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Abstract

The thermodynamics of nucleation and decomposition in small isolated particles
are considered. There exist three possibilities: phase separation, prohibition of
decomposition and a metastable state. We investigate the peculiarities of phase
diagrams related to depletion of the nanosize parent phase even at the nucleation
stage. For small particles the equilibrium diagram becomes split (and shifted
and size dependent). Concentration, size and temperature hystereses take place.
Size-dependent ‘critical supersaturation’, increasing with decreasing size, has been
analysed.

} 1. Introduction

All stages of decomposition of a supersaturated binary alloy (a parent phase
containing A and B components) with precipitation of an intermediate phase 1
have been extensively studied in the case of a macroscopic sample size (Christian
1965). In the first two stages, namely the nucleation and growth of precipitates, the
depletion of the matrix (change in the average concentration) is usually neglected. It
becomes crucial in the last stage: ripening (Lifshits and Slezov 1961, Wagner 1961).
Thus a description of the first two stages is based on the driving forces and equili-
brium boundary concentrations for bulk macroscopic materials. If the decomposi-
tion develops from the viewpoint of nanometric volumes, then the size effect comes
into play (Palatnik and Comnik 1960, Denbigh and Marcus 1966, Hutchinson 1963).
The phase diagram of nanosize systems is an urgent issue for nanoelectronics, thin
film technologies, nucleation in atmospheric aerosols, etc.

A theoretical description of size effects is usually based on two basic factors:

(i) the increase in excess surface energy per atom of a small particle (Petrov
1982, Nagaev 1992)

(ii) the change in vacancy concentration (for example Gladgkikh et al. (1988)
and Wautelet (1991).

Yet, there exists one more fundamental reason for the size effect in a binary
(or multicomponent) alloy, where the first-order phase transformation includes a
change in composition (Rusanov 1967, Ulbricht et al. 1988). Indeed, such a trans-
formation should start from nucleation, but the amount of one of the components
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in the whole particle may not be enough for the construction of a critical nucleus.
In other words, when the new phase crystal nucleates in a small particle, depletion of
the surrounding parent phase may occur. The effect of depletion of the parent phase
on nucleation and growth in nanovolumes cannot be neglected (Ludwig and
Schmelzer 1996) (see also Gusak and Shirinyan (1998)). It has been found that the
driving forces and nucleation barriers depend on the size of decomposing particles
(caused by the above-mentioned depletion). A change in density may have the same
effect in one-component systems as a change in composition (see, in particular,
Schmelzer and Schweitzer (1990)). Yet, the peculiarities of phase diagrams for nano-
systems have not been sufficiently studied. For example, the very notion of phase
diagram changes since the first stage of decomposition in small particle could also be
simultaneously the last stage.

Experimental results on the effect of size on phase transformations in alloys have
been obtained in a few studies (for example Gladgkikh et al. (1988)). Investigation
of the phase equilibrium in thin binary Bi–Sn (eutectic) and Bi–Pb (eutectic and
peritectic) films demonstrated a decrease in the eutectic temperature by 5, 10 and
18K for the respective film thicknesses 32, 20 and 10 nm. In general, a decrease in
liquidus and solidus lines was observable for thickness of less than 50 nm. Simplified
theoretical analysis (Wautelet 2000) resulted in the same effect: a decreasing lens-type
liquidus–solidus diagram with decreasing size. On the other hand, the opposite
behaviour, namely increasing melting temperature for decreasing size, has been
reported for Pb particles in Al (for example Moore et al. (1987)).

Size effect can also lead to a change in the solubilities in the solid state. For
example, the limit solubility of Cu in Ag was 6 at.% for a 27 nm film and 15–17 at.%
for a 7 nm film. (These metals have only a fcc lattice. So this is not the case of poly-
morphic transitions under the size effect.) Therefore, for bulk alloys the limit value of
Cu solubility in Ag is 0.35 at.% (Chighik et al. 1985) for the same temperature (20�C).

