidus suifaces de-
scending from the melting points of pure
A, B and C. Compositions on these sur-
faces correspond to compositions of liquid
in equilibrium with A-, B- and C-rich solid
phases.

In a ternary system at constant pressure,
the Gibbs phase rule, Eq. (1-85), becomes:

F=4_P (1-110)

When the liquid and one solid phase are in
equilibrium P=2. Hence F=2 and the
system is bivariant. A ternary liquidus is
thus a two-dimensional surface. We may
choose two variables, say T and one
composition coordinate of the liquid, but
then the other liquid composition coordi-
nate and the composition of the solid are
fixed.
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Figure 1-22. Projection of the liquidus surface of the Bi—Sn—-Cd system onto the ternary composition triangle
(after Bray et al., 1961-1962). Small arrows show the crystallization path of an alloy of overall composition at
point a. (Reprinted from Pelton, 1996.)

Figure 1-23. Perspective view of ternary space
model of a simple eutectic ternary system. ey, e,, €;
are the binary eutectics and E is the ternary eutectic.
The base of the prism is the equilateral composition
triangle. (Reprinted from Pelton, 1983.)
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The A- and B-liquidus surfaces in Fig. 1-
23 intersect along the line e, E. Liquids
with compositions along this line are there-
fore in equilibrium with A-rich and B-rich
solid phases simultaneously. That is, P=3
and so F—1. Such “valleys” are thus called
univariant lines. The three univariant lines
meet at the ternary eutectic point E at
which P=4 and F=0. This is an invariant
point since the temperature and the compo-

sitions of all four phases in equilibrium are

fixed.

1.7.3 Polythermal Projections
of Liquidus Surfaces

A two-dimensional representation of the
ternary liquidus surface may be obtained as
an orthogonal projection upon the base
composition triangle. Such a polythermal
projection of the liquidus of the Bi—-Sn-Cd
system (Bray et al., 1961-62) is shown in
Fig. 1-22. This is a simple eutectic ternary
system with a space model like that shown
in Fig. 1-23. The constant temperature
lines on Fig. 1-22 are called liquidus iso-
therms. The univariant valleys are shown
as heavier lines. By convention, the large
arrows indicate the directions of decreas-
ing temperature along these lines.

Let us consider the sequence of events
occurring during the equilibrium cooling
from the liquid of an alloy of overall com-
position a in Fig. 1-22. Point a lies within
the field of primary crystallization of Cd.
That is, it lies within the composition re-
gion in Fig. 1-22 in which Cd-rich solid
will be the first solid to precipitate upon
cooling. As the liquid alloy is cooled, the
Cd-liquidus surface is reached at T=465 K
(slightly below the 473 K isotherm). A
solid Cd-rich phase begins to precipitate at
this temperature. Now, in this particular
system, Bi and Sn are nearly insoluble in
solid Cd, so that the solid phase is virtually

pure Cd. (Note that this fact cannot be de-
duced from Fig. 1-22 alone.) Therefore, as
solidification proceeds, the liquid becomes
depleted in Cd, but the ratio Xg,/Xg; in the
liquid remains constant. Hence, the compo-
sition path followed by the liquid (its crys-
tallization path) is a straight line passing
through point a and projecting to the Cd-
corner of the triangle. This crystallization
path is shown on Fig. 1-22 as the line ab.
In the general case in which a solid solu-
tion rather than a pure component or stoi-
chiometric compound is precipitating, the
crystallization path will not be a straight
line. However, for equilibrium cooling, a
straight line joining a point on the crystal-
lization path at any T to the overall compo-
sition point a will extend through the com-
position, on the solidus surface, of the solid
phase in equilibrium with the liquid at that
temperature. _
When the composition of the liquid has
reached point b in Fig. 1-22 at T=435 K,

- the relative proportions of the solid Cd and

liquid phases at equilibrium are given by

" the lever rule applied to the tie-line dab:

(moles of liquid)/(moles of Cd). = da/ab.
Upon further cooling, the liquid composi-
tion follows the univariant valley from b to
E while Cd and Sn-rich solids coprecipitate
as a binary eutectic mixture. When the
liquidus composition attains the ternary eu-
tectic composition E at 7= 380 K the invar-
iant ternary eutectic reaction OCcurs:

liquid = s, + s, + ;3 (1-111)

where s,, s, and s; are the three solid
phases and where the compositions of all
four phases (as well as T) remain fixed un-
til all liquid is solidified.

In order to illustrate several of the fea-
tures of polythermal projections of liquidus
surfaces, a projection of the liquidus of a
hypothetical system A-B-C is shown in
Fig. 1-24. For the sake of simplicity, iso-
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c

Figure 1-24. Projection of
the liquidus surface of a
system A-B-C. The binary
subsystems A-B and C-A
are simple eutectic systems.
The binary phase diagram
B-C is shown in the insert.
All solid phases are assumed
pure stoichiometric compo-
nents or compounds. Small
arrows show crystallization
paths of alloys of composi-
tions at points a and b. (Re-

therms are not shown, only the univariant
lines with arrows to show the directions of
decreasing temperature. The binary sub-
systems A—B and C-A are simple eutectic
systems, while the binary subsystem B-C
contains one congruent binary phase, &,
and one incongruent binary phase, 0, as
shown in the insert in Fig. 1-24. The letters
e and p indicate binary eutectic and peritec-
tic points. The € and 0 phases are called bi-
nary compounds since they have composi-
tions within a binary subsystem. Two ter-
nary compounds, 1 and T, with composi-
tions within the ternary triangle, as indi-
cated in Fig. 1-24, are also found in this
system. All compounds, as well as pure
solid A, B and C (the “a, 3 and y” phases),
are assumed to be stoichiometric (i.e., there
is no solid solubility). The fields of pri-
mary crystallization of all the solids are in-
dicated in parentheses in Fig. 1-24. The
composition of the € phase lies within its

printed from Pelton, 1983.)

field, since € is a congruent compound,
while the composition of the 0 phase lies
outside of its field since  is incongruent.
Similarly for the ternary compounds, 1 is a
congruently melting compound while T is
incongruent. For the congruent compound
1, the highest temperature on the 1 liquidus
occurs at the composition of 1.

The univariant lines meet at a number of
ternary eutectics E (three arrows converg-
ing), a ternary peritectic P (one arrow en-
tering, two arrows leaving the point), and
several ternary quasi-peritectics P’ (two
arrows entering, one arrow leaving). Two
saddle points s are also shown. These are
points of maximum T along the univariant
line but of minimum 7 on the liquidus sur-
face along a section joining the composi-
tions of the two solids. For example, s, is at
a maximum along the univariant E, P;, but
is a minimum point on the liquidus along
the straight line T s, 1.
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Let us consider the events occurring dur-
ing cooling from the liquid of an alloy of
overall composition a in Fig. 1-24. The pri-
mary crystallization product will be the €
phase. Since this is a pure stoichiometric
solid the crystallization path of the liquid
will be along a straight line passing
through a and extending to the composition
of € as shown in the figure.

Solidification of € continues until the
liquid attains a composition on the univari-
ant valley. Thereafter the liquid composi-
tion follows the valley towards the point P,
in co-existence with € and . At point P,
the invariant ternary quasi-peritectic reac-
tion occurs isothermally:

liquid+e—08+CT (1-112)

Since there are two reactants in a quasi-
peritectic reaction, there are two possible
outcomes: (i) the liquid is completely con-
sumed before the € phase; in this case, so-
lidification will be complete at the point P};
(ii) € is completely consumed before the
liquid. In this case, solidification will con-
tinue with decreasing T along the univari-
ant line P| E, with co-precipitation of 8 and
C until, at E, the liquid will solidify eutecti-
cally (liquid—=&+C+mn). To determine
whether outcome (i) or (ii) occurs, we use
the mass balance criterion that, for three-
phase equilibrium, the overall composition
a must always lie within the tie-triangle
formed by the compositions of the three
phases. Now, the triangle joining the com-
positions of §, € and T does not contain the
point a, but the triangle joining the compo-
sitions of &, T and liquid at P, does contain
the point a. Hence, outcome (ii) occurs.
An alloy of overall composition b in Fig.
1-24 solidifies with € as primary crystal-
lization product until the liquid composi-

tion contacts the univariant line. There-

after, co-precipitation of € and 3 occurs
with the liquid composition following the

univariant valley until the liquid reaches
the peritectic composition P. The invariant
ternary peritectic reaction then occurs iso-
thermally: .

liquid+e+ B —C (1-113)

Since there are three reactants, there are
three possible outcomes: (i) the liquid is
consumed before either € or 3 and solidifi-
cation terminates at P; (ii) € is consumed
first, solidification then continues along
the path PP;; or (iii) B is consumed first
and solidification continues along the path
PP|. Which outcome occurs depends on
whether the overall composition b lies
within the tie-triangle (i) e C; (ii) BT P, or
(iii) e P. In the example shown, outcome
(1) will occur.

1.7.4 Ternary Isothermal Sections

Isothermal projections of the liquidus
surface do not provide information on the
compositions of the solid phases at equilib-
rium. However, this information can be
presented at any one temperature on an iso-
thermal section such as that shown for the
Bi-Sn-Cd system at 423 K in Fig. 1-25.
This phase diagram is a constant tempera-
ture slice through the space model of Fig.
1-23.

The liquidus lines bordering the one-
phase liquid region of Fig. 1-25 are identi-
cal to the 423 K isotherms of the projection
in Fig. 1-22. Point ¢ in Fig. 1-25 is point ¢
on the univariant line in Fig. 1-22. An alloy
with overall composition in the one-phase
liquid region of Fig. 1-25 at 423 K will
consist of a single liquid phase. If the over-
all composition lies within one of the two-
phase regions, then the compositions of the
two phases are given by the ends of the tie-
line which passes through the overall com-
position. For example, a sample with over-
all composition p in Fig. 1-25 will consist
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Cd

[

(Cd)+ Liquid

Liquid

Bi

Sn

Figure 1-25. Isothermal section of the Bi—Sn—Cd system at 423 K at P= | bar (after Bray et al., 1961-1962).
Extents of solid solubility in Bi and Sn have been exaggerated for clarity of presentation. (Reprinted from Pel-

ton, 1996.)

of a liquid of composition g on the liquidus
and a solid Bi-rich alloy of composition r
on the solidus. The relative proportions of
the two phases are given by the lever rule:
(moles of liquid)/(moles of solid)=pr/pgq,
where pr and pq are the lengths of the tie-
line segments.

In the case of solid Cd, the solid phase is
nearly pure Cd, so all tie-lines of the (Cd+
liquid) region converge nearly to the corner
of the triangle. In the case of Bi- and Sn-
rich solids, some solid solubility is ob-
served. (The actual extent of this solubility

is somewhat exaggerated in Fig. 1-25 for
the sake of clarity of presentation.) Alloys
with overall compositions rich enough in
Bi or Sn to lie within the single-phase (Sn)
or (Bi) regions of Fig. 1-25 will consist at
423 K of single-phase solid solutions. Al-
loys with overall compositions at 423 K in
the two-phase (Cd + Sn) region will consist
of two solid phases.

Alloys with overall compositions within
the three-phase triangle dcf will, at 423 K,
consist of three phases: solid Cd- and Sn-
rich solids with compositions at 4 and f and
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liquid of composition c. To understand this
better, consider an alloy of composition a
in Fig. 1-25, which is the same composi-
tion as the point a in Fig. 1-22. In Sec.
1.7.3 we saw that when an alloy of this
composition is cooled, the liquid follows
the path ab in Fig. 1-22 with primary pre-
cipitation of Cd and then follows the uni-
variant line with co-precipitation of Cd and
Sn so that at 423 K the liquid is at the com-
position point ¢, and two solid phases are in
equilibrium with the liquid.

1.7.4.1 Topology of Ternary Isothermal
Sections

At constant temperature the Gibbs en-
ergy of each phase in a ternary system is
represented as a function of composition
by a surface plotted in a right triangular
prism with Gibbs energy as vertical axis
and the composition triangle as base. Just
as the compositions of phases at equilib-
rium in binary systems are determined
by the points of contact of a common tan-
gent line to their isothermal Gibbs energy
curves, so the compositions of phases at
equilibrium in a ternary system are given
by the points of contact of a common tan-
gent plane to their isothermal Gibbs energy
surfaces. A common tangent plane can
contact two Gibbs energy surfaces at an in-
finite number of pairs of points, thereby
generating an infinite number of tie-lines
within a two-phase region on an isothermal
section. A common tangent plane to three
Gibbs energy surfaces contacts each sur-
face at a unique point, thereby generating a
three-phase tie-triangle.

