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30–99% of administered nanoparticles will accumulate and sequester in the liver after administration into the
body. This results in reduced delivery to the targeted diseased tissue and potentially leads to increased toxicity
at the hepatic cellular level. This review article focuses on the inter- and intra-cellular interaction between nano-
particles and hepatic cells, the elimination mechanism of nanoparticles through the hepatobiliary system, and
current strategies to manipulate liver sequestration. The ability to solve the “nanoparticle-liver” interaction is
critical to the clinical translation of nanotechnology for diagnosing and treating cancer, diabetes, cardiovascular
disorders, and other diseases.
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1. Introduction

Nanotechnologies are currently being developed for diagnosing and
treating diseases [1–3]. However, most nanoparticles do not reach their
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intended target and are sequestered by the liver and spleen (if N6 nm)
or eliminated though the kidney (if b6 nm) after administration into the
body [2,4]. Typically, less than 5% of the injected nanoparticles are deliv-
ered to the diseased tissue. The liver acts as a biological filtration system
that sequesters 30–99% of administered nanoparticles from the blood-
stream. Developing solutions that overcome the liver will be key to en-
abling the use of nanoparticles for medical applications. This review
article is focused on our current understanding of the interaction of
nanoparticles with the liver and provides an overview of recent strate-
gies aimed at manipulating liver macrophages to enable longer blood
circulation and increase accumulation in the target tissues.

2. Liver anatomy and function

The liver is the largest solid organ in the body. A human adult liver
weighs 1.5–2.0 kg on average. The liver is located in the upper right
quadrant of the abdomen, below the diaphragm and is partially
protected by the rib cage [5]. The structure of the liver consists of two
main lobes (Fig. 1). The larger right hepatic lobe and the smaller left he-
patic lobe are separated by the course of themiddle hepatic vein [5]. The
liver is covered by a layer of connective tissue called Glisson's capsule.
The main functions of the liver are: (a) production and secretion of bile,
(b) storage of iron, vitamins and trace elements, (c) metabolism of carbo-
hydrates and storage of glycogen, (d) volume reservoir and filter for
blood, (e) hormonal balance anddetoxification, (f) production of immune
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Fig. 1. Structure of the liver. (a) The hepatic artery and portal vein supply the blood, nutrients and oxygen to the liver. The gallbladder collects and stores the bile. (b) The liver lobules. The
liver parenchyma consists of hexagonal lobules, including hepatocyte plates and sinusoids. Portal triads are at the corners of the lobules and contain the hepatic artery, portal vein, and bile
duct. The blood flows in through the portal vein and hepatic arteries, then flows out through the hepatic vein and inferior vena cava. (c) The liver sinusoid. Blood flows from both the
hepatic artery and portal vein and mixes in hepatic sinusoids. Reprinted with permission from [11]. Copyright 2012 Elsevier.
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factors to fight infection against pathogens, and (g) conversion of waste
products for excretion by the kidneys and intestines [6-9].

The liver is a complex network of inter-related cells (Fig. 1). About
60–80% of parenchymal cells are hepatocytes, which are specialized ep-
ithelial cells [10]. Additional cells include Kupffer cells and motile mac-
rophages, liver sinusoidal endothelial cells (LSECs), hepatic stellate cells
(HSCs), biliary epithelial cells (cholangiocytes), resident immune cells
(dendritic cells, natural killer cells and lymphocytes) and circulating
blood cells that are in transit through the liver [10]. Kupffer cells make
up 80–90% of the total bodymacrophage population [9] and are respon-
sible for the majority of phagocytic activity in the liver [11]. LSECs form
the continuous lining of liver capillaries and create sinusoidal fenestra-
tionswhereHSCs can be activated and respond to liver damage [12–14].

The liver has two major sources of blood supply: the hepatic artery
and portal vein [5,15]. The left and right hepatic arteries supply the
liver with oxygen-rich blood from the heart. This accounts for only 25–
30% of the blood to the liver, but 70% of the oxygen. The portal vein
carries nutrient-rich (but relatively less oxygenated)– blood from the
spleen, pancreas and intestines to the liver and constitutes the remaining
65–70% of blood volume. Hepatic arterial and portal blood combine in
hepatic sinusoids. The majority of the blood is then drained from the
liver through the left, middle and right hepatic veins [14].

The liver can be conceptualized as being organized into hexagonal
prism-shaped portal and hepatic lobules [5]. The central vein (hepatic
vein) is located in the center of each lobule, ultimately draining into a
larger hepatic vein and subsequently to the inferior vena cava for trans-
port back to theheart as shown in Fig. 1b [14]. Central veins are connect-
ed to the portal triads through liver sinusoids. Portal triads are at the
corners between adjacent lobules. Each portal area consists of the he-
patic artery, portal vein, and bile duct, that facilitate the transport of ox-
ygen, nutrients and bile, respectively [7].

The blood fromboth thehepatic artery and portal veinmixes togeth-
er in hepatic sinusoids before the blood drains out of the liver to the
heart through the central vein [5,14] (Fig. 1c). Sinusoids contain a vari-
ety of liver cells including resident tissue macrophages, Kupffer cells,
that can remove synthetic particles from circulation [16]. Endothelial
cells line liver sinusoids and form fenestrae. These fenestrations allow
blood plasma to interact with the hepatocytes through the space of
Disse, a small region between the endothelial and hepatocyte layers.
Plasma contains many types of enzymes (such as glycogen synthase)
[17] that enable the breakdown and metabolism of various biomole-
cules (such as cholesterol, and bilirubin) in bile ducts. In addition,
HSCs are another class of cells located in the liver [9]. They are specifical-
ly located within the space of Disse and are responsible for responding
to liver injury and assisting in tissue repair.

Finally, the liver, gallbladder and small intestine are connected to the
liver by the intrahepatic and extrahepatic biliary tree. The trunk of the
tree is formed by the confluence of the right and left bile ducts, draining
the right and left lobes of the liver. The branches are formed by
progressively smaller ducts draining the liver parenchyma. Within the
parenchyma, bile is formed in hepatocytes and then exported into the
canaliculi that run between hepatocytes and drain into the ducts of
the portal triads. Hepatocytes produce bile for food digestion and for
the elimination of biological waste. Bile will travel through and along
the intrahepatic biliary tree from the liver to the duodenum (the first
part of the small intestine) or to the gallbladder for temporary storage.
The gallbladder is a small sac-shaped organ that stores and concentrates
bile. A large number of stimuli, including the passage of food into the in-
testine, will cause the bile to be excreted from the gallbladder and bili-
ary tree into the intestine.

3. The interaction of nanoparticles with hepatic cells

The interactions of engineered nanoparticles with liver cells deter-
mine the fate of administered nanoparticles in vivo. However, how the
specific or combination of nanoparticle physicochemical properties de-
termines their liver sequestration and cell interaction in vivo remain un-
known. In vivo studies are mostly focused on the accumulation of the
nanoparticles at the organ level, while most in vitro studies are focused
on a single hepatic cell type in culture and do not consider how the
unique architecture and position of cells within the liver affect their in-
teraction. It is known that most nanoparticles are typically taken up by
non-parenchymal cells despite the majority of cells in the liver being
comprised of parenchymal hepatocytes. Particles that interact with he-
patocytes can be cleared from the body via the hepatobiliary pathway.
This section discusses nanoparticle uptake by liver cells. The specific li-
gand–receptor interactions involved in phagocytosis are summarized
along with physicochemical properties of nanoparticles in Table 1 for
non-parenchymal cells and Table 2 for parenchymal cells of the liver.