The main purpose of the present paper is to describe the fundamental differences
between the phase diagrams for bulk materials and nanomaterials, related to the
finite (non-negligible) depletion of nanoparticles even at the nucleation stage. To
achieve this aim, we should first formulate the basic equations for the thermody-
namics of decomposition in small particles and then apply them to the model alloy.
In } 2 we describe a simplified model system. In } 3 we briefly formulate the main
results for the Gibbs energy versus size dependences. In } 4 we discuss the size effect
for the temperature of phase separation. In } 5 we concentrate on the peculiarities
of the size-dependent phase diagram, introducing the notions of equilibrium curve
splitting, critical supersaturation and hysteresis. In appendix A we illustrate the
hysteresis phenomenon in small particles in the framework of the simplified master
equation approach.

} 2. Model

A very naive illustration of the essence of the size effect related to parent phase
depletion is as follows. If the nucleus of the new phase 1 of radius r* with mole
fraction X1 of species B is formed in a parent phase with a much lower initial mole
fraction X0, it should ‘suck out’ the atoms B from the sphere (supply region) with a
radius not less than R*¼ ðX1v1=X0vÞ

1=3r* (here v and v1 are the volumes per atom in
the parent and new phases respectively). Obviously, if the size of the whole particle is
less than the above-mentioned value R, and r* is the critical size of nucleus in bulk
material, nucleation becomes impossible; the total number of atoms B in the whole

580 A. S. Shirinyan and A. M. Gusak
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particle is just not sufficient for the construction of even a single stable nucleus.
Taking r*¼ 10�9m, X0¼ 0.1, v/v1� 1 and X1¼ 0.8, one obtains for the ‘minimal’
radius R* of the supply region R*¼ 2 nm. When R<2nm, nucleation is absolutely
impossible. In fact, this is only an estimation since, on depletion of the parent phase
with, say, atoms B, the Gibbs free energy increases owing to the decrease in entropy.
Therefore, nucleation becomes impossible already for some particle size R>R*.
To obtain quantitative results, we should choose the thermodynamic models for
the new and parent phases.

Let us choose the model of the new phase as a ‘line’ (strictly stoichiometric)
intermediate phase and exclude the elastic contributions to the Gibbs energy. We
shall consider the formation of a spherical nucleus of intermediate phase inside
the spherical particle of supersaturated solid solution at initial concentration X0

(figure 1).
Of course, nucleation can proceed well at the external boundary (the ‘cap’ of new

phase). This case has been treated elsewhere (Shirinyan 2000). We shall not discuss
the corresponding results here since they are basically the same and differ from the
present model only quantitatively.

According to the simplified model presented here, at any moment and at any
size r (radius) of the growing nucleus, the mole fraction distribution is assumed to be
step like (without transient layers) so that the concentration is uniform inside each
phase (see } 6).

Phase diagrams of decomposing nanoalloys 581

Figure 1. Schematic representation of phase transformation: (a) particle of concentration X0

before transformation; (b) the same particle after the transformation with concentra-
tion redistribution being taken into account. Xp(r) is the concentration of the ambient
parent phase, X1 the concentration of strong stochiometric intermediate phase, r the
nucleus size and R the radius of the supply region (nanometric isolated particle).
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We suppose that, for any given nucleus size r, the mole fractions X1 and Xp of
species B in the new and parent phases respectively satisfy the condition of minimum
Gibbs free energy. The mole fractions are related by the following evident conserva-
tion law:

nX0V0 ¼ n1X1V1 þ nXpVp, ð1Þ

where X0 is the mole fraction before nucleation, V1 is the volume of the new models
formed, and V0 and Vp are the volumes of the parent phase before transformation
and after nucleation respectively. In the following, the numbers n of atoms per unit
volume are taken the same for old and new phases (n1¼ n). For spherically sym-
metric clusters the volumes of the phases are as follows:

V1 ¼
4
3
pr3, Vp ¼ 4

3
pðR3

� r3Þ, V0 ¼
4
3
pR3:

Depletion of the remaining parent phase (�X�X0�Xp) is a function of the nucleus
size r, radius R and mean concentrations X0 and X1: �X(r)¼ (X1�X0) r

3/(R3
� r3).