Hence, the principal topological units of
construction of an isothermal ternary phase
diagram are three-phase (o+p+7Y) tie-tri-
angles as in Fig. 1-26 with their accompa-
nying two-phase and single-phase areas.
Each corner of the tie-triangle contacts a

a/f 1\ g

Figure 1-26. A tie-triangle in a ternary isothermal
section illustrating the lever rule and the extension
rule.

single-phase region, and from each edge of
the triangle there extends a two-phase re-
gion. The edge of the triangle is a limiting
tie-line of the two-phase region.

For overall compositions within the tie-
triangle, the compositions of the three
phases at equilibrium are fixed at the cor-
ners of the triangle. The relative propor-
tions of the three phases are given by the
lever rule of tie-triangles, which can be de-
rived from mass balance considerations. At
an overall composition ¢ in Fig. 1-26 for
example, the relative proportion of the vy
phase is given by projecting a straight line
from the y corner of the triangle (point c)
through the overall composition g to the
opposite side of the triangle, point p. Then:
(moles of y)/(total moles) =g p/cp if com-
positions are expressed in mole fractions,
or (weight of y)/(total weight)=¢gp/cp if
compositions are in weight percent.

Isothermal ternary phase diagrams are
generally composed of a number of these
topological units. An example for the Al—
Zn—-Mg system at 25°C is shown in Fig.
1-27 (Koster and Dullenkopf, 1936). The
B, v, 8, 6, 1 and T phases are binary inter-
metallic compounds with small (~1 to 6%)
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Wt % Zn

Figure 1-27. Ternary isothermal section of the Al-
Zn-Mg system at 25°C at P =1 bar (after Koster and
Dullenkopf, 1936). (Reprinted from Pelton, 1983.)

ranges of stoichiometry which can dissolve
a limited amount (~1 to 6%) of the third
component. The T phase is a ternary phase
with a single-phase region existing over a
fairly extensive oval-shaped central com-
position range. Examination of Fig. 1-27
shows that it consists of the topological
units of Fig. 1-26.

An extension rule, a case of Schreine-
makers’ Rule (Schreinemakers, 1915), see
Sec. 1.7.5, for ternary tie-triangles is illus-
trated in Fig. 1-26. At each corner, the

extension of the boundaries of the single-

phase regions, indicated by the broken
lines, must either both project into the tri-
angle as at point a, or must both project
outside the triangle as at point b. Further-
more, the angle between these extensions
must be less than 180°. For a proof, see
Lipson and Wilson (1940) or Pelton
(1995).

Many published phase diagrams violate
this rule. For example, it is violated in Fig.
1-27 at the &-corner of the (e+ & + T) tie-tri-
angle.

Another important rule of construction,
whose derivation is evident, is that within
any two-phase region tie-lines must never
cross.one another.

1.7.5 Ternary Isopleths
(Constant Composition Sections)

A vertical isopleth, or constant composi-
tion section through the space model of the
Bi—-Sn-Cd system, is shown in Fig. 1-28.
The section follows the line AB in Fig.
1-22.

The phase fields on Fig. 1-28 indicate
which phases are present when an alloy
with an overall composition on the line AB
is equilibrated at any temperature. For ex-
ample, consider the cooling, from the lig-
uid state, of an alloy of composition a
which is on the line AB (see Fig. 1-22). At
T =465 K, precipitation of the solid (Cd)
phase begins at point a in Fig. [-28. At
T=435 K (point b in Figs. 1-22 and 1-28)
the solid (Sn) phase begins to appear. Fi-
nally, at the eutectic temperature Tg, the
ternary reaction occurs, leaving solid (Cd)
+ (Bi) + (Sn) at lower temperatures. The
intersection of the isopleth with the univar-
iant lines on Fig. 1-22 occurs at points fand
g which are also indicated on Fig. 1-28.
The intersection of this isopleth with the
isothermal section at 423 K is shown in
Fig. 1-25. The points s, t, u and v of Fig.
1-25 are also shown on Fig. 1-28.

It is important to note that on an isopleth
the tie-lines do not, in general, lie in the
plane of the diagram. Therefore, the dia-
gram provides information only on which
phases are present, not on their composi-
tions. The boundary lines on an isopleth do
not in general indicate the phase composi-
tions, only the temperature at which a
phase appears or disappears for a given
overall composition. The lever rule cannot
be applied on an isopleth.
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Temperature (K)

€,

423

(Cd)+(Bi)+(Sn)

1 I I | I

1 l |

Mole Fraction

Figure 1-28. Isopleth (constant composition section) of the Bi—~Sn—~Cd system at P=1 bar following the line
AB at Xg, = 0.45 of Fig. 1-22. (Reprinted from Pelton, 1996).

Certain geometrical rules apply to iso-
pleths. As a phase boundary line is crossed,
one and only one phase either appears or
disappears. This Law of Adjoining Phase
Regions (Palatnik and Landau, 1964) is il-
lustrated by Fig. 1-28. The only apparent
exception occurs for the horizontal invari-
ant line at 7. However, if we consider this
line to be a degenerate infinitely narrow
four-phase region (L+(Cd)+(Bi)+(Sn)),
then the law is also obeyed here.

Three or four boundary lines meet at in-
tersection points. At an intersection point,
such as point f or g, Schreinemakers’ Rule
applies. This is discussed in Sec. 1.9.

Apparent exceptions to these rules (such
as, for example, five boundaries meeting at
an intersection point) can occur if the sec-
tion passes exactly through a node (such
as a ternary eutectic point) of the space
model. However, these apparent exceptions
are really only limiting cases (see Prince,
1963 or 1966).

1.7.5.1 Quasi-Binary Phase Diagrams

Several of the binary phase diagrams
in the preceding sections (Figs. 1-5, 1-10,
1-12, 1-14, 1-18) are actually isopleths
of ternary systems. For example, Fig. 1-12
is an isopleth at constant Xo=ng/(ny,+
ne,+ng)=0.5 of the Mg—-Ca-0O system.
However, all tie-lines lie within (or virtu-
ally within) the plane of the diagram be-
cause Xo=0.5 in every phase. Therefore,
the diagram is called a quasi-binary phase
diagram.

1.7.6 Multicomponent Phase Diagrams

Only an introduction to multicomponent
phase diagrams will be presented here.
For more detailed treatments see Palatnik
and Landau (1964), Prince (1963), Prince
(1966) and Hillert (1998).

For systems of four or more components,
two-dimensional sections are usually plot-
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ted with one or more compositional vari-
ables held constant. Hence these sections
are similar to the ternary isopleths dis-
cussed in Sec. 1.7.5. In certain cases, sec-
tions at constant chemical potential of one
or more components (for example, at con-
stant oxygen partial pressure) can be use-
ful. These are discussed in Sec. 1.8.

Two sections of the Fe—Cr-V-C system
(Lée and Lee, 1992) are shown in Figs. 1-
29 and 1-30. The diagram in Fig. 1-29 is a
T-composition section at constant Cr and V
content, while Fig. 1-30 is a section at con-
stant T=850°C and constant C content of
0.3 wt.%. The interpretation and topologi-
cal rules of construction of these sections
are the same as those for ternary isopleths,
as discussed in Sec. 1.7.5. In fact, the same
rules apply to a two-dimensional constant-
composition section for a system of any
number of components. The phase fields
on the diagram indicate the phases present

1 Thermodynamics and Phase Diagrams of Materials

at equilibrium for an overall composition
lying on the section. Tie-lines do not, in
general, lie in the plane of the diagram, so
the diagram does not provide information
on the compositions or amounts of the
phases present. As a phase boundary is
crossed, one and only one phase appears or
disappears (Law of Adjoining Phase Re-
gions). If temperature is an axis, as in Fig.
1-29, then horizontal invariants like the
line AB in Fig. 1-29 can appear. These can
be considered as degenerate infinitely nar-
row phase fields of (C + 1) phases, where C
is the number of components (for isobaric
diagrams). For example in Fig. 1-29, on the
line AB, five phases are present. Three or
four phase boundaries meet at intersection
points at which Schreinemakers’ Rule ap-
plies. It is illustrated by the extrapolations
in Fig. 1-29 at points a, b and ¢ and in Fig.
1-30 at points b, ¢, n, i and s (see discus-
sions in Sec. 1.9).

950
Y

900

850 Y+ MC

800

1.5 wt% Cr and 0.1 wi% V

Y +M;C3+ MC

/ Y+Cem+MC

Y+M7Cs+Com+MC
g a+¥+Cem

Temperature, °C

750 ®
a+Y+ MC +Cem a+ Cem
700 H
@+ M7Cy +Cem+MC @ +Cem + MC
650 - a+M,Cs+ MC
600 | | | | | il il |
0 0.2 0.4 0.6 0.8 1.0

Weight Percent Carbon

Figure 1-29. Section of the Fe-Cr-V-C system at 1.5 wt.% Cr and 0.1 wt.% V at P=1 bar (Lee and Lee,

1992).
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Figure 1-30. Section of
0 - ! the Fe—-Cr-V -C system
2 4 6 8 10 12 14 16 at850°Cand 0.3 wt.% C
Fe . . at P=1 bar (Lee and Lee,
Weight Percent Chromium 1992).

1.7.7 Nomenclature for Invariant
Reactions

As discussed in Sec. 1.5.12, in a binary
isobaric temperature—composition phase
diagram there are two possible types of
invariant reactions: “eutectic-type” (f — o
+v), and “peritectic type” (a+ y — ). In
a ternary system, there are “eutectic-type”
(o — B + v+ d), “peritectic-type” (o + B +
vy — 8), and “quasiperitectic-type” (o + 3
— v+ 0) invariants (Sec. 1.7.3). In a
system of C components, the number of
types of invariant reaction is equal to C. A
reaction with one reactant, such as
(a—= P+ vy+0+e¢) is clearly a “eutectic-
type” invariant reaction but in general there
is no standard terminology. These reactions
are conveniently described according to the
numbers of reactants and products (in the
direction which occurs upon cooling).
Hence the reaction (a0 + B —y+ 0 +€)isa
2—3 reaction; the reaction (aa— B +y

+ 0) is a / = 3 reaction; and so on. The ter-
nary peritectic-type 3 —/ reaction (o + f3
+ vy — 0) is an invariant reaction in a ter-

‘nary system, a univariant reaction in a qua-

ternary system, a bivariant reaction in a
quinary system, etc.

1.7.8 Reciprocal Ternary Phase
Diagrams

A reciprocal ternary salt system is one
consisting of two cations and two anions,
such as the Na*, K*/F~, Cl~ system of Fig.
1-31. The condition of charge neutrality
(N +Ng+=ng-+ng;-) removes one degree
of freedom. The system is thus quasiter-
nary and its composition can be repre-
sented by two variables, usually chosen
as the cationic mole fraction Xg=ngl/
(nna+ng) and the anionic mole fraction
Xci=ng/(ng+ng), where n,=number of
moles of ion i. Note that Xy,=(1-Xg) and
Xe=(1-X¢)-




ternary but is an isopleth of the four-com-
ponent Na—K-F-Cl system, and tie-lines
no longer necessarily lie in the plane of the

In Fig. 1-31 the cationic and anionic
fractions are plotted as axes of a square.
Compositions corresponding to the four
neutral salts (KF, KCIl, NaCl, NaF) are
found at the corners of the square. Edges of
the square correspond to the binary sub-
systems such as NaF-NaCl. A ternary
space model (analogous to Fig. 1-23) can
be constructed with temperature as vertical
axis. The phase diagram of Fig. 1-31 is a
polythermal projection of the liquidus sur-
face upon the composition square.

In this system, three of the binary edges
are simple eutectic systems, while the
NaCl-KCIl binary system exhibits a sol-
idus/liquidus minimum. There is a ternary
eutectic at 570°C in Fig. 1-31(b). The
NaF-KCl diagonal contains a saddle point
at 648 °C in Fig. 1-31(b). This saddle point
is a eutectic of the quasibinary system
NaF-KCI. That is, a binary phase diagram
NaF-KClI could be drawn with one simple
eutectic at 648 °C. However, the NaCl-KF
system, which forms the other diagonal, is
not a quasibinary system. If compositions
lying on this diagonal are cooled at equilib-
rium from the liquid, solid phases whose
compositions do not lie on this diagonal
can precipitate. Hence, a simple binary
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Figure 1-31. Projection of the liquidus surface of

the Na*, K*/F~, Cl~ reciprocal ternary system.

a) Calculated from optimized binary thermodynamic
parameters.

b) As reported by Polyakov (1940).

