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PREFACE

In view of the large number of books on thermodynamics it may seem sur-
prising that there should be any need for yet another. A cursory survey of all
the existing books will however show that only very few are at all comparable.
The total number is considerably reduced if we reject the ones which G. N.
Lewis so aptly described as containing ‘cyclical processes limping about
eccentric and not quite completed cycles’ and consider only those which pre-
sent thermodynamics as an exact science. Many of these, including some of
the best, are out of date. No book written before 1929 even attempts an
account of any of the following matters: the modern definition of heat given
by Born in 1921; the quantal theory of the entropy of gases and its experi-
mental verification; Debye’s formulae for the activity coefficients of elec-
trolytes; the use of electrochemical potentials of ions; the application of
thermodynamics to dielectrics and to paramagnetic substances. The first
textbook on thermodynamics to include any of these matters is that of
Schottky published in 1929. The number of textbooks on thermodynamics
written since then is in single figures and of these fewer than half a dozen
are in English. The only two available bearing any appreciable resemblance
to this book are Zemansky’s ‘Heat and Thermodynamics’ and Macdougall’s
‘Thermodynamics and Chemistry’. I have a great admiration for both these
books, but they are quite different from each other and from this book.
Zemansky’s book is supremely good on the fundamentals of thermodynam-
ics and should be equally useful to physicists, chemists and engineers. It
includes especially thorough discussions on the meaning of heat, on calo-
rimetry, on thermometry, on steam engines and on refrigerators. On the
other hand there are important applications to physical chemistry, such as
solutions, interfaces, electrochemistry, the third principle, entropy constants
which are dealt with sketchily or not at all. Macdougall’s book on the other
hand is, as its title indicates, devoted mainly to applications of thermody-
namics to chemistry. Less attention has been paid to alogical formulation of
the fundamental principles and there is no application to dielectrics or to
paramagnetics.
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The present book is addressed equally to physicists and to chemists,
but not to engineers. It is thus in a sense intermediate between the other two
books mentioned. It is written for graduates, but much of it should be useful
to undergraduates intending to specialize in physical chemistry or chemical
physics.

There are several novel or unusual features in the treatment, notably the
following. The third principle of thermodynamics is introduced near the
beginning and is then used throughout the book. As the third principle can
be properly understood only through statistical mechanics an early chapter
is devoted to a digression on this subject. Considerable use is made of a func-
tion A, called the absolute activity, related to the chemical potential u by
A = exp(u/RT) or y = RT log A. This function plays an important part in
statistical mechanics, more especially in Bose-Einstein and in Fermi-Dirac
statistics, but its close relation to p has not always been appreciated. At the
same time A is often more convenient than u for formulating equilibrium
conditions, especially those of chemical reactions. Physico-chemical systems
are classified in chapters according to the number and nature of the compo-
nents, not according to the number or nature of the phases. Interfaces are
treated as thin phases after the manner of van der Waals and Bakker, not
as fictitious geometrical surfaces after the manner of Gibbs. There is no
separate chapter on interfaces, but they are dealt with according to the
number of components. The thermodynamics of an interface in a two
component system is much more complicated than that of a single compo-
nent system and conveniently comes at a later stage. The treatment of elec-
trolyte solutions is split into two chapters; in the first of these electric
potential need not be mentioned, while the second, entitled electrochemistry,
is by contrast devoted to electrochemical cells, The treatment of systems in
electric and in magnetic fields, especially the latter, is more detailed than
usual.

Choice of notation always leads to difficulties. No notation is perfect,
but some are better than others. I have tried to be guided by the principle
that the symbols used should be as simple as possible provided they are
unambiguous. I will mention two examples. The symbol V; for the partial
molar volume of the species i is better than ¥; because the bar serves no useful
purpose and in fact does harm by suggesting an average. Again if the super-
script ® is used to refer to a component in the pure state, then to denote the
value at a standard pressure a different superscript, such as, should be used.
It is unfortunate that there is not yet uniformity in the use of symbols for
Gibbs’ four thermodynamic potentials ¢, x, ¢, {. I have used those recom-
mended both by the International Union of Chemistry (1947) and by the
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International Union of Physics (1948), namely U, H, F, G. In my opinion
there is no disrespect to Gibbs, nor to anyone else, in finding these symbols
more convenient than their alternatives.

Experimental data and detailed calculations have been included here
and there for illustrative purposes only. In all such examples care has been
taken to use the most reliable modern data available.

Copious references have been given to modern literature, but references
have usually not been given for theorems and formulae now become clas-
sical unless there seemed to be a special reason for so doing, as for example
to emphasize a point of historical interest or to throw light on a contro-
versial matter.

There is an author index of the references to the literature. The omission
of a subject index is deliberate as it would have had to be either excessively
long or incomplete. There is however a detailed table of contents which should
almost always enable an experienced reader to find what he is looking for.

A few of the diagrams have by permission been copied from diagrams
in other books or in journals. I am grateful for such permission to the Royal
Society, the American Institute of Physics, the Cambridge University Press
and Messrs. Taylor and Francis.

I want to thank Dr. G. S. Rushbrooke for reading, checking and cor-
recting the last four chapters of the book. The rest of the book has been
checked by Mr. B. Topley, to whom my debt of gratitude cannot be ade-
quately expressed in words. He has been of inestimable help to me in elim-
inating not only misprints and errors of transcription but also poor Eng-
lish, bad grammar, false reasoning and obscurity. If, as T hope, there re-
main but few examples of these, the credit is his.

Reading University, August 1949 E.A.G.

PREFACE TO SECOND EDITION

The text of this edition is essentially the same as that of the first edition,
the only significant change being at the end of § 4.06. Several typographical
errors in the first edition have been corrected. A subject index compiled by
Mr. M. L. McGlashan has been added.

A distinguished American reviewer of the first edition has proposed that
this book might have the sub-title ‘Pride and Prejudice’. Each reader must
decide for himself on the merit of this proposal.

Reading University, June 1950 E.A.G.
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PREFACE TO THIRD EDITION

Apart from numerous corrections and changes of detail, which I hope
are improvements, there are only two major changes in the structure of
this book.

The first change relates to the treatment of mixtures. In the previous
editions systems of two components were treated in a separate chapter
from systems of more than two. This necessitated an appreciable amount
of repetition which some reviewers found tedious. The new edition contains
instead a chapter on ‘mixtures’ in which all components are treated on a
par with the emphasis on mole fractions and another chapter on ‘solutions’
in which one component is singled out as the solvent with the emphasis
on mole ratios or molalities. With this new arrangement the chapter on
‘extremely dilute solutions’ becomes superfluous and is omitted.

The other significant change is the inclusion of a short chapter on Onsa-
ger’s relations. The discussion has been confined to isothermal systems so
as not to increase unduly the length and so the price of the book. I hope
that reviewers who deplore the omission of thermal diffusion will advise
me what I ought to have omitted to make room for it. On the other hand 1
offer no apology for ignoring the application of Onsager’s relations to
coupled chemical reactions under conditions close to equilibrium. This appli-
cation is in my opinion a fruitless one. I still adhere to the established view
that any study of chemical kinetics which ignores the mechanism is prof-
itless.

It gives me pleasure to conclude by thanking my friend Dr. M. L. McGlas-
han for his indefatigable help in preparing the new edition and his ever con-
structive criticism, and to congratulate the publishers on what I consider to
be beautiful printing,

Reading University, June 1956 E.A.G.

PREFACE TO FOURTH EDITION
Typographical errors have been corrected on pages 43, 63, 175, 178, 225,
286, 451, and 452. 1 am grateful to my friend N. K. Adam and others for

drawing my attention to these errors. Theie are no other changes.

Reading University, 1959 E.A.G.
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PREFACE TO FIFTH EDITION

The whole text has been thoroughly revised. The resulting changes are neither
striking nor numerous. The most important are the following. The ele-
mentary discussion of partial differentiation in chapter 3 has been omitted
and the rest of chapter 3 has been put into chapter 1. In the chapter on mix-
tures the definitions of excess functions have been clarified since the previ-
ous text has sometimes been misinterpreted. Chapter 13 now includes the
Onsager relations for thermoelectricity and for isothermal diffusion. There
is still no reference in the text to Onsager relations for ‘coupled’ chemical
reactions since I believe such relations to have no bearing on real chemical
reactions. A short chapter has been added on systems in motion treated
according to the special theory of relativity. Throughout the book almost
all formulae are written in a single line. Any loss in appearance is compen-
sated by saving in printing costs.

Internationally recommended notation is used throughout with three
exceptions. The Helmholtz function is denoted by & leaving A free for
area and F free for the Faraday constant. The fugacity of i is denoted by
p; while the partial pressure of i is denoted by y;P, where y; is the mole
fraction of i in the gas phase and P is the total pressure; when the gas may
be regarded as perfect then p,=y;P. The symbol °K for degree Kelvin is
abbreviated without ambiguity to K.

I am extremely grateful to Professor M. L. McGlashan for reading the
whole of the text and suggesting numerous improvements. I also thank
Mr. N. F. Judd and Mr. I. C. McKinnon for reading and correcting
proofs.

Reading, June 1966 E. A.G.
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INTRODUCTION CONCERNING NOTATION AND
TERMINOLOGY

We consistently use symbols to denote physical quantities, not their measure
in terms of particular units. For example, we may write of a pressure P

P=1.2atm
=912 mmHg
=1.216 bar
=1.216x 106 dyn cm ™2
=1216x10°Im™3

or alternatively P/atm = 1.2, etc., but under no circumstances shall we equate
P to 1.2 or to any other number. This method of notation called ‘quantity
calculus’ is far from new. It was recommended by Alfred Lodge*. It has
been used by some of the greatest theoretical physicists, in particular Planck
and Sommerfeld. The advantages of this notation have been emphasized
by Henderson' who attributed it to Stroud.

This notation is especially clear and tidy for labelling the axes of a graph,

e.g.

rather than

log(p/atm)
log p(atm)

103K/T 1/T(K) x 103

So far as possible we adhere in our notation to the recommendations of
the Conférence Générale des Poids et Mesures’, the International Standards

* Lodge, Nature 1888 38 281.
Henderson, Math. Gaz. 1924 12 99.
C.R. Conférence Générale des Poids et Mesures, 1948, 1954, 1960.
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2 NOTATION AND TERMINOLOGY

Organisation*, The International Union of Pure and Applied Chemistry?,
and the International Union of Pure and Applied Physics*, these being in
almost complete mutual agreement. In particular we use italic (sloping)
letters for physical quantities and roman (upright) letters for mathematical
operators and units. The notation recommended by these bodies has been
simplified in one respect. The symbol °K for the temperature unit in the
Kelvin scale is abbreviated to K. This economy cannot lead to any ambi-
guity. The symbol °C for the unit in the Celsius scale is on the contrary
retained. For example we write for the specific heat capacity C of water

C=4.1793Jg 'K™! at 25°C.

When discussing matters involving electricity or magnetism we use the
internationally recommended rationalized system and units based on the
ampere and the volt. In this system the electric potential difference ¥ in a
parallel plate capacitor is given by

Y =o0d|s

where d is the distance between the plates, + o is the charge density on the
plates, and ¢ is the permittivity of the medium. If there is a vacuum between
the plates

£=£,=8.85416x10""2Cm™ ' V™1

The ratio ¢, =¢/¢, is called the relative permittivity or the dielectric constant.
A reader who prefers the obsolescent unrationalized system® can translate
any formula into it by substituting &'/4r for ¢ and gp/dn for &, while &,
remains unchanged.

In 1961 the International Union of Pure and Applied Physics made the
following recommendations:$

‘In the field of chemical and molecular physics, in addition to the basic
quantities defined above having been defined by the Conférence Générale
des Poids et Mesures, amount of substance is also treated as a basic quantity.
The recommended basic unit is the mole, symbol: mol. The mole is defined
as the amount of substance, which contains the same number of molecules
(or ions, or atoms, or electrons, as the case may be), as there are atoms in
exactly 12 gramme of the pure carbon nuclide '2C.’

* [.8.0. Recommendation R.31, 1956-.

t LLU.P.A.C. Manual of Physico-chemical symbols and Terminology, 1959.
! LU.P.A.P. Symbols, Units and Nomenclature in Physics, 1965.

$ 1.U.P.A.P. Symbols, Units and Nomenclature in Physics, 1961 p. 19.



NOTATION AND TERMINOLOGY 3

In 1965 the International Union of Pure and Applied Chemistry adopted
the almost identical recommendation:*
‘A mole is an amount of a substance of specified chemical formula, containing
the same number of formula units (atoms, molecules, ions, electrons, quanta,
or other entities) as there are in 12 grams (exactly) of the pure nuclide *2C.’

In this book the recommendation has been accepted that amount of sub-
stance is a distinct quantity different from mass. There remains an unresolved
question of terminology. There is a need for a word to denote per amount of
substance analogous to specific meaning per mass and density meaning per
volume. In the absence of any recommendation we have used the word
proper. We accordingly say that the ‘proper energy’ of a substance is so
many joules per mole instead of saying that the ‘molar energy’ is so many
ioules per mole, which is as clumsy as if we spoke of ‘gramme energy’
instead of ‘specific energy’.

One further change in terminology must be mentioned. In contrast to
the previous editions of this book, but in conformity with usual American
practice’, molality denoted by m is here a dimensionless quantity defined by

m=rir®

where r denotes the solute-solvent mole ratio and r® is a standard value of r.
We choose for r® the value

1

r® =M, mole kg~

where M, denotes the proper mass of the solvent. This revised interpretation
of molality leads to shorter formulae.

* LU.P.A.C. Information Bulletin Number 24, 1965, p. 4.
t Lewis and Randall, Thermodynamics, revised by Pitzer and Brewer, McGraw-Hill
1961 p. 200.






CHAPTER 1

FUNDAMENTAL PRINCIPLES

§1.01 Scope of thermodynamics

The most important conception in thermodynamics is temperature. The
essential properties of temperature will be described below. Anticipating
this we may define thermodynamics as that part of physics concerned with
the dependence on temperature of any equilibrium property. This definition
may be illustrated by a simple example. Consider the distribution of two
immiscible liquids such as mercury and water in a gravitational field.
The equilibrium distribution is that in which the heavier liquid, mercury,
occupies the part of accessible space where the gravitational potential is
lowest and the lighter liquid, water, occupies the part of the remaining
accessible space where the gravitational potential is lowest. This equilibrium
distribution, if we neglect the effect of thermal expansion, is independent
of temperature. Consequently the problem does not involve thermodynamics,
but only hydrostatics. Now consider by contrast the distribution in a
gravitational field of two completely miscible fluids such as bromine and
carbon disulphide. The relative proportions of the two substances will
vary from place to place, the proportion of the heavier liquid, bromine,
being greatest at the lowest gravitational potential and conversely. The
precise relation between the composition and the gravitational potential
depends on the temperature, assumed uniform, of the mixture. Clearly this
is a problem in thermodynamics, not merely hydrostatics.

We shall now mention a few other typical examples to show that thermo-
dynamics has a bearing on most branches of physics, including elasticity,
hydrodynamics, electrostatics, and electrodynamics. In the relation, known
as Hooke’s law, of proportionality between tension and extension the coeffi-
cient of proportionality will in general be temperature dependent. In so far
as its variation with temperature is relevant thermodynamics is involved.
To study the temperature dependence of the compressibility of a fluid, that
of the permittivity of a dielectric, that of the permeability of a paramagnetic
material, that of the electromotive force of a cell, and in fact the temperature

5



6 FUNDAMENTAL PRINCIPLES

dependence of any equilibrium property, thermodynamics is needed,

The name ‘thermodynamics’ is too firmly established to be changed,
but a better name is ‘thermophysics’ containing as branches ‘thermodynam-
ics’ or ‘thermomechanics’, ‘thermoelasticity’, ‘thermoelectrostatics’, ‘ther-
momagnetics’, ‘thermochemics’, and so on.

§1.02 Thermodynamic state. Phases

The simplest example of a system to which thermodynamics can be applied
is a single homogeneous substance. In this simplest case a complete descrip-
tion of its thermodynamic state requires a specification of its content, i.e.
amount of each chemical substance contained, and further a specification
of two other quantities such as for example volume and viscosity, or density
and pressure. If all the physical properties of the system in which we are
interested were independent of whether the system is hot or cold, then in
order to describe its state it would be sufficient to specify, apart from the
amount of each chemical substance contained, only one quantity, such as
volume. Usually some, if not all, of the properties of interest do depend on
whether the body is hot or cold and the specification of one extra independent
quantity fixes the degree of hotness or coldness. Thus this simple thermo-
hydrodynamic system has one more degree of freedom than the correspond-
ing hydrodynamic system.

If the system is not homogeneous, then in order to describe its thermo-
dynamic state we have to consider it as composed of a number, small or
large, of homogeneous parts called phases each of which is described by
specifying its content and a sufficient number of other properties; the suffi-
cient number for each thermo-physical phase is always one more than in the
corresponding hypothetical pAysical system with all its properties of interest
independent of whether it is hot or cold.

In some cases the complete description of the thermodynamic state of a
system may require it to be regarded as composed of an infinite number of
infinitesimal phases. If the physical properties vary continuously over
macroscopic parts of the system, this procedure offers no difficulty. An
example is a high column of gas in a gravitational field. If on the other
hand there are infinitely many discontinuities over finite regions, it may be
difficult if not impossible to give a complete description of the thermody-
namic state. An example is a gas flowing turbulently through an orifice.

In considering the properties of interfaces, we shall have to include
phases which are extremely thin in the direction normal to the interface.

To sum up, the complete description of the thermodynamic state of any
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system involves a description of the thermodynamic state of each of its
homogeneous phases, which may be few or many or infinite in number.
The description of the thermodynamic state of each phase requires the
specification of one more property than the description of the physical state
of an analogous hypothetical phase all of whose properties of interest are
independent of whether it be hot or cold.

§1.03 Thermodynamic process

If on comparing the state of a thermodynamic system at two different times
itis found that there is a difference in any macroscopic property of the system,
then we say that between the two times of observation a process has taken
place. If, for example, two equal quantities of gas are allowed to intermix,
this will constitute a process from a thermodynamic point of view provided
the two initially separate gases are distinguishable by any macroscopic
property, even though their difference is very slight as would be the case
for two isotopes. If, on the other hand, the two initially separate gases are
not distinguishable by any macroscopic property, then from a thermodynam-
ic point of view no process takes place although from a molecular point of view
there is a never-ceasing intermixing.

§1.04 Infinitesimal process

A process taking place to such an extent that there is only an infinitesimal
change in the macroscopic properties of a system is called an infinitesimal
process.

§1.05 Insulating walls. Adiabatic processes

The boundary or wall separating two systems is said to be insulating if it
has the following property. If any system in complete internal equilibrium
is completely surrounded by an insulating wall then no change can be pro-
duced in the system by external agency except by

(a) movement of the containing wall or part of it, or

(b) long range forces, e.g. movement of electrically charged bodies.
When a system is surrounded by an insulating boundary the system is said
to be thermally insulated and any process taking place in the system is called
adiabatic. The name adiabatic appears to be due to Rankine*.

* Maxwell, Theory of Heat, Longmans 1871 ed. p. 129.
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§1.06 Conducting walls. Thermal equilibrium

The boundary or wall separating two systems is said to be thermally con-
ducting if it has the following property. If any two separate systems each in
complete internal equilibrium are brought together so as to be in contact
through a thermally conducting wall then in general the two systems will be
found not to be in mutual equilibrium, but will gradually adjust themselves
until eventually they do reach mutual equilibrium after which there will of
course be no further change. The two systems are then said to have reached
a state of thermal equilibrium. Systems separated by a conducting boundary
are said to be in thermal contact.

§1.07 Zeroth law. Temperature

We are now ready to formulate one of the important principles of thermo-
dynamics.

If two systems are both in thermal equilibrium with a third system then
they are in thermal equilibrium with each other.

This will be referred to as the zeroth law of thermodynamics.

Consider now a reference system in a well-defined state. Then all other
systems in thermal equilibrium with it have a property in common, namely
the property of being in thermal equilibrium with one another. This property
is called temperature. In other words systems in thermal equilibrium are said
to have the same temperature. Systems not in thermal equilibrium are said
to have different temperatures.

§1.08 Thermostats and thermometers

Consider now two systems in thermal contact, one very much smaller than
the other, for example a short thin metallic wire immersed in a large
quantity of water. If the quantity of water is large enough (or the wire small
enough), then in the process of attaining thermal equilibrium the change in
the physical state of the water will be negligible compared with that of the
wire. This situation is described differently according as we are primarily
interested in the small system or in the large one.

If we are primarily interested in the small system, the wire, then we regard
the water as a means of controlling the temperature of the wire and we
refer to the water as a temperature bath or thermostat.

If on the other hand we are primarily interested in the large system, the
water, we regard the wire as an instrument for recording the temperature of
the water and we refer to the wire as a thermometer. This recording of
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temperature can be rendered quantitative by measuring some property of
the thermometer, such as its electrical resistance, which varies with temper-
ature.

§1.09 Temperature scales

The choice of thermometers is very wide especially as there is a choice both
of the substance constituting the thermometer and of the property
measured. Consequently there is a wide, effectively infinite, choice of temper-
ature scales. There is however one particular scale which has outstandingly
simple characteristics which can be described in a manner independent of
the properties of any particular substance or class of substances. This
temperature is called thermodynamic temperature or absolute temperature.
It was first defined by Kelvin* and is denoted by T. It is the only scale that
we shall use. It will be defined by its properties, especially its relation to
entropy. The question how 7 can best be measured must necessarily be post-
poned to chapter 3.

§1.10 Energy and heat. First law

Leaving temperature for the moment, we must now say something about
energy. The conception of energy arose first in mechanics and was extended
to electrostatics and electrodynamics. When these branches of physics are
idealized so as to exclude friction, viscosity, hysteresis, temperature gra-
dients, temperature dependence of properties, and related phenomena, the
fundamental property of energy can be described in two alternative ways.

I. When several systems interact in any way with one another, the whole
set of systems being isolated from the rest of the universe, the sum of the
energies of the several systems remains constant.

II. When a single system interacts with the rest of the universe (its
surroundings) the increase of the energy of this system is equal to the work
done on the system by the rest of the universe (its surroundings).

Under the idealized conditions mentioned above these two descriptions
are equivalent, but when these restrictions are removed the two descriptions
are no longer equivalent and we have to make a choice between them.
Of the alternatives we choose I and with this choice the energy is denoted by
U. The formulation I is then a statement of the conservation of energy.