For the case X1>X0 presented here, one obtains Xp(r)<X0 (depletion of matrix by
the B component).

The Gibbs energy per atom of the new phase 1 (line compound) and of the parent
phase are taken as (figure 2)

�g1ðTÞ ¼ �g1 þ �kT ðX ¼ X1Þ, ð2Þ

�g0ðT ,XÞ ¼ kT X lnðXÞ þ ð1� XÞ lnð1� XÞ½ �: ð3Þ

Here �g1 is the isothermal Gibbs energy of formation (per atom) from pure solid
components, �>0 is a non-dimensional parameter determining the temperature-
dependent behaviour of the driving force and k is the Boltzmann constant.

582 A. S. Shirinyan and A. M. Gusak

Figure 2. The Gibbs free energy �g(X) (per atom) as a function of concentration for the ‘old’
(parent) and ‘new’ (phase 1) phases (qualitative dependence). X0 is the initial concen-
tration of the parent phase, Xp(r) is the concentration of the parent phase as a result
of fluctuation, nucleation and/or separation, Xp,1 is the equilibrium concentration in
the parent phase corresponding to the full separation in an infinite matrix. (In this
diagram the pure components are assumed to have the same structures.)
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The linear approximation for �g1(T ) corresponds to the experimental situation
and is commonly used (for example Chen et al. (1989) and Saunders (1977)).
Equation (3) corresponds to the ideal solution. In fact, a model of regular solution
would be more reasonable since the existence of the intermediate phases usually
correlates with a negative mixing energy. However, for simplicity, below we restrict
ourselves to the case of negligible mixing energy. The influence of the deviation from
an ideal solution will be analysed in detail elsewhere.

Usually increasing the temperature yields a decrease in the bulk driving force.
So we adjust the parameter � in equation (2) to satisfy the condition

�g0ðT1,X0Þ þ
o �g0ðT1,XÞ½ �

oX

����
X0

ðX1 � X0Þ ¼ �g1ðT1Þ

at a characteristic temperature T1 (the separation temperature in an infinite matrix)
and concentration X0¼Xp,1 (the solubility in an infinite matrix).

The expression for the change in the Gibbs free energy after nucleation of the
phase 1 nucleus of radius r is

�G ¼ nV1�g1 Tð Þ þ nVp�g0 T ,Xp rð Þ
� �

� nV0�g0ðT ,X0Þ þ 4pr2�: ð4Þ

In equation (4) again the numbers n of atoms per unit volume are taken to be
the same in the two phases (Vp¼V0�V1; V0¼ 4pR3/3) and the surface interphase
tension � is taken to be independent of the temperature T (Wautelet 2000).

The extremes of the �G function in equation (4) have been found by direct
calculation of �G for all reasonable sizes r (with a small step).

} 3. Thermodynamic equilibrium analysis in small particles

Let us plot the Gibbs free energy versus the nucleus size �G(r) according to
equation (4) for different temperatures, initial concentrations X0 and particle sizes.
The typical schematic dependences are presented in figure 3 (for example Ulbricht
et al. (1988), Ludwig and Schmelzer (1996) and Gusak and Shirinyan (1998)).

One can obtain the spectrum of all states by changing the initial supersaturation
(due to the composition and temperature) and the size of the transforming particle.
Therefore, possible cases are separation (cases T3, R3 and X03 in figure 3), a meta-
stable state (cases T2, R2 and X02 in figure 3) and the impossibility of separation
(cases T1, R1 and X01 in figure 3). The last situation for a small particle may be
realized even at concentrations and temperatures for which separation is possible in
an infinite alloy.