The assumption has, of course, been
made that the condition (ny,+ngx=ng+nc)
holds exactly in every phase. If there is a
deviation from this exact stoichiometry,
then the phase diagram is no longer quasi-

phase diagram cannot be drawn for the
NaCl-KF system.

For systems such as Ca®*, Na*/F-, SO3~
in which the ions do not all have the same
charge, composition axes are conveniently
expressed as equivalent ionic fractions
(e.g. Yeo,=2nc,/(2nc,+ny,)), see Sec.
1.9.2.1.

The concept of reciprocal systems can be
generalized beyond simple salt systems
and is closely related to the sublattice
model (Sec. 1.10.1).
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For further discussion and references,
see Pelton (1988b) and Blander (1964).

1.8 Phase Diagrams
with Potentials as Axes

So far we have considered mainly iso-
baric temperature—composition phase dia-
grams. However there are many other
kinds of phase diagrams of interest in ma-
terials science and technology with pres-
sure, chemical potentials, volume, etc. as
axes. These can be classified into geomet-
rical types according to their rules of con-
struction.

For instance, binary isothermal P-X di-
agrams as in Fig. 1-8 are members of the
same type as binary isobaric T- X diagrams
because they are both formed from the
same topological units of construction.
Other useful phase diagrams of this same
geometrical type are isothermal chemical
potential —composition diagrams for ter-
nary systems. An example is shown in
the lowest panel of Fig. 1-32 (Pelton and
Thompson, 1975) for the Co=Ni-O
system at 7= 1600 K (and at a constant to-
tal hydrostatic pressure of 1 bar). Here the
logarithm of the equilibrium partial pres-
sure of O, is plotted versus the metal ratio
E=nyi/(nce+ny;), where n;=number of
moles of i. There are two phases in this
system under these conditions, a solid alloy
solution stable at lower po,. and a solid so-
lution of CoO and NiO stable at higher pg,.
For instance, point a gives po, for the equi-
librium between pure Co and pure CoO at
1600 K. Between the two single-phase re-
gions is a two-phase (alloy + oxide) region.
At any overall composition on the tie-line
cd between points ¢ and d, two phases will
be observed, an alloy of composition d and
an oxide of composition c. The lever rule
applies just as for binary T—X diagrams.

Oxide
CoO solid solution \ NiO

Alloy + oxide

[N

- Co ®-Alloy solid solution Ni
Z coQ < NiO
7
b |
8 |
<
o |
c o .
" Co 4 ar Ni
& + +
| | b

-6.6 1(Co,Ni) O gy !
= |
_g 1
~ -7.0 | -1
o~ : Alloy
n_o ooxide_

-7.4 - = .
o
o .

Alloy
-7.8 (s) N
Q L 1 1 L

Co ©02 04 06 08 Ni
€= ny/(ngo* Ny )

Figure 1-32. Corresponding phase diagrams for the
Co-Ni-O system at 1600 K (from Pelton and
Thompson, 1973). - .

The usual isothermal section of the ter-
nary Co-Ni-0O system at 1600 K is shown
in the top panel of Fig. 1-32. There are two
single-phase regions with a two-phase re-
gion between them. The single-phase areas
are very narrow because oxygen is only
very slightly soluble in the solid alloy
and CoO and NiO are very stoichiometric
oxides. In the central panel of Fig. 1-32
this same diagram is shown with the com-
position triangle “opened up” by putting
the oxygen corner at infinity. This can be
done if the vertical axis becomes 1 =ng/
(nco+ny;) with the horizontal axis as
E=nyi/(ng,+ny;). These are known as
Jéinecke coordinates. It can be seen in Fig.
1-32 that each tie-line, ef, of the isothermal
section corresponds to a tie-line cd of the
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log po,— & diagram. This underscores the
fact that every tie-line of a ternary isother-
mal section corresponds to a constant chem-
ical potential of each of the components.
Another example of a log po_— & diagram
is shown for the Fe-Cr-O system at
1573 K in the lower panel of Fig. 1-33
(Pelton and Schmalzried, 1973). The corre-
sponding ternary isothermal section in
Janecke coordinates is shown in the upper
panel. Each of the invariant three-phase
tie-triangles in the isothermal section
corresponds to an invariant line in the

log po,— & diagram. For example, the (spi-
nel + (Fe, Cr) O +alloy) triangle with cor-
ners at points a, b and ¢ corresponds to the
“eutectjc-like” or eutecular invariant with
the same phase compositions a, b and c at
log po,=—10.7. We can see that within a
three-phase tie-triangle, po, is constant.

An example of yet another kind of phase
diagram of this same geometrical type is
shown in Fig. 1-34. For the quaternary
Fe-Cr-0,-S0O, system at T=1273 K and
at constant pgo =107 bar, Fig. 1-34 is a
plot of log po, versus the molar metal ratio

Fe 203 (Felcr) 203 Cl'z 03
1
0
Cr
0 T T T T I 1 1 1 1
2F (Fe.Cr),0, .
:_ (Fe,Cr),0, (Spinel) ]
! (Fe.Cr)O (Fe,Cr),0, !
~ -8 ) +
8 A (Fe.Cn),0,
~ . -10 |- \_(Fe.CnO + (Fe.Cn),0,
< X
© -12 | ‘a+ (FeCrO a(Fe,Cr) + (Fe,Cr),0,
o
L 4L a(Fe.Cr) + (Fe.Cr),0, ]
F o y(Fe.Cr) + (Fe.Cr),0,{  Figure 1-33. Correspond-
.16 | T~ a(Fe,Cr) (Alloy) 1 ing phase diagrams for the
18 B Pty y(Fe,Cr) (Alloy) ] Fe-Cr-O system at 1573 K
L (Pelton and Schmalzried,
20tb—d e 1973). Experimental points

0.0 0.1 0.2 0.3 0.4 0.5 0.6
nCr, (nFe * nCr)

0.7 0.8 0.9 1.0

from Katsura and Muan
(1964).

Cr
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Figure 1-34. Calculated phase diagram of log po, versus molar metal ratio at T=1273.15 K and pso,= 1077 bar

for the Fe~Cr-S0,-0, system.

&. Since log po, varies as —1/2 log ps, when
Pso, and T are constant, Fig. 1-34 is also a
plot of log ps, versus &.

Plotting T versus & at constant po, in the
Fe—Cr-O system, or at constant pg, and
Pso, in the Fe-Cr-80,-0, system, will
also result in phase diagrams of this same

geometrical type. Often for ceramic
systems, we encounter “‘binary” phase dia-
grams such as that for the “CaO-Fe,0;”
system in Fig. 1-35, which has been taken
from Phillips and Muan (1958). How are
we to interpret such a diagranm? How, for
instance, do we interpret the composition

" T T T T
To Ca0 .
600 - 2570° Mogn.ss +Liq.
CaO .
+ LI].
L Liq. .
_1.%“. ZCOO-FQIO,# Liq.
1449 °
1400 |
“HHem.ss
. Magn.ss + Hem. s s!
5 2Ca0 Fe, 05+ Liq. Hem.ss+Li. :
CaO+ o%° 0 Fe0ytlia  pog.
2Ca0 Fe,0 : =——=={——{Co02Fe,0 + Hem
1200 |- €% CaOFe,0,+ Liq- 205° 23 - o
N 33
Ca0 Fe,0,+Ca0- 2Fe,0,
Co0 Fe.0.+ Figure 1-35. Phase diagram for the
e “ " o
000 L Ca0-Fe,0, Ca0 Fe,0,+ Hem. ] CaO-Fe,0; system in air (po,=
0.21 bar) from Phillips and Muan
L. , , , o (1958) (Reprinted by permission of the
0 60 70 80 90 100 American Ceramic Society from Levin
Ca0 2Co0 Fe,0, Ca0 Fe,0y Ca0 2Fe,0, Fe,0, etal,, 1964).
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axis when applied to the magnetite phase?
In light of the preceding discussion, it can
be seen that such diagrams are really 7-&
plots at constant pg_, where & is the metal
ratio in any phase. The diagram will be dif-
ferent at different oxygen partial pressures.
If po, is not fixed, the diagram cannot be
interpreted.

It can be seen that the diagrams dis-
“cussed above are of the same geometrical
type as binary 7-X diagrams because they
are all composed of the same geometrical
units of construction as in Fig. 1-16. Their
interpretation is thus immediately clear
to anyone familiar with binary T-X dia-
grams. Chemical * potential —composition

Liquid iron | ;0yid iron + liquid oxide
\ N £
N |
1900} Liquid oxide -
1700 -
Hematite
. +
Wustite —_| Magnetite
1500F ¥ iron /|
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Bems
a !100f fﬁ
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700 | ! ! -
0 | 0.50 0.54 058  0.62
XO ->»
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Figure 1-36. Pressure-temperature phase diagram of
H,O0.

. Liquid
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-500 -400 -300 -200 -100 O

RT In po, —>
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Figure 1-37. Corresponding phase diagrams for the Fe—O system at ProraL = | bar (after Muan and Osborn,

1965).
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diagrams (Figs. 1-32 to 1-34) are useful in
the study of hot corrosion, metallurgical
roasting processes, chemical vapor deposi-
tion, and many aspects of materials pro-
cessing.

Another important geometrical type of
phase diagram is exemplified by P-T
phase diagrams for one-component sys-
tems, as shown for H,O in Fig. 1-36. In
such diagrams (see also Chapter 10 by
Kunz (2001)) bivariant single-phase re-
gions are indicated by areas, univariant
two-phase regions by lines, and invariant
three-phase regions by triple points. An
important rule of construction is the exten-
sion rule, which is illustrated by the broken
lines in Fig. 1-36. At a triple point, the
extension of any two-phase line must pass
into the single-phase region of the third
phase. Clearly, the predominance diagrams

of Figs. 1-1 to 1-3 are of this same geomet-
rical type.

As yet another example of this geomet-
rical type of diagram, a plot of RT In pg,
versus T for the Fe—O system is shown in
Fig. 1-37(b). Again, one-, two- and three-
phase regions are indicated by areas, lines
and triple points respectively. Fig. 1-37(a)
is the binary T—composition phase diagram
for the Fe—O system. The correspondence
between Figs. 1-37(a) and 1-37(b) is evi-
dent. Each two-phase line of Fig. 1-37(b)
“opens up” to a two-phase region of Fig.
1-37(a). Each tie-line of a two-phase re-
gion in Fig. 1-37(a) can thus be seen to
correspond to a constant po,. Triple points
in Fig. 1-37(b) become horizontal invari-
ant lines in Fig. 1-37(a).

Yet another type of phase diagram is
shown in Fig. 1-38. This is an isothermal

0 T=1273 K, Molarratio: nc(ncr+nge) = 0.5
AR BN B I A B N A R SN R MR
1k _
2k B
3 n
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o I
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Figure 1-38. Phase diagram of log ps_ versus log pg_ at 1273 K and constant molar metal ratio ne./(ng. + ne,) =

0.5 in the Fe-Cr-S,-0, system.
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section at constant molar metal ratio
ne/(ng.+ne;)=0.5 for the Fe-Cr-S,-0,
system. This diagram was calculated ther-
modynamically from model parameters.
The axes are the equilibrium sulfur and
oxygen partial pressures. Three or four
boundary lines can meet at an intersection
point. Some of the boundary lines on Fig.
1-38 separate a two-phase region (o +f3)
from another two-phase region (a+Y).
These lines thus represent the conditions
for three-phase (o.+ P + ) equilibrium.

1.9 General Phase Diagram
Geometry

Although the various phase diagrams
shown in the preceding sections may ap-
pear to have quite different geometries, it
can be shown that, in fact, all true phase di-
agram sections obey the same set of geo-
metrical rules. Although these rules do not
apply directly to phase diagram projections
such as Figs. 1-22, 1-24 and 1-31, such di-
agrams can be considered to consist of por-
tions of scveral phase diagram sections
projected onto a common plane.

By “true” phase diagram we mean one in
which each point of the diagram represents
one unique equilibrium state. In the present
section we give the general geometrical
rules that apply to all true phase diagram
sections, and we discuss the choices of
axes and constants that ensure that the dia-
gram is a true diagram.

We must first make some definitions. In
a system of C components we can define
(C+2) thermodynamic potentials ¢;. These
are T, P, u,, Mo, ..., Uc, Where u; is the
chemical potential defined in Eq. (1-23).
For each potential there is a corresponding
extensive variable g, related by:

‘pi:(aU/a(Ii)qi(jsti) (1_114)

Table 1-1. Corresponding pairs of potentials ¢; and
extensive variables g;.

i T P Hy My oo He
q;: S -V n, n, ... nc

where U is the internal energy of the
system. The corresponding potentials and
extensive variables are listed in Table 1-1.
It may also be noted that the corresponding
pairs are found together in the terms of the
general Gibbs—Duhem equation:

SAT - VAP + 3 n;dy; =0 (1-115)

1.9.1 General Geometrical Rules
for All True Phase Diagram Sections

The Law of Adjoining Phase Regions ap-
plies to all true sections. As a phase boun-
dary line is crossed, one and only one
phase either appears or disappears.