3.1. Kupffer cells

Kupffer cells are positioned in liver sinusoids and are an important
first line of innate immunity. Kupffer cells are tissue resident macro-
phages that phagocytose and destroy pathogens and other foreign bod-
ies and materials in the blood. These macrophages are also involved in
the recycling of erythrocytes and the digestion of apoptotic cells. Circu-
lating monocytes in the blood adhere to liver tissue and are polarized
into Kupffer cells with highly differentiated surface receptors that facil-
itate the binding and/or uptake of foreign materials [18,19]. The rate of
uptake and retention in the cells is strongly correlated with the
nanoparticle's surface charge, ligand chemistry and size. Nanoparticles
with highly cationic and anionic surface charges adsorb a significant
amount of serum proteins to form a ‘protein corona’, may aggregate,
and display an increased interaction with macrophages in vitro [20].
The majority of neutral surface ligands for nanomaterials are based on
coating with poly(ethylene glycol) (PEG). Fewer serum proteins adsorb
to the PEG surface of nanoparticles than cationic or anionic surfaces, and



Table 1
Nanoparticle formulations organized by non-parenchymal cell type, nanoparticle physicochemical properties and the ligand-receptor interaction for selective association.

Cell type Receptor–ligand system Nanoparticle characteristics Cell line/animal model Reference

Receptor Ligand Core type Size Zeta potential

Kupffer Galactose Lactobionic acid LDL 27 nm n/a ANA1, primary peritoneal macrophages and HSCs from C57BL/6-J mice, &
C57BL/6-Tg-Thy1.1 mice

[39]

Mannose Mannose-BSA Liposome ~95 nm n/a Male ddY and CDF1 mice [40]
64.6 ± 1.70 nm +61.4 ± 0.91 mV Female ICR mice, female C57BL/6 mice [41]

Scavenger BSA QDs 34.6 nm −29.7 mV Primary Kupffer from Sprague-Dawley rats [21]
Endothelial/Kupffer Scavenger Poly-Aco-HAS Liposome 92.1, 153.5, 263.2, and

590.7 nm
n/a WAG/Rij rats [27]

Endothelial Low-density
lipoprotein LDL

KLGR peptide Polycation-encapsulated
plasmid coated with lipid
bilayer

84–118 nm +6.1 mV to
+25.7 mV

Primary ICR mice liver sinusoid endothelial cells, Hepa1–6 & ICR mice [42]

HARE Hyaluronic acid Plasmid-PEI micelle 20–22 nm −1.8 mV to
−4.6 mV

C57BL/6 mice, exon 16-knockout hemophilia A mice [43]

Endothelial/stellate HARE CD44, IFNα Hyaluronan acid,
IFNα

Gold 52.23 nm n/a BALB/c mice [44]

Stellate Collagen type VI cRGD peptide Liposome 101 ± 17.7 nm n/a HSCs isolated from the Male Wistar rats in vitro. Male Wistar rats in vivo [31]
Mannose
6-phosphate/insulin-
like growth factor 2

mannose
6-phosphate -HSA

Liposome 50–400 nm n/a C57BL/6 mice [45]
Mannose-6-phosphate-
modified BSA

122.7–262.8 nm −2.73 mV to
−35.85 mV

Kunming mice, SD rats [46]

Liposome 92.37 ± 3.28 nm −19.7 ± 1.72 mV Sprague–Dawley rats [47]
DLPC-liposome 81 ± 11 nm n/a HSCs isolated from Wistar rats, bile duct ligated Wistar rats [48]

Platelet-derived
growth factor receptor
β

Cyclic (SRNLIDC)
peptide

Sterically stable liposome 86.9 nm n/a Primary SD rat HSCs, TAA-induced fibrotic SD rats [49]

RBP Retinol (vitamin A) Hyaluronic
acid–cystamine–
glycyrrhetinic acid

383 nm +15.5 mV Primary ICR mouse HSCs, hepatic stellate cell-T6, BDL liver fibrosis model
ICR mice

[50]

POEGMA-b-VDM diblock
copolymer

35 nm n/a LX-2, SD rat [32]

Liposome 296.2 ± 32 nm n/a LI90 cells (human HS cell line), dimethylnitrosamine (DMN) treated Male
Sprague–Dawley rats

[51]

Retinol-polyetherimine 383 nm +15.5 mV Primary ICR mouse HSCs, hepatic stellate cell-T6, BDL liver fibrosis model
ICR mice

[52]

αVβ3 integrin Cyclic (RGDyC)
peptide

Superparamagnetic iron
oxide

13 nm n/a Hepatic stellate cell-T6 & SD rats [53]
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Table 2
Nanoparticle formulations organized by parenchymal cell type, nanoparticle physicochemical properties and the ligand-receptor interaction for selective association.

Cell type Receptor–ligand system Nanoparticle characteristics Cell line/animal model Reference

Receptor Ligand Core type Size Zeta potential

Hepatocyte/hepatoma
cell

ASGP Lactobionic acid Superparamagnetic iron
oxide

26 nm n/a Hepatocytes isolated from a SD rat, rabbits [54]
12 nm n/a HepG2 human hepatocyte carcinoma cell line, BALB/c mice [55]

Silica 60 nm +16 mV BEL-7404 [56]
TM, ePC, Gal-DOPE
Solid lipid

120.4 ± 10.4 nm −12.4 ± 1.1 mV BEL-7402 cell in vitro, C57BL/6 mice and female nude mice [57]

Lactobiotin Stearic acid grafted
chitosan micelles

~100–120 nm +27.8 mV HepG2, BEL-7402 & HepG2 tumor-bearing nude mice [58]

Lactose PIC micelles 49.5 ± 0.6 nm (by DLS),
26.4 ± 4.0 nm (by TEM)

+17.16 ± 4.38 mV Male Sprague–Dawley rats [59]

Galactosyl Polyphosphate 130 nm −18.4 mV HepG2, Male Wistar rats [60]
Galactose Liposomes 195 ± 17 nm −10.6 ± 1.2 mV HepG2, KM mice [61]

138.03 ± 1.10 nm +56.50 ± 1.08 mV Hepatocytes, CD-1 mice [62]
115.9 ± 0.46 nm +14.17 ± 1.38 mV C57BL/6 mice [63]

PLGA 198.1 ± 1.2 nm −8.5 ± 1.5 mV BALB/c mice [64]
Polystyrene 50 nm n/a Primary BALB/c mouse hepatocytes & BALB/c mice [28]
Galactoylated chitosan 35.19 ± 9.50 nm +10.34 ± 1.43 mV SMMC-7721, SW480 and LO2 cell lines, H22 orthotopic liver

cancer mice
[65]

282.2 ± 15.3 nm −12.88 ± 1.72 mV Sprague–Dawley rats and Kunming strain mice [66]
Galactosamine Poly(γ-glutamic acid)-

poly(lactide)
115–263 nm −23 to −19 mV HepG2 [67]
127.5 nm −10.6 mV HepG2 & HepG2 tumor-bearing BALB/c mice [68]

Galactoside Galactosylated
liposome

~79 nm n/a Female KM mice [69]

Pullulan Polyethylene sebacate 103–335 nm −18 to −25 mV Sprague–Dawley rats [70]
Soybean sterylglucoside Liposomes 96.2 nm, and 183.0 nm + HepG2, Male KM mice [71]
Asialoorosomucoid Plasmid-PEI micelle 21–29 nm −0.8 mV to −8.6 mV C57BL/6 mice, exon 16-knockout hemophilia A mice [43]

Glycyrrhetinic acid/
glycyrrhizin
receptor

Glycyrrhetinic acid/glycyrrhizin Recombinant HSA 170 nm ~ −25 mV HepG2 & H22 tumor-bearing BALB/c nude mice [35]
Chitosan 188.8–231.6 nm +12.71 mV to+36.55 mV QGY-7703, H22 tumor-bearing CD1 nude mice, &Wistar rats [36]

147.2 nm +9.3 mV Primary Wistar rat hepatocytes [38]
217.2 nm +30.6 mV SMMC-7721, LO2, and SW480 cell lines, H22 orthotopic

tumor-bearing mice
[72]

164.5–183.4 nm −30.7 to −26.9 mV HepG2 cells, Kunming mice [73]
112–203 nm −31 to −28 mV SMMC-7721 cells, H22 tumor-bearing mice [74]

PEG-PBLG micelles 181.8 nm n/a 7703 cells, Wistar rats [75]
Alginate 274.2 nm −45.6 ± 2.3 mV HepG2, H22 tumor-bearing Kunming mice [76]