} 4. Influence of decreasing size on the phase transformation

(separation) temperature

To verify whether our model is reasonable, let us consider the influence of
decreasing size on the phase transformation temperature at a fixed initial composi-
tion and fixed particle size. This problem has been investigated earlier (Ulbricht et al.
1988), and a decrease in the transformation temperature with decreasing size was
demonstrated. The transformation temperature was introduced by these workers
traditionally as the critical temperature corresponding to simultaneous zero values
of the first and second derivatives in the �GðrÞ dependence. Our criterion for trans-
formation is different.

Phase diagrams of decomposing nanoalloys 583
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We define the separation temperature Ttr as the temperature at which the
dependence of the Gibbs free energy on the radius of the new phase becomes non-
monotonic with a maximum and a zero second minimum: �G ¼ 0, ½oð�GÞ=or�

��
R
¼ 0

for r>0 (case T2 in figure 3). This criterion will be further called the separation
criterion. It seems more natural to us than the criterion of zero first and second
derivatives. Note that the possibility of such a phase transition criterion has also
been indicated by Schmelzer and Schweitzer (1990). The second minimum in the
�G(r) dependence (the first is at r¼ 0) corresponds to the two-phase state: parent
phaseþ phase 1 (figure 1 (b)). At typical values for intermetallic systems (X0¼ 0.3,

584 A. S. Shirinyan and A. M. Gusak

Figure 3. Schematic Gibbs free-energy �G dependence on the radius r of the nucleus (a) for
different temperatures T 1>T2>T3 and other fixed parameters, (b) for different
initial concentrations X0 (X01<X02<X03), provided that other parameters are fixed
and (c) for different radii of the particle (R1<R2<R3). The graphs for T2, R2 and X02

(middles) correspond to the separation criterion.
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n¼ 7� 1028m�3, �¼ 0.15 Jm�2, �g1¼�3� 10�20 J, X1¼ 0.5 and �¼ 2.4) the result
of such analysis is presented in figure 4.

Note that the equilibrium condition in a small particle means equal depths of two
pits (in the Gibbs free-energy dependence on the radius r), which are separated by a
thermodynamic barrier. In the case of a small particle this barrier is of the order of
the nucleation barrier and may not be high (less than 50 kT). This means that the
phase equilibrium in an ensemble of small particles will correspond to a statistical
distribution at which some particles will be in a single-phase state and the others
in a two-phase state. The corresponding kinetic analysis has been given elsewhere
(Schmelzer and Schweitzer 1990, Shirinyan 2000).

} 5. Influence of the size on the solubility X0

First of all we shall find the equilibrium concentration Xp,1�Xp(R!1) in the
parent phase corresponding to the full separation in an infinite matrix (at every fixed
temperature T ). The second equilibrium concentration is equal to X1 (which is
known). The condition for optimal concentration Xp,1 and solubility limit X0 can
be found according to the common tangent rule:

�g0ðT ,Xp,1Þ þ
o½�g0 T ,Xð Þ�

oX

����
Xp,1

X1 � Xp,1

� �
¼ �g1ðTÞ,

which is the transcendental equation in our case. For the case when X1¼ 0.5 (which
we shall consider below) after easy algebra this transcendental equation may be

Phase diagrams of decomposing nanoalloys 585

Figure 4. The separation temperature Ttr dependence versus the size of the decomposing
particle. The horizontal broken line characterizes the separation temperature in an
infinite matrix (T1¼ 698K). The full circles show the results of the Gibbs free-energy
analysis in a small particle at the separation condition:�G¼0, ½oð�GÞ=or�jR ¼ 0, r>0.
The solid curve is the approximation function Ttr�T1(�þ�/R), where �¼ 0.9656
and �¼�2.894� 10�10m. Explanations and parameters are in the main text. For
example, at R¼ 7� 10�9m (and the same set of parameters) it yields Ttr¼ 644K.
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rewritten as a quadratic equation and it has the root

Xp,1 ¼ 0:5 1� 1� 4 exp 2
�g1
kT

þ �

� �� �� 	1=2
 !