Let us now consider in greater detail the interaction between a pair of

* W.Thomson, Proc. Cambridge Phil. Soc. 1848 1 69.
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systems, supposed isolated from the rest of the universe. Using superscripts
A, B to relate to the two systems we have

dU*+dUB=0 1.10.1
or
dUA=—dU®B 1.10.2

but in general this is not equal to the work wg, done by B on A. In other
words there can be exchange of energy between A and B of a kind other
than work. Such an exchange of energy is that determined by a temperature
difference and is called /eat. If then we denote the heat flow from B to A by
gpa, We have the following relations

dU*=wgs+gpa 1.10.3
dUP=w,g+qap 1.10.4
Wap+wpa=0 1.10.5
gas+qpa=0. 1.10.6

This set of relations together constitutes the first law of thermodynamics.

The sign of g is determined by the temperature difference between A and B,
and the universal convention is to define the sign of a temperature difference
in such a way that heat flows from the higher to the lower temperature.

The above analysis of the most general interaction between two systems can
immediately be extended to the most general interaction between a given
system and the rest of the universe. If we denote by U* the energy of the
system X, by g the heat flow from the surroundings to the system, and by w
the work done on the system, we have

dUr=q+w. 1.10.7

The extension of the mechanical principle of conservation of energy to
include changes in thermal energy and the flow of heat was a gradual process,
the earlier formulations being less rigorous than later ones. The principle
is implied in a posthumous publication of Carnot* (died 1832) and was
placed on a firm experimental basis by Joule' (1840-45). More explicit
statements of the principle were formulated by Helmholtz* (1847) and by

* Carnot, Réflexions sur la puissance motrice du feu, Bachelier, Paris, 1824. Reprinted in
1912 by Hermann, Paris and in 1953 by Blanchard, Paris, together with some notes
discovered after Carnot’s death in 1832 and communicated to the Académie des Sciences
in 1878 by Carnot’s brother.

t Joule, Phil. Mag. 1845 27 205.

* Helmholtz, Uber die Erhaltung der Kraft, Physik. Ges. Berlin 1847.
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Clausius* (1850). A completely rigorous formulation was given by Born'
(1921).

§1.11 Conversion of work to heat

The expression conversion of work to heat should be used with caution if at
all, since in general w and —g¢ are not numerically equal to each other. If
however a system X is taken through a complete cycle, then since its initial
and final states are identical the initial and final values of U* are the same
and so

AU*=0 w=-—gq (complete cycle). 1.11.1

We may then say that in the cycle the work w done on the system is converted
into the balance of heat —g¢ given off by the system during the cycle, that is
to say the excess of the heat given off over the heat absorbed in various parts
of the cycle.

Again if asystem X is kept in a steady state while work is done on it, then,
since its state remains unaltered, U does not change and so

AU*=0 w=—g (steady state). 1.11.2

Here again we may say that in the steady state the work w done on the system
is converted into the heat —gq given off by the system.

Except in the two special cases just mentioned, it is in general dangerous,
if not meaningless, to speak of the conversion of work into heat or vice-versa.
Unfortunately the expression is sometimes used incorrectly. Let us consider
two simple practical examples which serve to illustrate the correct and in-
correct use of the expression.

Consider as our system an ordinary electric heater, thatis to say a resistor
across which an electric potential difference E can be produced by closing a
switch. Suppose that initially the resistor is in thermal equilibrium with its
surroundings and the switch is open. When the switch is closed a current i
flows through the resistor and the electrical work done on the resistor in an
element of time dr is

w=Eidz. 1.11.3

In the first instant this work produces an increase in the energy U® of the
resistor R, so that

w=dU® (initially). 1.11.4

* Clausius, Ann. Phys. Lpz. 1850 79 368, 500.
t Born, Phys. Z. 1921 22 2I8.
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But immediately the temperature of the resistor becomes higher than that
of its surroundings and so there is a flow of heat —¢ from the resistor to
its surroundings. Thus in a given time

w=dU?—q  (generally). 1.11.5

As the temperature difference between the resistor and its surroundings
increases, so —g/w increases towards the value unity. Eventually a steady
state is reached, the temperature of the resistor no longer increases, and
we have

w=—g dU®=0 (steady state). 1.11.6

Only when this steady state has been reached, and not until then, may one
correctly speak of the conversion of the work w into the heat —gq.

Now by way of contrast consider the system consisting of the electric
heater together with a fluid surrounding it, the whole being thermally
insulated. The work done on the system is still given by (3). But now since
the whole system Z, consisting of resistor and fluid, is thermally insulated ¢
is by definition zero, so that

w=dU* g=0 (thermal insulation). 1.11.7

We may now say that the work w is converted into energy; to speak of its
conversion to heat would be nonsense.

§1.12 Natural and reversible processes

We must now consider a classification of processes due to Planck*. All the
independent infinitesimal processes that might conceivably take place
may be divided into three types: natural processes, unnatural processes, and
reversible processes.

Natural processes are all such as actually do occur; they proceed in a direc-
tion towards equilibrium.

An unnatural process is one in a direction away from equilibrium; such a
process never occurs.

As a limiting case between natural and unnatural processes we have
reversible processes, which consist of the passage in either direction through
a continuous series of equilibrium states. Reversible processes do not
actually occur, but in whichever direction we contemplate a reversible pro-
cess we can by a small change in the conditions produce a natural process
differing as little as we choose from the reversible process contemplated.

* Planck, Ann. Phys. Lpz. 1887 30 563.
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We shall illustrate the three types by an example. Consider a system con-
sisting of a liquid together with its vapour at a pressure P. Let the equilib-
rium vapour pressure of the liquid be P.,. Consider now the process of the
evaporation of a small quantity of the liquid. If P <P,,, this is a natural
process and will in fact take place. If on the other hand P> P,,, the process
contemplated is unnatural and cannot take place; in fact the contrary
process of condensation will take place. If P=P,, then the process contem-
plated and its converse are reversible, for by slightly decreasing or increasing
P we can make either occur. The last case may be described in an alternative
manner as follows. If P=P,, — 4§, where § >0, then the process of evaporation
is a natural one. Now suppose & gradually decreased. In the limit §—0,
the process becomes reversible.

§1.13  Reversible process and reversible change

We have defined a reversible process as a hypothetical passage through
equilibrium states. If we have a system interacting with its surroundings
either through the performance of work or through the flow of heat, we
shall use the term reversible process only if there is throughout the process
equilibrium between the system and its surroundings. If we wish to refer to
the hypothetical passage of the system through a sequence of internal
equilibrium states, without necessarily being in equilibrium with its surround-
ings we shall refer to a reversible change. We shall illustrate this distinction
by examples.

Consider a system consisting of a liquid and its vapour in mutual equilib-
rium in a cylinder closed by a piston opposed by a pressure equal to the
equilibrium vapour pressure corresponding to the temperature of the system.
Suppose now that there is a flow of heat through the walls of the cylinder,
with a consequent evaporation of liquid and work done on the piston at
constant temperature and pressure. The change in the system is a reversible
change, but the whole process is a reversible process only if the medium
surrounding the cylinder is at the same temperature as the liquid and vapour;
otherwise the flow of heat through the walls of the cylinder is not reversible
and so the process as a whole is not reversible, although the change in the
system within the cylinder is reversible.

As a second example consider a flow of heat from one system in complete
internal equilibrium to another system in complete internal equilibrium.
Provided both systems remain in internal equilibrium then the change which
each system undergoes is a reversible change, but the whole process of heat
flow is not a reversible process unless the two systems are at the same
temperature.
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§1.14 Equilibrium and reversible changes

If a system is in complete equilibrium, any conceivable infinitesimal change
in it must be reversible. For a natural process is an approach towards
equilibrium, and as the system is already in equilibrium the change cannot
be a natural one. Nor can it be an unnatural one, for in that case the opposite
infinitesimal change would be a natural one, and this would contradict the
supposition that the system is already in equilibrium. The only remaining
possibilibity is that, for a system in complete equilibrium any conceivable
infinitesimal change must be reversible.

§1.15 Closed systems and open systems

A system of fixed material content is called a closed system and a system of
variable content is called an open system. Similarly a phase of fixed content
is called a closed phase and a phase of variable content is called an open phase.

We shall often be concerned with a closed system composed of two or
more open phases.

Provided a closed phase is at rest and in thermal equilibrium and provided
chemical reactions are excluded, the phase is always in internal equilibrium.
As already mentioned in §1.02 it has two degrees of freedom, that is to say
one more than a hypothetical hydrostatic fluid having properties independent
of temperature. The state of such a phase may therefore be defined by its
energy U and its volume V, but other choices are possible.

§1.16 Entropy

There exists a function S of the state of a system called the entropy of the
system having the following properties.

1. The entropy S* of a system X is the sum of the entropies of its parts,
a, B,... so that

SE=S5"4+SP+. ... 1.16.1

In this respect entropy is similar to mass, volume, and energy.
2. The entropy S* of a closed phase « is determined by the energy U® and
the volume V* of the phase so that

dS*=(05%/0U%),«d U+ (8S*/0V*)yud V. 1.16.2
3. (0S*/oU*)y« is always positive. 1.16.3

4. The entropy of an insulated closed system X increases in any natural
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change, remains constant in any reversible change, and is a maximum at
equilibrium. Hence

dS*20  (insulated closed system). 1.16.4

5. In any reversible adiabatic change the entropy remains constant. Thus
dS*=0  (reversible adiabatic). 1.16.5

These properties together determine the entropy completely except for an
additive constant to which any conventional value may be assigned.

§1.17 Thermal equilibrium

Consider a thermally insulated system composed of two closed phases each
maintained at constant volume and in thermal contact with each other.
Using the superscript * to denote the system and the superscripts * and
to denote the two phases we have

dv:=0 dvPf=0 1.17.1
dU =dU*+dUP=0 1.17.2
dS*=ds*+dsP>0 1.17.3

the inequality holding for a natural heat flow and the equality for a reversible
heat flow. By virtue of (1) we may rewrite (3) as

(05%/0U),«dU* +(8S*/0UP), sd UP 20 1.17.4
and by virtue of (2) this becomes
{(98*/0U%)ya—(8SP/0UP), 8} dU* 20. 1.17.5
We now define a positive quantity 7" by
T=(0U/aS), =1/(3S/dV), 1.17.6
and rewrite (5) as
(1/T*=1/T®)dU*=0 1.17.7

which is equivalent to
(TP~ T*)dU*=0. 1.17.8

Hence for a natural process dU*= —dU® has the same sign as 7% —T".

§1.18 Thermodynamic temperature

The property of T expressed by formula (1.17.8) is obviously that of a
temperature and T defined by formula (1.17.6) is called thermodynamic
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temperature. This temperature is independent of any particular property of
any particular substance. It will be used throughout this book and will be
‘referred to simply as temperature.

§1.19 Entropy and heat

For a single closed phase o we have
dS*=(0S*/0U%),«dU*+(3S*/0V*)pud V* 1.19.1

and conversely if we regard U® as a function of S* and V*

dU*=(0U%0S"),«dS* +(U*/0V*)sxd V*

=T*dS*+(QU*0V¥)g=d V™ 1.19.2

We recall that for a reversible adiabatic change S* remains constant and
consequently

dU*=(0U*/0V*)sudV*=w=—P*dV*  (S*=const.) 1.19.3
where P* denotes the pressure of the phase a. Hence
(OU%joV*)sa= — P* 1.19.4
and substituting (4) into (2) we obtain
dU*=T*dS*—-P*dV*. 1.19.5
Comparing this with the statement of the first law
dUf=gq+w=q—P*dVv* 1.19.6
we see that for a reversible change
T*dS*=q. 1.19.7

We shall now study the change in entropy when the system is neither
thermally insulated nor in complete internal equilibrium. Let the system X
be composed of phases a, B, . . . each in internal equilibrium. If two or more
parts of the system X have the same composition but different temperatures
these are to be regarded as different phases. Now consider an infinitesimal
change in Z in which the quantities of heat gained by the phases a, B, ...
are ¢% g®, . ... Evidently the changes inside the system £ are independent of
where the heat g% ¢P, ... comes from or where the heat —gq% —gP® ...
goes to. We may therefore without affecting the changes inside Z arrange for
o to exchange heat only with a system o’ which is in internal equilibrium and
has the same temperature T* as o; and similarly for B, . . .. We also arrange
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for the composite system X+ao'+B'+.. to be thermally insulated. We
accordingly have

dSE+dS* +dsP +...20. 1.19.8
We also have
dSa’=qa'/Ta’= __qu/'Ta

dS¥ = g¥/T% = — g%/ T 1.19.9
and so on. Substituting (9) into (8) we obtain
dS*= g%/ T*+q%TP+. . .. 1.19.10
In particular for any single phase o
ds*> ¢%/ T 1.19.11

the inequality relating to a natural change and the equality to a reversible
change.

The property of entropy described by (11) may alternatively be expressed
as follows*

ds*=d,5%+d,S* 1.19.12
d,S*=g"T" 1.19.13
d,8*20 1.19.14

where d.S* denotes the increase in S® associated with interaction of o
with its surroundings and d;S* denotes the increase in S* associated with a
natural change occurring inside o.

§1.20 Second law

The enunciation of the properties of entropy and of thermodynamic tem-
perature together constitute the second law of thermodynamics. The second
law was foreshadowed by the work of Carnot' (1824). The first and
second laws were co-ordinated by Clausius* (1850) and by Kelvin® (1851).

* Prigogine and Defay, Chemical Thermodynamics, English translation by Everett,
Longmans 1954 ch. 3.

t Carnot, Réflexions sur la puissance motrice du feu, Bachelier, Paris, 1824. Reprinted in
1912 by Hermann, Paris and in 1953 by Blanchard, Paris, together with some notes
discovered after Carnot’s death in 1832 and communicated to the Académie des Sciences
in 1878 by Carnot’s brother.

t Clausius, Ann. Phys. Lpz. 1850 79 368, 500.

§ W.Thomson, Trans. Roy. Soc. Edinb. 1853 20 261.
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Thermodynamic temperature was introduced by Kelvin* (1848). The concep-
tion of entropy was first used by Clausius' in 1854 and the name also by
Clausius* in 1865. The formulation used above follows closely that of
Callen® (1961).

§1.21  Units

The unit of energy in the ‘Systéme International’ is the joule denoted by J
and defined by J=kg m?s~2. Another unit still widely used by physical
chemists is the thermochemical calorie denoted by cal and defined by
cal=4.184 J exactly.

The unit of thermodynamic temperature in the ‘Systéme International’ is
the degree Kelvin denoted by K and defined by the statement that the thermo-
dynamic temperature T,, of the triple point of natural water is 273.16K
exactly!. The normal freezing point of water, defined as the freezing point
of water saturated with air at atmospheric pressure, is within the accuracy
of experiment 273.150K. The normal boiling point of water, defined as the
boiling point at a pressure of one atmosphere, is within the accuracy of expe-
riment 373.15K. The Celsiusscale of temperature denoted by °Cis defined by

x °C=(273.150 + x)K.

In physical chemistry the commonest unit of pressure is the atmosphere
denoted by atm and defined" by atm=1.01325x10°T m~3 exactly.

§1.22  Extensive properties

The mass of a system is clearly equal to the sum of the masses of its constit-
uent phases. Any property, such as mass, whose value for the whole system
is equal to the sum of its values for the separate phases is called an extensive
property.

Important examples of extensive properties are the energy U, the entropy
S, and the volume V. The energy U* of a system I is related to the energies
U*® of the separate phases o by

U=y U~ 1.22.1

* W.Thomson, Proc. Cambridge Phil. Soc. 1848 1 69.

t Clausius, Ann. Phys. Lpz. 1854 93 481.

* Clausius, Ann. Phys. Lpz. 1865 125 353.

§ Callen, Thermodynamics, Wiley 1961; Guggenheim, Proc. Phys. Soc. London 1962
79 1079.

I'C.R.Conférence Générale des Poids et Mesures 1954.
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Similarly, for the entropy, we have

SF=Y §* 1.22.2

and for the volume

VE=Y v* 1.22.3
When we are considering a system of one phase only we may obviously omit
the superscript and shall sometimes do so.

§1.23 Intensive properties

The density of a phase is clearly constant throughout the phase, because the
phase is by definition homogeneous. Further, the density of a phase of a
given kind and state is independent of the quantity of the phase. Any prop-
erty of a phase with these characteristics is called an intensive property.

The temperature 7* and the pressure P* of a phase o are important exam-
ples of intensive properties.

§1.24 Chemical content of phase

The content of a phase a is defined by the amount n} of each of a finite number
of independently variable chemical species in the phase. The unit of amount
might be chosen as the amount having a given mass but this mass would not
necessarily be the same mass for different chemical species. In fact, it is
usually most convenient to take as unit of amount the mole, that is a mass
proportional to that given by the accepted chemical formula of the particular
species. A purely thermodynamic definition of the mole as unit of amount
will be given in §3.13. In anticipation of this we shall use the mole as the
unit of amount for each chemical species.

§1.25 Chemically inert species

We must emphasize that in the previous section we specified that the chemical
species by which the chemical content of the phase is described must be
independently variable. In the absence of any chemical reaction there is no
difficulty, but if some of the species can react chemically the recipe required
for selecting a set of independently variable species is not so simple. In order
to postpone this complication we shall exclude the possibility of chemical
reactions until we come to §1.43 when we revert to the subject.
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§1.26 Partial and proper quantities

We have seen that the state of a closed phase o may be completely defined
by its energy U® and its volume V*, or by its entropy S* and its volume V*.
It follows that an open phase may be completely defined by U®, V*, and the
amount #} of each chemical species 7, or alternatively by S*, 7%, and the n’s.
But other choices are possible such as 7%, V%, and the n{’s. In particular the
set 7%, P? and the n?’s is especially convenient.

Now let X* denote any extensive property of the phase a such as V* or
U® or S* Then we can derive intensive properties, which we denote by X7,
defined by

X?=(3Xu/a”7)r, P,y (j?éi)- 1.26.1

We shall call V}* the partial volume, U;* the partial energy, and S} the partial
entropy, and so on, of the species / in the phase o.
At given temperature and pressure we have then
dX*=) (0X*/onf)dn{=) Xidn;  (const. T, P). 1.26.2

Since X* is homogeneous of first degree in the #{’s we have by Euler’s
theorem

X =Y n{(0X*/on})=) niXj. 1.26.3
7 g

We may accordingly regard X* as made up additively by a contribution X}
from each unit amount of i.
We also define another intensive property X, by the formula

Xi=XYY =Y mi X3 nt. 1.26.4

We call Vy, the proper volume of the phase a; we call Ug, the proper energy
of the phase o, and we call S, the proper entropy of the phase a.
In the simple case of only a single chemical species i we have

Xi=Xn=X’/nf  (single species). 1.26.5

We emphasize that whereas V*, U® S* and any other X* are extensive
properties, V7, UF, S, and any other X are intensive properties. Since nj}
is normally measured in moles it follows that V; and ¥V, would be measured
in m*mole™" or cm®mole™!, U? and UZ in J mole™! or cal mole™*, and
S7 and S% in J K™! mole™! or cal K™ ! mole™!.

Corresponding to every equation homogeneous of the first degree in the
extensive variables there is an analogous equation between the partial
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quantities and another analogous equation between the proper quantities.
For example from the fundamental equation for a closed phase

dU*=T1"dS*—pP*dy*" 1.26.6

-3

we obtain by differentiating with respect to »f
dU;j=T*"dS; - P*d1}® 1.26.7
whereas by dividing by X, #f we obtain
dU;, =T"dS;,— P*dV;. 1.26.8

It is perhaps worth while drawing attention here to the fact that the
quantity X need not be a thermodynamic property of the system. It is only
required that X shall be an extensive property. We shall merely mention
one example of such a non-thermodynamic property. If r denotes the
refractive index of a binary mixture, we define the rotal refractivity R of the

system by
R=(*-1)V|(r*+2) 1.26.9

so that R is clearly an extensive property. We then define partial refractivities
in the usual way by

R, =(R[on,)7. .0, 1.26.10
R2 =(aR/an2)T’P’”l 1.26.11

and it then follows as usual that
R=n1R1+an2. 12612

The reason for choosing this particular example is the following. There
are theoretical grounds for expecting R to be an approximately additive
quantity, in which case R;, R, would be independent of the composition of
the mixture and have the same values as for the two pure substances. This
is more or less supported by experiment. There are however theoretical
grounds for expecting in certain cases deviations from simple additivity
and this is also confirmed by experiment. The quantitative theoretical
discussion of such deviations from simple additivity could be improved
by the use of the partial refractivities defined as above.

§1.27  Chemical potentials

We recall formula (1.19.5) for a closed phase o at temperature 7 and
pressure P
dU*=TdS*~PdV*  (closed phase). 1.27.1
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This may be extended to an open phase in the form
dU*=TdS*—PdV*+) pidn}  (open phase) 1.27.2

where each 4} is defined by
i =(QU"[0n)ss, yu, n e (j#0). 1.27.3

i is called the chemical potential of the species i in the phase a. The dimen-
sions of u are energy/amount and it is therefore an intensive quantity.

§1.28 Characteristic functions. Fundamental equations

Formula (1.27.2)
dU*=TdS*—PdV*+), uidn} 1.28.1
i

relates U* to the independent variables S%, V%, and the n{’s, and U* is said to
be a characteristic function for these variables. Characteristic functions
for other variables are readily obtained by the device known as a Legendre
transformation*. In particular

d(U*—TS%)=—S*dT—PdV*+Y uidn? 1.28.2
i
d(U*+PV*)=TdS*+ V*dP+Y pidn’ 1.28.3
d(U* = TS*+PV*)= —S*dT + V*dP+Y pidn?. 1.28.4

Since these formulae are all homogeneous of first degree in U*®, S%, V* nj,
it follows by Euler’s theorem that

U*—TS*+PV*=Y niul. 1.28.5

The quantity U*—TS* on the left of (2) is called the Helmholtz function
and will be denoted by 4#* The quantity U*+PF* on the left of (3) is
denoted by H* and is called enthalpy; this name was first proposed by
Kamerlingh Onnes’. The quantity U*—T7S*+PV* on the left of (4) is
called the Gibbs function and is denoted by G*. Using this notation we have
the set of formulae

dU*=TdS*—PdV*+Y idn? 1.28.6

* Courant and Hilbert, Methoden der Mathematischen Physik, Springer 1937 §1.6.
t Porter, Trans. Faraday Soc. 1922 18 140.
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A4 = ~ 54T ~PAV*+ . ptdn} 1.28.7
dH*=TdS*+ V*dP+Y uidn; 1.28.8
dG*= ~S*dT + V*dP+Y uidn} 1.28.9

G’=§; n}us. 1.28.10

Whereas U® is a characteristic function for the independent variables S°,
V*, nf, we see that 4 is a characteristic function for 7, V*, n; so is H* for
S® P, ui, and so is G for T, P, ni.