241.2 ± 9.5 nm −43.1 ± 1.24 mV HepG2, H22 tumor-bearing Kunming mice [77]
PPAR Linoleic acid Superparamagnetic iron

oxide-chitosan
95.3 nm +49.8 mV Primary BALB/c mice hepatocytes & BALB/c mice [78]

Heparan sulfate
glycosaminoglycan

CKNEKKNKIERNNKLKQPP-peptide Liposome 120.8 nm 0 mV to +8.8 mV BALB/c mice [79]

CXC receptor type 4 AMD3100 DOPA-PLGA 175.25 nm −19 mV HCA-1, JHH-7, & HCA-1 tumor-bearing orthotopic
C3H/HeNCrNarl mice

[80]

HARE, glycyrrhetinic
acid receptor

Cleavable hyaluronic acid-
glycyrrhetinic acid

Cleavable hyaluronic
acid-glycyrrhetinic acid

190.9 nm −21.93 mV HepG2 cells, H22 tumor-bearing Kunming mice, HepG2
tumor-bearing athymic nude mice

[50]

HBVP receptor Hepatitis B virus preS1-derived
lipoprotein

PEGylated Liposome 150 nm −14.5 mV to −16.8 mV Primary ICR mice hepatocytes & ICR mice [81]

HDL Apo-AI Gadolinium 20–25 nm −30.2 to −59.7 mV HepG2 & SD rats [82]
Iron oxide 7–13 nm n/a HepG2 & ApoE knockout mice [83]

Scavenger receptor
class B member 1

DOTAP/cholesterol 148–177 nm +39 to −50 mV HepG2, nude mice, C57BL/6 mice, BALB/c mice [84]

LDL LDL Gold 20 nm n/a SD rats [85]
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PEGylated nanoparticles are taken up less efficiently by phagocytic cells
thanmore charged nanoparticles. For example, the interaction between
quantum dots (QDs) and primary Kupffer cells was studied by Fischer
et al. [21]. QDs functionalized with PEG demonstrated reduced uptake
compared to those coated with bovine serum albumin (BSA), where
the latter was completely internalized within 60 min after administra-
tion. Kupffer cells also show increased phagocytosis of nanoparticles
with larger diameters. The uptake of 90 nm gold nanoparticles was in-
creased by four times compared to those one third in size of identical
surface composition using J774A.1 macrophages in vitro [20].

Kupffer cells recognize nanoparticles as a foreign material and the
nanoparticles can be internalized throughmultiple scavenger receptors.
Theywill be taken up by themechanisms of macropinocytosis, clathrin-
mediated, caveolin-mediated endocytosis, and additional endocytotic
pathways [22]. Studies that elucidate uptakemechanisms are highlight-
ed in a study by Lunov et al. that evaluated the uptake of 20 nm and
60 nm superparamagnetic iron oxide nanoparticles (SPIONs) by
human macrophages [23]. Carboxy-dextran coated SPIONs were found
to accumulate in macrophages through clathrin-mediated and scaven-
ger receptor A endocytosis irrespective of size. 60 nm SPIONs displayed
sixty-fold higher uptake than 20 nm SPIONs. This pathway was
confirmed by preparation of knockout macrophages and through the
use of rottlerin, colchicine, cytochalasin B, monodansyl cadaverine,
and nystatin as selective inhibitors of micropinocytosis, pinocytosis,
phagocytosis, clathrin-mediated, and calveolin-mediated endocytosis,
respectively. Uptake of SPIONs was reduced by more than 80% in the
presence of clathrin-mediated and scavenger receptor A endocytotic in-
hibitors. Furthermore, a reduction of SPION uptake in the presence of
rottlerin was also reported, suggesting that macropinocytosis may also
contribute to internalization. In the same study, theoretical modeling
of the endocytosis pathways suggested that 2 to 20 receptors are in-
volved in the endocytosis of SPIONs [23]. Larger nanoparticles may dis-
play increased avidity due to their greater surface area for interaction
with the cell membrane and adjacent receptors.

For many applications of nanotherapeutics, the interaction and re-
moval of nanoparticles from the bloodstream by Kupffer cells are
regarded as a significant challenge to targeting of diseased tissues for di-
agnosis or therapeutic applications. Within the last few years, methods
have been developed to delay, prevent, or remove this interaction in an
effort to improve the transport of nanoparticles to the desired diseased
tissue. These strategies are described in detail in Section 5. Perhaps one
opportunity in targeting nanoparticles to Kupffer cells may be for treat-
ment of autoimmune disorders. During an immune response, Kupffer
cells release a high degree of pro-inflammatory markers and cytokines
and may aggravate tissue inflammation. In the case of cirrhosis, tran-
sient depletion of Kupffer cells led to an improvement in liver inflam-
mation [24]. Since any injected formulation of nanoparticles will
ultimately be sequestered by Kupffer cells, they may be well suited as
a carrier to suppress or eliminate a pro-inflammatory response.

3.2. Sinusoidal endothelial cells

Sinusoidal endothelial cells form a continuous lining along the vas-
culature of the sinusoid. LSECs are highly pinocytic, relying on scavenger
receptors to remove materials from the bloodstream, and are also in-
volved in innate immunity [25]. LSECs lack the typical basement mem-
brane common to the endothelial cells of other tissues and contain
fenestraewith pore sizes ranging from 100 to 150 nm [25]. As nanopar-
ticles enter the sinusoid, interactions with endothelial cells may occur.
LSECs are involved in the removal of waste macromolecules like
hyaluronan, connective tissue components and materials from circula-
tion in the blood through receptor–ligand interactions [26]. Some
major receptors involved include mannose, Fcγ, collagen-alpha recep-
tor, and the hyaluronan scavenger receptors. It is worth highlighting
that the former two surface receptors are also expressed by Kupffer
cells. It is highly plausible that both cell types compete for nanoparticles
in circulation through the sinusoid [26]. Additionally, themechanism of
cellular internalization is dependent on the physicochemical properties
of the nanoparticle such as the hydrodynamic size. For example, nano-
particles that are over 100 nm in diameter or sub-100 nm that are ag-
gregated would have higher interaction with Kupffer cells. In contrast,
smaller monodisperse nanomaterials may be taken up by LSECs to a
higher degree. The specific mechanism of interaction and uptake may
be due to a combination of physicochemical properties (e.g., size and
the type of serum proteins adsorbed). Some insights into this hepatic
cellular distribution were reported by investigating the targeting of
LSECs with polyaconitylated human serum albumin (Aco-HSA) lipo-
somes [27]. It was found that 80% of the injected Aco-HSA liposomes ac-
cumulated in hepatic tissues 30 min after intravenous injection. In
reference to control liposomes, a 17-fold increase in the liver was
noted with Aco-HSA liposomes. Of the total amount of nanoparticles
in hepatic tissues, two-thirds of the Aco-HSA liposomes were taken up
by LSECs, while the others were sequestered by Kupffer cells. As the
size of Aco-HSA liposomes were increased from 50 to 400 nm, the up-
take by LSECs decreased by a factor of approximately threewith a corre-
lated increase in uptake by Kupffer cells. On a related note, in a study
investigating the hepatic tissue distribution of 50 and 140 nm polysty-
rene beads terminated with galactose and methoxy functional groups,
the majority of the administered nanoparticles accumulated in Kupffer
cells and hepatocytes. Electron microscopy and flow cytometry data
demonstrated no interaction and uptake by LSECs or HSCs [28]. At pres-
ent, there are only limited numbers of investigations that focus on un-
derstanding the hepatic distribution of nanoparticles at a cellular
resolution across a plethora of nanoparticle physicochemical properties.
Despite some evidence to support the ability of LSECs to take up nano-
particles, the current general consensus within the nanotechnology
field is that nanoparticles are predominantly sequestered by
macrophages.

