investigation of polythermal sections of the mg-Zn-Ce system

 IN the Mg-RICH REGIONM. E. Drits, E. I. Drozdova, I. G. Korol'kova, V. V. Kinzhibalo, and
A. T. Tyvanchuk

Izvestiya Akademii Nauk SSSR. Metally, No. 2, pp. 198-200, 1989

UDC 669.721'5.855

At the present time, in order to improve mechanical and technological properties of deformable Mg alloys, their alloying with rare-earth metals, for instance $C e$, is used [1]. The present work presents investigation results of polythermal sections in the Mg-rich region of the $\mathrm{Mg}-\mathrm{Zn}-\mathrm{Ce}$ system.

In the $\mathrm{Mg}-\mathrm{Zn}$ binary system, the $\mathrm{Mg}_{51} \mathrm{Zn}_{20}$ compound, i.e., the one richest in Mg , has a rhombic elementary cell with parameters $a=1.4083, b=1.4486$, and $c=1.4025 \mathrm{~nm}$ [2]. That compound takes part in the eutectic equilibrium $\operatorname{lama}^{2}+\mathrm{Mgn}_{\mathrm{n}} \mathrm{Zn}_{\mathrm{n}}$ at $343^{\circ} \mathrm{C}$ and undergoes a eutectoid decomposition, $\mathrm{Mgss}_{\mathrm{g}} \mathrm{Zn}_{s}=\alpha+\mathrm{Mg}_{\mathrm{g}} \mathrm{Zn}_{\mathrm{n}}$, at $330^{\circ} \mathrm{C}$ [3]. The $\mathrm{Mg}-\mathrm{Ce}$ phase diagram, on the Mg side, presents a eutectic-type diagram. The temperature of the eutectic transformation $1=\alpha+$ Mgice was determined to be $590^{\circ} \mathrm{C}$. The cerium concentration at the eutectic point is 20.5\% [5]. The compound $\mathrm{Mg}_{12} \mathrm{Ce}$ (I) of ThMg_{12} structural type with lattice parameters of $a=1.033 ; c=0.596[5]$; and CeMg_{12} (II) with $a=1.033$ and $c=7.75 \mathrm{~nm}$ [5], whose lattice parameter is 13 times greater than $\mathrm{Mg}_{12} \mathrm{Ce}$ (I). The compound richest in Ce in the Mg -Ce system is $M_{\text {gios }} C_{\text {e, }}$ whose structural type is ThNir, and whose parameters are $a=1.0333$ and $c=1.025$ nal [6].

The $\mathrm{Mg}-\mathrm{Zn}-\mathrm{Ce}$ system has previousiy been investigated $[1,7,8]$. It was established in [7] that there is a nonvariant equilibrium at $341-343^{\circ} \mathrm{C}$, at the composition of 50% Mg+475\% $\mathrm{z}_{\mathrm{n}}+2.5 \% \mathrm{Ce}$, without explaining its reaction or mentioning the phases taking part in it.

The authors of $[7,8]$ investigated alloys of the $\mathrm{Mg}-\mathrm{Ce}-\mathrm{Zn}$ system in the solld state. Using X-ray spectrometric analysis, the authors of [1] established that the a solid solution is at equilibrium with the Mg_{12} Ce-based solid solution (Mg . Zn) uce, the compound $\mathrm{Mg}_{15} \mathrm{Zn}_{20}$, the ternary compound Mgiznace (hexagonal lattice, $a=0.880 \mathrm{~nm}$ [8], and also the compound with a wide homogeneity region on the isoconcentration line corresponding to 0.1 at frac-
 crystaline structure, with parameters respectively changing within the homogeneity region: $a=1.010-0.960$ and $c=0.997-0.947 \mathrm{~nm}$. It is possible that, at higher temperatures, that compound gradually and continuousiy transforms into the binary Mguce compound, which exists in the $\mathrm{Mg}-\mathrm{Ce}$ system in a narrow temperature range, $611-621^{\circ} \mathrm{C}$ [5]. Thus Zn , while dissolving in that compound, stabilizes it in a wide temperature and concentration region. Taking into account the complexity of the system and the discrepancy of data reported, the authors carried out some additional investigations which helped to establish phase interactions in alloys of the $\mathrm{Mg}-\mathrm{Ce}-\mathrm{Zn}$ system.