If the vertical axis is a potential (7. P,
W), then horizontal invariant lines like the
eutectic line in Fig. 1-12 or the line AB in
Fig. 1-29 will be seen when the maximum
number of phases permitted by the phase
rule are at equilibrium. However, if these
are considered to be degenerate infinitely
narrow phase fields, then the Law of Ad-
joining Phase Regions still applies. This is
illustrated schematically in Fig. 1-39 where
the three-phase eutectic line has been
“opened up”. Similarly, if both axes are po-
tentials, then many phase boundaries may
be degenerate infinitely narrow regions.
For example, all phase boundaries on Figs.
I-1to 1-3, 1-36 and 1-37(b) are degenerate
two-phase regions which are schematically
shown “opened up” on Fig. 1-40.

All phase boundary lines in a true phase
diagram meet at nodes where exactly four
lines converge, as in Fig. 1-41. N phases
(aty, &5, ..., o) Where N>1 are common
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Figure 1-39. An isobaric binary T-X
phase diagram (like Fig. 1-12) with the
eutectic line “opened up” to illustrate that

— &,

Figure 1-40. A potential-potential phase diagram
(like Fig. 1-1 or Fig. 1-36) with the phase boundaries
“opened up™ to illustrate that they are degenerate 2-
phase regions.

to all four regions. Schreinemakers’ Rule
states that the extensions of the boundaries
of the N-phase region must either both lie
within the (N+1)-phase regions as in Fig.
1-41 or they must both lie within the
(N +2)-phase region. This rule is illustrated
by the extrapolations in Fig. 1-29 at points
a, b and c and in Fig. 1-30 at points b, ¢, n,
i and s. The applicability of Schreine-
makers’ Rule to systems of any number of

B this is a degenerate 3-phase region.

(o, +a, + ...

+(1N)

Figure 1-41. A node in a true phase diagram sec-
tion.

components was noted by Hillert (1985)
and proved by Pelton (1995). In the case of
degenerate phase regions, all nodes can
still be considered to involve exactly four
boundary lines if the degenerate boundar-
ies are “opened up” as in Figs. 1-39 and
1-40.

An objection might be raised that a
minimum or a maximum in a two-phase re-
gion in a binary temperature—composition
phase diagram, as in Fig. 1-10 or in the
lower panel of Fig. 1-16, represents an ex-
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ception to Schreinemakers’ Rule. How-
ever, the extremum in such a case is not ac-
tually a node where four phase boundaries
converge, but rather a point where two
boundaries touch. Such extrema in which
two phase boundaries touch with zero
slope may occur for a C-phase region in a
phase diagram of a C-component system
when one axis is a potential. For example,
in an isobaric temperature—composition
phase diagram of a four-component sys-
tem, we may observe a maximum or a min-
imum in a four-phase region separating two
three-phase regions. A similar maximum
or minimum in a (C-n)-phase region,
where n>0, may also occur, but only for
a degenerate or special composition path.
For further discussion, see Hillert (1998).

1.9.1.1 Zero Phase Fraction Lines

All phase boundaries on true phase dia-
gram sections are zero phase fraction
(ZPF) lines, a very useful concept intro-
duced by Gupta et al. (1986). There are
ZPF lines associated with each phase. On
one side of its ZPF line the phase occurs,
while on the other side it does not. For ex-
ample, in Fig. 1-30 the ZPF line for the a
phase is the line abcdef. The ZPF line for
the y phase is g hijkl. For the MC phase the
ZPF line is mnciopq. The ZPF line for
M,C, is rnbhspket, and for M,;Cg it is
udjosv. These five ZPF lines yield the en-
tire two-dimensional phase diagram. Phase
diagram sections plotted on triangular co-
ordinates as in Figs. 1-25 and 1-27 also
consist of ZPF lines.

In the case of phase diagrams with de-
generate regions, ZPF lines for two differ-
ent phases may be coincident over part
of their lengths. For example, in Fig. 1-12,
line CABD is the ZPF line of the liquid,
while CEBF and DEAG are the ZPF lines
for the o and P phases respectively. In

‘Fig. 1-1, all lines are actually two coinci-

dent ZPF lines.

The ZPF line concept is very useful in
the development of general algorithms for
the thermodynamic calculation of phase di-
agrams as discussed in Sec. 1-12.

1.9.2 Choice of Axes and Constants
of True Phase Diagrams

In a system of C components, a two-
dimensional diagram is obtained by choos-
ing two axis variables and holding (C-1)
other variables constant. However, not all
choices of variables will result in a true
phase diagram. For example on the P-V
diagram for H,O shown schematically in
Fig. 1-42, at any point in the area where the
(S+L) and (L+G) regions overlap there
are two possible equilibrium states of the
system. Similarly, the diagram of carbon
activity versus X, at constant 7 and P in
the Fe—Cr-C system in Fig. 1-43 (Hillert,
1997) exhibits a region in which there is no
unique equilibrium state.

In order to be sure that a diagram is a
true phase diagram, we must choose one
and only one variable (either ¢, or g;) from

R

5
5

S+G

i\ [

Figure 1-42. Schematic P-V diagram for H,O. This &4
is not a true phase diagram. b5
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Figure 1-43. Carbon activity versus mole fraction
of Cr at constant T and P in the Fe—Cr-C system.
This is not a true phase diagram (from Hillert, 1997).

each of the (C+2) conjugate pairs in Table
1-1. (Also, at least one of these must be an
extensive variable g;.) From among the
n(1£n<C+2) selected extensive vari-
ables, (n—1) independent ratios are then
formed. These (n—1) ratios along with the

- (C+2-n) selected potentials are the (C+1)

required variables. Two are chosen as axis
variables and the remainder are held con-
stant.

As a first example, consider a binary
system with components A—-B. The conju-
gate pairs are (7, S), (P, -V), (Ua, no) and
(Mg, ng). Let us choose one variable from
each pair as follows: T, P, n,, ng. From the
selected extensive variables, n, and ng, we
form a ratio such as ng/(ns+ng)=Xg. The
resultant phase diagram variables are T, P,
Xg. Choosing any two as axes and holding
the third constant will give a true phase di-
agram as in Fig. 1-6 or Fig. 1-8.

As a second example, consider Fig. 1-38
for the Fe-Cr-S,-0, system. We choose
one variable from each conjugate pair as
follows: T, P, us,, Ho,» Nges Nce- From the
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selected extensive variables we form the
ratio ng./(ng.+ne,). Fig. 1-38 is a plot
of us, versus po, at constant 7, P and
Nge/ (Nge+ Nc,).-

In Fig. 1-28 the selected variables are T,
P, ng;, ng, and nqy4, and ratios are formed
from the selected extensive variables as
neg/(ncg+ ng;)) and  ng,/(ncq + ng;+ ns,)
=Xs,. Fig. 1-28 is a plot of T versus
neq/(neq+ ng;) at constant P and Xg,,.

Fig. 1-42, the P-V diagram for H,O, is
not a true phase diagram because P and V
are members of the same conjugate pair.
For the diagram shown in Fig. 1-43, we can
choose one variable from each pair as fol-
lows: T, P, Uc, ng., nc,. However the verti-
cal axis is X, =ne,/(ng.+ ne+ ne). This ra-
tio is not allowed because it contains nc
which is not on the list of chosen variables.
That is, since we have chosen - to be an
axis variable, we cannot also choose nc.
Hence, Fig. 1-43 is not a true phase dia-
gram. A permissible choice for the vertical
axis would be ng./(ng.+ ne,) (see Fig.
1-33). Note that many regions of Figs. 1-42
and 1-43 do represent unique equilibrium
states. That is, the procedure given here is a
sufficient, but not necessary, condition for
constructing true phase diagrams.

To apply this procedure simply, the com-
ponents of the system should be formally
defined to correspond to the desired axis
variables or constants. For example, in Fig.
I-1 we wish to plot pso, and log po, as
axes. Hence we define the components as
Cu-S0,-0, rather than Cu-S-0.

In several of the phase diagrams in this
chapter, log p;, or RT In p; has been substi-
tuted for u; as axis variable or constant.
From Eq. (1-32), this substitution can
clearly be made if T is constant. However,
even when T is an axis of the phase dia-
gram as in Fig. 1-37(b), this substitution is
still permissible since p? is a monotonic
function of T. The substitution of Ina; for
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y; results in a progressive expansion and

displacement of the axis with increasing T
that preserves the overall geometry of the
diagram.

1.9.2.1 Tie-lines

If only potentials (7, P, y;) are held con-
stant, then all tie-lines lie in the plane of
the phase diagram section. In this case, the
compositions of the individual phases at
equilibrium can be read from the phase
diagram, and the lever rule applies as, for
example, in Figs. 1-6, 1-25, 1-33 or 1-34.
However, if a ratio of extensive variables,
such as a composition, is held constant as
in the isopleths of Figs. 1-28 to 1-30, then
in general, tie-lines do not lie in the plane.

If both axes are composition variables
(ratios of n;), and if only potentials are held
constant, then it is desirable that the tie-
lines (which lie in the plane) be straight
lines. It can be shown (Pelton and Thomp-
son, 1975) that this will only be the case if
the denominators of the two composijtion
variable ratios are the same. For example,
in the central panel of Fig. 1-32, which is in
Janecke coordinates, the composition vari-
ables, ngo/(neo+ny;) and ng/(ne,+ny;),
have the same denominator. This same dia-
gram can be plotted on triangular coordi-
nates as in the upper panel of Fig. 1-32 and
such a diagram can also be shown (Pelton
and Thompson, 1975) to give straight tie-
lines.

Similarly, in the quasiternary reciprocal
phase diagram of Fig. 1-31 the vertical and
horizontal axes are ny,/(nn,+ng) and
ne/(ng+ng). To preserve charge neutral-
ity, (nn,+ng)=(nc+ng), and so the tie-
lines are straight. Generally, in quasiter-
nary reciprocal salt phase diagrams,
straight tie-lines are obtained by basing the
composition on one equivalent of charge.
For example, in the CaCl,—NaCl-CaO-

Na,O system we would choose as axes
the equivalent cationic and anionic frac-
tions, ny,/(nn,+ 2n¢,) and ng/(ng + 2ngp),
whose denominators are equal because of
charge neutrality.

1.9.2.2 Corresponding Phase Diagrams

When only potentials are held constant
and when both axes are also potentials,
then the geometry exemplified by Figs. 1-1
to 1-3, 1-26 and 1-37(b) results. Such dia-
grams were called “type-1 phase diagrams”
by Pelton and Schmalzried (1973). If only
potentials are held constant and one axis is
a potential while the other is a composition
variable, then the geometry exemplified
by Figs. 1-8, 1-12, 1-34, 1-37(a), and the
lower panel of Fig. 1-33 results. These
were termed “type-2” diagrams. Finally, if
only potentials are held constant and both
axes are compositions, then a “type-3” dia-
gram as in the upper panels of Figs. 1-32
and 1-33 results.

If the ¢; axis of a phase diagram is re-
placed by a composition variable that var-
ies as its conjugate variable g; (ex: gq;/q;,
q:/(q;+q;)), then the new diagram and the
original diagram are said to form a pair of
corresponding phase diagrams. For in-
stance, Figs. 1-37(a) and 1-37(b) are cor-

-responding type-1 and type-2 phase dia-

grams, while Fig. 1-33 shows a corre-
sponding pair of type-2 and type-3 dia-
grams. It is useful to draw corresponding
diagrams beside each other as in Figs. 1-37
or 1-33 because the information contained
in the two diagrams is complementary.