:

The second root

Xp,1 ¼ 0:5 1þ 1� 4 exp 2
�g1
kT

þ �

� �� �� 	1=2
 !

appears because of symmetry of the problem with respect to X1¼ 0.5 and corre-
sponds to initial concentration X0>0.5; so we do not consider this further. The
cupola-shaped separation diagram T–X for an infinite matrix shifted towards a
strong stoichiometric phase is presented below.

Let us take the radius of our binary system as R¼ 10�8m (at the same fixed
parameters n¼ 7� 1028m�3, �¼ 0.15 Jm�2, �g1¼�3� 10�20 J, X1¼ 0.5 and
�¼ 2.4). According to the separation criterion for a small particle (case X02 in figure
3), one can find the optimal concentration Xopt

p (� Xopt
p R, Tð Þ) of the parent phase

corresponding to stable�G(r) minimum. Thus, we have two limiting points (the third
meeting point, X1¼ 0.5, is determined from the initial condition) for the chosen
criterion: the initial concentration Xcr

0 ðR,TÞ (hereafter called Xcr
0 ) as the limit solu-

bility of one component in another (B in A) and the optimal concentration Xopt
p of

the depleted ambient parent phase as the result of separation. The size-dependent
separation diagram is presented in figure 5 (case MQZNL).

Consider the influence of sizes on the solubility Xcr
0 change at fixed temperature

TS (TS¼TZ in figure 5) and the above-cited parameters. The solubility Xcr
0 in a bulk

alloy is determined by the point XS in figure 5, and in a small particle by the point XZ

(XZ>XS). For example, at TS¼ 680K the solubility Xcr
0 in a bulk alloy will be

XS¼ 6.4 at.% and in a small particle (R¼ 10�8m) it will be XZ¼ 43 at.%.
In other words, the bulk alloy in the concentration interval X0<XS will be

thermodynamically stable with respect to separation. In the XS<X0<X1 interval
the bulk alloy is unstable; it will be separated into a new phase of concentration
X1 and parent phase of concentration XS.

The small particle with the same initial concentration X0 (X0<XZ) will not be
separated, but the particle with the concentration XZ<X0<X1 will be separated into
a new phase of concentration X1 and a parent phase of concentration that is deter-
mined by the corresponding point of series DQ0E in figure 5 (point Z0). Hence, the
decrease in the size of particle yields the increase in the solubility Xcr

0 of components.
Note that, in contrast with the analysis for the cupola-shaped separation diagram

of a bulk alloy, one needs to interpret the size-dependent separation diagram for a
small particle in a different way. This is clear for the following reasons.

In fact, the usual cupola-shaped equilibrium diagram determines the solubility
Xcr

0 as well as the equilibrium concentrations (Xp,1 ¼ Xcr
0 and X1) as a result of

separation by one line (ASHPNF).
For a small particle the equilibrium diagram becomes doubled (and also shifted

and size dependent). That is, instead of one line, one needs to deal with two lines,
namely line MQZNL of solubility Xcr

0 and line DQ0ENL of separation resulting in
Xopt

p and X1. It appears from this that the limiting solubility in a small particle does
not coincide with the equilibrium concentration after the separation. We call this
effect ‘critical supersaturation’. (The notion of critical parameters with another

586 A. S. Shirinyan and A. M. Gusak
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choice of phase transition criterion was used by Ulbricht et al. (1988) and Schmelzer
and Schweitzer (1990).) This means that separation is possible only (at some
fixed temperature and size) if �X>�Xcr. Here �Xcr

¼ Xcr
0 � Xopt

p is the ‘critical
supersaturation’, that is the difference between the limiting mean mole fraction of
component B in the initially saturated alloy (or solubility concentration correspond-
ing to the separation criterion) and optimal (or equilibrium) concentration in the
parent phase after the separation. If the supersaturation �X is less than the ‘critical
supersaturation’ (�X<�Xcr), which is a certain value for an alloy of fixed size R
and temperature T, then nucleation and separation are impossible. The physical
reason for this peculiarity consists of two factors. The first is a conservation
law effect and the second is that the separation in a small particle may start only
from nucleus formation, the volume of which is not small with respect to the total
system volume.