The phase diagram was investigated, using the methods of differential thermal, X-ray spectrometric, and microstructural analyses. The following original materials were used: magnesium MG-95 ($99.5 \% \mathrm{Mg}$), cerium Tsem ($99.8 \% \mathrm{Ce}$), and zinc TsO ($99.92 \% \mathrm{Zn}$). The alloys were melted in corundum crucibles under a layer of VI-2 flux. Thermal analysis was carried out, using an NTP-64 low-frequency thermographic recorder, at specimens cooling rates of $2-5^{\circ} \mathrm{C} / \mathrm{min}$ in the crystallization temperature range. The temperature was measured with a chromel-alume l thermocouple. X-Ray spectrometric analysis used an MS-46-type X-ray microanalyzer, of "Kameka" make, and à JSM-U3 scanning electron microscope with an X-ray microspectrometer attachment. Diffractograms were recorded, using a DRON-2, 0 powder diffractomater (in $\mathrm{Fe}-\mathrm{K}_{\alpha}$ emission). Microstructure was determined on mechanically-polished cross sections, etched in a $30 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ solution in alcohol.

- 1989 by Allerton Press, Inc.

Fig. 1. Polythermal sections of the $\mathrm{Mg}-\mathrm{Zn}-\mathrm{Ce}$ system at constant Zn concentrations of 24 (a) and 34% (b). The phases had the following designations: A)(Mgo, o-o,

On the basis of the results produced, the authors plotted some polythermal sections (for constant Zn concentrations of 24 and 34%) of the $\mathrm{Mg}-\mathrm{Zn}-\mathrm{Ce}$ system. (Fig. 1). Using the $X-r a y$ phase and microscope analyses of slowly-cooled alloys, it was confirmed that in the alloy, apart from the Mg -based a solid solution, there are the following phases: $\mathrm{Mg}_{\mathrm{s}} \mathrm{Zn}_{2}$,
 undergoes a eutectofd decomposition and, after etching, its color is grey. Due to incomplete transformation at $349^{\circ} \mathrm{C}$, the $\mathrm{Mg}_{51} \mathrm{Zn}_{20}$ phase is present in the $\mathrm{Mg}+7.3 \% \mathrm{Ce}+23.6 \%$
Zn alloy. The $\mathrm{Mg}_{7} \mathrm{Zn}_{12} \mathrm{Ce}$ phase is of white color. The ($\left.\mathrm{Mg}_{0,0-0,9} \mathrm{Zn}_{8,1-0,9}\right)_{10,1} \mathrm{Ce}$ phase, after etching, has an uneven, dark color. That unevenness of color is related to the existence of a wide homogeneity region.

According to X-ray microspectrometric analysis, the following phases were detected in the $\mathrm{Mg}+73 \% \mathrm{Ce}+23.6 \% \mathrm{Zn}$ alloy composition: Mg-based solid solution, [MgZn] phase, and two triple phases LMgZnCe] which are different in their Ce and Zn contents. X-ray phase analysis confirmed the presence in that alloy, apart from the a solid solution, of the binary phase $\mathrm{Mg}_{51} \mathrm{Zn}_{20}$, and the $\left(\mathrm{Mg}_{0,0-0,2} \mathrm{Zn}_{0,1-,, 9}\right)_{10,1} \mathrm{Ce}$ and $\mathrm{Mg} \mathrm{Zn}_{12} \mathrm{Ce}$ phases.