1.9.2.3 Theoretical Considerations

A complete rigorous proof that the pro-
cedure described in this section will always
generate a true phase diagram is beyond
the scope of this chapter. As an outline of
the proof, we start with the generalized
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stability criterion: (1-116)

(a¢l /aq1)¢zv D30 e QN+ GNe1s GN+2s -+ GC+2 20

This equation states that a potential ¢; al-
ways increases as its conjugate variable g;
increases when either ¢; or g; from every
other conjugate pair is held constant. For
instance, u; of a component always in-
creases as that component is added to a
systerﬁ (that is, as n; is increased) at con-
stant 7 and P, when either the number of
moles or the chemical potential of every
other component is held constant. In a bi-
nary system, for example, this means that
the equilibrium Gibbs energy envelope is
always convex, as shown in Fig. 1-6. If the
envelope were concave, then the system
would be unstable and would separate into
two phases, as shown in Fig. 1-11.
Consider first a phase diagram with axes
¢, and ¢, with @5, @,, ..., @c., and gc.»
constant. Such a diagram is always a true
phase diagram. If the potential ¢, is now re-
placed by ¢q,, the diagram still remains a

true phase diagram because of Eq. (1-116).-

The sequence of equilibrium states that oc-
curs as ¢q, is increased will be the same as
that which occurs as ¢, is increased when
all the other variables (¢, or g;) are held
constant.

A true phase diagram is therefore ob-
tained if the axis variables and constants
are chosen from the variables ¢,, ¢, ...,
Ovs Anats Ane2s - Geer With gcyn held
constant. The extensive variables can be
normalized as (g,/q¢.») or by any other in-
dependent and unique set of ratios.

It should be noted that at least one exten-
sive variable, g, ., is considered to be con-
stant across the entire diagram. In practice,
this means that one of the extensive vari-
ables must be either positive or negative
everywhere on the diagram. For certain
formal choices of components, extensive
composition variables can have negative
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values. For example, in the predominance
diagram of Fig. 1-1, if the components are
chosen as Cu-S0O,-0,, then the com-
pound Cu,S is written as Cu,(SO,)O_,;
that is ng,=-1. This is no problem in Fig.
1-1, since o, rather than ng, was chosen
from the conjugate pair and is plotted as an
axis variable. However, suppose we wish
to plot a diagram of uc, versus 5o, at con-
stant 7 and P in this system. In this case,
the chosen variables would be 7, P, pso,,
neo,- Since one of the selected extensive
variables must always be positive, and
since nq, is the only selected extensive var-
iable, it is necessary that ng, be positive
everywhere. For instance, a phase field for
Cu,S is not permitted. In other words, only
compositions in the Cu-SO,-0, subsys-
tem are permitted. A different phase dia-
gram would result if we plotted pc, versus
Mso, in the Cu-SO,-S, subsystem with ng_
always positive. Cu,O would then not ap--

pear, for example. That is, at a given ¢,

and pso, we could have a low pg, and a
high pg, in equilibrium with, for example,
Cu,S, or we could have a high po, and a
low pg, in equilibrium with, for éxample,
Cu,0. Hence the diagram will not be a true
diagram unless compositions are limited to
the Cu-S0O,-0, or Cu-SO,-S, triangles.
As a second example, if pgio and pcq are
chosen as variables in the SiO-CO-0O
system, then the diagram must be limited
to ng>0 (SiO-CO-0O subsystem) or to
no<0 (S10-CO-Si-C subsystem).

1.9.2.4 Other Sets of Conjugate Pairs

The set of conjugate pairs in Table 1-1 is
only one of many such sets. For example, if
we make the substitution (H=TS+2 n; u;)
in Eq. (1-115), then we obtain another form
of the general Gibbs—Duhem equation:

—~HA(U/T)=(VIT)dP + 2 n;d(i/T) =0
(1-117)
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This defines another set of pairs of conju-
gate potentials and extensive variables:
(I/T, -H), (P,-VIT), (u;/T, n;). Choosing
one and only one variable from each pair,
we can construct a true phase diagram by
the procedure described above. However,
these diagrams may be of limited practical
utility. This is discussed by Hillert (1997).

1.10 Solution Models

In Sec. 1.4.7, the thermodynamic expres-
sions for simple ideal substitutional solu-
tions were derived and in Secs. 1.5.7 and
1.6.2, the regular solution model and poly-
nomial extensions thereof were discussed.
For other types of solutions such as ionic
mixtures, interstitial solutions, polymeric
solutions, etc., the most convenient defini-
tion of ideality may be different. In the
present section we examine some of these
solutions. We also discuss structural order-
ing and its effect on the phase diagram. For
further discussion, see Pelton (1997).

1.10.1 Sublattice Models

The sublattice concept has proved to be
very useful in thermodynamic modeling.
Sublattice models, which were first devel-
oped extensively for molten salt solutions,
find application in ceramic, interstitial so-
lutions, intermetallic solutions, etc.

1.10.1.1 All Sublattices Except One
Occupied by Only One Species

In the simplest limiting case, only one
sublattice is occupied by more than one
species. For example, liquid and solid
MgO-CaO solutions can be modeled by
assuming an anionic sublattice occupied
only by O ions, while Mg>* and Ca**
ions mix on a cationic sublattice. In this

case the model is formally the same as that
of a simple substitutional solution, because
the site fractions Xy, and Xc, of Mg?* and
Ca>* cations on the cationic sublattice are
numerically equal to the overall component
mole fractions Xy;,0 and Xc,o. Solid and lig-
uid MgO-CaO solutions have been shown
(Wu et al., 1993) to be well represented by
simple polynomial equations for g&.

As a second example, the intermetallic e-
FeSb phase exhibits non-stoichiometry to-
ward excess Fe. This phase was modeled
(Pei et al., 1995) as a solution of Fe and
stoichiometric FeSb by assuming two sub-
lattices: an “Fe sublattice” occupied only
by Fe atoms and an “Sb sublattice” occu-
pied by both Fe and Sb atoms such that, per
gram atom,

Ag,, =0.5RT (yg Inyg + ysp Inysp)

+ O VEe Ysb

where yg,= (I - yg.) =2 X, is the site frac-
tion of Sb atoms on the “Sb sites” and a is
an empirical polynomial in ygy,.

1.10.1.2 Ionic Solutions

Let us take as an example a solution,
solid or liquid, of NaF, KF, NaCl and KCI
as introduced in Sec. 1.7.8. If the cations
are assumed to mix randomly on a cationic
sublattice while the anions mix randomly
on an anionic sublattice, then the molar
Gibbs energy of the solution can be mod-
eled by the following equation which con-
tains an ideal mixing term for each sublat-
tice:
9= Xna X1 GRuct + X Xr gkr

+ Xna Xr 9Rur + Xk Xci Giar)
+ RT (Xno In Xy + X InXy)
+RT (XgInXg + X InXg) + g&

(1-119)

where the factor (Xy, Xq,), for example, is
the probability, in a random mixture, of

(1-118) |
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finding a Na ion and a Cl ion as nearest
neighbors. Differentiation of Eq. (1-119)
gives the following expression for the ac-
tivity of NaF:

RT Inay,s = —Xg Xo AGShanee  (1-120)
+ RT In(Xn, Xp) + ngiraF

where AGe*hanec s the Gibbs energy
change for the following exchange reaction
among the pure salts:

NaCl + KF = NaF + KCl; (1-121)
AGT"" = gRup + Gkcr = Ghact = Ikr

In this example, AG®*""e¢< (. The salts
NaF and KCI are thus said to form the
stable pair. The first term on the right of
Eq. (1-120) is positive. The members of the
stable pair thus exhibit positive deviations,
and in Fig. 1-31 this is reflected by the flat
liquidus surfaces with widely spaced iso-
therms for NaF and KCI. That is, the mix-
ing of pure NaF and KCl is unfavorable be-
cause it involves the formation of K*—F~
and Na*—CI~ nearest-neighbor pairs at the

expense of the energetically preferable-

Na*—F~ and K*-Cl- pairs. If AG®*chanee jg
sufficiently large, a miscibility gap will be
formed, centered close to the stable diago-
nal joining the stable pair.

Blander (1964) proposed the following
expression for g€ in Eq. (1-119):

g% = Xna 9Racionar + Xk GRkaike  (1-122)

+ Xg ORar-kr + Xci IRaci-kC
— X X X¢ Xc1 (AG*" %)Y/ ZRT

where, for example, g&.ci_nar 1S the excess
Gibbs energy in the NaCl-NaF binary
system at the same cationic fraction Xy, as
in the ternary, and where Z is the first coor-
dination number. That is, ¢g& contains a
contribution from each binary system. The
final term in Eq. (1-122) is a first-order
correction for non-random mixing which
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accounts for the fact that the number
of Na*—F~ and K*-CI~ nearest-neighbor
pairs will be higher than the number of
such pairs in a random mixture. This term
is usually not negligible.

The phase diagram in Fig. 1-31(a) was
calculated by means of Egs. (1-119) and
(1-122) solely. from optimized excess
Gibbs energies of the binary systems and
from compiled data for the pure salts.
Agreement with the measured diagram is
very good.

Egs. (1-119) and (1-122) can easily be
modified for solutions in which the num-
bers of sites on the two sublattices are not
equal, as in MgCl,-MgF,-CaCl,-CaF,
solutions. Also, in liquid salt solutions the
ratio of the number of lattice sites on one
sublattice to that on the other sublattice
can vary with concentration, as in molten
NaCl-MgCl,—-NaF-MgF, solutions. In
this case, it has been proposed (Saboungi
and Blander, 1975) that the molar ionic
fractions in all but the random mixing
terms of these equations should be replaced
by equivalent ionic fractions. Finally, the
equations can be extended to multicompo-
nent solutions. These extensions are all dis-
cussed by Pelton (1988b).

For solutions such as liquid NaF-KF-
NaCl-KCl for which AG®*"*"¢* s not too
large, these equations are often sufficient.
For solutions with larger exchange Gibbs
energies, however, in which liquid immis-
cibility appears, these equations are gener-
ally unsatisfactory. It was recognized by
Saboungi and Blander (1974) that this is
due to the effect of non-randomness upon
the second nearest-neighbor cation—cation
and anion—anion interactions. To take
account of this, Blander proposed addi-
tional terms in Eq.(1-122). Dessureault and
Pelton (1991) modified Eqs. (1-119) and
(1-122) to account more rigorously for
non-random mixing effects, with good re-
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sults for several molten salt systems with
miscibility gaps. See also section 1.10.4.

1.10.1.3 Interstitial Solutions

As an example of the application of the
sublattice model to interstitial solutions we
will take the f.c.c. phase of the Fe-V-C
system. Lee and Lee (1991) have modeled
this solution using two sublattices: a metal-
lic sublattice containing Fe and V atoms,
and an interstitial lattice containing C
atoms and vacancies, va. The numbers of
sites on each sublattice are equal. An equa-
tion identical to Eq. (1-119) can be written
for the molar Gibbs energy:

9= (Xre Xva GReva + Xpe X GRec
+ Xy Xva Gva + Xv Xc 9%¢)
+ RT (Xg, InXg, + Xy InXy)
+RT (XcInXc+X,,InX,,) + gt

(1-123)

where Xg.=(1-Xy) and Xc=(1-X,,) are
the site fractions on the two sublattices and
“Feva” and “Vva” are simply pure Fe and
V, i.e., ghva= g%. An expression for g€ as
in Eq. (1-122), although without the final
non-random mixing term, was used by Lee
and Lee with optimized binary gt parame-
ters. Their calculated Fe—V-C phase dia-
gram is in good agreement with experimen-
tal data. The sublattice model has been
similarly applied to many interstitial solu-
tions by several authors.

1.10.1.4 Ceramic Solutions

Many ceramic solutions contain two or
more cationic sublattices. As an example,
consider a solution of Ti,O; in FeTiO; (il-
menite) under reducing conditions. There
are two cationic sublattices, the A and B
sublattices. In FeTiO,, Fe’* ions and Ti**
ions occupy the A and B sublattices, re-
spectively. With additions of Ti,O;, Ti’*

ions occupy both sublattices. The solu-
tion can be represented as (Fei* Ti}*),
(Tij, Ti2*)s where x is the overall mole
fraction of Ti,O5. The ions are assumed to
mix randomly on each sublattice so that:

Asi9a = _2R[(1-x) In(1-x)+xInx]

(1-124)

Deviations from ideal mixing are as-

sumed to occur due to interlattice cation—
cation iateractions according to

(Fex* — Tig*) + (Tix* - Tig*)
= (Fei* - Tig*) + (Tiz* - Tig")
AG=a+bT (1-125)

where a and b are the adjustable parameters
of the model. The probability that an A—B
pair is an (FeZ*-Ti3*) or a (Tiy* —Tig")
pair is equal to x(l-x). Hence, g
x(1=x)(a+bT).