3.3. Hepatic stellate cells

Stellate cells are involved with the secretion andmaintenance of ex-
tracellularmatrix. They contain a large reservoir of vitamin A in the liver
and respond to damaged hepatocytes and immune cells by differentiat-
ing into tissue-regenerating myofibroblasts [29]. HSC-targeting nano-
particles may have implications on the treatment of liver fibrosis. A
series of surface receptors can be targeted to direct nanoparticles to-
ward these cells in hepatic tissues if they are not first removed from cir-
culation by Kupffer cells and LSECs. These surface receptors include:
mannose 6-phosphate (M6P)/insulin-like growth factor-II receptor,
type VI collagen and integrins, and retinol binding protein (RBP) [14].
Cyclic peptides containing the arginine–glycine–aspartate (RGD) motif
can bind to the collagen type VI receptors on HSCs and offer a selective
nanoparticle interaction. For example, Beljaars et al. [30] reported that
human serum albumin conjugated with these peptides (CVI-HSA) can
be taken up by HSCs. RGD-labeled liposomes showed ten times higher
accumulation in HSCs than liposomes without RGD peptide [31]. A sim-
ilar study by Duong et al. [32] demonstrated that diblock co-polymer
nanoparticles loaded with S-nitrosoglutathione and coated with vita-
min A can increase uptake via RBP byHSCs 30%more than nanoparticles
without vitamin A. HSCs comprise less than 10% of the total amount of
cells in the liver and reside in the space of Disse adjacent to endothelial
cells [29]. This anatomical location provides a challenge for distributing
nanoparticles to these cells and it is more than likely amajority of nano-
particles will be internalized by Kupffer cells and LSECs prior to interac-
tion with stellate cells.

3.4. Hepatocytes and hepatocellular carcinoma cells

A basic understanding of how to target hepatocytes may be
critical to eliminating nanoparticles through the hepatobiliary route.
There are several strategies to design nanoparticles to access and
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interact with hepatocytes: (1) sinusoidal intercellular junctions and
(2) transcytosis through the sinusoidal endothelial cell lining.
Hepatocytes constitute 70–80% of the cells in the liver and are involved
in the maintenance of liver functions. A wide variety of nanoparticles
have been designed to target these cells [14]. The most commonly
targeted receptors used to direct nanoparticles to hepatocytes and he-
patocellular carcinoma cells, include: asialoglycoprotein (ASGP) recep-
tor, glycyrrhizin/glycyrrhetinic acid receptor, transferrin (Tf) receptor,
low-density lipoprotein (LDL) receptor, high-density lipoprotein
(HDL) receptor, hyaluronan receptor for endocytosis (HARE), and im-
munoglobulin A binding protein [9,13,33]. ASGP is the most well-
characterized hepatocyte-specific receptor system [33]. One of the
main advantages of using this ASGP receptor is its innate binding affinity
to a wide range of molecules containing galactose and N-acetyl-
galactosamine residues, such as lactose, lactobionic acid, galactoside,
galactosamine and asialofetuin. Glycyrrhizin/glycyrrhetinic acid (GL/
GA) receptors are expressed on the membrane of hepatocytes as well
as other cell types in the kidneys, stomach, and colon to take up
glycyrrhizin/glycyrrhetinic acid via receptor-mediated endocytosis
[34–37]. While GL/GA receptors are not as specific to hepatocytes as
ASGP receptors, their corresponding ligands GL and GA have anti-
hepatitis and anti-hepatotoxic functionality [37], marking them useful
for actively targeting nanoparticles to hepatic diseases. The interaction
between polymeric chitosan nanoparticles surface-modified with
glycyrrhizin (CS-GL nanoparticles) and hepatocytes was studied using
flow cytometry and confocal laser microscopy [38]. The result showed
that CS-GL nanoparticles preferred to be taken up by hepatocytes and
the uptake amount was almost five times higher than hepatic non-
parenchymal cells. In vivo studies show that both doxorubicin (DOX)
loaded and glycyrrhetinic acid modified recombinant human serum al-
bumin nanoparticles (DOX/GA-rHSA nanoparticles) [35] and DOX-
loaded chitosan/poly(ethylene glycol)-glycyrrhetinic acid (CTS/PEG-
GA) nanoparticles [36] can effectively inhibit tumor growth in H22
tumor-bearing mice. Other clinically relevant hepatocyte and hepato-
cellular carcinoma ligand-receptor systems include Tf and LDL systems
due to their efficient receptor recycling, enabling more rounds of endo-
cytosis before receptor desensitization or down-regulation [33].
Fig. 2. Schematic of nanoparticle clearance pathways. Nanoparticles are cleared through hepatob
interaction, dashed arrows indicate possible interaction.Nanoparticles circulate in the blood to r
kidney by renal clearancewithin hours to days after administration. Larger-sized non-degradabl
degradable by the MPS, their substituents may escape sequestration and return to blood circula
the liver. Adapted with permission from [4]. Copyright 2015 American Chemical Society.
4. Hepatobiliary clearance of nanoparticles

Since the metabolism and clearance of foreign materials are major
functions of the liver, engineered nanomaterials that cannot be cleared
by the renal systemwill eventually be processed in the liver. The general
scheme for nanoparticle clearance is through three main mechanisms:
renal, hepatobiliary, and via the mononuclear phagocyte system
(MPS) as outlined in Fig. 2 [4,86].

4.1. Nanoparticle transport through the hepatobiliary system

In hepatobiliary clearance, hepatocytes in the liver eliminate foreign
substances and particulates by endocytosis, followed by their enzymatic
breakdown and excretion into the bile via the biliary system [87]. This
process is schematically shown at the organ and tissue level in Fig. 3.
Nanoparticles enter the liver via portal triads. To successfully transit
through the biliary system, nanoparticles must first avoid becoming
sequestered in Kupffer cells. Kupffer cells have been shown to take up
nanoparticles on a broad size scale spanning several hundreds of nano-
meters [88,89]. Circulating nanoparticles smaller than the diameter of
liver sinusoidal fenestrations (up to 150–200 nm) can extravasate into
the space of Disse and interact directly with hepatocytes [9,25,90,91].
Aside from this transport, interactionwith LSECs and transcytosis to un-
derlying hepatocytes may be an alternate pathway to afford nanoparti-
cle–hepatocyte interaction. The nanoparticle surface charge has also
been shown to alter uptake by hepatic cell types due to differences in
nanoparticle–cell membrane electrostatic interactions and protein ad-
sorption to the nanoparticle surface [44,58]. As described previously,
LSECs and Kupffer cells abundantly express scavenger receptors on
their surfaces that are efficient at binding to negatively-charged nano-
particles [9,92,93]. On the other hand, hepatocytes were found to take
up positively-charged nanoparticles but not their negatively-charged
counterparts [9,92].

In Fig. 4 and Table 3, the hepatobiliary clearance efficiency, which is
loosely defined as the percentage of injected dose of nanoparticles
excreted in feces following intravenous administration, is compiled as
reported from the literature for a wide variety of nanoparticle designs
iliary, renal, andmononuclear phagocyte systems. Solid arrows indicate themost probable
each diseased tissue. If nanoparticles are less than6nm in size, they can be cleared from the
e nanoparticles aremore likely to be taken up and retained by theMPS. If nanoparticles are
tion for eventual hepatobiliary or renal clearance. Of note, theMPS includes phagocytes in



Fig. 3. Schematic of the hepatobiliary processing and clearance of nanoparticles. (1) Nanoparticles enter the liver via the portal vein. (2) Nanoparticles traverse the hepatic sinusoid and
(3) may be taken up and sequestered in liver resident Kupffer cells. (4) Depending on their physicochemical properties, nanoparticles may filter out into the space of Disse and be
endocytosed by hepatocytes. (5) Nanoparticles transcytose through the hepatocytes and enter the bile duct via bile canaliculi. (6) Nanoparticles travel through the hepatic ducts.
(7) Depending on digestive state and bile production, nanoparticles may first collect inside the gallbladder or (8) nanoparticles may enter into the common bile duct.
(9) Nanoparticles are excreted into the duodenum of the small intestines via the sphincter of Oddi. (10) Nanoparticles eventually traverse the entire gastrointestinal tract and are
eliminated in feces.