By comparison of (9) with (1.26.1) or (10) with (1.26.3) we see that

Wi=Ge 1.28.11

Thus in each phase the chemical potential of each species i is equal to the
partial Gibbs function of this species.

The equations (6) to (9) are called fundamental equations for the four
sets of variables S, V, n;; T, V, n;; S, P, n;; T, P, n;. The four characteristic
functions U, #&, H, and G were introduced by Gibbs who denoted them by
&, ¥, x, and { respectively.

The characteristic functions U, &, H, and G are sufficient for all require-
ments. They are however not the only possible ones. For example by simple
transformation of (6) we have

dS*=T7'dU*+ T 'PAdV*—T" 'Y pidnt 1.28.12

showing that S* is a characteristic function for the variables U®*, V%, n}.
Again let us define two new quantities ./ and Y by

J=S-U/T=-#|T 1.28.13

Y=S-U/T—-PV|T=~-G|T. 1.28.14

We now differentiate (13) and (14) and substitute for dS* from (12) ob-
taining
d/=T2UdT+ T 'PdV*~T7' Y pdn} 1.28.15

dY*=T?H*dT—-T"'V*dP-T" 'Y pdn} 1.28.16

from which we see that J®, like 4%, is a characteristic function for the varia-
bles 7, V*, n}, and that Y*, like G*, is one for the variables 7T, P, n.
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The functions J and Y were introduced by Massieu* (1869) and the latter
was widely used by Planck'. We accordingly call J the Massieu function
and Y the Planck function. It is interesting to note that these characteristic
functions are six years older than & and G introduced by Gibbs.

By means of a fundamental equation all the thermodynamic functions
can be expressed in terms of the characteristic function and its derivatives
with respect to the corresponding independent variables. For example
choosing G*(T, P, n}) we obtain directly from (4)

S*=—3G*/oT 1.28.17
H*=G*—T0G*/dT 1.28.18
V*=0G*/oP 1.28.19
U*=G*—TdG*dT — POG*/oP 1.28.20

pi =0G*[on; 1.28.21

out/dT =0%G*/on?dT =0*G*/0T dnf= —0S*/ont= — S¢ 1.28.22
Ou/OP=0%G*/On*0P=0G*OPdn* =3V *ont =V} 1.28.23

o/ T)OT = — S}/ T — i/ T*= — H}/T?, 1.28.24

§1.29  Mole fractions

We are often interested only in the intensive properties of a phase and not at
all in the amount of the phase. It is then convenient to describe the phase
entirely by intensive variables. The set of variables commonly used is T, P, x;
where x; denotes the miole fraction defined by

x;=ni/z nk 1.29.1
k

where X, denotes summation over all the species.
By definition the mole fractions satisfy the identity

Y x=1. 1.29.2

If the number of independent species or components is c, then of the c+2
quantities T, P, x; used to describe the state of the phase, apart from its
amount, only c+1 are independent owing to (2). We therefore say that a
single phase of ¢ components has c+1 degrees of freedom.

* Massieu, C.R. Acad. Sci., Paris 1869 69 858.
t Planck, Treatise on Thermodynamics, translated by Ogg, Longmans, 3rd ed. 1927.
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§1.30 Gibbs—Duhem relation

We may, if we choose, describe the state of a single phase a, apart from its
size, by the set of intensive quantities 7, P, u;. The number of these is ¢+ 2.
We have however seen that the number of degrees of freedom of a single
phase is only c+ 1. It follows that T, P, uf cannot be independently variable,
but there must be some relation between them corresponding to the identity
between mole fractions. We shall now derive such a relation.

We differentiate (1.28.10) and obtain

dG =Y pidnf+Y niduy;. 1.30.1

From (1) we subtract (1.28.9) and obtain
S*dT—V*dP+Y nidu;=0. 1.30.2

This is the sought relation between 7T, P, and the u!’s. It is known as the
Gibbs—Duhem relation®. It is particularly useful in its application to changes
at constant temperature and pressure, when it may be written

Y xfduf=0 (T, Pconst.). 1.30.3

§1.31 Multiphase systems

In the preceding sections most of the formulae have been written explicitly
for a single phase. Corresponding formulae for a system X consisting of
several phases are obtained by summation over all the phases. In particular
from the fundamental equations in §1.28 we obtain

dU*=Y 7°ds*-Y P“dV“+Z;,u7dn? 1.31.1
dF*= -3 $*dT*~3 P*dV*+} Y pidn} 1.31.2
dH*=Y T*dS*+Y V*dP*'+} ) yidn} 1.31.3
dG*=-Y S*dT*+Y V*dP*+Y > uydng 1.31.4

where X; denotes summation over the components and X, denotes summa-
tion over the phases.
* Gibbs, Collected Works, Longmans, vol. 1, p. 88; Duhem, Le Potentiel Thermodynami-

que et ses Applications 1886, p. 33. The reference given by Hildebrand and Scott, Solu-
bility of Nonelectrolytes, Reinhold 1950, is spurious.
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We are still postulating the absence of chemical reactions. This restriction
will be removed in §1.43 and §1.44.

§1.32 Adiabatic changes in closed system
We recall that for any infinitesimal change in a closed system Z
dUt=w+q. 1.32.1
If the change is adiabatic, then by definition
q=0, dU*=w (adiabatic). 1.32.2

All infinitesimal adiabatic changes can moreover, according to the defini-
tions in §1.13 and §1.19, be classified as follows:

dUE=w, dS*>0  (natural adiabatic) 1.32.3
dU*=w, dS*=0 (reversible adiabatic). 1.32.4

Suppose now that the whole system is enclosed by fixed rigid walls, so that
w=0. We then have the classification

dU*=0 dV*=0 dS*>0 (natural adiabatic) 1.32.5
dU*=0 dV*=0 dS*=0 (reversible adiabatic). 1.32.6

Suppose now, instead, that each phase a is partly bounded by a piston
acting against a constant pressure P%, so that

w=—) P*dV*=-Y d(P*V*)=—d(} P*V"). 1.32.7
Then we have
dU*=—-d(} P*V°) 1.32.8
dH*=d(U*+Y. P*V™*)=0. 1.32.9
Consequently in this case we have the classification
dH*=0 dP*=0 dS*>0 (natural adiabatic) 1.32.10
dH*=0 dP*=0 dS*=0 (reversible adiabatic). 1.32.11

§1.33 Isothermal changes in closed systems

Instead of a thermally insulated system, let us now consider a system whose
temperature 7 is kept uniform and constant. This may be achieved by keeping
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the system in a temperature bath at the temperature 7. Then according to
the properties of entropy expounded in §1.19 and in particular formula
(1.19.11) we have the classification of infinitesimal changes

dT=0 d(TS)*>q (natural isothermal) 1.33.1
dT=0 d(TS)*=q (reversible isothermal). 1.33.2

We also have according to the first law of thermodynamics, in particular
formula (1.10.7),

g=dU*—w. 1.33.3

Substituting from (3) into (1) and (2) in turn we obtain
dT=0 w>d#* (natural isothermal) 1.33.4
dT=0 w=d#&* (reversible isothermal). 1.33.5

In particular if the system is enclosed by fixed rigid walls, so that w=0, the
classification becomes

dT=0 dV=0 dA&*<0 (natural isothermal) 1.33.6
dT=0 dV=0 d&F*=0  (reversible isothermal). 1.33.7

If on the other hand each phase « is partly bounded by a piston acting
against a constant pressure P%, then

w==Y P*dV*= =Y d(PV*)= —d(} P'V*)

=d(F-G)F 1.33.8
from the definition of G. Substituting from (8) into (4) and (5), we obtain
dT=0 dP*=0 dG*<0 (natural isothermal) 1.33.9

dT=0 dP*=0 dG*=0 (reversible isothermal). 1.33.10

§1.34  Equilibrium conditions. General form

We saw in §1.14 that if a system is in complete equilibrium then any con-
ceivable change in it must be reversible. This enables us to put the conditions
for equilibrium into various forms each of general validity.

If we first consider an infinitesimal change at constant volume, the system
being thermally insulated, we have according to (1.32.6) the equilibrium
conditions

ds*=0 dy*=0 dU*=0. 1.34.1
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If instead we consider an infinitesimal change keeping each phase a at
constant pressure P%, the whole system being thermally insulated, we have
according to (1.32.11) the equilibrium conditions

ds*=0 dP*=0 dH*=0. 1.34.2
Thirdly let us consider an infinitesimal change at constant volume and

constant uniform temperature (isothermal change). We now have according
to (1.33.7) the equilibrium conditions

dT=0 dVvi*=0 d&*=0. 1.34.3

Lastly by considering an infinitesimal change keeping each phase at a con-
stant pressure P* and a constant uniform temperature T, we have according
to (1.33.10) the equilibrium conditions

dT=0 dP*=0 dG*=0. 1.34.4

Any one of the four sets of equilibrium conditions (1), (2), (3), (4) is
sufficient by itself. They are all equivalent and each has an equal claim to
be regarded as fundamental.

§1.35 Stability and metastability

In order to make clear what is meant by stability and instability in thermo-
dynamic systems, we shall first discuss the significance of these expressions
in a purely mechanical system. To this end, in figure 1.1 are shown in

+6)

+&®

a
Fig. 1.1. Stable and unstable equilibrium

section three different equilibrium positions of a box on a stand. In positions
a and ¢ the centre of gravity G is lower than in any infinitesimally distant
position, consistent with the box resting on the stand; the gravitational
potential energy is a minimum, and the equilibrium is stable. If the position
of the box be very slightly disturbed, it will of itself return to its former
position. In position b, on the other hand, the centre of gravity G is higher
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than in any infinitely near position, consistent with the box resting on the
stand, the gravitational potential energy is a maximum, and the equilibrium
is unstable. If the position of the box be very slightly disturbed, it will of
itself move right away from its original position, and finally settle in some
state of stable equilibrium such as ¢ or ¢. As maxima and minima of the
potential energy must alternate, so must positions of stable and of unstable
equilibrium, Only stable equilibria are realizable in practice since the realiza-
tion of an unstable equilibrium requires the complete absence of any possible
disturbing factors.

Whereas positions a and ¢ are both stable, one may describe a as more
stable than c. Or one may say that a is absolutely stable, while c is unstable
compared to a. By this is meant that in position ¢ the potential energy is
less than in any position differing only infinitesimally from ¢, but is greater
than the potential energy in position a.

Similarly, the equilibrium of a thermodynamic system may be absolutely
stable. On the other hand it may be stable compared with all states differing
only infinitesimally from the given state, but unstable compared with some
other state differing finitely from the given state; such states are called
metastable. Truly unstable states analogous to b are unrealizable in thermo-
dynamics, just as they are in mechanics.

The fact that all thermodynamic equilibria are stable or metastable, but
never unstable, is equivalent to the fact that every natural process proceeds
towards an equilibrium state, never away from it. Bearing this in mind and
referring to the inequalities (1.32.5), (1.32.10), (1.33.6), and (1.33.9), we
obtain the following alternative conditions for equilibrium:

for given U* and V* that S* is a maximum 1.35.1
for given H* and Ps that S* is a maximum 1.35.2
for given T and V that &% is a minimum or that J* is a
maximum 1.35.3
for given T and P¥s that G* is a minimum or that Y* is a
maximum. 1.35.4
Since (0U,3S)y = (0H|3S)p=T>0, we may replace the first two conditions
above by two others so as to obtain the more symmetrical set of equivalent
conditions

for given S* and V* that U* is a minimum 1.35.5
for given S* and P¥s that H* is a minimum 1.35.6
for given T and V* that #F is a minimum 1.35.7

for given T and P¥s that G* is a minimum. 1.35.8
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Since T is a more convenient independent variable than S, the last two con-
ditions are more useful, but nowise more fundamental, than the previous two.

Each of the above is the condition for stable equilibrium or for metastable
equilibrium according as the minimum (or maximum) is absolute or only
relative to neighbouring states.

§1.36 Thermal internal stability

Consider a closed single phase. Let its entropy be S, its volume V, and its
energy U. Imagine one half of the mass of this phase to change so as to
have an entropy 3(S+93S) and volume 4V while the other half changes so
as to have an entropy #(S—38S) and volume 4V. According to Taylor’s
expansion the energy of the first half becomes

HU+(@U/aS)3S +4(8°U/0S*)(3S)?} 1.36.1

when we neglect small quantities of third and higher orders; all partial
differentiations in (1) are at constant V. The energy of the second half
becomes similarly

H{U—(dU[0S)8S + (22 U/S?)(8S)2}. 1.36.2

Hence by a ddition the energy of the whole system has increased by the second
order small quantity

1(0*U/0S2), (8S)> 1.36.3

while the total entropy and volume remain unchanged. Now a condition for
a system to be in stable equilibrium is that, for given values of the entropy
and the volume, the energy should be a minimum. If then the original state
of the system was stable, the change considered must lead to an increase of
energy and the expression (3) must be positive. Hence we obtain as a neces-
sary condition for stable equilibrium

(0*U/3S?), >0. 1.36.4
Since according to (1.17.6)
©UjeS), =T 1.36.5
we can replace (4) by
(0S/0T), >0. 1.36.6

The physical meaning of (6) is that when at constant volume heat is absorbed
by a stable phase its temperature is raised.



FUNDAMENTAL PRINCIPLES 31

§1.37 Hydrostatic equilibrium

Consider a system X of several phases in equilibrium at the temperature 7.
Suppose the phase a to increase in volume by an amount dV* and the phase §
to decrease by the same amount, the temperature and volume of the whole
system and the composition of each phase remaining unchanged. Then,
according to (1.34.3), the condition for equilibrium is

dFF=dF*+dF*=0 1.37.1
or by using (1.28.7)
—PdVe+ PPV =0 1.37.2
and so
P*=P". 1.37.3

That is to say that any two phases in hydrostatic equilibrium must be at
the same pressure.

If we now consider two phases at the same temperature 7" and different
pressures P* and PP, there will then not be hydrostatic equilibrium. There
will be a tendency for the system to approach hydrostatic equilibrium by a
change in which the volume of one phase, say «, increases by d¥* and that
of the other phase B decreases by the same amount. Such a change is by
definition a natural one. If we keep the temperature constant, we therefore
have, according to (1.33.6)

dF*+dFP<0 1.37.4
or using (1.28.7)
— PdV*+ PPV <0. 1.37.5
If we suppose dV* to be positive, it follows that
P*> PP, 1.37.6

That is to say, that the phase o with the greater pressure P* will increase in
volume at the expense of the phase B with the smaller pressure PP,

§$1.38  Hydrostatic internal stability

Consider again a closed single phase. Let its temperature be T, its volume V,
its energy U, and its entropy S. Imagine half of the phase to change so as to
have a volume $(¥+8V), and the other hailf to change so as to have a
volume 4(¥V—3V), the temperature remaining uniform and unchanged.
Then by an argument precisely analogous to that of the §1.36 we find that
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the Helmholtz function of the whole system has increased by the second

order small quantity
1@ &[0V, (3V)? 1.38.1

while the temperature and total volume are unchanged. Now a condition
for a system to be in stable equilibrium is that for given values of temperature
and volume, the Helmholtz function should be a minimum. If then the original
state of the system was stable, the change considered must lead to an in-
crease of the Helmholtz function and the expression (1) must be positive.
Hence we obtain as a necessary condition for stable equilibrium

©*F[d0V?)r>0. 1.38.2
Since according to (1.28.7)

@©@F0V)y =—P 1.38.3
we can replace (2) by

(@V/3P)7<0. 1.38.4

This means that when the pressure of a stable phase is increased, the
volume must decrease.

§1.39  FEquilibrium distribution between phases

Consider a system of several phases, all at the same temperature 7, but not
necessarily at the same pressure. Suppose a small amount dn} of the species i
to pass from the phase P to the phase a, the temperature of the whole system
being kept constant. Then according to (1.31.2) we have

dAF* ==Y P'dV'+uidn}—pldns 1.39.1
Y

omitting the terms which obviously vanish. Since the total work w done on
the whole system is —X, P"d}”, it follows from (1.33.4) that the process
considered will be a natural one if

dAF*<—-YPdV"  (natural process). 1.39.2
Y

Comparing (1) with (2) we obtain

(4 —uP)dnt<0  (natural process). 1.39.3
Thus dr? in a natural process has the same sign as u?—uf. In other words
each chemical species i tends to move from a phase where its potential y;

is higher to another phase in which its potential is lower. Hence the name
potential or chemical potential for p,.



FUNDAMENTAL PRINCIPLES 33

If, instead of natural processes, we consider reversible processes we have
equalities instead of inequalities; in particular instead of (3) we have

(uf—uP)dn?=0  (reversible process) 1.39.4
or
pi=p?  (equilibrium). 1.39.5
We have obtained the important result that the condition for two phases to
be in equilibrium with respect to any species is that the chemical potential
of that species should have the same value in the two phases.

§1.40 Phase stability

Consider again a closed single phase. Let its temperature be T, its pressure P,
and its Gibbs function G. Imagine the amount of the component i to increase
in one half of the phase from i#; to 3(n; +9n;) while the amount in the other
half of the phase changes from 4#; to 3(n; — dn,), the temperature and pressure
remaining uniform and unchanged. Then by an argument precisely analo-
gous to those of §1.36 and § 1.38 we find that the Gibbs function of the whole
system has increased by the second order small quantity

3(0°G/onf)r, b, n,(5"i)2 (j#i) 1.40.1

while the temperature and pressure remain unchanged. Now a condition
for a system to be in stable equilibrium is that for given values of temperature
and pressure, the Gibbs function should be a minimum. If then the original
state of the system was stable, the change considered must lead to an increase
of the Gibbs function and the expression (1) must be positive. Hence we
obtain as a necessary condition for stable equilibrium

(0*G/on})r, p, (80> >0 (j#i). 1.40.2
Since according to (1.28.9)
(6G/an;)r,p,,,1=ui (j#i) 1.40.3

we can replace (2) by

(Ow;/ony)r, p,a,>0 (j#i). 1.40.4
This means that when substance i is added to a stable mixed phase the
chemical potential of i is increased.

§1.41 Gibbs’ phase rule

In §1.30 we mentioned that the state of a single phase o containing c in-
dependent species or components can, apart from its size, be completely
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described by the c+2 quantities T, P, gy, i3, . . . 4. Of these c+2 quantities
only c+1 are independent because of the Gibbs—Duhem relation

S*dT—V*dP+Y nidy,=0. 1.41.1

We accordingly say that a single phase has ¢+ 1 degrees of freedom.

We shall now extend this rule to a system of ¢ components in p phases
in mutual equilibrium. We continue to usethesame ¢ + 2 variables but there are
now p Gibbs-Duhem relations, one for each phase. Consequently the num-
ber of independent variables or the number of degrees of freedom is c—p+2.
This is Gibbs’ phase rule*.

We have implicitly excluded chemical reaction between the species and
we postpone discussion of the effect of any such complication to chapter 6.

§1.42 Membrane equilibrium

It is important to notice that, provided a system is at a uniform temperature,
the condition for equilibrium between two phases of each chemical species
is independent of that for other species and of that for hydrostatic equilib-
rium. If then two phases o and P are separated by a fixed wall permeable
to some components i but not to other components j, the condition for the
two phases to be in equilibrium as regards i is still

wr=pb 1.42.1
but in this case in general
PP#EPP il 1.42.2

Such a partial equilibrium is called a membrane equilibrium.

§1.43 Chemical reactions. Frozen equilibrium

Hitherto we have explicitly excluded chemically reacting species from the
system considered. We shall now explain how this restriction can be removed.

Owing to the slowness of attainment of some chemical equilibria, it can
happen that the change towards chemical equilibrium is negligible during a
time sufficient for other kinds of equilibrium to be observed and measured.
In other cases the attainment of chemical equilibrium if not sufficiently slow
for this to be the case can be made so by the addition to the system of a
small quantity of a substance called an anticatalyst or merely by rigid

* Gibbs, Collected Works, Longmans, vol. 1, p. 96.
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exclusion of all traces of some other substance called a catalyst. Even in
cases where the attainment of chemical equilibrium cannot be adequately
slowed down in practice it is possible and legitimate to consider the hypo-
thetical case wherein this has been achieved.

We are thus led to consider a system not in chemical equilibrium in which
however the chemical reactions leading towards its attainment have been
virtually suppressed. The system is then in a special kind of metastable
equilibrium called frozen equilibrium. The several chemical species present
are then virtually independent and so we can suppose a chemical potential p
assigned to each such species.

If we now suppose the addition of a suitable catalyst so as to thaw the
frozen equilibrium then generally changes of composition will take place as a
result of chemical reactions; such changes are of course natural processes.
In the special case that the state of frozen equilibrium corresponds to com-
plete chemical equilibrium, then no chemical change will take place on
thawing. If we imagine a virtual chemical change to take place, such a change
will then be a typical reversible change. If we write down the condition for
this, we therefore obtain a relation between the u’s which is a condition of
chemical equilibrium.

The final result may be described as follows. Instead of choosing a set of
independent chemical species or components, we use the set of all the chemical
species present whether independent or not and then obtain restrictive
relations on their behaviour. The actual form of these restrictive relations
will be obtained in the next section.

§1.44 Chemical equilibrium. Affinity

We consider a system of any number of phases maintained at a constant
temperature T and constant pressure P. Then according to (1.31.4)

dG*=Y Y pidn;} (T, Pconst.) 1.44.1

where now, in contrast to previous practice, the species i are no longer all
incapable of interacting chemically. According to (1.33.9) the condition
for a natural process is

dG*<0 (T, Pconstant)  (natural process). 1.44.2
Combining (1) and (2) we obtain as the condition for a natural process

Y ¥ pidni<0  (natural process). 1.44.3
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Any chemical reaction at a given temperature and pressure is described by
a formula. As typical examples we quote

CaCO;(s)—Ca0(s) + CO,(g)
N,(g)+3H,(g)~2NH;(g)
a-glucose(aq)—P-glucose(aq)

where (s) denotes a solid phase, (g) the gaseous phase, and (aq) denotes an

aqueous solution.
We can represent the most general chemical reaction symbolically by

Y vaA-Y vgB 1.44.4

meaning that v, moles of A and the like react together to give vg moles
of B and the like. The unit of quantity the mole is defined in such a way that
the stoichiometric numbers v can all be small integers. The symbols A and B
are supposed to specify not only the kind of each chemical species i but also in
what phase it is present; in other words the label A implies the pair of labels
i and a.