Similar models can be proposed for
other ceramic solutions such as spinels,
pseudobrookites, etc. These models can
rapidly become very complex mathemati-
cally as the number of possible species on
the lattices increases. For instance, in
Fe;0,-Co,0, spinel solutions, Fe?*, Fe**,
Co** and Co** ions are all distributed over
both the tetrahedral and octahedral sublat-
tices. Four independent equilibrium con-
stants are required (Pelton et al., 1979) to
describe the cation distribution even for the
ideal mixing approximation. This com-
plexity has been rendered much more tract-
able by the “compound energy model”
(Sundman and Agren, 1981; Hillert et al.,
1988). This is not actually a model, but is
rather a mathematical formalism permit-
ting the formulation of various models in
terms of the Gibbs energies, ¢g° , of “pseu-
docomponents” so that equations similar to
Eq. (1-119) can be used directly.
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1.10.1.5 The Compound Energy
Formalism

As an example, the model for the
FeTiO;-Ti,O; solution in Sec.1.10.1.4
will be reformulated. By taking all com-
binations of an A-sublattice species and
a B-sublattice species, we define two
real components, (Fe?*),(Ti**)s0; and
(Ti?*)A(Ti3*)50;, as well as two “pseudo-
components”,  (Fe**),(Ti**);0; and
(Ti**)A(Ti**)g03.

Pseudocomponents, as in the present ex-
ample, may be charged. Similarly to Eq.
(1-119) the molar Gibbs energy can be
written

9= (1-2)" g¥erio, + ** g0, (1-126)
+ x (1-x) gerio; + x (1=x) gT;,0; — T A5

Note that charge neutrality is maintained in
Eq. (1-126). The Gibbs energies of the two
pseudocomponents are calculated from the
equation

AG=a+bT
= grerio; + 9.0} — GFeio, — G0, (1-127)

where AG is the Gibbs energy change of
Eq. (1-125) and is a parameter of the
model. One of gR.rio; OF g% ,0; may be as-
signed an arbitrary value. The other is then
given by Eq. (1-127). By substitution of
Eq. (1-127) into Eq. (1-126) it may be
shown that this formulation is identical to
the regular solution formulation given in
Sec. 1.10.1.4. Note that excess terms, gE,
could be added to Eq. (1-126), thereby giv-
ing more flexibility to the model. In the
present example, however, this was not re-
quired.

The compound energy formalism is de-
scribed and developed by Barry et al.
(1992), who give many more examples. An
advantage of formulating the sublattice
model in terms of the compound energy
formalism is that it is easily extended to
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multicomponent solutions. It also provides
a conceptual framework for treating many
different phases with different structures.
This facilitates the development of com-
puter software and databases because many
different types of solutions can be treated
as cases of one general formalism.

1.10.1.6 Non-Stoichiometric Compounds

Non-stoichiometric compounds are gen-
erally treated by a sublattice model. Con-
sider such a compound A,_sB,,s. The sub-
lattices normally occupied by A and B at-
oms will be called, respectively, the A-sub-
lattice and the B-sublattice. Deviations
from stoichiometry (where 6=0) can occur
by the formation of defects such as B atoms
on A sites, vacant sites, atoms occupying
interstitial sites, etc. Generally, one type of
defect will predominate for solutions with
excess A and another typé will predomi-
nate for solutions with excess B. These are
called the majority defects.

Consider first a solution in which the
majority defects are A atoms on B sites and
B atoms on A sites: (A,_ B,)s(A,B_,)g. It
follows that 6=(x-y). In the compound
energy formalism we can write, for the mo-
lar Gibbs energy,

g=-x)(1-y) gag + (1=x) ygan
+x(1-y) gpp + Xy g3a
+RT [xInx+ (1=x) In(1-x)
+ylny+ (I1-y) In(1-y)]

(1-128)

where g%5 is the molar Gibbs energy of
(hypothetical) defect-free stoichiometric
AB. Now the defect concentrations at equi-
librium are those that minimize g. There-
fore, setting (dg/dx)=(dg/dy)=0 at con-

stant &, we obtain (1-129)
Xy Agi+Ag,

—————=eXp| —(l=x~y) ———=

(1-x) (1-y) p( TRy
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where Ag,=(gaa-gas) and Ag,=
(g%5—9%g) are the Gibbs energies of for-
mation of the majority defects and where
g3, has been set equal to g%5. At a given
composition é=(x-y), and for given val-
ues of the parameters Ag, and Ag,, Eq.
(1-129) can be solved to give x and Yy,
which can then be substituted into Eq.
(1-128) to give g. The more positive are
Ag, and Ag,, the more steeply g rises on ei-
ther side of its minimum, and the narrower
is the range of stoichiometry of the com-
pound.

- Consider another model in which the
majority defects are vacancies on the B-
sublattice and B atoms on interstitial sites.
We now have three sublattices with occu-
pancies (A)o(B,_,va,)p(B,va,_,); where
“I” indicates the interstitial sublattice. The
A-sublattice is occupied exclusively by A
atoms. A vacancy is indicated by va. Stoi-
chiometric defect-free AB is represented
by (A)(B)(va) and (x-y)=26/(1-0).
Per mole of A,_sB,, s, the Gibbs energy is:

g=(1-68) {[(1-x) (1-y) gRsva
+ (l_x)yggvnvu + X(l—)’) gRBB + xygg.qu
+RT [xInx + (1-x) In(1-x)

+ylny+ (1-y) In(1-y)]} (1-130)

Eq. (1-130) is identical to Eq. (1-128) apart
from the factor (1- ), and gives rise to an
equilibrium constant as in Eq. (1-129).
Other choices of majority defects result in
very similar expressions. The model can
easily be modified to account for other
stoichiometries A,,B,, for different num-
bers of available interstitial sites, etc., and
its extension to multicomponent solutions
is straightforward.

1.10.2 Polymer Solutions

For solutions of polymers in monomeric
solvents, very large deviations from simple
Raoultian ideal behaviour (i.e. from Eq. (1-

Y

40)) are observed. This large discrepancy
can be attributed to the fact that the indi-
vidual segments of the polymer molecule -3
have considerable freedom of movement. %
Flory (1941, 1942) and Huggins (1942) 38

proposed a model in which the polymer
segments are distributed on the solvent
sites. A large polymer molecule can thus be
oriented (i.e. bent) in many ways, thereby
greatly increasing the entropy. To a first ap-
proximation the model gives an ideal mix-
ing term with mole fractions replaced by
volume fractions in Eq. (1-45):

Agi%al = RT (XA In

+XBln

vt d T

Lewis and Randall (1961) have com-
pared the Flory—Huggins equation with
experimental data in several solutions.
In general, the measured activities lie be-
tween those predicted by Eq. (1-131) and
by the Raoultian ideal equation, Eq. (1-45).
A recent review of the thermodynamics
of polymer solutions is given by Trusler

(1999).

1.10.3 Calculation of Limiting Slopes
of Phase Boundaries

From the measured Ilimiting slope
(dT/dX)yx,-, of the liquidus at the melting
point of a pure component A, much infor-
mation about the extent of solid solubility,
as well as the structure of the liquid, can be
inferred. Similar information can be ob-
tained from the limiting slopes of phase
boundaries at solid-state transformation
points of pure components.

Eq. (1-65) relates the activities along the
liquidus and the solidus to the Gibbs en-
ergy of fusion:

RTInd\ - RT Inal =-Ag,,  (1-132)
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In the limit X,, — 1, the liquidus and solidus
converge at the melting point T ,,. Let us
assume that, in the limit, Raoult’s Law, Eq.
(1-40), holds for both phases. That is,
a,=X4 and aj=X3. Furthermore, from

Eq. (1-60),
Agay = Bhgay (1=T/Tga))

Finally, we note that

lim (InX,) = lim (In(1-Xp)) = - X3

Xa—1 Xa—1

Substituting these various limiting values
into Eq. (1-132) yields:

lim (dX,/dT - dX3/dT)

Xa~1

= Ah(f)(A)/R (ATf(A))2

If the limiting slope of the liquidus,
lim (dX4/dT), is known, then the limiting
Xa—1
slope of the solidus can be calculated, or
vice versa, as long as the enthalpy of fusion
is known.

For the LiF-NaF system in Fig. 1-18,

(1-133)

the broken line is the limiting liquidus -

slope at X ;=1 calculated from Eq. (I-
133) under the assumption that there is no
solid solubility (that is, that dX3/d7T=0).
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Agreement with the measured limiting lig-
uidus slope is very good, thereby showing
that the solid solubility of NaF in LiF is not
large. .
In the general case, the solute B may dis-
solve to form more than one “particle”. For
example, in dilute solutions of Na,SO, in
MgSO,, each mole of Na,SO, yields two
moles of Na* ions which mix randomly
with the Mg?* ions on the cationic sublat-
tice. Hence, the real mole fraction of sol-
vent, X,, is (1-vXg) where vis the number
of moles of foreign “particles” contributed
by one mole of solute. In the present exam-
ple, v=2.
Eq. (1-133) now becomes:

lim (dX./dT — dX3/dT)

XA“I

= AR o)/ VR (Tg(ay)? (1-134)

The broken line in Fig. 1-44 is the limiting
liquidus slope calculated from Eq. (1-134)
under the assumption of negligible solid
solubility.

It can be shown (Blander, 1964) that Eq.
(1-134) applies very generally with the fac-
tor v as defined above. For example, add-
ing LiF to NaF introduces only one foreign

1200 - R
1100 .
L1QUID
[$)
< 1000 . Figure 1-44. Phase dia-
Py gram of the MgSO,-
S 900 - Na.SO; system calculated
L ad . . . . -
o for an ideal ionic liquid so-
= . .
8 sooF 575 i lution. 'Brok.en'h.ne is lhf’,
E theoretical limiting liquidus
L 700 slope calculated for negli-
665° 7 gible solid solubility taking
into account the ionic nature
1 1 1 1 ! | 1 1 - .
0.2 0.4 0.6 o8 of.lhe liquid. Agree@enl
MgSO, Na,SO4  with the measured diagram

XNa, S0,

(Ginsberg, 1909) is good.
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particle Li*. The F~ ion is not “foreign”.
Hence, v=1. For additions of Na,SO, to
MgSO,, v=2 since two moles of Na* ions
are supplied per mole of Na,SO,. For
CaCl, dissolved in water, v=3, and so on.
For C dissolving interstitially in solid Fe,
v=1. The fact that the solution is intersti-
tial has no influence on the validity of Eq.
(1-134). Eq. (1-134) is thus very general
and very useful. It is independent of the so-
lution model and of the excess properties,
which become zero at infinite dilution.

An equation identical to Eq. (1-134) but
with the enthalpy of transition, Ah?, re-
placing the enthalpy of fusion, relates the
limiting phase boundary slopes at a trans-
formation temperature of a component.

1.10.4 Short-Range Ordering

The basic premise of the regular solution
model (Sec. 1.5.7) is that random mixing
occurs even when g€ is not zero. To ac-
count for non-random mixing, the regular
solution model has been extended though
the quasichemical model for short-range
ordering developed by Guggenheim (1935)
and Fowler and Guggenheim (1939) and
modified by Pelton and Blander (1984,
1986) and Blander and Pelton (1987). The
model is outlined below. For a more com-
plete development, see the last two papers
cited above, Degterov and Pelton (1996),
Pelton et al. (2000) and Pelton and Char-
trand (2000).

For a binary system, consider the for-
mation of two nearest-neighbor 1-2 pairs
from a 1-1 and a 2-2 pair:

(1-1) + (2=2) = 2(1=2) (1-135)

Let the molar Gibbs energy change for
this reaction be (w—-nT). Let the nearest-
neighbor coordination numbers of 1 and 2
atoms or molecules be Z, and Z,. The total
number of bonds emanating from an / atom

or molecule is Z;X;. Hence, mass balance
equations can be written as

Z\ X, =2n,; +nyp,

ZoXy= 20y + 1y (1-136)

where n;; is the number of i—j bonds in one
mole of solution. “Coordination equivalent
fractions” may be defined as:

Y, =1-Y,=Z,X,/(Z,X,+2,X,) (1-137)
where the total number of pairs in one mole
of solution is (Z,X,+Z,X,)/2. Letting X,;

be the fraction of i—j pairs in solution, Eq.
(1-136) may be written as:

2Yl =2X” +X|2

2Y2=2X22+X|2 (1‘138)

The molar enthalpy and excess entropy of
mixing are assumed to be directly related
to the number of 1-2 pairs:

A/’lm _ TsE(non-config)

= (Z,X, + Z,X) X2 (=1 T)4  (1-139)

An approximate expression for the config-
urational entropy of mixing is given by a
one-dimensional Ising model:

AseMig= — R(X,In X, + X, InX,)
- @K T )

X [X” ln(X| |/Y|2)+ X22 ln(Xz-_)/Yzz)
+ X2 In(X2/2Y 1)) (1-140)

The equilibrium distribution is calculated
by minimizing Ag, with respect to X, at
constant composition. This results in a
“quasichemical” equilibrium constant for
the reaction, Eq. (1-135):

X2 =4exp(_(w_nT)]

(1-141)
X1 X RT

When (w-1T)=0, the solution of Egs. (1-
138) and (1-141) gives a random distribu-
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tion with X;;=Y?, X,,=Y? and 2Y, Y,, and
Eq. (1-140) reduces to the ideal Raoultian
entropy of mixing. When (w-7nT) be-
comes very negative, 1-2 pairs predomi-
nate. A plot of Ah,, or sE(men-config) yergyg
composition then becomes V-shaped and a
plot of AsSf2 becomes m-shaped, with
minima at Y, =Y,=1/2, which is the com-
position of maximum ordering, as illus-
trated in Fig. 1-45. When (w-nT) is quite
negative, the plot of g& also has a negative
V-shape.