It is clear from the present analysis and figure 5 that points Q0, Q and Q00

correspond to the leverage rule Ntot �N1ð Þ�Xcr
¼ N1 X1 � Xcr

0ð Þ, where N1 is the
total number of atoms in the new phase, Ntot is the total number of atoms in the
binary system and the interval QQ0 corresponds to �Xcr.

For a finite rate of T, R or X0 changes, one should observe hysteresis behaviour
(see below). Contrary to the usual hysteresis, which vanishes at infinitely slow
processes (dT=dt ! 0 or dR=dt ! 0 or dX0=dt ! 0), critical supersaturation does
not disappear; as it is a thermodynamic characteristic depending on T and R

Phase diagrams of decomposing nanoalloys 587

Figure 5. Size-dependent temperature–concentration state diagram. ASHPNF is the cupola-
shaped diagram of a binary system for the case of separation in an infinite system,
which is found analytically when the new phase is strictly stoichiometric; MQZNL is
the cupola-shaped diagram of small particle at fixed radius R (the curve line connect-
ing the experimental crosses is plotted for visualization of the cupola shape); the set of
points DQ0ENL determines the result of separation: Xopt

p (points DQ0E) and X1¼ 0.5
(points NL) in a small particle. The parameters are given in the main text.



D
ow

nl
oa

de
d 

B
y:

 [C
an

ad
ia

n 
R

es
ea

rc
h 

K
no

w
le

dg
e 

N
et

w
or

k]
 A

t: 
01

:1
6 

29
 J

un
e 

20
07

 

(figure 6). On increasing (decreasing) the size, the magnitude of the critical super-
saturation �Xcr decreases (increases). In the limiting case of an infinite environment
the ‘critical supersaturation’ �Xcr becomes zero.

The kinetic decoding of temperature hysteresis is presented qualitatively in
figure 7 in which one hysteresis loop for concentration Xp is shown. (One can plot
qualitatively similar diagrams for size hysteresis and concentration hysteresis.) Such
hysteresis loops are typical for first-order phase transitions and characterize the finite
rate of relaxation of the system to the minimum Gibbs free energy. The temperature
hysteresis presented here is related to the existence of concentration depletion.
The depletion is a parameter of the behaviour that makes the kinetic problem of
behaviour of nanoalloys in a changing temperature field complicated. The ‘kinetic
decoding’ of these transformations in the framework of a master equation approach
is given in appendix A for a simplified model. Here, only general considerations are
presented.

Hysteresis shows the irreversible character of state changes in the parent phase
during cooling or heating at a finite speed. Line 10 represents the trend of the
concentration curve in the parent phase from a supersaturated state (parent phase
in figure 1 (a)) at point 1 to a saturated state (parent phase in figure 1(a)) at point 0
(and vice versa) when a change in temperature does not change the concentration X0

(i.e. the kinetic ‘saturation’ concentration). Curve 34 corresponds to the concentra-

588 A. S. Shirinyan and A. M. Gusak

Figure 6. Representation of the ‘critical supersaturation’ effect as a function of mean mole
fraction X0 of component B in the nanoalloy (note that Xp is a function of X0, and
Xopt

p is the size-dependent constant). The increase in supersaturation ends with an
abrupt drop �Xcr after reading the separation criterion at X0 ¼ Xcr

0 . Critical super-
saturation depends on T and R. With increasing size the magnitude of the ‘critical
supersaturation’ �Xcr decreases (R4<R5<R1¼1). The full square at the origin of
the coordinate axes characterizes the zero value of ‘critical supersaturation’ in the case
of separation in an infinite matrix (where Xcr

0 ¼ Xopt
p ¼ Xp,1).
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tion changes in Xp in the two-phase state (parent phase þ new phase 1 in figure 1(b))
down to absolute depletion (depletion concentration at point 4). For the limiting
case of infinite environment the asymptotic concentration will be determined by the
value Xp,1. Thus during one circle the curve circumscribes a closed loop, namely a
hysteresis loop. The form of the loop depends on the nature of substances and the
rate of temperature or size change (similarly to internal friction in material under the
cyclic deformation or magnetic induction of ferromagnetic in a changing external
magnetic field).