The alloy thermograms clearly detected the temperatures of two non-variant transfor-
 at $341 \pm 1^{\circ} \mathrm{C}$, as well as the temperatures of primary crystallization of the binary eutectic. The cooling curves did not show any transformations in the solid state. That is related to the small thermal effects of such transformations.

Fig. 2. Microstructures (340X) of the slowly-cooled $\mathrm{Mg}-\mathrm{Zn}-\mathrm{Ce}$ alloys: a) alloy $\mathrm{Mg}+33,7 \% \mathrm{Zn} ; ~ \alpha+\left(\alpha+\mathrm{Mg}_{\mathrm{g}} \mathrm{Zn}_{\mathrm{n}}\right)$;
 $+\left[\alpha+\mathrm{Mg}_{7} \mathrm{Zn}_{12} \mathrm{Ce}_{e}\right]+\left(\alpha+\mathrm{Mg}_{g} \mathrm{Zn}_{3} \mathrm{Mgr}_{1} \mathrm{Zn}_{17} \mathrm{Ce}_{\mathrm{e}}\right)$; and c) alloy $\mathrm{Mg}+33,7 \% \mathrm{Zn}+$ $\left.+15 \% C_{e} a+!a+\left(M_{g, 0 _0,1} Z_{0,1-\infty, s}\right)_{1,1} C_{e}\right]$.

CONCLUSIONS

In the $\mathrm{Mg}-\mathrm{Zn}-\mathrm{Ce}$ system, the existence of two non-variant transformations was estab-

REFERENCES

1. E. V. Mel'nik, M. F. Kostina, Ya. P. Yarmolyuk, and O. F. Zmil, "Investigation of the ternary $\mathrm{Mg}-\mathrm{Zn}-\mathrm{Ce}$ and $\mathrm{Mg}-\mathrm{Zn}-\mathrm{Ca}$ alloys," in: Magnesium Alloys [in Russian], Nauka, Moscow, p. 95, 1978.
2. J. Higashi, N. Shiotani, M. Uda, T. Mizoguchi, and H. Katon, "The crystal structure of $\mathrm{Mg}_{51} \mathrm{Zn}_{20}$," J. Solid State Chem., vol. 36, p. 225, 1981.
3. K. P. Anderko, E. J. Klimek, D. W. Levinson, and W. Rostoker, "Constitution studies on the system magnesium-zinc," Trans. ASM, vol. 49, p. 778, 1957.
4. M. E. Drits, Z. A. Sviderskaya, and L. L. Rokhlin, "Phase diagram of the Mg-Zr system," Tr. In-ta Metallurgii im. A. A. Baikova AN SSSR, no. 12, p. 143, 1963.
5. D. A. Wood and E. M. Crammer, "Phase relations in the magnesium-rich portion of the Ce-Mg system," J. Less-Common Metals, vol. 9, p. 321, 1965.
6. Q. Johnson and G. S. Smith, "Refinement of $\mathrm{Th}_{2} \mathrm{Ni}_{17}$ type structure: Ce Mg ," Acta Crystallogr., vol. 23, p. 327, 1967.
7. A. M. Korol'kov and P. Ya. Sal'dau, "Solubility of Zn and Ce in Mg in the solid state," Izv. SFKhA AN SSSR, no. 2, p. 295, 1946.
8. V. V. Kinzhibalo, A. T. Tyvanchuk, and E. V. Mel'nik, "Crystaline structures of Mg and Zn compounds, with rare-earth metals and Ca, l in: Theses of Presentations at the IV-th All-Union Conference on Crystallochemistry of Inorganic and Coordination Compounds [in Russian], Nauka, Moscow, p. 196, 1986.
9. E. V. Mel'nik, O. F. Zmit, and E. V. Muratova, "Interaction of binary IMC in ternary Mg-Zn-Y, La, Ce systems," in: Theses of Presentations at the IV-th All-Union Conference on Crystallochemistry of Intermetallic Compounds [in Russian], Izd-vo L'vov. Un-ta, p. 38, 1983.