For Fe—S liquid solutions, the activity
coefficients of sulfur as measured by sev-
eral authors are plotted in Fig. 1-46. It is
clear in this case that the model should be
applied with Zg.=Zg. The curves shown in
Fig. 1-46 were calculated from the quasi-
chemical model with (w—nT) expanded as

Cand
h'
[}
(<]
E O(ideal)
N 5ol -2l Ja)
- -42
g 25 -
@ -84
< ) 1 1 1 1 i 1 L 1 1
A 0.2 0.4 0.6 08 B
Xg

Figure 1-45. Molar enthalpy and entropy of mixing
curves for a system AB calculated at 1000°C with
Z,=Z,=2 from the quasichemical model for short-
range ordering with (w-nT7T)=0, -21, —-42, and
-84 kJ.
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the following optimized (Kongoli et al.,
1998) pol ial:
) polynomia (1-142)

(w-nT)=-(70017+97T)-740427Y5
- (798 = 15T) Y$ +40791Y¢ J/mol™!

Far fewer parameters are required than if a
polynomial expansion of g¢& (as in Sec.
1.6.2) were used. Furthermore, and more
importantly, the model permits successful
predictions of the properties of multicom-
ponent systems as illustrated in Fig. 1-47,
where measured sulfur activities in quater-
nary liquid Fe-Ni-Cu-S solutions are
compared with activities calculated (Kon-
goli et al., 1998) solely from the optimized
model parameters for the Fe-S, Ni-S
and Cu-S binary systems. A pair exchange
reaction like Eq. (1-135) was assumed
for each M-S pair (M=Fe, Ni, Cu), and
an optimized polynomial expansion of
(wpms—Mms T) as a function of Y, similar to
Eq. (I1-142), was obtained for each binary.
Three equilibrium constant equations like
Eq. (1-141) were written, and it was as-

“sumed that (wys— 1ms 7)) in the quaternary

system was constant at constant Ys. No ad-
justable ternary or quaternary parameters
were required to obtain the agreement
shown in Fig. (1-47), although the model
permits the inclusion of such terms if re-
quired.

Silicate slags are known to exhibit such
short-range ordering. In the CaO-SiO,
system, Ah,, has a strong negative V-shape,
as in Fig. 1-45, but with the minimum at
Xsio,= 1/3 which is the composition corre-
sponding to Ca,Si0,. That is, the ordering
is associated with the formation of ortho-
silicate anions SiO;™. In the phase diagram,
Fig. 1-14, the CaO-liquidus can be seen to
descend sharply near the composition
Xsio0,= 1/3. The quasichemical model has
been extended by Pelton and Blander
(1984) to treat silicate slags. The diagram
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Figure 1-46. Activity coefficient of sulfur in liquid Fe—S solutions calculated from optimized quasnchemlca]
model parameters and comparison with experimental data (Kongoli et al., 1998).
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Figure 1-47. Equilibrium partial pressure of sulfur at 1200°C over Fe-Ni—Cu-S mattes predicted by the
quasichemical model from binary data (Kongoli et al., 1998) and comparison with experimental data
(Bale and Toguri, 1996).




shown in Fig. 1-14 is thermodynamically
calculated (Wu, 1990).

Many liquid alloy solutions exhibit
short-range ordering. The ordering is
strongest when one component is relatively
electropositive (on the left side of the peri-
odic table) and the other is relatively elec-
tronegative. Liquid alloys such as Alk—Au
(Hensel,, 1979), Alk—-Pb (Saboungi et al.,
- 1985) and Alk-Bi (Petric et al., 1988a),
where Alk=(Na, K, Rb, Cs), exhibit curves
of Ah,, and As, similar to those in Fig.
1-45 with one composition of maximum
ordering. For example, in the Au-Cs sys-
tem the minima occur near the composition
AuCs; in Mg-Bi alloys the minima occur
near the Mg;Bi, composition, while in
K-Pb alloys the maximum ordering is at
K,Pb.

It has also been observed that certain lig-
uid alloys exhibit more than one composi-
tion of ordering. For example, in K-Te al-
loys, the “excess stability function”, which
is the second derivative of Ag,,, exhibits
peaks near the compositions KTeg, KTe
and K,Te (Petric etal., 1988b) thereby
providing evidence of ordering centred on
these compositions. The liquid might be con-
sidered as consisting of a series of mutually
soluble “liquid intermetallic compounds”.

When (w-nT) is expanded as a polyno-
mial as in Eq. (1-142), the quasichemical
model and the polynomial model of Sec.
1.6.2 become identical as (w-nT) ap-
proaches zero. That is, the polynomial
model is a limiting case of the quasichemi-
cal model when the assumption of ideal
configurational entropy is made.

When (w-nT) is positive, (I-1) and
(2-2) pairs predominate. The quasichemi-
cal model can thus also treat such cluster-
ing, which accompanies positive devia-
tions from ideality.

Recent work (Pelton et al., 2000; Pelton
and Chartrand, 2000) has rendered the
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model more flexible by permitting the Z; to
vary with composition and by expanding
the (w—-nT) as polynomials in the bond
fractions X;; rather than the overall compo-
nent fractions. A merger of the quasichem-
ical and sublattice models has also been
completed (Chartrand and Pelton, 2000),
permitting nearest-neighbor and second-
nearest neighbor short-range-ordering to
be treated simultaneously in molten salt so-
lutions.

1.10.5 Long-Range Ordering

In solid solutions, long-range ordering
can occur as well as short-range ordering.
In Fig. I-15 for the Ag-Mg system, a
transformation from an o’ to an a phase is
shown occurring at approximately 665 K
at the composition Ag;Mg. This is an
order—disorder transformation. Below the
transformation temperature, long-range or-
dering (superlattice formation) is observed.
An order parameter may be defined which
decreases to zero at the transformation
temperature. This type of phase transfor-
mation is not a first-order transformation
like those considered so far in this chapter.
Unlike first-order transformations which
involve a change of state (solid, liquid, gas)
and also involve diffusion over distances
large compared with atomic dimensions,
order—disorder transformations, at least at
the stoichiometric composition (Ag;Mg in
this example), occur by atomic rearrange-
ment over distances of the order of atomic
dimensions. The slope of the curve of
Gibbs energy versus T is not discontinuous
at the transformation temperature. Order-
ing and order—disorder transformations are
discussed in Chapter 8 (Inden, 2001).

A type of order—disorder transformation
of importance in ferrous metallurgy is the
magnetic transformation. Below its Curie
temperature of 769 °C, Fe is ferromagnetic.
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Above this temperature it is not. The trans-
formation involves a change in ordering of
the atomic spins and is not first order. Ad-
ditions of alloying elements will change
the temperature of transformation. Mag-
netic transformations are treated in Chapter
4 (Binder, 2001). See also Miodownik
(1982) and Inden (1982).

1.11 Calculation of Ternary Phase
Diagrams From Binary Data

- Among 70 metallic elements 70!/3!67!
= 54740 ternary systems and 916 895 qua-
ternary systems are formed. In view of the
amount of work involved in measuring
even one isothermal section of a relatively
simple ternary phase diagram, it is very im-
portant to have a means of estimating ter-
nary and higher-order phase diagrams.

The most fruitful approach to such pre-
dictions is via thermodynamic methods. In
recent years, great advances have been
made in this area by the international Cal-
phad group. Many key papers have been
published in the Calphad Journal.

As a first step in the thermodynamic ap-
proach, we critically analyze the experi-
mental phase diagrams and thermodynamic
data for the three binary subsystems of the
ternary system in order to obtain a set of
mathematical expressions for the Gibbs
energies of the binary phases, as was dis-
cussed in Sec. 1.6. Next, interpolation pro-
cedures based on solution models are used
to estimate the Gibbs energies of the ter-
nary phases from the Gibbs energies of the
binary phases. Finally, the ternary phase di-
agram is calculated by computer from
these estimated ternary Gibbs energies by
means of common tangent plane or total
Gibbs energy minimization algorithms.

As an example of such an estimation of
a ternary phase diagram, the experimental

a)

Figure 1-48. Projection of the liquidus surface of
the KCl-MgCl,-CaCl, system. 23
a) Calculated from optimized binary thermodynamic

parameters (Lin et al., 1979). ' o
b) As reported by Ivanov (1953).

(Ivanov, 1953) and estimated (Lin et al., ¥
1979) liquidus projections of the KCl- 3
MgCl,-CaCl, system are shown in Fig. %
1-48. The estimated phase diagram was -3
calculated from the thermodynamic prop-
erties of the three binary subsystems with &3
the Gibbs energy of the ternary liquid ap- ;
proximated via the equation suggested by .
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Kohler (1960):

gt=0 ~Xa) gorc + (1 = Xg)* g&/a

+(1 —XC)ng/B (1-143)

In this equation, gF is the excess molar
Gibbs energy at a composition point in the
ternary liquid phase and g§,c, g&, and g%,5
are the excess Gibbs energies in the three
binary systems at the same ratios Xg/Xc,
Xc/Xa and X, /Xp as at the ternary point. If
the ternary liquid phase as well as the three
binary liquid phases are all regular solu-
tions, then Eq. (1-143) is exact. In the
general case, a physical interpretation of
Eq. (1-143) is that the contribution to g&
from, say, pair interactions between A and
B particles is constant at a constant ratio
X/Xg apart from the dilutive effect of the
C particles, which is accounted for by the
term (1-Xc)? taken from regular solution
theory. -

Ternary phase diagrams estimated in this
way are quite acceptable for many pur-
poses. The agreement between the experi-

mental and calculated diagrams can be

greatly improved by the inclusion of one
or two “ternary terms” with adjustable
coefficients in the interpolation equations
for g% For example, the ternary term
aXyci Xmgct, Xcact,» Which is zero in all
three binaries, could be added to Eq. (I-
143) and the value of the parameter a
which gives the “best” fit to the measured
ternary liquidus could be determined. This,
of course, requires that ternary measure-
ments be made, but only a very few (even
one or two in this example) experimental
liquidus points will usually suffice rather
than the larger number of measurements
required for a fully experimental determi-
nation. In this way, the coupling of the
thermodynamic approach with a few well
chosen experimental measurements holds
promise of greatly reducing the experimen-

tal effort involved in determining multi-
component phase diagrams.

Reviews of various interpolation proce-
dures and computer techniques for estimat-
ing and calculating ternary and higher-or-
der phase diagrams are given by Ansara
(1979), Spencer and Barin (1979) and Pel-
ton (1997).

Other equations, similar to the Kohler
Eq. (1-143) in that they are based on exten-
sion of regular solution theory, are used to
estimate the thermodynamic properties of
ternary solutions from the properties of the
binary subsystems. For a discussion and
references, see Hillert (1980). However,
for structurally more complex solutions
involving more than one sublattice or with
significant structural ordering, other esti-
mation techniques must be used. For a re-
view, see Pelton (1997).

An example, the calculation of the
phase diagram of the NaCl-KCl-NaF-KF
system in Fig. 1-31, has already been pre-
sented in Sec. 1.10.1.2.

The quasichemical model for systems
with short-range ordering was discussed
for the case of binary systems in Sec.
1.10.4. The model has been extended to
permit the estimation of ternary and multi-
component phase diagrams (Pelton and
Blander, 1986; Blander and Pelton, 1987;
Pelton and Chartrand, 2000). Very good re-
sults have been obtained in the case of sili-
cate systems. The liquidus surface of the
Si0,-MgO-MnO system, estimated from
optimized binary data with the quasichem-
ical model for the liquid and under the
assumption of ideal mixing for the solid
MgSiO;-MnSiO; and Mg,Si0,—Mn,SiO,
solutions, is shown in Fig. 1-49. Agree-
ment with the measured phase diagram
(Glasser and Osborn, 1960) is within ex-
perimental error limits.
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SI02

. Si0,

MgSiO3- MnSiO3
solid solution

Mgo SiOgq —MnaSiOg4
solid solution

MgO - MnO
solid solution

MGO

Weight¥

Figure 1-49. Projection of liquidus surface of the Si0,—~MgO-MnO system calculated from optimized binary § !
parameters with the quasichemical model for the liquid phase. '

1.12 Minimization of Gibbs
Energy

Throughout this chapter it has been
shown that phase equilibria are calculated
by Gibbs energy minimization. Computer
software has been developed in recent
years to perform such calculations in sys-
tems of any number of components, phases
and species.