The appearance of the hysteresis loop presented here is related to the nucleation
barrier existence, non-monotonic and asymmetric�G(r) dependence curve (figure 3).
Moreover, the �G(r) shape will lead to different fluctuation time values between the
nucleation and separation and back transition (from a two-phase state to a single-
phase state).

} 6. Concluding remarks

A thermodynamic model of decomposition in a binary nanoparticle is presented.
A decomposition criterion for a small particle is reformulated.

In the description of the separation of a supersaturated solution in a small
particle, one must distinguish the solubility limit (maximal impurity concentration
before separation) and equilibrium concentration of the depleted parent phase after
separation, the difference being called ‘critical supersaturation’. The ‘critical super-
saturation’ is a thermodynamic characteristic depending on the temperature and size.

For a finite rate of temperature, size and/or concentration changes, one should
observe hysteresis behaviour.

The solubility in small particles increases even without taking into account inter-
actions with the boundaries of the particle (if the density change is neglected). The
general theory must take into account all three factors: external surface tension,
interfacial tension and depletion of the parent phase by the new phase.

Phase diagrams of decomposing nanoalloys 589

Figure 7. Qualitative representation of the ‘hysteresis’ effect in a nanosize particle: 012,
supersaturated single-phase state (parent phase in figure 1(a)); 23, phase transition
from the single-phase state at point 2 to the two-phase state (parent phase þ phase 1
in figure 1(b)) at point 3; 34, 43, 35, cooled two-phase states (parent phaseþ phase 1);
561, phase transition from (parent phase þ phase 1) state to single (parent phase) state.
Point 2 approximately corresponds to point Q in figure 5; point 3 corresponds to point
Q0 in figure 5. The slope of the 23 interval depends on the cooling rate (and the 561
slope depends on the heating rate).
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In our model we used several simplifications, some of which have been discussed
in } 2. Other limitations of the results presented are as follows.

(i) The intermediate phase is considered to be a line compound. The existence
of a finite homogeneity range of the intermediate phase can be essential in
the problem of reactive diffusion (when the diffusion flux and corresponding
concentration gradient across the phase are necessary for reaction), but in
our case of decomposition the small changes of composition inside the new
phase can be neglected.

(ii) The concentration distribution in the particle was considered as step like
at each moment of decomposition. This model can be modified in the frame-
work of the Cahn–Hilliard (1959) approach with gradient terms in the
density of Gibbs energy leading to a diffuse interface. However, this modi-
fication (much more complicated in a mathematical sense) leads qualita-
tively to the same results (for example Shirinyan and Gusak (1999)).

(iii) Segregation effects have been neglected. Segregation can be important for
equilibrium redistribution (Weissmuller and Ehrhardt 1998). The influence
of this aspect on the splitting of equilibrium curves and hysteresis will be
analysed elsewhere.

(iv) The size and shape of the whole system remained constant, so that the
contribution of external surface tension did not play any role. Geometrical
effects may be introduced in the framework of the presented analysis using
the recent results for the modelling of shape-dependent phase diagrams of
nanoparticles (Wautelet et al. 2003).