338 Y.-N. Zhang et al. / Journal of Controlled Release 240 (2016) 332–348
[4,85,94–103]. The physicochemical properties of nanoparticles,
including core type, surface chemistry, size, shape, and surface charge,
dictate their interaction with hepatocytes and are responsible for the
wide discrepancy in hepatobiliary clearance seen across variable nano-
particle designs. This data supports the notion that hepatic processing
and biliary excretion is usually slow, ranging from hours to months or
longer [87,104]. The prolonged retention of nanoparticles from this
Fig. 4. Hepatobiliary clearance efficiency reported in the literature for a variety of nanoparticle
silicon-core based nanoparticle designs, blue bar represents manganese-oxide nanoparticle des
nanoparticle designs, orange bar representsQDnanoparticle designs, and purple bar represents
American Chemical Society.
relatively slow clearance pathway and associated complex catabolites
raises the concern of chronic toxicity to the liver parenchyma [87,105].
Hematology indicators such as the total red blood cell count, hematocrit
and serum biochemistry indicators like alanine aminotransferase and
total bilirubin are common biochemical markers used to measure and
assess liver toxicity [106]. Sykes et al. have also demonstrated the use
of elemental analysis on skin biopsies to assess the reticuloendothelial
design. Yellow bars represent gold-core based nanoparticle designs, green bars represent
igns, red bar represents upconverting nanoparticle designs, teal bar represents iron oxide
zinc oxide nanoparticle designs. Figurewas adapted andmodified from [4]. Copyright 2015



Table 3
Nanoparticle hepatobiliary clearance rate and efficiency reported in literature.

Nanoparticle characteristics
Hepatobiliary
clearance strategy

Animal system
Detection
method

Result Reference

Silica nanoparticles

Silica, 50 to 200 nm None BALB/c mouse Fluorescence assay
Elimination of silica in feces
within 12 h

[109]

Mesoporous silica, 80 nm
High surface charge by
surface silanol groups

Nude mice, or Sprague
Dawley rats

ICP–AES + ex vivo
fluorescence imaging

Clearance onset ranging from 30
min to more than 3 days based on
surface charge

[110]

MSN, 110 nm None ICR mice
TEM, confocal
microscopy, ICP–AES

Elimination of MSN in feces
within 24 h

[111]

ORMOSIL, 20-nm High surface charge Athymic nude mice
Fluorescence imaging
+ PET imaging

100% hepatobiliary clearance after
15 days after IV administration

[98]

Stober SiO2, 115 nm
MSN-Sphere, 120 nm
MSN-Nanorod, 136 nm × 1028 nm
Stober-Amine
MSN-Sphere-Amine
MSN-NR-Amine

Varying porosity,
geometry, and surface
charge

CD-1 mice Radioactivity assay 5.2–12.9% ID after 72 h [112]

MSN-FITC, 100-130 nm None
MCF-7 xenograft
tumor-bearing BALB/c nude
mice

ICP–AES 21% ID in 96 h [99]

Amino-clay (3-aminopropyl
magnesium phyllosilicate), ~36–65
nm

None ICR mice
In vivo and ex vivo
fluorescence imaging

41% ID in feces in 72 h [95]

Gadolinium nanoparticles
Gd-diethylenetriamine-
pentaacetate-bis-oleate, 220 nm

None Rat MR cholangiography
Entry into biliary tree within 5
min of IV administration

[113]

Gd, 20–25 nm Cholesterol and HDL SD rats MRI, ICP–AES
Enters duodenum after 5 min of
administration

[82]

Gold nanoparticles

Au, 1.4 nm and 18 nm None Wistar-Kyoto rats Radio-tracing
5% ID in feces for 1.4 nm in 24 h;
0.5% ID in feces for 18 nm in 24 h

[101]

Au, 20 nm LDL SD rats Radio-analysis
~50% ID by day 22 after MPS
depletion

[85]

PSS-Au nanotubes, 300–700 nm
High surface charge by
PSS-ligand

HCT116-tumor bearing CD1
nude mice

Multispectral
optoacoustic
tomography

Near complete hepatobiliary
clearance within 72 h after IV
administration

[100]

BSA-Au nanorods, 55.6 nm × 13.3 nm None Sprague–Dawley rats ICP–MS 1.5% ID in 14 days [103]
TPPMS-Au 1.4 nm None Wistar-Kyoto rats Radioactivity assay 4.6% ID in 24 h [102]

198Au–Phos, 5 nm
198Au-PEG750, 5 nm
198Au-PEG10k, 5 nm

None Wistar-Kyoto rats Radio-analysis

Including GI tract, 198Au–Phos:
0.56% ID in 24 h
198Au-PEG750: 0.27% ID in 24 h
198Au-PEG10k: 6.5% ID in 24 h

[114]

Manganese oxide nanoparticles

MnO, 6.3 nm
Phosphonate-dendron
ligands

BALB/c mice MRI and INAA

~70% ID eliminated primarily
through hepatobiliary clearance
within 48 h after IV
administration

[94]

Mn3O4, 9 nm None Kunming white mice ICP-MS ~50% ID in 1.5 weeks [115]

Other

Citrate-coated Ag, ~8 nm None SD rats ICP-MS
Elimination of low levels of Ag in
feces within 24 h

[116]

FeO, 7–13 nm HDL ApoE KO and WT mice TEM
HDL is able to cause the
hepatobiliary clearance of FeO

[83]

Ferumoxtran-10 (SPIO with dextran),
30 nm

None SD rats Radioactivity assay 16–21% ID in 84 days [97]

Silica-coated CdSeS, 21 nm None ICR mice ICP-MS 33.3% ID in 120 h [96]
ZnO, 20 nm None Wistar-Han rats INAA 10.5% ID in 24 h, 47% ID in 21 days [117]

NaGdF4:Yb,Er, 5.1 nm and 18.5 nm None
LS180 tumor-bearing BALB/c
nude mice

ICP–AES
For 5.1 nm: 53% ID in 14 days
For 18.5 nm: 78% ID in 14 days

[118]
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organ exposure to gold nanoparticles and quantum dots in a minimally
invasive yet highly quantitative manner [107]. Mesoporous silica nano-
particles with small aspect ratio (1.5) have been reported to have a net
higher hepatobiliary clearance rate compared to those with larger
aspect ratio (5), which suggests that hepatobiliary clearance efficiency
can be controlled by tuning nanoparticle size and geometry [108].
Nanoparticles are believed to be excreted from hepatocytes in bulk via
emptying of lysosomal contents into the biliary canaliculus [85].
Dependingon their composition, nanoparticleswill be variably excreted
into bile, transit through bile ducts, and thus ultimately into the small
intestine.

4.2. Nanoparticle sequestration and processing by the MPS is composition-
dependent

Clearance through the MPS refers to the removal of nanoparticles
from the blood by phagocytic cells in the blood and tissues [119]. Exam-
ples of phagocytic cells of theMPS include blood-circulatingmonocytes,
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hepatic Kupffer cells, splenic red pulp and marginal zone macrophages,
as well as bone marrow perisinal macrophages and LSECs [86]. Adsorp-
tion of serum proteins, in particular opsonization by complement fac-
tors, fibrinogen and immunoglobulins, typically triggers nanoparticle
processing and clearance from the blood by theMPS [86]. Nanoparticles
undergo intracellular degradation inside MPS cells when phagocytosed,
and if they are not decomposed by these intracellular processes, they
will remain within the cell and be sequestered in the spleen and liver
for more than six months [87,104,120,121]. Once the nanoparticle-
filled phagocyte dies, there is evidence to suggest that those nanoparti-
cles are taken up again by other phagocytes of the same organ, resulting
in a similar total amount of nanoparticles accumulating in growing clus-
ters within a smaller population of Kupffer cells in the liver for example
[104]. It has been shown that this bioaccumulation of nanoparticles can
result in significant genetic expression changes in the liver (up regula-
tion of toxic metabolic pathways, and down regulation of cell cycle
processes-related pathways) even at two months after initial nanopar-
ticle administration [105]. This creates concern about chronic toxicity.