Consider a system in which several stoi-
chiometric solid or liquid compounds A, B,
C, ... could be present at equilibrium along
with a number of gaseous, liquid or solid

MNO

solution phases a, f3, ¥, .... The total Gibbs.‘ :
energy of the system may be written as:

G=(nag% +nggd+...)

+ (Mo o+ Ny g+ ...) (1-144) 3

where n,, ng, etc. are the number of moles '?
of the pure solid or liquidus; g%, g3, etc.
are the molar Gibbs energies of the pure %
solids or liquids (which are functions of T *

are the molar Gibbs energies of the solution -
phases (which are function of 7, P and :
composition). For a given set of constraints 3
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(such as fixed T, P and overall composi-
tion), the free energy minimization algo-
rithms find the set of mole numbers n,, ng,
etc., g, Ng, €tC. (some may be zero) as well
as the compositions of all solution phases
which globally minimize G. This is the
equilibrium phase assemblage. Other con-
straints such as constant volume or a fixed
chemical potential (such as constant pg,)
may be applied.

A discussion of the strategies of such al-
gorithms is beyond the scope of the present
chapter. One of the best known general
Gibbs energy minimization programs is
Solgasmix written by Eriksson (1975) and
constantly updated.

When coupled to a large thermodynamic
database, general Gibbs energy minimiza-
tion programs provide a powerful tool for
the calculation of phase equilibria. Several
such expert database systems have been
developed. They have been reviewed by
Bale and Eriksson (1990).

An example of a calculation performed

by the F* A*C*T (Facility for the Analy--

sis of Chemical Thermodynamics) expert
system, which the author has helped to de-
velop, is shown in Table 1-2. The program

Table 1-2. Calculation of equilibrium state when
1 mole Sil, is held at 1400 K in a volume of 10* 1.
Calculations performed by minimization of the total
Gibbs energy.

Sil, =
2.9254 ( 0.67156 I
+0.28415 Sil,
+0.24835E-01 I
+0.19446E-01 Sil,

+0.59083E-05 Sil
+0.23039E-07 Si
+0.15226E-10 Si,
+0.21462EE-11  Siy)
(1400.0,0.336E-01,G)
+0.11182 Si
(1400.0,0.336E-01,S1, 1.0000)
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has been asked to calculate the equilibrium
state when 1 mol of Sil, is held at 1400 K
in a volume of 10*1. The thermodynamic
properties of the possible product species
have been automatically retrieved from
the database and the total Gibbs energy
has been minimized by the Solgasmix
algorithm. At equilibrium there will be
2.9254 mol of gas of the composition
shown and 0.11182 mol of solid Si will
precipitate. The total pressure will be
0.0336 bar.

Although the calculation was performed
by minimization of the total Gibbs energy,
substitution of the results into the equilib-
rium constants of Eqgs. (1-10) to (1-12) will
show that these equilibrium constants are
satisfied.

Another example is shown in Table 1-3
(Pelton et al., 1990). Here the program has

been asked to calculate the equilibrium

Table 1-3. Calculation of equilibrium state when re-
actants shown (masses in g) are held at 1873 K at a
pressure of | atm. Calculations performed by mini-
mization of the total Gibbs energy. ’

100. Fe+0.08 O+0.4 Fe+0.4Mn+0.3Si+0.08 Ar=

0.30793 litre ( 99.943 vol% Ar
+0.24987E-01 vol% Mn
+0.24069E-01 vol% SiO
+0.82057E-02 vol% Fe
+0.79044E-07 vol% O
+0.60192E-08 vol% Si
+0.11200E-08 vol% O,
+0.35385E-15 vol% Si,)

(1873.0, 1.00 ,G)

+ 0.18501 gram ( 49.948 wt.% SiO,
+42.104 wt.% MnO
+7.9478 wt.% FeO)

(1873.0, 1.00 ,.SOLN 2)

+ 100.99 gram ( 99.400 wt.% Fe

+0.33630 wt.% Mu

+0.25426 wt.% Si
+ 0.98375E-02 wt.% O.,)
(1873.0, 1.00 ,SOLN 3)
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state when 100 g Fe, 0.08 g oxygen, 0.4 g

Fe, 0.4 g Mn, 0.3 g Si and 0.08 g Ar are
brought together at 1873 K at a total pres-
sure of 1 bar. The database contains data
for a large number of solution phases as
well as for pure compounds. These data
have been automatically retrieved and the
total Gibbs energy has been minimized. At
equilibrium there are 0.307931 of a gas
phase, 0.18501 g of a molten slag, and
100.99 g of a molten steel of the composi-
tions shown.

The Gibbs energies of the solution
phases are represented as functions of com-
position by various solution models (Sec.
1.10). As discussed in Sec. 1.11, these
models can be used to predict the thermo-
dynamic properties of N-component solu-
tions from evaluated parameters for binary
(and possibly ternary) subsystems stored in
the database. For example, in the calcula-
tion in Table 1-3, the Gibbs energy of the
molten slag phase was estimated by the
quasichemical model from optimized pa-
rameters for the binary oxide solutions.

1.12.1 Phase Diagram Calculation

Gibbs energy minimization is used to
calculate general phase diagram sections
thermodynamically using the zero phase
fraction line concept (Sec. 1.9.1.1), with
data retrieved from databases of model co-
efficients. For example, to calculate the di-
agram of Fig. 1-30, the program first scans
the four edges of the diagram to find the
ends of the ZPF lines. Each line is then fol-
lowed from beginning to end, using Gibbs
energy minimization to determine the point
at which a phase is just on the verge of be-
ing present. When ZPF lines for all phases
have been drawn, then the diagram is com-
plete. Because, as shown in Sec. 1.9, all
true phase diagram sections obey the same
geometrical rules, one algorithm suffices to

calculate all types of phase diagrams with ]
any properly chosen variables as axes or ‘3
constants. :

1.13 Bibliography

1.13.1 Phase Diagram Compilations

The classic compilation in the field of bi- =}
nary alloy phase diagrams is that of Hansen
(1958). This work was continued by Elliott
(1965) and Shunk (1969). These compila-
tions contain critical commentaries. A non-
critical compilation of binary alloy phase
diagrams is supplied in looseleaf form with
a continual up-dating service by W.G. Mof-
fatt of the General Electric Co., Schenec-
tady, N.Y. An extensive non-critical compi-
lation of binary and ternary phase diagrams
of metallic systems has been edited by
Ageev (1959-1978). An index to all com-
pilations of binary alloy phase diagrams up
to 1979 was prepared by Moffatt (1979). A
critical compilation of binary phase dia-
grams involving Fe has been published by
Kubaschewski (1982). Terrary alloy phase

~diagrams were compiled by Ageev (1959

1978).

From 1979 to the early 1990s, the Amer-
ican Society for Metals undertook a project
to evaluate critically all binary and ternary
alloy phase diagrams. All available litera-
ture on phase equilibria, crystal structures,
and often thermodynamic properties were
critically evaluated in detail by interna-
tional experts. Many evaluations have ap-
peared in the Journal of Phase Equilibria
(formerly Bulletin of Alloy Phase Dia-
grams), (ASM Int’l., Materials Park, OH),
which continues to publish phase diagram
evaluations. Condensed critical evalua-
tions of 4700 binary alloy phase diagrams
have been published in three volumes
(Massalski et al., 1990). The ternary phase
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diagrams of 7380 alloy systems have also
been published in a 10-volume compilation
(Villars et al., 1995). Both binary and ter-
nary compilations are available from ASM
on CD-ROM. Many of the evaluations
have also been published by ASM as
monographs on phase diagrams involving a
particular metal as a component.

Each year, MSI Services (http://www.
msiwp.com) publishes The Red Book,
which contains abstracts on alloy phase
diagrams from all sources, notably from
the extensive Russian literature. MSI also
provides a CD-ROM with extensive alloy
phase diagram compilations and reports.

Phase diagrams for over 9000 binary, ter-
nary and multicomponent ceramic systems
(including oxides, halides, carbonates, sul-
fates, etc.) have been compiled in the 12-
volume series, Phase Diagrams for Ceram-
ists (1964-96, Am. Ceramic Soc., Colum-
bus, OH). Earlier volumes were non-criti-
cal compilations. However, recent volumes
have included critical commentaries.

Phase diagrams of anhydrous salt sys-
tems have been compiled by Voskresen-
skaya (1970) and Robertson (1966).

An extensive bibliography of binary
and multicomponent phase diagrams of all
types of systems (metallic, ceramic, aque-
ous, organic, etc.) has been compiled by
Wisniak (1981).

1.13.2 Thermodynamic Compilations

Several extensive compilations of ther-
modynamic data of pure substances of
interest in materials science are available.
These include the JANAF Tables (Chase
et al., 1985) and the compilations of Barin
etal. (1977), Barin (1989), Robie et al.
(1978) and Mills (1974), as well as the
series of compilations of the National Insti-
tute of Standards and Technology (Wash-
ington, D.C.).
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Compilations of properties of solutions
(activities, enthalpies of mixing, etc.) are
much more difficult to find. Hultgren et al.
(1973) present the properties of a number
of binary alloy solutions. An extensive bib-
liography of solution properties of all types
of solutions was prepared by Wisniak and
Tamir (1978). '

Thermodynamic/phase diagram optimi-
zation as discussed in Sec. 1.6.1 has been
carried out for a large number of alloy, ce-
ramic and other systems. Many of these
evaluations have been published in the
international Calphad Journal, published
since 1977 by Pergamon Press. Several of
the evaluations in the Journal of Phase
Equilibria discussed above include ther-
modynamic/phase diagram optimizations,
as do a number of the evaluations in Vol. 7
of Phase Diagrams for Ceramists.

Extensive computer databases of the
thermodynamic properties of compounds
and solutions (stored as coefficients of

" model equations) are available. These in-

clude F¥* A*C*T (http://www.crct.poly-
Thermocalc  (http://www.met.
kth.se), ChemSage (http://gttserv.lth.rwth-
aachen.de), MTS-NPL (http://www.npl.
co.uk), Thermodata (http://www.grenet.fr),
HSC  (http://www.outokumpu.fi), and
MALT?2 (http://www. kagaku.com). Gibbs
energy minimization software permits the
calculation of complex equilibria from the
stored data as discussed in Sec. 1.12 as
well as the thermodynamic calculation of
phase diagram sections. A listing of these
and other available databases is maintained
at http://www.crct. polymtl.ca .

A bibliographic database known as
Thermdoc, on thermodynamic properties
and phase diagrams of systems of interest
to materials scientists, with updates, is
available through Thermodata (http:/
www.grenet.fr).
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1.13.3 General Reading

The theory, measurement and applica-
tions of phase diagrams are discussed in a
great many texts. Only a few can be listed
here. A recent text by Hillert (1998) pro-
vides a complete thermodynamic treatment
of phase equilibria as well as solution mod-
eling and thermodynamic/phase diagram
optimization.

A classical discussion of phase diagrams
in metallurgy was given by Rhines (1956).
Prince (1966) presents a detailed treatment
of the geometry of multicomponent phase
diagrams. A series of five volumes edited
by Alper (1970-1978) discusses many as-
pects of phase diagrams in materials sci-
ence. Bergeron and Risbud (1984) give an
introduction of phase diagrams, with par-
ticular attention to applications in ceramic
systems, see also Findlay (1951), Ricci
(1964) and West (1965).

In the Calphad Journal and in the Jour-
nal of Phase Equilibria are to be found
many articles on the relationships between
thermodynamics and phase diagrams.

It has been beyond the scope of the
present chapter to discuss experimental
techniques of measuring thermodynamic
properties and phase diagrams. For the
measurement of thermodynamic proper-
ties, including properties of solutions, the
reader is referred to Kubaschewski and
Alcock (1979). For techniques of measur-
ing phase diagrams, see Pelton (1996),
Raynor (1970), MacChesney and Rosen-
berg (1970), Buckley (1970) and Hume-
Rothery et al. (1952).
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