Now imagine the chemical process (4) to take place in the time df to the

extent
Z VAdéA‘—)Z deéB 1.44.5

where d¢ denotes a small number. Then d¢/d¢ is called the reaction rate
and the dnf, when i relates to A, is just —v,d&. The inequality (3) thus
becomes

Y vpupdé/di<y vypadé/dt  (natural process) 1.44.6
or if we assume d&/d¢r>0
Y vus<Y, vala (natural process). 1.44.7

Thus the chemical reaction can in fact take place from left to right only if
the inequality (7) holds, and conversely.

If we replace the inequalities by equalities we obtain as the condition for
the chemical change in either direction to be a reversible process

Y vapa=Y veup  (reversible process). 1.44.8

In other words the condition for equilibrium with respect to the chemical
process (5) is

Y vata=Y vgug  (equilibrium). 1.44.9

It is convenient for the sake of brevity and elegance to modify our notation
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relating to chemical changes. We begin by rewriting the chemical reactions
quoted at the beginning of this section

0=CaO0(s)+C0O,(g) - CaCOs;(s)
0=2NH;(g)—N(g) —3H.(g)
0=p-glucose(aq)—a-glucose(aq)

and generally in place of (4) we label the reaction by

0=Y vgB 1.44.10
B

where vg has negative values for the species previously denoted by A.
Suppose that in a small interval of time d¢ the reaction takes place to the

extent
0=Z vgdéB 1.44.11
B

then the reaction rate is defined by d&/d¢. The inequality (3) now becomes

Y vgupdé/dt<0  (natural process). 1.44.12
B

Thus for the reaction to take place —Zgvgug and d&/ds must have the
same sign. The sum —Xgvgug is called the affinity of the reaction.

It follows immediately that the condition for equilibrium is that the
affinity should be zero, that is to say

Y vgus=0  (equilibrium). 1.44.13
B

We may combine the inequality (12) and the equation (13) into the single

formula
(_Z VBﬂB)dc/dtgo. 1.44. 14
B

The affinity is formally related to the several characteristic functions by
—Z vaig=—(d Uz/af)si, yi=— (aHz/ﬁé)sx, P
B
= "(a/Fz/af)T. yvE= "(an/aé)T, P
=T(@J*0¢)r,yx=T@Y ), p
= T(85*/3&)yz, yx. 1.44.15

The affinity was thus defined by De Donder* in 1922. Of the several equa-
tions in formula (15) the most useful and most used is

* For detailed references see Prigogine and Defay, Chemical Thermodynamics, English
translation by Everett, Longmans 1954.
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—ng‘uB=—(aG/aé)T'P. 1.44.16

The affinity, bzing a linear combination of chemical potentials, is like the
chemical potentials an intensive quantity.
A different and better known notation is that introduced by G. N. Lewis*,

namely
=Y vgug=—AG 1.44.17
B

where the operator A denotes increase at constant temperature and constant
pressure when £ increases by unity. Both notations have their advantages
and both will be used.

§1.45 Choice of independent variables

For practical purposes the most convenient independent variables, other
than the composition, to describe any single phase are, usually, temperature
and pressure. We shall therefore require to express most thermodynamic
properties as functions of 7, P and shall be interested in their partial deriva-
tives with respect to T and P. In the case of gases, in contrast to liquids and
solids, it is sometimes convenient to choose as independent variables 7, V
instead of T, P. We shall accordingly also require to express thermodynamic
properties as functions of T, V and shall be interested in their partial deriva-
tives with respect to 7 and V.

§1.46 Thermal expansivity and isothermal compressibility

If we regard the volume of a phase of fixed composition as a function of
temperature and pressure, we have

dV =(0V/3T)pdT +(0V/0P)rdP. 1.46.
We define «, the thermal expansitity, by
a=V"1@VT), 1.46.2
and xr, the isothermal compressibility, by
kr=—V "1 @V/OP);. 1.46.3
Substituting (2) and (3) into (1) we obtain

* See Lewis and Randall, Thermodynamics and the Free Energy of Chemical Substances,
McGraw-Hill 1923, p. 226.
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dV=aVdT -k VdP 1.46.4
din V=adT —«;dP. 1.46.5
Alternatively if we choose to regard P as a function of 7T, V, we have
dP=ax;'dT—k7'V " 1dV. 1.46.6
From (5) we deduce
8% In V/dTOP = (0a/0P)r= — (Ok /3T )p. 1.46.7

§1.47 Maxwell’s relations

For a closed phase a in the absence of chemical reactions we have according
to (1.28.7) and (1.28.9)

dF*= —§*dT—PdV* 1.47.1
dG*= —S*dT + V*dP. 1.47.2
Consequently we have
(08%dV")p= —*A*dTdV*=(0P/OT) s =at/Ky 1.47.3
(0S°*/0P); = —0°G/oTOP=—(0V*/oT)p=—aV*.  1.47.4

These two relations, due to Maxwell*, are important since they express the
dependence of entropy on volume or pressure in terms of the more readily
measurable quantities o and x;.

§1.48 Dependence of thermodynamic functions on pressure

If, as will usually be our choice, we take as independent variables, other
than the composition of each phase, the temperature T and the pressure P
the relevant characteristic function is the Gibbs function G* and according
to (1.28.9) we have

(0G*[oP)r=V". 1.48.1
We also have Maxwell’s relation (1.47.4)
(8S4/0P) = —aV™, 1.48.2
Since the enthalpy H* is related to G* and S* by
H*=G*+TS" 1.48.3

we have using (1) and (2)
* Maxwell, Theory of Heat, Longmans 1885 ed. p. 169.
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(0H*/0P)r =(8G*/0P); + T(8S*/0P)y=V*(1—aT). 1.48.4

When we use the independent variables T, P the function U is much less
important than G, H. If nevertheless we should require its dependence on
the pressure, it is readily derived as follows. By definition

U*=H"-PV*" 1.48.5
and so by differentiation with respect to P at constant T we obtain

(0U*/0P); =(0H*/OP); — V*— P(8V*/0P)p=V*(kP—aT).  1.48.6

§1.49 Gibbs—Helmholtz relation

If, as will usually be our choice, we take as independent variables, other
than the composition of each phase, the temperature T and the pressure P
we have for the temperature dependence of the relevant characteristic
function G* according to (1.28.9)

(0G*/oT)p= ~S". 1.49.1
If we compare this with the definition of G*, namely
G*=H"-TS" 1.49.2
and eliminate S°* we obtain
H*=G*—T(0G*/0T)p. 1.49.3
For a system X composed of several phases at the same pressure we obtain
from (3) by addition
H*=G*—~T(3G*/dT),. 1.49.4

If we apply this relation to the final state II and to the initial state I in any
isothermal process and take the difference, we obtain

AH*=AG* — T(OAG*/0T)ps, pu 1.49.5

where P', P! denote the initial and final pressures respectively. Formula (5)
is known as the Gibbs—Helmholtz relation. This name is also sometimes given
to formula (4).

By simple transformation we can rewrite these formulae as

{8(GYT)joT}p=—~HYT? 1.49.6
{0(AG¥/T)[0T} pr, pu= — AH*|T? 1.49.7

or alternatively as
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{o(G*/T)[d(1/ T)}p=H* 1.49.8
{3(AGH T)/3(1/T)} pr, pn=AH~. 1.49.9

§1.50 Dependence of thermodynamic functions on T, V

As already stated, it is usually convenient to take T, P as independent varia-
bles. Only in the case of gases is it sometimes convenient to use instead the
independent variables T, ¥. The dependence of the various thermodynamic
functions on these variables is readily obtained and we give the chief results
for a phase of fixed composition in the order in which they are conveniently
derived without however giving details of the derivations.

dA*=—-S*dT —PdV* 1.50.1
dP=oax~'dT—(kV*) ™ 'dV* 1.50.2
dS*=(8S*/0T), dT +ax ™~ 'dV* 1.50.3
dU*=T(0S%/dT),dT+(«Tx ™' — P)dV*" 1.50.4
dJ*=T"2UdT+ T 'PdV™ 1.50.5

§1.51 Use of Jacobians

Many thermodynamic identities, including those obtained in the preceding
sections, can be obtained rapidly and elegantly by the use of Jacobians.
The procedures are due to Shaw*, who has shown how to apply them to
obtain a tremendous number of identities, some important, others merely
amusing. We shall here give a brief sketch of the method, which we shall
illustrate by a few simple examples. We would however emphasize that all
the simple and most important relations are deduced in this book without
using Jacobians, so that the reader not interested in their use may omit this
section which does not affect the rest of the book.
We recall that Jacobians are defined by

o, y) _ _ %) _ (?i‘) (92) _ (9’_‘) (@_V) 1.51.1
o(a, ) O(x, B)  \Oa/p \Of/a \OP/a \Oa/#
and that they obey the multiplicative law

0(x, y) 8(u, v) _ o(x, y) 151.2
O, v) &, B) O B)

* Shaw, Phil. Trans. Roy. Soc. London A 1935 234 299.
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which can be derived by simple geometrical or algebraical considerations
on transformation of coordinates.
As particular cases of (1) we have

[T -
ou/p  d(a, B) o(a, )
(a_.))) - a(a! y) - — a(ys a) . 1.51.4
o/« O, B) o(a, B)
Using (3) and (4) we derive from (2)
(@ic) _0(x,y) _(x ) / 8z 9) 1.51.5
0z/y 8(z,y) o« B)/ d(x B)

We now replace o, f§ by the pair of quantities which we regard as the usually
most convenient independent variables, namely the temperature 7 and the
pressure P. We further introduce the following new notation

w0 = i = () o) (G G e

In particular we have

1.51.3

Ox )
(5?)1,_1(3:, P)=—J(P, x) 1.51.7

(#)-

Using our new notation we have instead of (5)

(%)f ﬁ’: ;’; 1.51.9

The relations (6) and (9) together enable us to express any quantity of the
type (0x/0z), in terms of the partial differential coefficients of x, y, z with
respect to 7, P.

We shall illustrate by two examples, the first a useful one, the second far
fetched. We have

—J(x, T)=J(T, x). 1.51.8

(QZ) _J(TLH) __ (oH[oP) 1.51.10
oP/u J(P,H)  (3H[OT)s

arelation which we shall meet again in §3.20 where it is derived more simply.
We now take a more complicated, and less useful, example:
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oH\ _J(H,U) _(0H/OT)p(0U/OP)r—(OH/OP)(0U/OT)p
(a_c) v J(G,U) (8G/oT),(dU/3P);—(8G[oP)(dU/OT),
_ CV(kP—aT)-V(1—aT)YC—aPV)
© —SV(kP—aT)—V(C—aPV)
_ C(xkP—aT)—(1-aT)(C—aPV)
"~ —S(xP—aT)—(C—aPV)
where we have used formulae (1.48.1), (1.48.4), (1.48.6) and we have denoted
(OH/[oT), by C.
These illustrative examples by no means exhaust the uses to which Jaco-

bians can be put. The reader who isinterested is referred to the original papers
by Shaw.

1.51.11

§1.52 Reversible cycles

Suppose a system is taken through a complete cycle of states. Then as its
final state is identical with its initial state, its entropy must be the same at
the end as at the beginning. Thus

AS=0 (any cycle). 1.52.1
If at all stages the system is in equilibrium, so that no irreversible (natural)

change takes place, then

AS=Y gq,/T, (reversible changes) 1.52.2

where ¢; denotes the heat absorbed at the temperature T; and the summation
extends over all the temperatures through which the system passes. Sub-
stituting (2) into (1) we obtain

Y q:/T;=0  (reversible cycle). 1.52.3

Evidently, since T; is always positive, some of the ¢;’s must be positive and
some negative. It is convenient here to modify our notation so as to distin-
guish between the positive and negative ¢;’s. We accordingly replace (3) by

Y q,/T,=Y QJT, (reversible cycle) 1.52.4

where each g, is a positive quantity of heat taken in at the temperature 7,
and each Q, is a positive quantity of heat given out at the temperature T.

According to the first law of thermodynamics the work —w done by the
system during the cycle is given by
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_W=Z =Y q9,—Y Q. 1.52.5
The ratio n defined by
"=_W/Z qrz(z qr_ZQs)/Z qr=1_ZQs/Z qr 1.52.6

is called by engineers the thermodynamic efficiency of the cycle.

Let us suppose that there is a maximum temperature 7,,,, and a minimum
temperature T,,;,, between which temperatures the cycle is confined. The
following question arises. Subject to this restriction on the temperatures,
what is the maximum possible value of #? The answer is obviously obtained
by making

T=T., (all7) 1.52.7
To=Tnn  (all s). 1.52.8

This means that positive absorption of heat occurs only at the highest
temperature T,,,, and positive loss of heat occurs only at the lowest temper-
ature T,;,. No heat is exchanged with the surroundings at any temperature
intermediate between T, and Tp;,. In other words the passages from
Trnax t0 Tmin and the reverse are adiabatic. Thus the cycle consists entirely of
isothermal absorption of heat at T,,,,, isothermal emission of heat at T,,;,,
and adiabatic changes from T,,, t0 Tp;, and from T, to Tpay. Such a
cycle was first considered by Carnot* and is called Carnot’s cycle.
For Carnot’s cycle we have by substituting from (7) and (8) into (4)

Y 4/ Tax=2, Q/Tmin  (Carnot’s cycle). 1.52.9

Now substituting from (9) into (6) we obtain
7=1—Tin/ Trmax (Carnot’s cycle). 1.52.10

There is sometimes confusion between Carnot’s cycle and reversible cycles.
It will be observed that Carnot’s cycle is a very special case of a reversible
cycle.
A completely isothermal cycle is a special case of Carnot’s cycle. For such
a cycle
Twax=Tmin=T (isothermal cycle) 1.52.11

* Carnot, Réflexions sur la puissance motrice du feu, Bachelier, Paris, 1824. Reprinted
in 1912 by Hermann, Paris and in 1953 by Blanchard, Paris, together with some notes
discovered after Carnot’s death in 1832 and communicated to the Académie des Sciences
in 1878 by Carnot’s brother.
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Y q.=Y 0, (isothermal cycle) 1.52.12
w=0 (isothermal cycle) 1.52.13
n=0 (isothermal cycle). 1.52.14

Formula (13) is known as Moutier’s theorem*.

We shall have no occasion to make any further reference to cycles. They
are important in engineering thermodynamics for the treatment of engines
and refrigerators, but these fall outside the subject-matter of this book.

§1.53  Surface phases

We have hitherto assumed that every system consists of one or more com-
pletely homogeneous phases bounded by sharply defined geometrical
surfaces. This is an over-simplification, for the interface between any two
phases will rather be a thin layer across which the physical properties vary
continuously from those of the interior of one phase to those of the interior
of the other. We must now consider the thermodynamic properties of these
surface layers between two phases. We shall begin by considering a plane
interface and shall in §1.60 extend our considerations to a curved interface.

The following treatment is essentially that of van der Waals junior and
Bakker!. It is less abstract than the alternative treatment of Gibbs.}

Figure 1.2 represents two homogencous bulk phases, & and B, between

8 IB'
© |
|
Af—— — A
24

Fig. 1.2. Plane interface between two phases

* Moutier, Bulletin de la Société philomathique 1875 Aug. 11th.

T Van der Waals and Bakker, Handb. Experimentalphysik, 1928 vol. 6. See also Ver-
schaffelt, Bull. Acad. Belg. Cl. Sci. 1936 22 No. 4, pp. 373, 390, 402; Guggenheim,
Trans. Faraday Soc. 1940 36 398.

t Gibbs, Collected Works, Longmans, vol. 1, p. 219.
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which lies the surface layer . The boundary between o and « is the plane
AA’, that between ¢ and B the parallel plane BB'. All properties of & are
uniform in directions parallel to AA’, but not in the direction normal to AA’.
At and near AA’ the properties are identical with those of the phase «;
at and near BB’ they are identical with those of the phase B. Subject to these
conditions there is freedom of choice in placing the planes AA’ and BB'.
It will be possible and natural though not essential, so to place the planes
AA’ and BB’ that the uniform distance between them is submicroscopic and
usually less than 107% cm, if not less than 10~7 cm.

§1.54 Interfacial tension of plane interface

Since the surface layer ¢ is a material system with a well-defined volume
and material content, its thermodynamic properties require no special defini-
tion. We may speak of its temperature, Helmholtz function, composition, and
so on just as for a homogeneous bulk phase. The only functions that call
for special comment are the pressure and the interfacial tension. In any
homogeneous bulk phase the force across any unit area is equal in all direc-
tions and is called the pressure. But in o the force across unit area is not the
same in all directions. If, however, we choose any plane of unit area parallel
to AA" and BB’, then the force normal to it has the same value for all posi-
tions of the plane whether it lie in «, B, or o; this value of the force normal
to unit area is called the pressure P. Suppose, on the other hand, we choose
a plane perpendicular to AA’ and extending below AA’ and above BB’;
let this plane have the form of a rectangle of height 4 (parallel to AB) and
of thickness / (perpendicular to the plane of the paper). Then the force
across this plane will be equal to Phl—yl, where P is the above-defined
pressure and y is called the interfacial tension. If the height of this plane is
chosen to extend exactly from AA’ to BB’, then the force across it will be
equal to Pt/—yl if the height AB is denoted by t. Let the surface layer have
an area 4 and a volume V° so that

Ve=1A. 1.54.1

Suppose the area to be increased to 4 +dA, the thickness to t+dt, and the
volume to ¥°+dV°, the material content remaining unaltered. Then the
work done on o by the forces across AA’ and BB’ is —PAdt. The work
done by the forces parallel to the planes AA’ and BB’ is independent of the
shape of the perimeter and for the sake of simplicity we may suppose the
perimeter to be a rectangle. The work done by the latter forces is then
evidently — (Pr—y)dA. The total work done on o is therefore
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—PAdt—(Pr—y)dA= —P(Adt+1dA4)+ydA
= —PdV°+ydA. 1.54.2

This expression takes the place of —PdV” for a homogeneous bulk phase.

§1.55 Helmholtz function of surface layer

For the most general variation of the Helmholtz function of a homogeneous
bulk phase we have the fundamental equation (1.28.7)

dA%= —S*dT - PdV*+Y wdn;. 1.55.1

For a surface phase o the dependence of the Helmholtz function on the
temperature and the composition will be exactly analogous to that for a
bulk phase; this follows directly from the definitions of entropy and chemical
potentials. But for its dependence on size and shape we must replace
—PdV* by the expression (1.54.2). We thus obtain the formula

d#°=—-S°dT—PdV°+ydA+) ydnf. 1.55.2
There is no need to add superscripts to T, P, y; because these must have

values uniform throughout o, B, and ¢ in order that there may be thermal,
hydrostatic, and physico-chemical equilibrium.

§1.56 Integrated relation. Gibbs function of surface phase

Since equation (1.55.2) is homogeneous of first degree in £°, S°, V°, 4,
and nf it follows by Euler’s theorem that

A°+PV ~yA=Y nip;. 1.56.1

This formula is the analogue of
/F°’+PV“=Z n; 1.56.2
for a bulk phase.
In analogy with the definition of the Gibbs function G* of a bulk phase
G*=U"~TS*+PV*=4"+PV* 1.56.3
we now define the Gibbs function G° of the surface phase by

G'=U—TS°+PV°—yA=A°"+PV°—y4 1.56.4
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We deduce from (1.55.1) and (4)
dG°= —~S°dT+V°dP—Ady+Y p;dn 1.56.5
G°=Y niu. 1.56.6
From time to time papers have been published maintaining that y; has a
value 4 in the surface differing from its value % = u? in the two bulk phases.
The worst of these papers are sheer nonsense, the best of them merely con-
fused. In the better papers the quantity denoted by yf is a different quantity

from that denoted by y; in the present text which follows Gibbs.
The last two formulae are the analogues of

dG*=~S*dT + V*dP+Y p,dn} 1.56.7
G“:Z n; u; 1.56.8
for a bulk phase a. From the above relations it is evident that, as in a bulk
phase, the chemical potential y; is equal to the partial Gibbs function
defined by (0G/0n;)r, p, y,n,
§1.57 Analogue of Gibbs—Duhem relation

If we differentiate (1.56.6) we obtain
dG°=Y wdnf+Y nidy, 1.57.1
and subtracting (1.56.5) from this

S°dT—V°dP+ Ady+Y nfdu,=0 1.57.2

which is the analogue for a surface phase of the Gibbs—Duhem relation
(1.30.2) for a bulk phase.
If we divide (2) throughout by 4 we obtain the more convenient form;

SGdT—tdP+dy+) I'{dy;=0 1.57.3
where S denotes S°/4 and I'; denotes the amount of the species 7 in unit
area of the surface phase ¢ and is thus defined by

Iy=n{|A. 1.57.4

We recall that 7 is the thickness of the surface layer, that is to say the length
AB in figure 1.2.
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§1.58 Invariance of relations

We must now study what happens to the several formulae for surface layers
if either of the chosen boundaries is moved in a direction normal to itself.
We may regard the volume V° of the surface layer as defined in terms of the
volume V* of the whole system and the volumes ¥* and V® of the two bulk
phases by the equation

Ve=vVE_y*_yB, 1.58.1

Similarly U°, S°, and nj are defined by

Ue=U*-U*-UP 1.58.2
S°=8*—§*—SP 1.58.3
nf=nf—n—np. 1.58.4

If now the geometrical surface AA’ is moved so that ¥* is decreased by an
amount V%6 then it is evident that ¥° becomes increased by the same
amount V*3% At the same time U’ §° n{ become increased by U%5°,
S5%8%, n?d% It is readily verified that all the formulae of §1.54 to §1.57 remain
unaltered. Exactly the same considerations apply if the geometrical surface
BB’ is moved so that ¥? is decreased by an amount VP8P, In particular the
value of yA4 remains invariant and consequently the value of y remains
invariant. We shall see in §1.64 that for a curved surface the value of y is
not invariant.