The processing of nanoparticles is dependent on the composition of
the nanomaterial. In general, most organic nanoparticles, such as
liposomes and polymeric nanoparticles, are readily degraded in the
MPS. Liposomes can be degraded by serum proteins during blood circu-
lation or by lipases when endocytosed by various cells. The degradation
products of liposomes are their constituent lipid molecules that can be
further metabolized by the body. For polymeric nanoparticles, their
degradation products include: constituent monomeric units and disso-
ciated polymer chains. If these precursors are smaller than the renalmo-
lecular weight cutoff size (~48 kDa) or 5.5 nm (hydrodynamic
diameter), they can be eliminated through the renal pathway via the
urine [122,123]. For larger constituents, hepatobiliary or MPS clearance
is more likely, but their ease of biotransformation in hepatocytes and
macrophages represents a toxicity concern. Inorganic nanoparticles
generally have relatively more stable cores compared to liposomes
and polymeric nanoparticles. There are reports of gold [105], iron
oxide [124], and iron oxide-coated gold nanoparticles [125] persisting
in the liver even six months after administration as confirmed by ele-
mental analysis and histological observation. However, some types of
inorganic nanoparticles may still be degraded in the endolysosomal
compartments of phagocytic cells once they are taken up [126]. Zinc
oxide nanoparticles have been shown to dissociate in biological media
and also be degraded by lysosomes inside cells into their precursor
Zn2+ ions [127]. The release of Zn2+ ions disrupts cellular Zn homeosta-
sis leading to oxidative stress, as well as mitochondrial and lysosomal
damage [117,127,128]. Watson et al. demonstrated that zinc oxide
nanoparticle dissolution within Kupffer cells leads to the extracellular
release of Zn2+ ions and subsequent fecal clearance [117]. Their results
are also in agreement with the findings from Paek et al. who found that
zinc oxide nanoparticles are primarily eliminated from the body via
biliary and fecal mechanisms rather than through the renal pathway
as expected from established zinc homeostasis [129,130]. Another
physiologically important metal known to undergo biliary clearance is
manganese [131]. Manganese oxide-based nanoparticles have been
shown experimentally to exhibit high hepatobiliary clearance efficiency
aswell. Chevallier et al. reported approximately 70% of the injected dose
was eliminated via feceswithin 48 h of nanoparticle administration, and
Xiao et al. reported roughly 50% of the injected dose within 1.5 weeks
[94,115]. The discrepancy may be related to the differential biological
processing of divalent and trivalent manganese [131] in the different
nanoparticle compositions— MnO [94] versus Mn3O4 [115].

By contrast, no defined iron excretory pathway exists in mammals
[132,133]. Iron is continuously recycled in the body and any excess is
complexed with ferritin protein, found in most cell types of the body
but concentrated mostly in the liver and spleen as these are
erythrocyte-processing organs for iron extraction [132,133]. Iron
oxide-based nanomaterials have been shown to undergo slow degrada-
tion in Kupffer cells and become sequestered in the MPS organs in the
non-toxic form that is complexed with ferritin and hemosiderin [106,
134,135]. The biotransformation of 8 nm Fe2O3 nanoparticles into
iron-storage protein complexes and their subsequent redistribution
from the liver to the spleen over a three month period have been
observed [135]. In studies using 12 nm Fe2O3 nanoparticles, no break-
down products were visualized by microscopy to be localized within
hepatocytes over 84 days [134]. In these studies, the amount of
hepatobiliary clearance of iron-oxide nanoparticles was not measured,
but their findings do not seem to support the findings by Bourrinet
et al., who reported a hepatobiliary clearance efficiency of 16–21% of
the injected dose in 84 days.

Intravenously administered silica is usually excreted via the kidneys
as silicic acid [136]. Silica nanoparticles are known to degrade into
various types of silicic acid depending on porosity, size, and surface
chemistry [112,137]. Their degradation has been demonstrated to
bemediated by Kupffer cells within 4 weeks of intravenous administra-
tion, and they are subsequently released extracellularly for renal clear-
ance [138]. It is noteworthy that renal clearance does not seem to
be the only excretory pathway for silica nanoparticles. There have
been many reports of a wide variety of silica nanoparticles undergo-
ing hepatobiliary clearance [98,99,109–112]. In particular, Souris
et al. and Kumar et al. have attributed the high hepatobiliary clear-
ance efficiency of silica nanoparticles to the high surface charge
characteristic of surface silanol groups imparting preferential hepa-
tocyte uptake [98,110]. In addition, it has been shown by TEM and
EDX analysis that fully intact silica nanoparticles are present in
the feces 24 h after intravenous administration into animals [108,
111]. Unexpectedly, researchers have also observed intact silica
nanoparticles in the urine as well, which seems highly improbable
given the glomerular filtration slit size limit of 5.5 nm [108,111,
139]. To this end, the development of a chelator-free 89Zr-labeled
mesoporous silica nanoparticle with long term in vivo radiostability
for positron emission tomography by Chen et al. may prove useful
to elucidate the mechanism behind these contrary renal clearance
observations [140].

Lanthanide upconverting nanoparticles are another class of nano-
materials that have been reported to remain intact after hepatobiliary
transit. Liu et al. reported the intact fecal excretion of 18.5 nm
NaGdF4:Yb,Er nanoparticles both 3 and 14-days post-administration in
LS180 tumor-bearing BALB/C nude mice [118]. Due to lack of quantita-
tive evidence for other nanoparticle types, it is unclear if the fecal
excretion of intact nanoparticles is a characteristic of certain nanoparti-
cle types only. Themore likely case is that nanoparticle integrity follow-
ing fecal elimination is highly dependent on their degradability.
Inorganic nanoparticles with surface chemistries characteristic of high
stability or that contain xenobiotic core materials are more likely to re-
sist biotransformation and be eliminated in the feces intact. Conversely,
inorganic nanoparticles that are degradable will be eliminated as a
combination of aggregates, smaller-sized remnants, ions, and metallo-
protein complexes.

4.3. Nanoparticle modifications for enhanced hepatobiliary clearance

For inorganic nanoparticles that are not cleared from the body, one
attractive strategy is to target them to hepatocytes and hence access
the hepatobiliary clearance route. Several targeting approaches have
been widely used and select examples from the literature have been
highlighted in Tables 1-3. Galactosyl residues can be conjugated onto
delivery systems to take advantage of the high-affinity ASGP
hepatocyte surface receptor-mediated uptake [141]. Bergen et al. de-
signed galactose-conjugated gold nanoparticles that have enhanced
hepatocyte-specific delivery capabilities in vivo [142]. They also report-
ed a size-dependent effect for hepatocyte-targeting with galactose-
conjugated 50 nm gold nanoparticles outperforming 80 nm, 100 nm,
and 150 nm gold nanoparticles by a factor of two to three; which
suggests that nanoparticle size may also play a critical role in limiting



341Y.-N. Zhang et al. / Journal of Controlled Release 240 (2016) 332–348
hepatobiliary clearance [142]. Peptides derived from envelope proteins
of hepatitis B have also been demonstrated for hepatocyte-specific
delivery of nanoparticles [143].