The offered model may be generalized for the analysis of the phase diagrams
in the case of competitive nucleation and growth of two (or many) intermediate
phases in volumes of nanometric size (Shirinyan et al. 2000).
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APPENDIX A

Hysteresis of phase separation in an ensemble

of small isolated particles

Here we present a numerical analysis of hysteresis in an ensemble of isolated
nanoparticles, using the standard kinetic master equation approach. (The calcula-
tions in this appendix have been made in collaboration with Mykola Pasichny.)
When such a system is quenched into the two-phase region, separation proceeds
via nucleation and growth of the new phase nuclei. Here we solve the problem of
unsteady-state nucleation kinetics when taking into account the time- and size-
dependent depletion. In our case the Gibbs free energy (4) is a function of time
(via the time-dependent temperature).
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To carry out the subsequent analysis we introduce a size distribution function
f ð ~NN, tÞ, that is the number of droplets of the new phase consisting of ~NN structure
units AB at moment t. As was mentioned above, X0<0.5, X1>X0 and X1¼ 0.5; so
the number ~NN of units in each nucleus coincides with the number of atoms of B type:
~NN ¼ NB and f ð ~NN, tÞ ¼ f NB, tð Þ. The process is controlled by the mobility of compo-
nent B. Moreover, at each moment, both phases are treated as homogeneous.

The evolution of an ensemble of clusters formed by the nucleation and growth
processes will be described by the master equation

of NB, tð Þ

ot
¼ f NB � 1, tð Þvþ NB � 1ð Þ þ f NB þ 1, tð Þv� NB þ 1ð Þ

� f NB, tð Þ v� NBð Þ þ vþ NBð Þ

 �

: ðA1Þ

The frequency vþ NBð Þ of attachment and the frequency v� NBð Þ of detachment
of monomer AB to a cluster of size NB are interrelated as usual:

v� NBð Þ ¼ vþ NBð Þ exp
�G NBð Þ ��G NB � 1ð Þ

kT

� �
: ðA2Þ

The change �G NBð Þ in the free energy per particle is determined by equation (4)
and may be rewritten as

�G NBð Þ ¼ �g1ðTÞ
NB

X1

þ�g0 T ,Xp NBð Þ
� �

Ntot �
NB

X1

� �

��g0 T ,X0ð ÞNtot þ
3

2
B

NB

X1

� �2=3

, ðA3Þ

where again Ntot is the total number of atoms in one particle (Ntot¼ 4pR3n/3) and
B ¼ 2ð4p=3Þ1=3ð�=n2=3Þ is the coefficient of the surface energy contribution.

The mole fraction Xp in the depleted parent phase is a function of the number NB

of units:

XpðNBÞ ¼
X0Ntot �NB

Ntot �NB=X1

: ðA4Þ

Further vþ NBð Þ will be taken as constant; so we use a variable for time: � ¼ vþt.
The cluster size distribution function f NB, �ð Þ obeys the boundary condition,

which is reduced simply to the conservation of particles:

f N0, �ð Þ ¼ W �
X

NB¼N0þ1

f NB, �ð Þ: ðA5Þ

W is the total number of isolated nanoparticles in the ensemble coinciding with the
number of nuclei (one nucleus in one particle) and N0 is the minimal number of
building units in the nuclei.

The initial conditions are

f NB, � ¼ 0ð Þ ¼
W , NB ¼ N0,

0, NB 6¼ N0:

(
ðA6Þ

The aim of this model is to trace the average composition of the depleted parent
phase during the temperature cycling of the ensemble of isolated nanoparticles.

Phase diagrams of decomposing nanoalloys 591
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This concentration is determined by the formula

Xp

� 

¼

P
NB¼N0

f ðNB, �ÞXp NBð ÞP
NB¼N0

f ðNB, �Þ
: ðA7Þ

Numerical calculations have been realized for the following set of parameters:
X0¼ 0.3; X1¼ 0.5; Ntot¼ 1000; N0¼ 2; W¼ 1010; �g1¼�4.5� 10�20 J; �¼ 2.3;
B¼ 2� 10�20 J. The detailed analysis will be discussed elsewhere. Here we shall
show only the evolution of the mean concentration hXpi in the process of tempera-
ture cycling from a high temperature T1 to a low temperature T3 (see figure 3 (a)) and
back for different rates � ¼ dT=d� of temperature changes (figure A 1).
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