§1.59 Gibbs geometrical surface

We have hitherto postulated that the inhomogeneous layer is completely
confined between the geometrical surfaces AA’ and BB’. This restriction
may be removed if we accept the possibility that some of the quantities
U°, §°, n{ may become negative. In particular we may make the two surfaces
AA’ and BB’ coincide somewhere inside the inhomogeneous layer. This
convention defined by

V°=0 1.59.1

was used by Gibbs. It is more elegant but more difficult to visualize than the
treatment based on figure 1.2 with ¥°>0. The single geometrical surface is
called the Gibbs geometrical surface.

According to Gibbs’ convention formulae (1.55.2), (1.56.1), (1.56.4),
(1.56.5), and (1.56.6) reduce to
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4= —S"dT +7dA+ Y pdn 1.59.2
U°—TS°—yA=Z ns u; 1.59.3
G*=U°—TS°—yA 1.59.4
dG°= —S°dT—Ad'y+‘i_,:, w;dnf 1.59.5
=3, nh, 1.59.6

respectively. These formulae and the value of y are all invariant with respect
to the position of the Gibbs geometrical surface.

In the simplest system, namely a single substance existing as liquid+
vapour with a planar boundary, it is convenient to place the Gibbs geome-
trical surface so that n°=0. Formula (2) then reduces to

dAF°=—-SdT +ydA. 1.59.7

§1.60 Interfacial tension of curved interface

We must now consider under what conditions the formulae already derived
for plane interfaces may be applied to curved interfaces. We shall see that
the formulae strictly derived for plane interfaces may be applied to curved
interfaces with an accuracy sufficient for experimental purposes provided
that the thickness of the inhomogeneous surface layeris small compared with
its radii of curvature*.

For the sake of simplicity let us first consider a system consisting of two
homogeneous bulk phases o and B connected by a surface layer o having the
form of a circular cylindrical shell. Figure 1.3 shows a cross-section of the
phases o and B separated by the surface layer o, bounded by the circular
cylinders AA’ and BB’ with common axis O. There is complete homogeneity
in the direction normal to the diagram. The properties of the surface layer &
are supposed identical at all points the same distance from the axis through
O. Throughout the phase o and extending up to AA’ there is a uniform
pressure P*; throughout the phase p, and extending down to BB’, there is a
uniform pressure PP, Between AA’ and BB’ the pressure P, parallel to the
radii of the cylinders AA’ and BB’ varies continuously, but not necessarily
monotonically, from the value P* to the value P*.

In the previous discussion of plane surfaces it was pointed out that the geo-
metrical planes AA’ and BB’ may be placed an arbitrary distance apart.

* Guggenheim, Trans. Faraday Soc. 1940 36 397.
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For the present discussion of curved surfaces it is on the contrary postulated
that the circular cylindrical surfaces AA’ and BB’ should be placed as near
together as is consistent with the condition that the inhomogeneous layer
be contained bztween them. According to this condition we may usually
expect the distance AB to be about 10”7 cm. We shall denote by a distances
measured radially from O, and in particular by a, and ag, the distances OA
and OB respectively.

o

Fig. 1.3. Curved interface between two phases

Whereas the force per unit area across any element of surface inside either
homogeneous phase is independent of the orientation of the element (Pascal’s
law), this is not the case in the inhomogeneous layer o. It is convenient to
denote the force per unit area in the direction parallel to the surface AA’
and BB’ by P,—Q. Both P, and Q are functions of a. Q is zero at
a=a, and at a=ajg, but, at least somewhere between, Q is greater than zero.
It is conceivable that Q might be negative somewhere between a=a, and
a=gqg, but its average value in this range is unquestionably positive.

According to elementary statics the mechanical equilibrium of the matter
enclosed by AA'B’'B requires that for all values of a

d(P.a)=(P,—Q)da 1.60.1
or
dP,= —(Q/a)da. 1.60.2

If we integrate (2) from a; to a, we obtain

PropP= f “(0ja)a. 1.60.3
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We now arbitrarily choose any length 4 subject only to the restriction

a,<a<ag 1.60.4
and we define a quantity 3 by
A 8
y=&f (Q/a)da. 1.60.5
From (3) and (5) we deduce
P*—PP=3/a  (circular cylinder). 1.60.6

For the sake of simplicity we have considered an interface with the form of a
circular cylinder. For a spherical interface we find by similar reasoning in-
stead of (6)

P*—PP=2j/a  (sphere). 1.60.7

We may call y interfacial tension, but its exact value depends on the choice of
2. We must now distinguish between the case a;—a,<a, and the case when
this inequality does not hold. In the former case the distinction between
a,, ag, and 4 is trivial; we may then replace (6) by

P*—PP=yja  (circular cylinder) 1.60.8
and (7) by
P*—PP=2y/a  {sphere). 1.60.9

For an interface of other shapes the geometry is somewhat more complicated
and the general formula obtained is

P —PP=y/0, +7/0, 1.60.10

where ¢, @, are the principal radii ot curvature of the interface. We shall
seein §1.62 how formula (9) is the basis for measuring y. The quantities
measured are P*— PP and a; the value of 7y is then calculated by formula (9).
In the contrary case when the inequality ay—a,<a, does not hold y can
neither be uniquely defined nor accurately measured. A mathematical
analysis of this situation is given in §1.64.

§1.61 Pressure within a bubble

Let us consider a bubble having the form of a thin spherical film of liquid
of internal and external radii a; and a.. If P' denotes the pressure nearer
to the centre than the film, P the pressure further from the centre than the
film, and P’ the pressure in the liquid film itself, we have, according to (1.60.9)
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P'—P'=2y/a, 1.61.1

P'—P=2y/a, 1.61.2
so that .

P'—P°=(2/a;+2/a.)y 1.61.3

or neglecting the difference between a; and a,

P'— P =4yja. 1.61.4

§1.62 Determination of interfacial tension

The commonest method of determining the value of the interfacial tension y
depends on formula (1.60.9). This method is shown diagrammatically in
figure 1.4. Two fluid phases o and B are represented, the one shaded the

P P
!
ng g
8 7,
. A 7 A - A"
7 g g 7

Q Qo

Fig. 1.4. Capillary rise due to interfacial tension

other not shaded. They are separated partly by the plane surfaces AA”
and A'A’’, and partly by the curved surface BB’ in the capillary tube
PP'Q'Q of internal radius ». We may, with sufficient accuracy, regard the
surface BB’ as a segment of a sphere. Let the centre of this sphere be denoted
by O and let @ be the angle between OB and the horizontal OX or alter-
natively the angle between the tangential plane to BB’ at B and the wall of
the vertical capillary tube. Then the radius of curvature of the surface BB’
is ricos 6.

Let P° denote the pressure at the plane surfaces AA” and A’A"". It will
also be the pressure inside the capillary tube at the height AA’. Let the pres-
sures at the height BB be denoted by P* in the phase o and by P* in the phase
B. Then

P*=P°—o%gh 1.62.1
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PP=P° —oPgh 1.62.2

where ¢, of denote the densities of the phases o and B, g is the acceleration
due to gravity, and A is the height AB. But, according to (1.60.9), since the
radius of curvature is r/cos@

P®— P*=2y(cos §)/r. 1.62.3
Comparing (1), (2), and (3) we obtain
2y(cos 8)/r=(0"—0")gh. 1.62.4

Thus, from measurement of ¢%, ¢, r, 8, and # we can calculate y.

In the case that the surface BB’ is concave towards the bottom, its radius
of curvature will have the opposite sign, and so 4 will also have the opposite
sign. That is to say, BB’ will lie below AA’.

§1.63 Independence of interfacial tension of curvature

Let us now turn to the question whether the interfacial tension depends on
the curvatures. We shall see that when the question is precisely defined it
answers itself. In asking the question it is not sufficient to state that we vary
the curvatures; we require also to state what we keep constant. For the
question to be useful it should apply to the actual conditions of the experi-
mental measurement of interfacial tension. For definiteness let us consider
the capillary rise method described in the preceding section. The values of
the temperature T and the chemical potentials u; are uniform throughout
the system, and so, whatever be the size and shape of the capillary, these
variables have the same values at the curved surface, where the surface tension
is measured, as in the bulk phases. Hence to be useful the question should be
worded: how does y depend on g, ¢, for given values of T and the y;’s?
According to equation (1.57.3) the variation of y under these restrictions
is given by

dy=1dP. 1.63.1

In its present application the ambiguity in the exact meaning of P does
not matter, since it can be verified that (P*—PP)t is negligible. If now we
consider a curved interface, say in a capillary, in equilibrium with a plane
interface and we integrate (1) from the pressure at the plane surface to the
pressure at the curved interface (either side of it) we again find that the
integral of the right side is always negligible. Consequently y has effectively
the same value for the curved surface as for the plane surface with which it is
in equilibrium. This is a statement of a principle usually assumed whenever
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an interfacial tension is measured. It is experimentally verified by the fact
that within the experimental accuracy the same value is found for the inter-
facial tension when capillaries of different size are used, but this verification
can be realized only for capillaries with diameters considerably greater than
the lower bound allowed by the theory.

Gibbs summed up this situation in the words ‘it will generally be easy to
determine the surface tension in terms of the temperature and the chemical
potentials of the several component species with considerable accuracy
for plane surfaces, and extremely difficult or impossible to determine the
fundamental equation more completely’.

§1.64 Mathematical analysis of curved interface

We have seen that it is extremely difficult if not impossible to devise any
experiment which will determine the dependence of interfacial tension on
curvature. This follows from the fact that the thickness of the interface is
always extremely small compared with its radius of curvature; if this were
not so, the interfacial tension could not be measured at all. The present
section is concerned with a more exact mathematical analysis of this situa-
tion*. The reader is warned that the physical conclusions are entirely neg-
ative.

For the present discussion it is sufficient to consider only a spherical
interface and it is convenient to follow Gibbs in describing the properties
of the system by means of a single geometrical spherical surface lying inside
the interfacial layer and concentric with it. For a chosen geometrical
surface of area 4 the interfacial tension y is defined by the relation

UP=TS*-Y ynf=—PV*—P*VP1y4 1.64.1

or by the equivalent relation

U*—TS*+PPVE=Y yuni=—(P*—PP)V*+yA. 1.64.2

Since all the quantities on the left, in particular U*, S¥, V¥, n? are invariant
with respect to a change in the choice of the Gibbs geometrical surface, it
follows that the right side is also invariant. But since a change in the Gibbs
geometrical surface involves a change in ¥* but not in P* nor in PP we may
expect it also to change the value of y. In order to investigate this change we
denote the radius of the Gibbs geometrical surface by «. We have

* Guggenheim, Research 1957 10 478.
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V*=4na’3 1.64.3
A=4na® 1.64.4

and consequently
ya? —3(P*— P?)a® = invariant. 1.64.5

Differentiating (5) with respect to a we obtain
P*—P?=2y/a +dy/da. 1.64.6

If we denote by a, the value of a at which y has a minimum value y, we obtain
from (6)
P*—PP=2y /a, 1.64.7

which is of the same form as if there were a tension located exactly at the
Gibbs geometrical surface of radius a,. This surface is accordingly called
the surface of tension. Substituting from (7) into (5) we obtain

Vaz_g‘ytaa/at:%fytatz 1.64.8
y/y.=3ala,+3al|a®. 1.64.9
From the form of (9) due to Kondo* it follows that y, is indeed a minimum,
not a maximum, and that the minimum is unique. Many relations are
simplified by choosing the surface of tension as the Gibbs geometrical surface

since any term containing dy/da vanishes.
It is convenient for some purposes to define a quantity ¢ by

adlad=1+3e. 1.64.10
It is clear that e< 1 if the thickness of the interface is small compared with
its radius of curvature. Using (10) we can rewrite (9) as
=31 +3e) +4(1+36)7*
=1+¢>+0(e%) 1.64.11
where O(e?) denotes small terms of order &>.
If we denote the amount of the substance i per unit volume in the interiors

of the bulk phases o and B by ¢ and ¢f respectively, then the surface con-
centration I'; is defined by

n?:c?l/“-}-ciﬁVB-}-FiA, 1.64.12

Since 1} is of course independent of the choice of the Gibbs geometrical
surface it follows that the right hand side of (12) must be invariant. In terms
of the radius a this implies

* Kondo, J. Chem. Phys. 1955 25 662.
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(¢t —cP)a® + I';a* =invariant. 1.64.13
For a single substance we may drop the subscript i and write
3(c*—c?)a® +I'a* =invariant. 1.64.14
In particular
= cPa® +Ta*=4(c*—cP)al +T'al. 1.64.15

We now choose a value of @ to make I' vanish. We indicate this by the sub-
script , and call the Gibbs geometrical surface with this radius the auxiliary
surface. We have then

Lal=3(c"~cP)a~a?). 1.64.16
It is convenient for some purposes to rewrite (16) as
I j(c*—cP)=¢,a, 1.64.17
where ¢, is defined by
ajla}=1+3e,. 1.64.18

Thermodynamics alone can predict neither the magnitude of ¢, nor the sign
of ¢, nor the dependence of ¢, on a,. Molecular theory indicates that |g,|<1
if a, is large compared with molecular dimensions. If we denote by 7, the
value of 7y referred to the auxiliary surface, we have according to (11)

valne=3(1+36)* +3(1+36,)7F
=1+¢e2+0(el) 1.64.19

where O(e)) denotes small terms of order &2.

Having defined y, uniquely we shall now study how the surface tension
between a spherical portion of liquid of a single substance and its surround-
ing vapour depends on the radius of the sphere or, to be more precise,
how y, depends on a,. We have at constant temperature the thermodynamic
relations

dy,=—-rI,du 1.64.20
dy=dy*=dpP*/c* 1.64.21
dp=duP=dP¥c? 1.64.22

where ¢* and cP are the concentrations defined by c=n/V. From (21) and
(22) we deduce using (7)

du=d(P*— PP)j(c*— c*)=d(2y/a)/(c* — cP) 1.64.23
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and substituting this into (20)
dy,= “Ft(ca—cp)_ ld(Z‘yt/a‘). 1.64.24

Formula (24) does not really tell us much about the dependence of y, on
a, because we have no means of measuring I',. By using (17) we can trans-
form (24) to
dy,= —e,a,d2y/a,) 1.64.25
or
dln y,/d In a,=2¢,/(1 +2¢,). 1.64.26

The relation (26) is due to Tolman*. It is elegant but uninformative because
g, is defined according to (18) in terms of a,/a,. As already mentioned
thermodynamics tells us nothing about the magnitude or even the sign of ¢,
and, as emphasized by Koenig!, we have no means of measuring ¢,. Instead
of claiming that (26) tells us anything about dy,/da, it would be more realistic
to say that if we could measure dy,/da,, that is to say the dependence of
surface tension on curvature, we could then use (26) to calculate ¢, and so
a,/a,. In fact dy/da, is too small to be experimentally determined and this
merely confirms that |e,|<1.

The several experimental methods of determining surface tension are ali
based on the use of an equation formally resembling (7). In fact the experi-
mental value y, of the surface tension is calculated from the formula

Ye=3(P*— P%)a, 1.64.27

where a, is the radius of the spherical interface estimated either visually or
in the capillary-rise method estimated from the radius of the capillary.
The most that can be said about the relation of a, to g, is that

a.ja,=1+0OC(e,). 1.64.28
Consequently the most that can be said about the relation of y. to v, is

Ye/Pe=14+0C(e,). 1.64.29

§1.65 Basis of thermodynamic laws

The zeroth law in §1.07, the first law in §1.10, and the second law in §1.20
have all been quoted as fundamentally independent assumptions. From this
point of view their justification is the empirical fact that all conclusions from

* Tolman, J. Chem. Phys. 1949 17 333.
t Koenig, J. Chem. Phys. 1950 18 449.
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these assumptions are without exception in agreement with the experimentally
observed behaviour in nature.

The form in which these laws have been enunciated is essentially that
used by Born*. There are other alternative forms; some more, others less
abstract, but all of an entirely empirical nature; that is to say that their
justification is agreement between their implications on the one hand and
experiment on the other.

It is, however, possible to obtain a deeper insight into the fundamental
principles from a statistical point of view. It is in fact possible to derive
these principles from our knowledge of the structure of matter including
the elements of quantum theory together with a single statistical assumption
of a very general form. It is a matter of taste whether to choose as a basis
several empirical principles which make reference neither to atomic theory
nor to quantum theory, or to choose a single principle superposed on atomic
theory and quantum theory. The former choice, the one adopted in this
book, is the method of classical thermodynamics; the latter choice corresponds
to the more modern science which we call statistical thermodynamics.

There are however other relations of a general nature which follow
naturally and directly from the statistical thermodynamic formulation, but
which cannot be derived from the zeroth, first, and second laws of classical
thermodynamics. The relations to which we refer are of several types con-
cerning respectively
(a) entropy changes in highly disperse systems (i.e. gases);

(b) entropy changes in very cold systems (i.e. when T—0);

(c) entropy changes associated with mixing of very similar substances

(e.g. isotopes).

The three types are of comparable importance. They resemble one another
in relating to entropy changes. Their formulation in terms of classical
thermodynamics is either complicated or inaccurate or else involves reference
to conceptions inherently foreign to classical thermodynamics. As already
mentioned they all follow naturally and directly from the statistical thermo-
dynamic formulation.

We shall devote the following chapter to a digression on statistical
thermodynamics, describing in general terms the methods of this
science just sufficiently to give the reader an idea of the source of the relations
in question without attempting to derive them in detail. The reader interested
in the complete derivations must refer to a standard text-book on statistical
thermodynamics.

* Born, Phys. Z. 1921 22 218.
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§1.66 Third law

It has been customary to refer to the three types of general relations men-
tioned in the preceding section in three quite different ways. The relations
of type (a) are referred to as the determination of entropy constants, those
of type (b) as the third law of thermodynamics and those of type (c) merely
as the formulae for entropy of mixing. This biased discrimination between
types of relations of comparable importance and generality is difficult to
defend. We accordingly reject this unbalanced terminology and instead
choose as our third law the following statement.

By the standard methods of statistical thermodynamics it is possible to
derive for certain entropy changes general formulae which cannot be
derived from the zeroth, first, or second laws of classical thermodynamics.
In particular one can obtain formulae for entropy changes in highly disperse
systems (i.e. gases), for those in very cold systems (i.e. when T—0), and for
those associated with the mixing of very similar substances (e.g. isotopes).



CHAPTER 2

DIGRESSION ON STATISTICAL THERMODYNAMICS

§2.01 Microdescriptions and macrodescriptions of a system

According to quantum theory the state of a system is completely specified
by its eigenfunction. To each state there corresponds one eigenfunction and
to each eigenfunction one state. Such a description of the system we shall
call a microdescription.

It is often, though not always, possible to regard the system as consisting
of a large number of almost independent units (molecules, atoms, ions, elec-
trons) and to express each eigenfunction of the system as a linear combina-
tion of products of the eigenfunctions of all the units. According to the
symmetry restrictions, if any, imposed on the eigenfunctions of the system,
we then obtain three alternative sets of statistical formulae referred to by the
names of Fermi-Dirac, Bose-Einstein, and Boltzmann, respectively. These
three alternatives, however, arise only when we express the eigenfunctions
of the system in terms of those of the constituent units. As long as we refer
only to the eigenfunctions of the whole system, we shall not need to consider
these three alternatives separately. Nor shall we do so until we reach §2.10.

When we describe the equilibrium properties of a system by thermo-
dynamic methods, we are not interested in such a precise description as the
microdescription, but are content with a more crude large scale description,
which we shall call a macrodescription. For example a possible macrodescrip-
tion of the system would be a precise statement of the energy, the volume,
the chemical composition (and in special cases other quantities all measur-
able on a large scale) of each homogeneous part or phase. For brevity we
shall confine our discussion initially to systems whose macrodescription
requires a precise statement of only four quantities. The extension of the
argument to more complicated systems should be obvious. Initially we shall
take the first of these quantities to be the energy, the second to be the
volume, the third to be the empirica! composition; the nature of the fourth
quantity is best indicated by some specific examples.

Example 1 Let us consider a definite quantity of hydrogen (free from
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deuterium) of given energy and given volume. Then we can complete the
description by a statement of what fraction of it is para, the remaining
fraction being ortho.

Example 2 If instead of hydrogen, we have lactic acid we can complete
the description by a statement of what fraction is dextro, the remaining
fraction being laevo.

Example 3 If the system consists of a given quantity of iodine of given
energy and volume we can complete the description by a statement of what
fraction is in the diatomic form I,, the remainder being in the monatomic
form L

Example 4 If the system consists of a given quantity of tin of given ener-
gy and volume, we can complete the description by stating what fraction is
white, the remainder being grey.

Example 5 If the system consists of a given quantity of sulphur dioxide,
we can complete the description by stating what fraction is /liquid, the
remainder being vapour.

In the first three examples it is assumed either that the system is homo-
geneous or, if it consists of two phases, that we are not interested in the
relative amounts, these being determined by the other conditions. Another
example that might be suggested is a system of a given quantity of hydrogen
of given energy and volume for which we were interested both in the ratio
of para to ortho and in the ratio of liguid to vapour. Such a system, however,
requires five quantities, instead of four, to complete its macrodescription
and so lies outside the class which we shall discuss, although the extension
of the treatment to such a system in fact offers no difficulty.

Having made clear by these examples the nature of the fourth independent
variable describing the system we shall denote this variable by £. It corre-
sponds closely to the quantity & which, following De Donder, we introduced
in§1.44 and which we callthe extent of reaction of a physico-chemical change.
It is not a necessary property of ¢ that one should be able completely to
control its value, provided that its value can in principle be measured by
macroexperiments.

§2.02 System of given energy, volume, and composition

Let us now consider in more detail a system of prescribed energy U, prescrib-
ed volume ¥V, and containing a prescribed number N of molecules of a given
kind. Let the number of independent eigenfunctions of the system consistent
with the prescribed values of U, ¥, N and corresponding to a particular
value of the parameter £ be denoted by 2(£). As long as we are not interested
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in distinguishing between the states of equal £, we may conveniently group
them together.

Then the fundamental assumption of statistical thermodynamics is the
following.

The average properties of the system for prescribed values of U, V, N
can be derived statistically by averaging over all groups of states of given ¢,
assigning to each group a weight Q(&).