Another route for accessing hepatobiliary clearance via the hepato-
cyte is tomodify nanoparticle surface charge. Nanomaterials with high-
ly cationic and anionic zeta potentials are cleared efficiently [100,110],
as shown in Fig. 5 in a study by Souris et al. They reported shown that
the surface charge effect causes differential absorption of lipoproteins
onto the nanoparticle corona which then influences elimination
pathways and kinetics [98]. Specifically, Cheng et al. demonstrated
that apolipoprotein E and IgA bound to a positively charged nanoparti-
cle surface are responsible for their accumulation within hepatocytes
using intravital multiphoton fluorescence microscopy [144]. Nano-
materials with positive surface charge are reported to have increased
clearance kinetics. Souris et al. reported that the hepatobiliary clearance
onset of mesoporous silica nanoparticles with positive zeta potential is
less than 30 min post administration, whereas Ye et al. described that
highly negatively charged gold nanotubes are cleared after 72 h [100,
110]. It is important to note that the zeta potential of nanoparticles in
the body is highly dependent on the physiological environment. The
pH of the biliary tract and duodenum is relatively alkaline (~7–7.7 for
humans, ~8.5 for rodents), whereas the distal small intestine is more
acidic (~4–6) and gradually increases back to physiologically neutral
(~7.4) at the rectum [145,146]. The pH of the gastrointestinal tract is
Fig. 5. Ex vivo fluorescence images of excised organs, feces, and urine from (a) control mouse
conjugated mesoporous silica nanoparticles (MSN-amino-ICG). There is significantly more
suggesting a primarily hepatobiliary clearance pathway for the engineered nanoparticle. Tra
10 min and (c right) 3 days following tail vein injection of MSN-amino-ICG. Many MSNs can
quick hepatobiliary clearance from the liver. Reprinted with permission from [110]. Copyright
also highly dependent on the fasting state. Nanomaterial designs that
rely on surface charge for hepatobiliary clearance should have a surface
chemistry design that takes into account this spatial and temporal vari-
ance in pH. The dichotomy from the polarity of surface charge may be
related to the preferential uptake of positively charged nanoparticles
by hepatocytes and negatively charged nanoparticles by Kupffer cells
[144]. Other strategies for hepatobiliary clearance include the conjuga-
tion of nanoparticles with phosphonate dendrons (repetitively
branched molecules containing phosphonate moieties) [94]. A variety
of nanomaterials, such as magnesium oxide nanoparticles and iron
oxide nanoparticles, have been shown to be efficiently cleared via the
hepatobiliary system when conjugated to dendrons due to their
increased colloidal stability and avoidance of MPS sequestration [94,
147,148]. Lipka et al. investigated the effect of PEGylation on the excre-
tion of 5 nm gold nanoparticles in Wistar-Kyoto rats and reported that
gold nanoparticles surface-modified with PEG10k exhibited a higher
rate of hepatobiliary clearance within 24 h post nanoparticle adminis-
tration [114]. Interestingly, gold nanoparticles surface-modified with
PEG750 were cleared in the feces less efficiently than bare gold nano-
particles, which suggests the configuration of surface passivation mole-
cules is also important. A call for studies with increased sampling and
over a longer duration is needed to compare the effect of nanoparticle
surface passivation on hepatobiliary clearance before any general
conclusions can be drawn. In addition, Lipka et al. reported the
and (b) treated mouse approximately 3 h post tail vein injection of indocyanine green-
MSN-amino-ICG in the liver, intestine, and feces of the nanoparticle-treated mouse,
nsmission electron microscopy images of liver sections from the treated mouse (c left)
be seen in liver cells at 10 min, while there are none found 3 days later, suggesting fairly
2010 Elsevier.
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hydrodynamic diameters of Au-PEG750 and Au-PEG10K nanoparticles
were 21 and 31 nm, respectively (the 5 nm gold core size was identical
for both nanoparticles). It is unclear in the literature whether hydrody-
namic size or the molecular weight of the PEG chain is the
predominating factor in determining the distribution of nanoparticle up-
take between Kupffer cells and hepatocytes [114].

Despite these strategies, Kupffer cells rapidly sequester most of
the nanoparticles and remain a significant barrier in engineered
nanomaterial–hepatocyte interaction [149]. Some strategies to limit or
prevent Kupffer cell sequestration are summarized in the subsequent
section and may impact the efficacy of the nanoparticle clearance
through the hepatobiliary route. It is worth mentioning that alone, the
delivery of nanomaterials to the hepatocyte does not guarantee subse-
quent transcytosis and elimination by the biliary process, and this pro-
cess is not well-characterized and the mechanism is not understood.

5. Preventing nanoparticle liver interactions: moving toward
nanotherapeutics

With the majority of administered nanoparticles residing in hepatic
tissues, this creates a significant challenge toward the development of
nanotherapeutics and imaging agents due to low accumulation in the
desired diseased tissue. Within the last few years, strategies have been
proposed to delay, reduce or entirely circumvent the phagocytoses of
nanoparticles by macrophages in addition to grafting anti-fouling coat-
ings such as PEG to the nanoparticle surface. Fig. 6 illustrates the current
methods that are being used or proposed to reduce nanoparticle
sequestration by the liver and resident cells.

5.1. Shape modification of nanoparticles

Shape modification of nanoparticles can influence the behavior of
nanoparticles in the bloodstream and their distribution. However, there
is no firmdata to suggest that one shape is definitively better for reducing
sequestration by the MPS. Many research groups have reported that rod-
shaped nanoparticles can significantly reduce the uptake by the MPS
Fig. 6. Schematic of strategies to prevent nanoparticle uptake by theMPS, in particular by Kupff
Kupffer cell phagocytic response, (c) transient depletion of Kupffer cells, and (d) nanocarrier de
summarized.
when compared to spherical shapes [150–153]. Interestingly, worm-like
particles with very high aspect ratios seem to exhibit negligible uptake
by macrophages and have increased blood circulation [88,150,154]. This
shape-based inhibition of phagocytosis is due to the limitation of accessi-
ble binding sites between particles and macrophages. Based on these
principles, filomicelles with high aspect ratios (N10) and longitudinal
length of 10 μm were successfully retained in the blood for up to one
week [88,150]. In addition, worm-like polystyrene particles with high as-
pect ratios (N20) show negligible phagocytosis by macrophages [154].
Modeling of receptor mediated nanoparticle uptake has suggested that
internalization requires at least 2–20 receptor–ligand interactions with
the phagocytic cell [23]. The smaller radius of curvature of rod-shaped
nanoparticles can reduce interactions withmacrophages and subsequent
phagocytosis [154]. Clearance of these high aspect ratio polystyrene
nanoparticles remains challenging [155]. They are not degradable or eas-
ily broken into smaller subunits for renal or hepatobiliary clearance. At
the same time, their microscale size makes it difficult for macrophages
to phagocytose.

5.2. Modulus of nanoparticles

Mechanical properties (especially elasticity and deformability) of
nanoparticles can also influence the efficiency of phagocytosis and
blood circulation times [11]. Beningo and Wang [156] reported that
macrophages prefer to take up rigid particles rather than softer counter-
parts. Hydrogel particleswith tunable elasticitywere synthesizedwith a
similar size and shape to red blood cells [157]. The results show that by
decreasing the nanoparticle modulus by eight-fold, the nanoparticle
blood half-life can be increased by a factor of thirty. Therefore, soft
particles may be advantageous since they can minimize the sequestra-
tion by the MPS.

5.3. Surface modification of nanoparticles

To inhibit the internalization of nanoparticles by the MPS
when intravenously administered, conjugation of neutral PEG ligands
er cells. The strategies can be summarized as (a) surfacemodification, (b) saturation of the
sign from nature. The functionalities of Kupffer cells following different strategies are also
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on the nanoparticle surface has been widely used in nanotechnology [2,
9,13,158] (Fig. 6a). However, the bioactivity of targeting ligands on
PEGylated nanoparticles can be significantly reduced. This can be
overcome by designing the nanoparticle surface with different sized
PEG molecules [159]. Bartneck et al. [160] studied nanoparticle uptake
using human primary leukocytes and reported that uptake can be de-
layed or inhibited for all particle geometries by surface modification
using PEG. Another strategy other than PEGylation, nanoparticle conju-
gation with zwitterionic polymers (such as poly(carboxybetaine)) may
offer improved colloidal stability by resisting the nonspecific adsorption
of serum proteins [161–163].

5.4. Saturation of the Kupffer cell phagocytic response

The principle of saturating the receptors of Kupffer cells with decoy
and nontoxic nanoparticles prior to administration of nanotherapeutics
can enhance their delivery to diseased tissues. Liposomes comprised of
phosphatidylcholine and cholesterol were used to saturate the phago-
cytosis of macrophages [164] (Fig. 6b). This blockade was noted to
initialize within 90 min after intravenous administration and resulted
in an increased delivery window that lasted up to 48 h. Using a single
administration of these liposomes, the accumulation of PEGylated nano-
particles in a human prostate cancer xenograft model increased by two-
fold compared to controls. This blockade approach is safe and does not
damage the innate immunity as no weight loss, impairment of liver
function or RES-mediated host defense in the mice was noted [164].
The limit of this strategy is that the phagocytic functionality of Kupffer
cells were not fully saturated as reflected by only a two-fold improved
tumor accumulation. Once liposomes are engulfed by Kupffer cells,
they accumulate in a phagosome, fuse with a lysosome and then are
subsequently digested by lysosomal enzymes [165]. Future develop-
ments may consider the use of nanoparticles comprised of materials
that have slower degradation rates.