In other words it is assumed that for given U, V, N the probability of a
particular value of ¢ is

Q(é)/g Q(8). 2.02.1

It is customary to refer to the numerator Q(&) in (1) as the thermodynamic
probability of the particular value of £. It must be emphasized that thermo-
dynamic probability thus defined is not a probability in the usual sense of the
word. Whereas an ordinary probability such as (1) is a number less than or
equal to unity, the thermodynamic probability is generally a large number.
For reasons which will appear later Q(€) had better be called the thermo-
dynamic probability of & for given U, V, N than merely the thermodynamic
probability of & Another name for Q(&) is the partition function for given
U, V, N, £. The reason for this name will also become clearer as we proceed.
We now define a quantity S(U, ¥, N, &) by the relation

S(U, V, N, &=k In Q&) 2.02.2

where k is a universal arbitrary constant whose value will be settled later.
It can then be shown as we shall see later that, in a macroscopic system, S
has all the properties of the entropy of the system in the macrostate defined
by U, V, N, & Formula (2) is a precise formulation of the well-known
relation due to Boltzmann to whom the name thermodynamic probability
is due.

We shall see that Boltzmann’s relation (2) between the entropy and the
thermodynamic probability or partition function for given U, V, N, £ is merely
one of a number of relations of a similar type between a characteristic
function for a particular set of variables on the one hand and the thermo-
dynamic probability or partition function for the same set of variables on the
other.

§2.03 Characteristic of macroscopic system

According to the fundamental assumption of statistical thermodynamics
in a system of given U, V, N the average value (&) of ¢ is determined by
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& =§§j éﬂ(é)/; Q&) 2.03.1

and the average value (&2) of &% by
<62>=§j 629(6)/4? Q). 2.03.2

Thus in general {&>? is not the same as (&2).
In other words there are fluctuations measured by

E=LED) Py =&y — (&2
= {; (0/(3) ; 6’9(5)—; £Q(¢) ; 59(6)}/{§ Q)2 2033

It can be shown generally that the larger the system the less important is
this fluctuation and that for any macroscopic system the fluctuation is
entirely trivial compared with (£>? itself. Without attempting a proof we
shall consider a little more closely how this comes about.

There is some value &, of £ for which Q(&) has a maximum. Generally
speaking the larger the system the sharper is this maximum and for any
macroscopic system it is very sharp indeed. On each side of this maximum
term Q(&,,) there will be many terms almost as great as Q(&,,). Then there
will be a still greater number of terms appreciably smaller but not negligible;
but an overwhelming majority of the terms will be entirely negligible, and
this majority includes all those terms in which & differs appreciably from &,.

As aresult of such considerations it can be shown that whereas the average
properties are strictly determined by attributing to each & the weight (&)
we may in any macroscopic system with trivial inaccuracy ignore all values
of £ other than the value &, at which Q(&) is maximum.

Thus for any macroscopic system we have with trivial inaccuracy

(ES=¢, 2.03.4
(Ery=¢2 2.03.5

and so on.
It is instructive to relate this important characteristic of a macroscopic
system to the quantity S(U, ¥, N, &) defined by (2.02.2), namely

S(U, V, N, &)=k In Q(&). 2.03.6
Let us now define another quantity S(U, V, N) by
S(U, V, N)=k In {} Q(¢)}. 2.03.7
g

Then by definition it is evident that



DIGRESSION ON STATISTICAL THERMODYNAMICS 65

S, V,N)>S(U,V,N, & (all values of ¢&). 2.03.8
Let us now consider the ratio

{In Y (&)—In Q(£,)}/In A(E,). 2.03.9
4

It can be shown that roughly speaking ©2(,,) is of the order N!and Z(2(&)/
Q(&y)isof the order N* where a is comparable with unity. Hence the numer-
ator in (9) is of the order « In NV and the denominator of the order N In N.
Thus the expression (9) is of the order /N or near enough N ™1, which is
entirely negligible in any macroscopic system. Hence, although the inequality
(8) is strictly true by definition for all values of £, in any macroscopic system
when ¢ has the special value &, we may with trivial inaccuracy replace the
inequality (8) by the equality

S(U,V,Ny=S(U, V, N, &). 2.03.10

We shall see in §2.05 that the functions denoted by S have in fact the
properties of entropy. Anticipating this identification let us call S(U, V, N, &)
the entropy for fixed & and S(U, V, N) the entropy for equilibrium &.

Consider now a system of given U, ¥, N with ¢ frozen. Now suppose
that by introduction of a catalyst & is thawed, so that it takes its equilibrium
value. By definition the entropy changes from S(U, V, N, &) to S(U, ¥, N)
and also by definition this is always an increase. Only in the special case
that the initial value of £ was &, the entropy increase from S(U, ¥, N, &)
to S(U, ¥, N) for any macroscopic system is trivial. In other words although
S(U, ¥, N) the entropy for equilibrium & is by definition greater than the
entropy for & fixed at its equilibrium value &, the difference in a macroscopic
system is negligible and trivial.

We shall see later that a macroscopic system has other characteristics
similar and parallel to that just formulated. These characteristics can be
summed up in the single sentence that in a macroscopic system fluctuations
of measurable properties are negligible.

N2.04  System of given temperature, volume, and composition

We shall now consider a system whose volume ¥ and composition N are
still prescribed, but instead of prescribing the energy we shall suppose the
System to be immersed in a large temperature bath with which it can ex-
change energy so that the energy of the system can now take various values
Uy, Uy, and so on. Let us now enumerate the eigenfunctions of the system
for the prescribed values of ¥ and N and for some definite value of &;
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let there be 2, such eigenfunctions corresponding to an energy U,(V, N, &),

From the fundamental assumption of statistical thermodynamics, as stated
in §2.02, without any further assumptions it can be shown that the average
properties of the system in the temperature bath for the prescribed values of
V and N can be derived statistically by averaging over all degenerate energy
values attaching to each state r of specified ¢ and U, a weight

Q, exp(—BU,) 2.04.1

where f is determined entirely by the temperature bath and so may be re-
garded as a temperature scale.

The fact that the parameter f§ is found to appear without any new assump-
tion is the statistical thermodynamic basis of the zeroth law of classical
thermodynamics. The statistical thermodynamic equivalent of the first law
of classical thermodynamics is merely the principle of conservation of energy
applied on the microscopic scale, that is to say applied to molecules, atoms,
electrons, etc. Thus this principle is from the point of view of statistical
thermodynamics not a new law but merely one item in general atomic quan-
tum theory.

To relate the second law of classical thermodynamics to statistical thermo-
dynamics we make certain algebraic transformations. We begin by defining
a function J(B, V, N, &) by

J(B. V, N, &)=k In (T, Q&) exp(—BU,)} 2.04.2

where the summation is over all states of given &, and & is a universal arbitrary
constant,

In the system with temperature specified by f there will be fluctuations of
U, but the experimentally measurable U will be (U, the average value of U.
Let us now consider the value of {U) for specified §, ¥, N, and &. Using the
weighting factors (1) we have

UB, V. N, §)=3, U, Q&) exp(—BU,)/3. @(¢) exp(—BU,)
= —0In{} (&) exp(~pU,)}/0p

=k™'3J(B, V, N, &)/op 2.04.3

using (2).

Again associated with the fluctuations in U there will be fluctuations in
the pressure (—O0U/0V’) but the experimentally measured pressure P will be
{—=0U/oV). We accordingly have for given f, ¥, N, and ¢
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P=(=0U[dV)= -3 (3U,[oV)2\(¢) eXP(—ﬁUr)/g: Q,(¢) exp(—-BU,)
=B~ 10 In{}, 2.(8) exp(—BU,)}/OV

=—k™'B70J(B, V, N, &)[0B 2.04.4
using (2).
Let us now make the further algebraic substitution
T=k"'p7! 2.04.5

and use T as an independent variable instead of f. We now have in place of
(3) and (4)

(U(T, V, N, &)>=—0J(T, V, N, &)[oT~*
=T2dJ(T, V, N, &)[oT 2.04.6

P=T3J(T, V, N, &)[oV. 2.04.7
Combining (6) with (7) we have
dJ=((U>/T*dT+ (P[T)dV. 2.04.8

Comparing (8) with (1.28.15) we see that the dependence of J, defined by (2),
on T defined by (5) and on V is precisely the same as the dependence of the
Massieu function on the thermodynamic temperature and on the volume.
It can in fact be shown that 7 defined by (5) has all the properties of absolute
temperature and J defined by (2) has all the properties of the Massieu
Junction. This constitutes a brief summary of how the second law of classical
thermodynamics follows as a natural deduction from statistical thermo-
dynamics.

For the benefit of the reader not familiar with the Massieu function J we
recall that it is defined by

J=S-U/T 2.04.9

and that either the Massieu function J or the Helmholtz function &= —TJ
is a characteristic function for the independent variables T, ¥, N.
We can now substitute from (5) into (1) and so have as a weighting factor

for each energy U,
Q, exp(—U,[kT) 2.04.10

and this factor is called the Boltzmann factor. From (10) it is clear that kT’
has the dimensions of energy. k is a universal constant called the Boltzmann
constant. If we use the Kelvin scale of thermodynamic temperature then

k=1.3805x% 10723 K™% 2.04.11
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From (10) we see that the average properties of the system for prescribed
values of 7, ¥, N and unspecified & can be obtained by averaging over all ¢
attaching to each £ a weight Q(7, &) defined by

Q(T, &)=Y, 2,(¢) exp(— U,/KT). 2.04.12

The function Q(T, &) is usually called the partition function, but a more
precise name is the partition function for given T, V, N, £. An alternative name
is the thermodynamic probability for given T, V, N, £&.

Substituting from (5) and (12) into (2) we obtain

J(T,V,N, &)=k 1n Q(T, &). 2.04.13

We observe that this relation between the characteristic function J and the
statistical probability Q(T, &) for given T, V, N, & is completely analogous
to Boltzmann’s relation (2.02.2) between the characteristic function § and
the thermodynamic probability Q(&) for given U, ¥, N, &.

§2.05 Further characteristics of macroscopic system

Let us consider the individual terms of Q(7, &) defined by (2.04.12). Let us
denote the maximum term by

Q. exp(—U,/kT) 2.05.1

noting that this Q,, is not the same as the Q(&,,) of §2.03. Generally speaking
the larger the system the sharper this maximum and for any macroscopic
system it is so sharp that all terms in Q(7, &) in which U, differs appreciably
from U, are entirely trivial. Moreover, although the actual number of terms
O(T, &) comparable with (1) may be great, the ratio

In (T, ¢)—1In{Q,, exp(— U, /kT)} 2.05.2
In{Q,, exp(— U /kT)} '

is roughly of the order a/ N where « is far nearer to unity than to N. Hence
in any macroscopic system the ratio (2) is effectively zero and we may there-
fore replace the definition (2.04.2) of J by

J=k In{Q,, exp(— U,/kT)}. 2.05.3
It follows again that with an inaccuracy trivial for a macroscopic system
(Uy=TXJ[dT=U,,. 2.05.4

From the classical definition (1.28.13) of the Massieu function J, we have
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S=J+U|T. 2.05.5

We accordingly in statistical thermodynamics define a function S(T, ¥, N, &)
by

S(T, V,N, &y=J(T, V, N, &)+ (U|T. 2.05.6
Using (3), (4), and (5) we obtain from (6)
S(T, V, N, &)=k In Q,(&). 2.05.7

Now comparing (7) with (2.02.2) we obtain the striking result
S(T, V, N, §)=S(KU>, V, N, ¢). 2.05.8

Thus although the definition of entropy at a specified temperature by
means of (6) together with (2.04.13) is entirely different from the definition
of entropy at a specified energy by means of (2.02.2), yet for a macroscopic
system the difference between the two is trivial.

This characteristic property of a macroscopic system may be described
in the following instructive but less exact way. If we define S by

S=kln Q&) 2.05.9

then in a system of specified energy @ must denote the number of states
having precisely this energy, whereas in a system of specified temperature Q
denotes the number of states of energy nearly equal to the average energy.
The question immediately arises how nearly. The answer is that for a ma-
croscopic system it just does not matter.

§2.06 System of given temperature, pressure, and composition

We now consider a system of prescribed composition surrounded by a
temperature bath and enclosed by a piston subjected to a prescribed pressure
P. We construct the double sum

W(T, P, N, &)=Y Y Q. exp(— U,/kT) exp(—PV,/kT) 2.06.1

where the summation extends over all energies U, and all volumes V¥
consistent with the prescribed value of £. It can then be shown without any
new assumptions that we can correctly derive the average (equilibrium)
properties of the system for the prescribed values of T, P, N, by averaging
over all values of ¢ attaching to each a weight W(T, P, N, ¢&).

We call W(T, P, N, &) the thermodynamic probability for given T, P, N, &
or the partition function for given T, P, N, £. It is related to the Planck
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function Y, which is a characteristic function for the independent variables
T,P, N, ¢ by
Y(T,P,N, &)=kln W(T,P, N, &) 2.06.2
analogous to (2.02.2) and (2.04.13).
For the benefit of the reader unfamiliar with the Planck function Y we
recall its relation to the Gibbs function G, namely

Y=-GT. 2.06.3

Provided the system is macroscopic we may again with only- trivial
inaccuracy replace W by its maximum term, say

Q.(8) exp(— U, /JkT) exp(— PV, /kT) 2.06.4
so that we may replace (2) by
Y(T,P, N, &)= —kIn Q. (&) — Uy, /T—PV,/T. 2.06.5
From (1) and (5) we immediately verify that
U+PV)Yy=T?*0Y|0T=Uy+ PV, 2.06.6
(Vy=—-ToY[oP=V_, 2.06.7

as we should expect according to (1.28.16). Furthermore comparing (5)
with (1.28.14) we obtain

S(T,P, N, &)=k In (%) 2.06.8

verifying that for a macroscopic system the entropy at given 7, P is indistin-
guishable from the entropy at given U=U, and V="V,,.

§2.07 System of given temperature, pressure, and chemical potential

To conclude we choose as independent variables the temperature T, pressure
P, and chemical potential u. An illustrative example is a gas in contact with
a crystal of the same substance; the crystal is not considered as part of the
system. Such a system is called open.

We now construct the triple sum

W(T, P, 4, )=3. . Y Qs exp(— U,/kT) exp(—PV,/kT) exp(uN,/LkT)
st 2.07.1

where L is a general constant called the Avogadro constant defined later in
§3.13 and where Q,,, denotes the number of states of energy U,, volume V5,
and content N, corresponding to the given value of ¢ and the triple summation
extends over all sets of values of U,, ¥, N, corresponding to the given value of
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£. Tt can then be shown without any new assumptions that all the average
properties of the system for the prescribed values of T, P, u are correctly
obtained by averaging over all values of & attaching to each a weight
W(T, P, u, &) this expression being the partition function or thermodynamic
probability of ¢ for given T, P, p.

For a macroscopic system W can in the usual way be replaced by its
maximum term say

Q:,(8) exp(— Un/kT) exp(—PVu/kT) exp(uN,/LkT). 2.07.2
If we now define a quantity O(T, P, u, &) by
O(T,P, i, &)=kIn W(T, P, p, &) 2.07.3
we may for a macroscopic system replace (3) by
SO, P, &)=k In Q,(&)— Up/T—PVo/T+ pNy/LT. 2.07.4

Moreover for a macroscopic system we have as usual

S=kIn Q,(¢) 2.07.5
UY=U, 2.07.6
VS=V, 2.07.7
(N>=N,. 2.07.8

Comparing (5) to (8) with (4), dropping subscripts and replacing N/L by n
we find that

O(T, P, N, £)=S—U|T—PV|T+un|T=0 2.07.9

according to (1.28.5).

From the analogy between (3), (2.02.2), (2.04.13) and (2.06.2) we expect
O(T, P, u, &) to be a characteristic function for the variables T, P, and u.
According to (9) this characteristic function is identically zero. We now
recall the Gibbs-Duhem relation (1.30.2)

SAT—-VdP+Y n;dy;=0. 2.07.10

In a system of one component the sum I, n;dy; reduces to ndu and so (10)
becomes

0=SdT—-VdP+ndu 2.07.11

showing that the characteristic function for the independent variables
T, P, u is indeed zero.
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§2.08 Recapitulation

We can now summarize the content of the several preceding sections*.
For each selected set of three independent variables, other than £, a different
kind of weighting factor w has to be attached to the microstates. The sum
Xw for all microstates consistent with the prescribed values of the three
chosen independent variables other than ¢ and corresponding to a definite
value of ¢ is called the partition function or the thermodynamic probability
for the prescribed values of ¢ and the other three independent variables.
Furthermore in each case k In(Xw) is a characteristic function for the chosen
set of three independent variables other than &. These relationships are
shown in table 2.1.

TABLE 2.1
h "
Independent Weighting factor for each Characteristic
ariables microstate function equal
! to kIn(Zw)
U, V,N, & 1 s
T,V,N, & exp(— U/KkT) J = —&FIT
T,P,N,§ exp(— U/kT) exp(— PV|kT) Y= —G/T
TPy s exp(— U/kT) exp(— PV [kT) exp(uN/LKT) zero

We emphasize again that each of the listed characteristic functions S, J, Y,
and zero is related to the corresponding thermodynamic probability according
to

characteristic function =k In(thermodynamic probability).

The earliest and best known example of this form is Boltzmann’s relation for
S(U, ¥, N, &), but other examples and particularly that for J(T, V, N, &)
are in fact more useful.

It is a fundamental characteristic of a macroscopic system that any
partition function may with trivial inaccuracy be replaced by its maximum
term. It follows that the equilibrium value of ¢ is that value which maximizes
the characteristic function belonging to the chosen set of independent
variables. The alternative equilibrium conditions

for given U and V that S is a maximum 2.08.1
for given T and V that J is a maximum 2.08.2
for given T and P that Y is a maximum 2.08.3

* Guggenheim, J. Chem. Phys. 1939 7 103; Forh. Ste Nordiske Kemikermade Kgbenhavn
1939 p. 205.
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thus obtained are precisely equivalent to (1.35.1), (1.35.3), and (1.35.4)
respectively.

§2.09 Extension to several components. Absolute activities

We have hitherto restricted our exposition to systems of a single component
purely for the sake of brevity. The extension to systems of several components
is straightforward.

In particular for a system at given values of the independent variables
7, P, and the y,’s the weighting factor for each independent microstate will be

exp(— U/kT) exp(— PV/kT) [1%" 2.09.1

where for brevity we have introduced quantities 4; defined by

Ay=exp(u,/LkT)
or
1 =LkT1In 4;. 2.09.2

These quantities 4; may be used instead of the u; and are often more conve-
nient. A; is called the absolute activity of the speciesi. We shall meet these
quantities again in §3.15.

§2.10 Antisymmetric and symmetric eigenfunctions

In §2.01 we mentioned that it is often, though not always, possible to regard
the units (molecules, atoms, ions, electrons) composing the system as almost
indepandent. In this case each eigenfunction of the system can be expressed
as a linear combination of products of the eigenfunctions of all the units.
We begin by considering the case that all the units are of the same kind.
We denote the eigenfunctions of the units by ¢ and the eigenfunctions of the
whole system by . We have now to distinguish two cases.

If each unit is a fundamental particle (proton, neutron, or electron) or is
composed of an odd number of fundamental particles, then each eigenfunction
¥ of the system is constructed by forming a determinant of the eigenfunctions
of the individual units. For the sake of simplicity and brevity we consider
a4 system consisting of only three units, numbered 1, 2, 3. The symbol
¢.(1) then denotes the eigenfunction of the unit | when in the state o.
The eigenfunction is then constructed as follows

6.1 d(1) (1)
$.(2) 9p(2) ¢,(2) 2.10.1
63 $0) )|

wﬁﬁ‘/
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We notice that if we interchange the states of any two units, ¥ changes sign.
We accordingly describe the eigenfunctions ¥ as antisymmetric with respect
to every pair of units. It follows at once that if any two of the states, o, §, v
are identical then 5, vanishes. Thus there is one independent y for each
combination of three ¢,, ¢y, ¢, provided o, B, vy are all different but none
if any two of o, B, y are the same.

If on the other hand each unitis a photon oris composed of an even number
of fundamental particles (protons, neutrons, electrons), then each eigenfunc-
tion of the system is constructed from the eigenfunctions of the units by
forming linear combinations called permanents similar to determinants, but
in which all the terms are added. Thus in the case of only three units 1, 2, 3
the eigenfunction ¥,s, is defined by

“ (1) d5(1) ¢y(1)"
Vs = '¢¢(z> O 4,0 2.10.2
L 6:3) 643 6,3

which differs from (1) in that all the six terms are added. We notice that if
we interchange the states of any two units, i remains unchanged. We accord-
ingly describe the eigenfunction ¥ as symmetric in all the units. It is clear
that there is one independent ¥ for every combination of three eigenfunc-
tions @,, @5, ¢, whether or not any two or more of a, B, y are the same.

§2.11 Fermi-Dirac and Bose—Einstein statistics

Let us now consider a system containing N indistinguishable units and en-
quire how many eigenfunctions Y of the system can be constructed out of g
eigenfunctions ¢ of the units. There are two distinct problems with different
answers according as i is to be antisymmetric or symmetric in the units.
In the case where ¥ is to be antisymmetric, to obtain any such ¢ atall, g
must be at least as great as N and the number of such eigenfunctions ¥ is

then
g!/N'(g—N)! (antisymmetric, g= N). 2.11.1

In the other case where V/ is to be symmetric, the number of such eigen-
functions ¥ is
(g+N-1D!/(g—D!N!  (symmetric) 2.11.2
which, when g>>1, differs only trivially from the simpler expression
(g+N)!/g! N 2.11.3
It is of interest to note that when g>>N, both (1) and (3) are nearly the
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same as
g¥IN!  (g>N). 2.11.4

If now we translate the laws governing the average properties of the
whole system outlined in §§2.01-2.09 into forms relating to the average
distributions of the component units, we shall as a consequence of the
difference between (1) and (2) find different results according as the eigen-
functions ¥ are to be antisymmetric or symmetric in the units. These
distribution laws take the simplest form if we choose as independent variables
the temperature 7, the volume ¥, and the absolute activity 4. We shall now
state these laws without derivation.

Let ¢, denote the energy of a unit in the state o having the eigenfunction
¢,. Then if the unit is a fundamental particle (proton, neutron, or electron)
or is composed of an odd number of fundamental particles, the eigenfunc-
tion Y must be antisymmetric in the units and the average number N, of
units in the state o is found to be given by

N,J(1—=N,)=2exp(—¢&,/kT) 2.11.5
where A denotes the absolute activity of the unit, T the absolute temperature,

and k the Boltzmann constant. This distribution law is called that of Fermi-
Dirac statistics.

If on the other hand the unit is a photon or is composed of an even number
of fundamental particles, the eigenfunction ¢ must be symmetric in the
units and the average number N, of units in the state a is found to be given by

NJ(1+N,) =/ exp(—&,/kT). 2.11.6

This distribution law is called that of Bose-Einstein statistics.

It is to be noted that in both the cases of Fermi-Dirac statistics and Bose—
Einstein statistics the average number N, of units in each state is related
simply and explicitly to the temperature 7 and the absolute activity 4,
which we recall is related to the chemical potential x4 by (2.09.2).

§2.12  Boltzmann statistics

Let the subscript , denote the state of lowest energy &, and let us consider
the case that

Aexp(—eo/kT)<1 2.12.1
so that a fortiori

4 exp(—e /kT)<1 (all ). 2.12.2
It then follows from either (2.11.5) or (2.11.6) that
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N1 (all o). 2.12.3
We may then without loss of accuracy replace either (2.11.5) or (2.11.6) by
N,=2Aexp(—¢,/kT). 2.12.4

This distribution law is called that of Boltzmann statistics.

We now state without proof that in almost all the systems met in practice
the condition (1) is satisfied. There are only two important exceptions.
The first is the system of conducting electrons in a metal; these obey the
Fermi-Dirac distribution law and will not be discussed in this book. The
other is the system of photons forming radiation; these obey the Bose-
Einstein distribution law and will be discussed in chapter 12. Boltzmann
statistics are sufficient for all the other systems to be met in this book and
from here onwards we shall confine our attention to these.

§2.13  Partition functions of units and thermodynamic functions

For any system obeying Boltzmann statistics, we have according to (2.12.4)

N, =21exp(—¢,/kT). 2.13.1
If we apply (1) to every state and add, we obtain
N=7) exp(—&,/kT) 2.13.2
so that )
u/LkT =In A=In{N/Y exp(—¢,/kT)}. 2.13.3

The sum X, exp(—¢,/kT) is called the partition function of the units. Its
structure is similar to that of the partition function of the whole system for
the independent variables 7, ¥, N. Formula (3) is the basis for the evaluation
of the thermodynamic functions in terms of the energies of all the states of
the component units.

Formula (3) is equivalent to the formula for the Massieu function J

J=—&FT=S—-U|T=kIn[{3 exp(—e,/kT)}"/N']. 2.13.4

If we compare (4) with (2.04.13) we see that the two are equivalent when
we bear in mind that the factor N! in the denominator in (4) is required to
avoid counting as distinct states those obtainable from one another by a
mere permutation of indistinguishable units.

The more general formula for a system containing more than one kind
of units (molecules) is
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J=-AF|T=S-U/T=kY In[{} exp(—&,/kT)}¥/N;1].  2.13.5

§2.14 Separable degrees of freedom

It is often the case that there is no appreciable interaction between two or
more degrees of freedom of a unit. Such degrees of freedom are said to be
separable. Each eigenfunction ¢, may then be expressed as a product of the
eigenfunctions for the several separable degrees of freedom, and the energy
¢, as the sum of the energies of the several separable degrees of freedom.
It then follows immediately that the partition function of the unit can be
expressed as the product of partition functions for its several separable
degrees of freedom.

In particular the translational degrees of freedom of molecules are usually
separable from the internal degrees of freedom. Among the internal degrees
of freedom we here include rotational degrees of freedom as well as atomic
vibrations and electronic and nuclear degrees of freedom. We may accord-
ingly write for the partition function of a molecule

Y exp(—e,/kT)=Y exp(—&./kT) Y. exp(—&;n /kT) 2.14.1
where ¢, denotes the energy of the translational degrees of freedom and

&in: the energy of the internal degrees of freedom. Substituting (1) into
(2.13.5) we obtain for the Massieu function J and the Helmholtz function &

~TJ=&F=—kTY In[{3 exp(—e,/kT) Y exp(—&;, /kT)}"/N;1]. 2.14.2
Alternatively we may write

J=Jut+Tin 2.14.3

F=Fp+ Fyy 2.14.4

Fu=~TJ,=—kT Y In[{3 exp(—e,/kT)}"|N:!] 2.14.5

Fro=—TJi=~kT T, N, (Y, exp(—e;a/kT)} 214.6

where the subscript ,, refers throughout to contributions from the transla-
tional degrees of freedom and the subscript ;,, to contributions from the
internal degrees of freedom.

§2.15 Classical and unexcited degrees of freedom

It may happen that there are many energy levels less than kT. When this is
the case, the sum which defines the partition function may without loss of
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accuracy be replaced by an integral, whose evaluation is often elementary.
Such a degree of freedom is called a classical degree of freedom. Whether a
particular degree of freedom is classical depends on the temperature,
Under ordinary conditions the translational and rotational degrees of
freedom of the molecules in a gas are classical.

In the opposite case it may happen that the separation between the states
of lowest energy level and those of the next energy level is several times
greater than k7. The partition function then reduces effectively to the terms
corresponding to the lowest energy level, that is to

8o exp(—&o/kT) 2.15.1

where g, denotes the lowest energy level and g, denotes the number of states
having this energy. Such degrees of freedom are called unexcited degrees of
freedom. The contribution of each such unexcited degree of freedom to the
Helmholtz function 4 is clearly

80_kT1ng0 2.15.2
and the corresponding contribution to the entropy

which we notice is independent of the temperature. Whether a particular
degree of freedom is unexcited depends by definition on the temperature.
At all the temperatures with which we are concerned all degrees of freedom
internal to the atomic nucleus are unexcited. The electronic degrees of
freedom of most molecules may also be regarded as unexcited at most of
the temperatures which concern us; there are however a few exceptions,
notably the molecule NO.

§2.16 Translational degrees of freedom

The translational degrees of freedom of a dilute gas may be regarded as
classical. When the partition function for the translational degrees of freedom
of a molecule is replaced by an integral and the integration is performed,
one obtains

(2rmkT|h*)?V 2.16.1

where m denotes the mass of a molecule and ¥ the volume in which it is
enclosed; 4 denotes the Planck constant and k as usual the Boltzmann
constant. Thus for a dilute gaseous mixture according to (2.14.5) we have

Fo=—TJ,=—kT Y In{(2nmkT/h?)y N1} (dilute gas). 2.16.2
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Let us now consider the translational degrees of freedom in a crystal.
We may regard each molecule as vibrating about an equilibrium position
in the crystal lattice. Let us denote by ¢ the partition function for a molecule
attached to a given lattice position and for the moment let us imagine all the
N molecules to be individually distinguishable but sufficiently alike so that
any one can be interchanged with any other without destroying the crystal
structure. Then the molecules can be permuted over the lattice positions in
N! ways, so that the partition function for the translational motion of the
molecules of the whole crystal would be N!g". Actually the molecules are of
course not individually distinguishable and we must consider only states
whose eigenfunction is symmetric in molecules containing an even number
of fundamental particles and antisymmetric in molecules containing an odd
number of fundamental particles. In the simplest case when all the molecules
in the crystal are of the same kind the number of states is thus reduced by a
factor N!, which cancels the other N!, so that the partition function for the
whole crystal becomes gV. We thus have for a crystal of a pure substance

Fo=~-TJ,=—NkTlngq (crystal). 2.16.3

Each molecule at a given lattice position usually has only one state of lowest
translational energy and so at low temperatures g tends to exp(—ey/kT).
We therefore have for a crystal of a pure substance

F—Neg  (T-0) 2.16.4

and consequently
S,.—0 (T-0). 2.16.5

For a mixed crystal containing several distinguishable kinds of molecules,
c.g. isotopes, the eigenfunctions have to be symmetric, or antisymmetric,
only with respect to identical molecules. Hence we have to divide only by
the product of all the N;! instead of by N!. We therefore have instead of (3)

Fy==TJy=—~kTIn N'—kT ¥ In{qgY/N,'} 2.16.6
i

where N=X;N;. It has been implicitly assumed that interchanging two
molecules of different kinds in the crystal does not affect the partition func-
tion g; of either of them. This assumption is justified provided the molecules
are sufficiently similar, e.g. isotopic. Since at low temperatures each g;
tends to exp(—g;o/kT) it follows that

(Fu= ¥ Nig)kT - =In N'+ Y InN!  (T-0) 216.7
i i
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and consequently

Sy—»kln N!=kYIn Nl (T-0). 2.16.8

§2.17 Third law of thermodynamics

After this brief and necessarily incomplete sketch of statistical thermo-
dynamics we recall the formulation of the third law of thermodynamics
which we adopted in §1.66.

By the standard methods of statistical thermodynamics it is possible to
derive for certain entropy changes general formulae which cannot be derived
from the zeroth, first, or second laws of thermodynamics. In particular we
can obtain formulae for entropy changes in highly disperse systems (i.e.
dilute gases), those in very cold systems (i.e. when T—0), and those asso-
ciated with the mixing of very similar substances (e.g. isotopes).

We shall now briefly state these deductions from statistical thermody-
namics without giving detailed derivations.

In the first place we consider the translational term in the thermodynamic
functions of a highly disperse system, i.e. a dilute gas, containing N, mole-
cules of type 7 having a mass m;. The contributions to the Helmholtz func-
tion & and to the Massieu function J are given by

Fy=—~TJe=~kT Y In{(2rnm,kT/h*) VN N1} 2.17.1

The corresponding contribution S, to the entropy S is

Se=k Y. In{(2nm,kT/h*™M VYN, 1} +k Y 3N;. 2.17.2

In particular in a gaseous single substance
Se=k In{2nmkT/h*)*" VYN 1} + 3 Nk. 2.17.3
Using Stirling’s formula for large N
InN!'=NInN-N 2.17.4
we can rewrite (3) as
S/ Nk=In{(2nmkT[h*)}V|N} +3. 2.17.5

Anticipating the formula given in §§ 3.13-3.14 for the pressure P of a single
perfect gas

P=NKT|V 2.17.6
we can replace (5) by



DIGRESSION ON STATISTICAL THERMODYNAMICS 81

S/ Nk=In{(2nm/h*)}(kT)*/P} + 5. 2.17.7

We shall use the equivalent of formula (7) in §3.26.

Our second example is the translational term in the entropy of a crystal
of a pure substance. As the temperature tends towards zero, this contribu-
tion tends to zero. We shall return to this result in §3.51.

Finally we consider the entropy of mixtures of very similar substances
such as isotopes. If several very similar substances, such as isotopes, all at
the same temperature and same number of molecules per unit volume are
mixed, the temperature and number of molecules per unit volume being kept
unchanged, the entropy is increased by AS given by

AS[k=In N!=¥ In N,! 2.17.8

where N; denotes the number of molecules of the species 7 and N=X,N;
denotes the total number of molecules of all species. Using Stirling’s formula
(4), we can rewrite (8) as

AS[k=Y, N; In(N/N)). 2.17.9

This applies to solids, and incidentally to liquids, as well as to gases, provided
the various species are sufficiently similar, e.g. isotopic. We shall make use
of this in §3.55.

When we meet these formulae again in chapter 3, the number of molecules
N; will be replaced by the amount of substance n;=N,/L and correspond-
ingly the Boltzmann constant k will be replaced by the gas constant R=Lk.



CHAPTER 3

SYSTEMS OF A SINGLE COMPONENT

§3.01 Single components and single phases

The present chapter is devoted to single component systems, both single
phase and multiphase. Most of the formulae of the present chapter which
relate to a single closed phase are applicable also to a multicomponent
closed phase. Formulae relating to an open phase or to a multiphase system
are on the contrary more complicated in a multicomponent system than in a
single component system. Such formulae will be dzrived in chapter 4.

§3.02 Dependence of entropy on temperature

The experimental determination of entropy and thermodynamic temperature
are interlinked. We have not yet described how either can be directly or con-
veniently measured. In §3.12 we shall describe an especially convenient
way of measuring thermodynamic temperature. Anticipating this result,
that is to say assuming we have a thermometer which measures thermo-
dynamic temperature, we shall now describe how we can determine the
dependence of entropy on temperature at constant pressure.
For a single closed phase, we have according to (1.28.8)

dH=TdS+VdP 3.02.1

or if we keep the pressure constant
dH=TdS (P const.). 3.02.2

If then we supply heat g to a single component system, since the change in
the system must be reversible, regardless of whether the process of supplying
the heat is reversible (see §1.13), we have

qg=dH=TdS (P const.). 3.02.3

Furthermore if we supply the heat by means of an electric element, the
82
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heat will be equal to the electrical work done on the element. To be precise,
if the potential difference across the element is E and the current flowing
is 7, then in a time ¢ the heat given up by the element to the system is Eiz.
Since E, i, and ¢ are all measurable we can calculate g. We see then that,
apart from experimental difficulties, there is no difficulty in principle in
measuring increases of H. As already mentioned we are postulating, in
anticipation of §3.12, the availability of a thermometer which measures T.
We thus obtain a direct experimental relationship between T and H, or
rather changes in H which itself contains an arbitrary additive constant.
As an illustration we show in figure 3.1 the experimental data* for one
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Fig. 3.1. Enthalpy of one mole of H,O at one atmosphere
mole of H,O at a constant pressure of one atmosphere. The first curve on

the left applies to ice from 0 K to 273.15 K, at which temperature the ice
* Giauque and Stout, J. Amer. Chem. Soc. 1936 58 1144.
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melts; the value of the enthalpy then rises at constant temperature by an
amount equal to the proper enthalpy of fusion. As this change would run off
the paper the scale of the curve for the liquid has been shifted downwards
by 6.4 kJ mole™*. The curve on the right of the figure runs from 273.15 K to
373.15 K at which temperature the water boils; the value of the enthalpy
again rises at constant temperature and runs off the diagram.
T/K
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Fig. 3.2. Heat capacity of H,0O at one atmoshpere

In figure 3.2 we show the data in a somewhat different form, (0H/oT)p
for unit amount or (8H,,/0T), being now plotted against In 7. The three
separate curves apply to ice, liquid water, and steam respectively. From
(2) we have

Sp= f ds,,= f dH,|T= f (3H,/oT)pd In T. 3.02.4

We see then that apart from an arbitrary constant the proper entropy of
ice at a temperature T is equal to the area under the part of the curve to the
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left of T. In particular the proper entropy of ice at the fusion point exceeds
that at 0 K by an amount corresponding to the whole area under the ice
curve. This amounts to 38.09 J K~! mole ™.

When the ice changes to liquid water there is an increase of the proper
entropy called the proper entropy of fusion equal to the proper enthalpy of
fusion divided by the temperature. Thus

AS,=AH_/T=6007J mole™*/273.15 K=21.99 T K~ ! mole~".

Suppose we wish to know by how much the proper entropy of steam at
1000 K and 1 atm exceeds the proper entropy of ice at 0 K. We have to sum
the following contributions.

(a) Ice at 0 K—ice at 273.15K
AS,,=38.09T K™ ! mole™* (area under ice curve).

(b) Ice at 273.15 K-liquid water at 273.15 K
AS,=AH,/T=6007 J mole™!/273.15K=21.99 J K~ ! mole ™ ".

(¢) Water at 273.15 K—-water at 373.15K
AS,=23.52T K 'mole™"  (area under water curve).

(d) Water at 373.15 K—steam at 373.15K
AS_=AH,/T=40656 J mole™!/373.15K =108.95J K~ ! mole™".

(e) Steam at 373.15 K-steam at 1000 K
AS,=358J K 'mole™"  (area under steam curve).

By addition we obtain for the change
Ice at 0 K—steam at 1000 K (at 1 atm)
AS,=228.4J K™ ! mole™!.

In the case of some substances there may be several solid phases with
transition temperatures at which the proper entropy increase AS,, is equal
to the increase AH,, divided by 7. Such transitions cause no difficulty.

We see then that the determination of changes in the entropy of any
single substance through any range of temperature at constant pressure
becomes straightforward provided the heat input and thermodynamic tem-
perature can be measured.

§3.03  Heat capacity at constant pressure

In the previous section we saw that the determination of entropy requires

us to use the relation
T(0S/0T)p=(0H/OT)p. 3.03.1

This quantity is called the heat capacity at constant pressure of the system.
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The heat capacity per unit amount or the proper heat capacity at constant
pressure will be denoted by C, or by Cp when it is desired to emphasize the
contrast with another quantity C,, defined in §3.06. Thus

C=Cp=T(0S,/0T)p=(0H,[0T)p. 3.03.2

The importance of C is that it forms the connecting link between S and H.
One measures directly H as a function of T and then determines S by the
relation (1). Importance was in the past attached to C for a completely
different, accidental, and inadequate reason, namely that for many substan-
ces at the most usual temperatures C happens to be insensitive to the
temperature. For example we notice from figure 3.2 that C is nearly constant
for liquid water, only roughly constant for steam, but not at all constant
for ice.

The heat capacity at constant pressure per unit mass or the specific heat
capacity at constant pressure is denoted by cp.

§3.04 So-called mechanical equivalent of heat

Before the classical experiments of Joule, the relationship between work,
heat, and energy was not understood. These experiments established that
within the experimental error the work or energy input required to raise
the temperature of a given mass of water through a given temperature range
is independent of the particular mechanism used. The formulation of the
first law of thermodynamics is largely based on these experiments and later
repetitions and improvements of them. Since Joule’s experiments were
performed before the formulation of the first law, Joule’s terminology was
necessarily different from the terminology based on familiarity with the laws
of thermodynamics. Joule described some of his experiments as the ‘deter-
mination of the mechanical equivalent of heat’. Once the principles of ther-
modynamics are understood, this phrase becomes meaningless. What Joule
in fact did was

(a) to establish an experimental basis for the formulation of the first law
of thermodynamics;

(b) to measure the heat capacity of water.

Before the first law of thermodynamics was formulated or understood the
unit of heat was the quantity of heat required to raise the temperature of
one gramme of water by one degree and this unit was called the calorie.
Work was however measured in mechanical units. It is found that the specific
heat capacity of liquid water is approximately 4.18 J K~ !g™! but in fact
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varies appreciably with the temperature. Nowadays almost all accurate
thermal experiments involve measurements of volts, amperes, and seconds
leading to energy values in joules. Moreover.in 1948 the Conférence Générale
des Poids et Mesures adopted* a recommendation of the International Union
of Pure and Applied Physics that all accurate ¢alorimetric data should be
expressed in joules. It is difficult to understand why the use of the calorie as
a unit persists, except as a habit. The most careful experimental workers in
thermochemistry have abandoned the old definition of the calorie and have
replaced it by the more satisfactory definition

1 calorie=4.184 joules exactly.

The calorie thus defined is called the thermochemical calorie.

As already mentioned the specific heat capacity of liquid water is approxi-
mately, but by no means exactly, independent of the temperature. Its
value is very near 1 cal K™'g™! at 290 K. The best experimental values at
a few other temperatures are as follows':

At 0°C 42174JK"'g!
15°C 4.1855J K 'g™!
16°C 4.1846 T K™ g~!
17°C 4.1837J K~ 'g™!
20°C 4.1816 JK~!g™!
25°C 4.1793J K~ 'g™'.

§3.05 Dependence of entropy on pressure

In §3.02 we saw how the variation of entropy with the temperature at a
constant pressure is determined experimentally. In order to determine the
entropy as a function of temperature and pressure, this procedure has to be
supplemented by a determination of the dependence of entropy on pressure
at constant temperature. This dependence is given according to Maxwell’s
relation (1.48.2)

©S,,/0P)r=—aV 3.05.1

which when integrated becomes

2

Py

P

If we differentiate (1) with respect to T, keeping P constant, and multiply by

* C.R.Conférence Générale des Poids et Mesures 1948.
t Stille, Messen und Rechnen in der Physik, Vieweg 1955, p. 289.
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T we obtain
(0C[oP)y = — T{d(aV,,)[0T}p= — > TV, — T(0t/OT)pV,, - 3.05.3

For solids and liquids the second term on the right may be small
compared with the first; for gases on the contrary the two terms are nearly
equal and opposite.

§3.06 Heat capacity at constant volume

In §§3.02-3.05 we have collected the most important formulae required to
determine the entropy in terms of temperature and pressure. There is an
analogous set of relations for the alternative choice of temperature and
volume as independent variables. Except for gases these relations are con-
siderably less useful than those relating to the independent variables T, P.
We shall refer to them briefly, without giving detailed derivations; these are
in all cases analogous to those in the 7, P system.
For the dependence of entropy on temperature at constant volume, we
have
(dS/3T), =T~ 1(dU/[OT), 3.06.1

which when integrated becomes
T2
S(T,, V)—S(T,, V)=f (@U/PT),dIn T. 3.06.2
T

Correspondingly for the dependence of entropy on volume’ at constant
temperature, we have according to Maxwell’s relation (1.47.3)

@S/oV)r =Ky 3.06.3

which when integrated becomes
Va
S(T, V,)—S(T, V1)=f (a/kp)dV. 3.06.4
Vi

The quantity (0U/0T), in formula (1) is called the heat capacity at constant
volume of the system. The corresponding quantity referred to unit amount,
the proper heat capacity at constant volume, is denoted by C).. Thus

Cy=T(8S,/0T)y = (dU,,/0T),. 3.06.5

The heat capacity at constant volume per unit mass or the specific heat
capacity at constant rolume is denoted by cy.
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§3.07 Relation between heat capacities
According to the meaning of partial differential coefficients we have
(0S/0T)p=(0S/0T)y + (0S/0V ) (OV[OT)p. 3.07.1

Substituting from (1.46.2), (1.46.3), and from Maxwell’s relation (1.47.3)
into (1) we obtain
(BS/0T)p=(3S/0T )y +a*V/kr. 3.07.2

Applying (2) to unit quantity, multiplying by 7, and using the definitions
(3.03.2) and (3.06.5) of Cp and C, respectively we find

Cp=Cy+02TV,[Kr. 3.07.3

Since in a stable phase none of the quantities a?, T, V,,, k1 can ever be nega-
tive, it follows that Cp can never be less than Cy.

Cy is much more difficult to measure than Cp. If the value of Cy is required,
it is usual to measure Cp and then calculate Cy from (3). There seems to be
a widespread belief that in the comparison of a theoretical model with
experimental data the most suitable quantity for the comparison is Cy.
This is however a misconception. Any theoretical model susceptible to
explicit analytical treatment, such as for example Debye’s model of a crystal
discussed in §3.33, leads to an explicit formula for the Helmholtz function
and so by differentiation with respect to T to explicit formulae for the energy
and the entropy, both of which are directly measurable as a function of
temperature. These are clearly the most suitable quantities for comparison
between a theoretical model of a crystal and experimental data. There is no
reason or excuse for a further differentiation to obtain a heat capacity except
in the hypothetical case that the agreement between theory and experiment
is so good that a more sensitive test is required.