5.5. Transient depletion of macrophages

A more aggressive method to manipulate the microenvironment of
the sinusoid is through an approach developed by Van Rooijen et al.
[166,167]. This is commonly referred to as the macrophage ‘suicide’
technique. This technique is premised around the use of liposomes to
encapsulate dichloromethylene-bisphosphonate or clodronate (Fig.
6c). When these liposomes are taken up bymacrophages, the phospho-
lipid bilayers of the liposomes are digested by lysosomal phospholipases
to release clodronate to inhibit ADP/ATP translocase in the mitochon-
dria and ultimately trigger the apoptosis of these macrophages [168].
The advantage of this approach is that clodronate liposomes are not
taken up by non-phagocytic cells. After macrophage apoptosis, the re-
maining clodronate drug is removed from circulation by the renal sys-
tem, leading to an extremely short half-life in the bloodstream.
Hepatic tissues have dramatically reduced numbers of Kupffer cells
after intravenous administration of liposomal clodronate. It is notewor-
thy that at higher dosages, depletion of splenic macrophages may also
result in splenomegaly [169].

Nanoparticle biodistribution following Kupffer cell depletion by
clodronate liposomes has been studied in mice [170]. PEGylated liposo-
mal doxorubicin or Doxil nanoparticles showed improved accumulation
in a xenograft human pancreatic tumor model and inhibited tumor
growth [171]. Additionally, this suicide strategy yielded a higher
accumulation of SPIONs in MDA-MB-435 xenograft tumors in mice
[172]. Similar improvements in biodistribution and reduced liver
accumulation of QDs were also reported using transient macrophage
depletion [173]. Taken together, these results indicate that temporary
suppression or depletion of macrophages in the liver using clodronate
liposomes can enhance the nanoparticle circulation in the blood, and
improve their accumulation in desired diseased tissues.
Similar to liposomal clodronate, gadolinium chloride (GdCl3) has
also been used to inhibit and/or deplete the function of Kupffer cells
[174], as shown in Fig. 6c. Using GdCl3, the reduced phagocytic activity
of Kupffer cells has been reported [175,176]. The phagocytosis suppres-
sion is due to the inhibition of calcium transport across the cell
membrane by the Gd (III) ion [175]. Histological sections of hepatic tis-
sue demonstrated that a significant amount of Kupffer cells were re-
moved, indicating these Kupffer cells were not only suppressed but
some of them were eliminated [176]. Furthermore, some of the red
pulpmacrophages in the spleenwere also eliminated, but the repopula-
tion of splenic macrophages is much faster [176]. In a study by
Diagaradjane et al. [177], QDs were shown to have increased blood cir-
culation time and amplified florescence signals at tumor tissues after
pre-treatment with GdCl3 as shown in Fig. 7 [177].

While these chemical agents may prevent the interaction between
Kupffer cells and nanoparticles, they have no effect on LSECs uptake
and thus may have greater utility in preventing the liver sequestration
of larger nanomaterials. It has been noted that GdCl3 can also cause he-
patic alterations by eliminating Kupffer cells and increasing cytokine re-
lease, including tumor necrosis factor α and interleukin-1 [174].
Moreover, Kupffer cells and other tissue resident macrophages play an
important role in innate immunity. Depletion of these macrophages
may reduce the integrity of the immune system and could possibly
lead to increased susceptibility to infection by pathogens. While attrac-
tive, these transient depletion strategies are not well-characterized for
their safety and studies investigating dose–efficacy relationships and
their concurrent effects on innate immunity are not available.

5.6. Intrinsic evasiveness: using and modeling nanocarrier design from
nature

Bio-inspired approaches have been studied for reducing nanoparti-
cle uptake by the liver [178–184] (Fig. 6d). These techniques use
circulating red blood cells, leukocytes, and monocytes (precursors to
tissue adherent macrophages). Nanoparticles non-covalently attached
on erythrocytes avoided rapid clearance by the liver and other macro-
phages in thebody [179].With this cellular “hitchhiking”method, nano-
particles exhibited a three-fold higher circulation half-life and seven-
fold higher accumulation in lung tissues. Nanoporous silicon particles
coatedwith leukocytemembranes can evade the immune systemby re-
ducing the degree of opsonization by serumproteins [180]. These nano-
particles exhibited enhanced blood circulation and accumulation at the
location of diseased tissues. Furthermore, monocytes/macrophages
served as ‘Trojan horses’ to deliver nanoparticles to solid tumors while
minimizing their sequestration by the MPS [181,182]. For example,
gold nanoshells were loaded into tumor associated macrophages
through phagocytosis in cell culture, injected into the animal, and re-
leased by laser excitation [181]. All of these are creative strategies to cir-
cumvent the interaction of nanoparticles with the liver and more
studies are required to validate the real-world utility of such techniques.

6. Conclusion

The liver presents one of the biggest problems for using nanoparti-
cles clinically. The sequestration of nanoparticles by the liver prevents
them from targeting extrahepatic diseased tissue. While there are
many studies on the topic of particle-to-liver interactions in the 1970s
and 1980s, the conclusions established in that timeframe may not be
fully applicable to current nanoparticle technologies. As the size of a
particle decreases to less than 100 nm, they are on the same scale as
many biological molecules. They may have access to different tissue
and cellular structures within the liver andmay have different accumu-
lation patterns. Yet, there have been relatively few studies on the new
generation of nanoparticles with the liver in the last 10–20 years. This
new generation of nanoparticles can be synthesized with higher preci-
sion in the sub-100 nm size range and the surface chemistry can be



Fig. 7. Transmission electronmicroscopy image ofmice liver tissue 4 h after (a) epidermal growth factor (EGF) QD administration. The arrows in (a) represent the accumulation of QDs in
Kupffer cells, and themagnified inset represents the vesicles containing theQDs. (b) GdCl3 pretreatment followedbyEGF-QDs administration.No nanoparticleswere found inKupffer cells
when GdCl3 was used to suppress phagocytic activity. The labels V, KC, and RBC represent the vesicles, Kupffer cells, and red blood cells, respectively (scale bar = 5 μm). Ex vivo
fluorescence images of organs 4 h after (c) QD administration, EGF-QD administration, and GdCl3 pretreatment followed by EGF-QD administration. Schematic illustrates ex vivo
fluorescence images of organs, B, Lu, H, Li, S, K, N, and T represent the brain, lungs, heart, liver, spleen, kidney, lymph node, and tumor, respectively. GdCl3 prevented nanoparticle
accumulation in Kupffer cells that translated to improved tumour accumulation. The corresponding fluorescence signals from the tumor and liver are represented in (d). A significantly
higher fluorescence signal was found in the tumor while lower fluorescence is in the liver with GdCl3 pretreatment followed by EGF-QD administration compared to the only EGF-QD
injection, which shows the effect of phagocytosis blocking. Adapted with permission from [177]. Copyright 2010 American Chemical Society.
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decorated with different types of molecules for different functions
in vivo. Thus, there is a need for a better understanding of the interac-
tions of nanoparticles with sizes less than 100 nm with the liver from
the organ to cell perspective. Furthermore, there should be a focus
on identifying nanoparticle–liver interaction “metrics” that would
guide the development of nanomedicine. For example, it would be use-
ful to quantitatively determine a mathematical relationship between
reduction in Kupffer cells or clearance timeframes with nanoparticle
accumulation in diseased tissues. Finally, the research community
should develop and confirmwhethermany of the proposed new and in-
novative solutions can solve the nanoparticle–liver sequestration prob-
lem. Moving forward, the community needs to focus on the major
biological barrier that is currently plaguing the field of nanomedicine.
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