V3.08  Adiabatic compressibility

In §1.46 the isothermal compressibility xr was defined by
kr=—V "1 @V/oP);. 3.08.1
The adiabatic compressibility xg is similarly defined by
kg=—V " (dV/OP)s. 3.08.2
These two compressibilities are interrelated as follows.
ks _ (8V/[OP)s _ (8S/0P),(0P[0T)y - (8S/oT)y _G

= . 3.08.3
kr  (@V[oP)r  (85/0V)H(@V[oT)p  (8S[0T)p Cp
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The speed a of propagation of compressional sound waves in an isotropic
medium is given by
a*=Vy/Mkg 3.08.4

where M is the proper mass. From (3), (4), and (3.07.3) we deduce
Cp/Cy—1=a*TMa?*|Cp. 3.08.5

This is the most useful formula for determining C,/Cy since all the quantities
on the right, in contrast to Cy, and in solids k, are readily measurable,

§3.09 Condensed phases and gases

Solids and liquids, which we shall class together under the name condensed
Phases, are under most conditions sharply distinguished from gases by a
striking difference in compressibility. It is true that in the neighbourhood of
the critical point, as we shall see in §3.44 the distinction between liquid and
gas disappears, but at least for liquids or solids at temperatures well below
the critical temperature and for gases at pressures well below the critical
pressure the contrast is striking.

In a condensed phase at a given temperature the compressibility is small
and practically independent of the pressure. That is to say that to a first
approximation the volume is independent of the pressure and to a better
approximation decreases linearly with the pressure. In a gas on the other
hand the compressibility is much greater and far from independent of the
pressure. In fact it is at least roughly true that the volume of a gas varies
inversely as the pressure, according to Boyle’s Law. In other words it is PV,
not ¥, which to a first approximation is independent of P.

§3.10 Isothermal behaviour of a gas

It is reasonable to expect that the volume of any phase at constant tempera-
ture can be expressed as a power series in the density or the reciprocal of
the proper volume. In view of what was said in the previous section, the lead-
ing term will in the case of a gas be an inverse first power. We may accord-
ingly write

PVu=A(1+B,/Vya+Bs/VE+B V2 +...). 3.10.1
In principle the number of terms is indefinite, depending on the accuracy

aimed at. Up to quite high pressures, of say a hundred atmospheres, it is
often unnecessary to use more than three terms. At pressures up to 2
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few atmospheres even the third term is often negligible, only the first

two terms being required.
All the coefficients 4, B,, Bs, ... of course depend on the temperature,

but not on the volume.
B, is called* the second virial coefficient; B; is called the third virial

coefficient and so on.
For the sake of simplicity and brevity we shall replace (1) by the three

term expression
PV,=A(1+B,/V,+B;/V2). 3.10.2

There is in principle no difficulty in inserting further terms if required.
We can invert the series in (2) to obtain the expansion in powers of P

PV,=A+B,P+A"'(B;~B})P*+.... 3.10.3

It is mainly a question of convenience whether one uses a formula of type (2)
or of type (3). For our immediate purpose, it is more convenient to use (3).
Fortunately at ordinary pressures all terms beyond the second are usually
negligible and either formula then reduces to

V=A/P+B, (low pressures). 3.10.4
From (3) we readily obtain the proper Gibbs function G,, as a function of

pressure by substituting into (3) and integrating. We thus find

Gu(T, P)=Gp(T, P®) = A In(P|P®)+By(P— P®)+1A4™'(By ~ B})(P* — P°?)
3.10.5

where P° is a standard pressure, which may be chosen arbitrarily, but in this
book is always 1 atm. This does not imply that pressures must necessarily
be measured in atm. In other units we have for example

P®=1atm=76 cmHg="760 mmHg=
=1.01325 x 10° dyn cm~2=1.01325 x 10> J m~®=1.01325 bar.
We obtain for the proper enthalpy H,, by substituting (5) into (1.49.3)
H,(T, P)—~H,(T, P®)={d(T ~'4)/dT "'} In(P/P°)
+{d(T™'By)/dT~'}(P-P®)
+3{d(T 747 'By— T~ 'A7'B2)/dT ' }(P* - P°?). 3.10.6

* Onnes and Keesom, ‘Die Zustandsgleichung’. Commun. Phys. Lab. Univ. Leiden, 11:
Suppl. 23 1912; Encyk. Math. Wiss., 5: No. 10, p. 615.
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§3.11 Throttling

In the previous section we set up a formula for ¥V, as a function of P based
on experiment. From this we deduced a formula for G,, and thence a formula
for H,. We shall now consider the comparison between this formula for H,,
and experiment.

The experiment which supplies the most direct information concerning
the dependence of H on the pressure at constant temperature is known as
throttling. The first experiment of this type was performed by Joule and
Lord Kelvin (William Thomson); it is accordingly often called the Joule-
Thomson experiment. In this experiment a stream of gas in a thermally
insulated container is forced through a plug, the pressure being greater on
the near side than on the far side and the temperatures of the gas stream
approaching and leaving the plug are measured on an arbitrary scale; we
denote the temperatures on this scale by 6 to distinguish them sharply from
thermodynamic temperatures 7, which we do not yet know how to measure.
Consider now the whole system in a steady state such that in a given time a
certain mass of gas is pushed in at a pressure P; and during the same time
an equal mass of gas streams away at a pressure P,. We use the subscript 1
to denote the state of the gas being pushed in and the subscript 2 to denote
that of the gas streaming away. Then during the time considered a mass
of gas of pressure P,, volume V,, temperature 8,, and energy U, is displaced
by an equal mass of pressure P, volume V,, temperature 0,, and energy
U, . During this time the work done on the system is P, ¥, —P,V,. Since the
system is supposed thermally insulated this work must be equal to the in-
crease in energy of the system. Thus

UZ—U1=P1V1—P2V2. 3.1]1
Hence according to the definition of H in §1.28, we have

H2=H1 3.112

or choosing 6, P as independent variables
H(,,P)=H(,,P,). 3.11.3

Suppose that the effect of throttling is to cool the gas, so that 0, is a lower
temperature than 6, then there is no difficulty in principle in heating the
throttled gas at constant pressure so as to restore its temperature from
6, to 6,. If the heat required for this purpose is measured, we then know
the value of

H(0,, P,)—H(8,, P,) 3.11.4
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which according to (3) is equal to
H(OI’PZ)—H(OI’PI)- 3115

If on the contrary the effect of throttling is to warm the gas, then one must
do a subsidiary experiment to determine the heat required to raise the
temperature of the gas at the pressure P, from 6, to #,. We thus obtain an

experimental value of
H(ez,Pz)_H(al,Pz) 3_11,6

which according to (3) is equal to
H@,,P,)-H(@,,P,). 3.11.7

In either case we obtain experimental values of H(8,, P,)—H(6,, P,)
positive in the former case, negative in the latter. It is important to notice
that this experiment does not require any knowledge of how the arbitrary 6
scale of temperature is related to the thermodynamic scale or to any other
scale.

We shall now describe the experimental results obtained. It is found that,
whatever the temperature, H(P,)— H(P,) is at least approximately propor-
tional to P, —P, and is not sensitive to the absolute magnitude of P;. It is
quite certain that at low values of P,, the value of H(P,)— H(P,) does not
tend towards infinity, which is what one should expect from formula (3.10.6)
owing to the term in In P. In short the Joule-Thomson experiment shows
that the first term on the right of formula (3.10.6) is in fact missing and the
linear term in P is therefore the leading one.

§3.12  Measurement of thermodynamic temperature

In principle to determine 7, one should measure AH and AG for the same
isothermal process and by comparing these obtain a differential equation
for T. In particular, one can determine the coefficients 4, B,, B;, in the
formula for G simply by pressure measurements and one can obtain inde-
pendent measurements of the corresponding coefficients in H, from the
throttling experiment. By comparison we obtain information concerning 7,
but admittedly in a rather awkward form.

To our agreeable surprise the information is in a strikingly convenient
form in the case of the coefficient 4. The throttling experiment shows un-
mistakably that H contains no term tending to infinity as P tends to zero,
that is to say no term in In P. Hence from (3.10.6) we conclude that

d(T~'4)[dT " '=0 3.12.1
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which is equivalent to
AxT. 3.12.2

At last we have found a simple, direct, and reliable way of determining the
ratio of any two thermodynamic temperatures. We use as a thermometer a
fixed quantity of gas. We measure several pairs of values of P, V at the same
temperature and extrapolate the product PV to P=0, thus obtaining the
value of 4. We repeat this at another temperature thus obtaining another
value of 4. Then the ratio of these two values of A4 is equal to the ratio of the
two values of T. Having thus established a way of determining the ratio of
any two temperatures, the numerical values are fixed by the convention
described in §1.21 so that the triple point of water is 273.16 degrees Kelvin
and this is called the Kelvin scale.

§3.13 The gas constant and the mole

We have found that the coefficient 4 is directly proportional to the tempera-
ture. We accordingly write
A=RT 3.13.1

where R is independent of temperature and pressure. R also becomes inde-
pendent of the nature of the gas when the unit of amount is suitably chosen,
e.g. by choosing the mole. From a purely thermodynamic view-point the
amount of substance may be defined without any reference to molecular
theory by assigning a common value of R to all gaseous substances.

The accepted definition* of the mole is that amount of substance which
contains the same number of molecules as there are atoms in 0.012 kg of
12C, In this definition ‘molecules’ includes ions, radicals, electrons, etc. The
number of atoms in 0.012 kg of *2C is 0.60225 x 10*4, Consequently the
factor for transforming moles to molecules, called the Avogadro constant L, is

L=0.60225 x 10** mole !
and the factor for converting molecules to moles is
L™!'=1.66044 x 10~ 2% mole.

It can be shown by statistical mechanics or kinetic theory that the gas
constant has a common value for all gases and is related to the Boltzmann
constant k introduced in chapter 2 by

* L.LU.P.A.P. Symbols, Units and Nomenclature in Physics, 1961 p. 19, 1965 p.25;
LU.P.A.C. Information Bulletin Number 24 1965 p. 4.
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R=Lk
=6.0225x% 10%>* mole™ ! x 1.3805x 10723 J K !
=8.3143J K~ ! mole™ .

§$3.14 Isothermal equation of a gas
When we replace 4 by RT in (3.10.2) we obtain
PV,/RT =1+ B,/V,+B;/V2. 3.14.1

1t is convenient to call PV, /RT the compression factor. It is sometimes denoted
by Z. When the density is sufficiently low for B,/¥,,, and a fortiori Bs/Vz,
to be negligible the gas is called a perfect gas.

§3.15 Absolute activity

In chapter 2 we met a quantity called the absolute activity which plays an
important part in the statistical thermodynamics of open systems. We now
give a purely thermodynamic definition of the absolute activity. This is
somewhat out of place in the present chapter, but we could not give it earlier
because it involves the gas constant R. We accordingly define* the absolute
activity as related to the molar chemical potential u by '

A=exp(u/RT) 3.15.1
or
u=RTIn A 3.15.2

Whereas it is not necessary to use A as well as u, we shall find that the
absolute activity 4 is often a convenient function in the study of equilibria
of all kinds whether involving one species or several. In §1.44 we showed that
for the most general chemical reaction represented symbolically by

0=Y v3B 3.15.3
B

the condition for equilibrium is according to (1.44.13)
Y vaug=0. 3.15.4
B

We now see that this condition can equally be expressed in terms of absolute
activities in the form
[1(s)"=1. 3.15.5

B
We recall that each v is negative for a reactant and positive for a product
In the chemical equation for the process.

* Fowler and Guggenheim, Statistical Thermodynamics, Cambridge University Press
1939 p. 66.
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In particular the condition for the equilibrium distribution of a species i
between the phases o and B may be written

A=) 3.15.6
We can now rewrite formulae (1.28.12), (1.28.15), and (1.28.16) as
R™'dS=(RT)"'dU+(P/RT)dV — Y In Jdn, 3.15.7

~R™'d(F/T)=R™"'dJ=—(U/R)Y(T " ")+(P/RT)dV —Y In A,dn, 3.15.8
—R"d(G/T)=R"dY=—(H/R)d(T")—(V/RT)dP—Zln Adn;. 3.15.9

§3.16 Thermodynamic functions of a gas

When we set A=RT in formula (3.10.5) for a gas we obtain

Go(T, P)—G,(T, P®)=RT In(P/P°)+ B,(P—P®)
+3(RT)™Y(By—B3)(P*—P®?).  3.16.1

When we set

1% (T)=G,(T, P°)—B,P® —4(RT)™ (B, — B%)P®? 3.16.2
formula (1) simplifies to

U(T, P)=G(T, P)=p°(T)+RT In(P/P°)+ B, P+4(RT) ™ '(B;— B3)P>.
3.16.3
Substituting (3.15.2) into (3) we obtain
In(4/A®)=In(P/P®)+ B, P|RT + 4(B; — B2)(P/RT)* 3.16.4
where
1° =exp(u®/RT) 3.16.5

so that A° is a function of the temperature only.
From (3) we derive immediately

~8,=du®/dT +R In(P/P®)+(dB,/dT)P
+3P?*d(R™'T™'B;—R™'T™'BY))/dT  3.16.6

H,=p®—Tdu°/dT+(B,— TdB,/dT)P
+4P*R™'T™'By—R™'T™'B2—Td(R™'T " 'B,+R™'T™'B2)/dT}. 3.16.7

u° is called the standard chemical potential, —du®dT the standard proper
entropy of gas, and u® —Tdu®/dT the standard proper enthalpy of gas.

In general there does not exist any state in which simultaneously u=u°
and du/dT=du®/dT. For this reason expressions such as ‘entropy in the
standard state’ should be avoided.
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§3.17 Fugacity

It is often convenient to use a quantity p called the fugacity of the gas
defined* by

2/A° =p|P® 3.17.1
p/P—-1 as P-O0. 3.17.2
An alternative equivalent definition of p is
P
Inp=In P°°-|-J VadP 3.17.3
POO

where P is a pressure sufficiently small so that p=_P. In a perfect gas the
fugacity is equal to the pressure. For a real gas at moderate pressures
according to (3.16.4)

In p=In P+ B, P/RT+4(B;—B3)(P/RT)>. 3.17.4

The simplicity attained by the introduction of the fugacity is one of appear-
ance or elegance. It leads to nothing quantitative unless we express the
fugacity in terms of the pressure and then we are back where we started.

§3.18 Gases at high temperatures

By means of statistical mechanics the second, third, fourth, . . . virial coeffi-
cients can be expressed in terms of integrals, called ‘cluster integrals’, over
the position coordinates of clusters of two, three, four, ... molecules.

The evaluation of these cluster integrals, except that for the second virial
coefficient, is in general laborious. The effort required depends on the form
of the dependence of the interaction energy w on the distance r between
two molecules. The cluster integrals become much more tractable for the
simplest model of non-attracting rigid spheres defined by
Ww=00 r<a 3.18.1
w=0 r>a. 3.18.2
For this simple model the several virial coefficients are conveniently ex-
pressed in terms of a proper volume b defined by
b=%nLs> 3.18.3

as follows
B,b=1 3.18.4

* Lewis, Proc. Nat. Acad. Sci. U.S. 1901 37 49; Z. Phys. Chem. 1901 38 205.
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B,/b*=0.625 3.18.5
B,/b®=0.287 3.18.6
B,/b*=0.110. 3.18.7

This model and these virial coefficients describe the limiting behaviour of a
gas at high temperatures.

A very simple formula* giving a rough approximation to the accurate
virial expansion for non-attracting rigid spheres is

PV, JRT=(1—bj4V,)"*
=1+4(bj4V,)+10(b/4V,,)* +20(b/4V,)> +35(b/4V,)* 3.i8.8

as compared with the accurate expansion'

PV/RT =1+4(b/4V,))+10(bj4V,,)* +18.36(b/4V,,)* +28.2(b/4V,,)*. 3.18.9

§3.19 Slightly imperfect gases

We shall call a gas slightly imperfect when the pressure or density is suffi-
ciently low for all virial coefficients to be ignored except the second B,.
The thermodynamic properties of a slightly imperfect gas are given by the
following formulae where we have dropped the subscript from B,

f=Gn=p®+RT In(P/P®)+BP 3.19.1

In 2=In 4° +In(P/P®)+BP/RT 3.19.2
—Sn=du®/dT +R In(P/P®)+(dB/dT)P 3.19.3
H,=u®—Tdu®/dT +(B—TdB/dT)P 3.19.4
PV,=RT+PB 3.19.5
Cp=T(0S,/0T)p=(0H,/0T)= — Td*u®/dT*— TP(d*B/dT?) 3.19.6
Vi =(0V,/0T)p=R/P+dB/dT 3.19.7

K1 V= —(0V,,/OP);=RT/P>. 3.19.8

For the sake of brevity we shall use these formulae omitting all higher powers
of P; when higher terms are required there is no difficulty in inserting
them.

* Guggenheim, Molec. Phys. 1965 9 199,
t Rowlinson, Rep. Prog. Phys. 1965 28 180.
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§3.20 Joule-Thomson coefficient

When we discussed throttling in §3.11 we stressed the fact that at that stage
we could not yet measure thermodynamic temperature. Now that we know
how to do this by means of a gas thermometer, it is profitable to return to a
discussion of throttling. We shall generalize this discussion by including the
possibility of absorption of heat by the outflowing gas. In place of formula
(3.11.3) we then have

H(Tz,Pz)"H(Tl,Pl)=q. 3.20.1

We first consider the isothermal case when ¢ is adjusted so that T, =T,.
Formula (1) then reduces to

H(P,))—H(P)=¢q (const. T) 3.20.2

so that measurement of g leads directly to the determination of (QH/0P)r.
In the adiabatic case when g=0 we have

H(Tz,Pz)_H(Tl,P1)=0. 3.20-3
If the pressure drop is small we may usefully replace (3) by
dH=(0H[0T)pdT+ (0H/OP);dP=0.

The ratio of the temperature fall to the pressure drop is called the Joule-
Thomson coefficient given by

(0T/0P)y = — (OH[OP)1/(OH[OT )p = — (OHu/OP) 1/ (OHn[OT )p

= — m(l —aT)/Cp 3.20.4
by use of (1.48.4) and (3.03.2).
When we use formula (3.19.4) we obtain
0T/oP)y=(—B+TdB/dT)/Cs. 3.20.5

§3.21 Temperature dependence of second virial coefficient

The second virial coefficient B, or B is negative at low temperature, increases
with temperature, and eventually becomes positive at a temperature called
the Boyle temperature and denoted by Ty.

It is impossible to fit the quantitative dependence of B on the temperature
by any two-parameter formula such as the van der Waals formula

B=b—al™! 3.21.1

or the Berthelot formula
B=p—cT 2 3.21.2
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The temperature dependence of B can be fitted quantitatively by various
three-parameter formulae of which the simplest is

B=b—aqT '—cT"2 3.21.3

This formula is purely empirical.

To obtain a theoretical formula we have to assume a particular form for
the interaction energy w between a pair of molecules as a function of their
distance apart r. The simplest model, commonly called a ‘square well’, is
described by

W= 00 (r<o) 3.21.4
w=—¢ (6<r<R) 3.2L1.5
w=0 (r>R) 3.21.6

with three adjustable parameters g, R, and ¢. This modelleads to the formula
for the second virial coefficient

B=b[1—(R*|o*—){exp(e/kT)—1}] 3.21.7
where
b=4nLg>. 3.21.8

The application to nitrogen is shown in figure 3.3 where the curve represents
formula (7) with

b=403cm3*mole™!  R/o=1.50 ¢/k=116K. 3.21.9

§3.22  Boyle temperature and inversion temperature

Boyle's law PV=f(T) is most nearly obeyed at the temperature at which
B=0. This temperature is accordingly called the Boyle temperature and it is
denoted by Tp. According to formulae (3.21.7) to (3.21.9) for nitrogen
T =330 K. This point is shown in figure 3.3.

The Joule-Thomson coeflicient for a slightly imperfect gas is positive at
the lowest temperatures (cooling by throttling) but is negative at high
temperatures (heating by throttling). The temperature at which the effect
changes sign is called the inversion temperature and is denoted by T;.
According to (3.20.5) the inversion temperature is determined by

dB/dT=B|T. 3.22.1

When Bis plotted against T the tangent through the origin touches the curve
at T=T;. For nitrogen this is shown in figure 3.3. According to formulae
(3.21.7) to (3.21.9) for nitrogen T;=633 K,
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Fig. 3.3. Second virial coefficient of nitrogen, + experimental data of Holborn and
Otto*, — formulae (3.21.7) to (3.21.9)

B/cm” mole

=150

§3.23 Relation between heat capacities of slightly imperfect gas

We have the general relation (3.07.3)

Cp"‘CV=a2TVm/KT. 3.23.1
Using formulae (3.19.5), (3.19.7), and (3.19.8) we deduce
Cp—Cy=R(1+R™'PdB/dT)>. 3.23.2

§3.24 Adiabatic change of a gas
For an adiabatic change we have from (3.08.2) and (3.08.3)

—dln V/dP=kg=k;C,/Cp (S constant). 3.24.1
This differential equation for an adiabatic change cannot be integrated
unless the right hand side can be expressed as an explicit function of P, ¥V

* Holborn and Otto, Z. Phys. 1925 33 5.
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and not necessarily even then. In the approximation of a perfect gas (1)

becomes
—dlIn V/dIn P=Cy/Cp (S constant). 3.24.2

In the special case of a gas with monatomic molecules
Cy/R=% Cp/R=4% (monatomic molecules) 3.24.3
so that (2) becomes
din¥V/dlnP=-% (monatomic molecules) 3.24.4

which can be integrated to
PV¥=constant. 3.24.5

In other cases (2) cannot be integrated explicitly.

§3.25 Temperature dependence of u® and 2°

In §3.16 we have expressed all the most important thermodynamic functions
of a gas in terms of u® or A° each of these being a function of temperature
only. We shall now consider this temperature dependence.

In the first place 4° contains an arbitrary constant term which we denote
by H°. There is a corresponding term H° in H,, and a corresponding factor
exp(H°/RT) in 2°. As long as chemical reactions are excluded we may
fix H° arbitrarily for each substance, for example by setting H°=0 at
25 °C. If on the contrary chemical processes are admissible then the values
of H® for all substances are not independent. We may however fix H°
arbitrarily for each element. The commonly accepted convention is H =0
for every element in its stable form at 25 °C.

There is also an arbitrary constant term in —du®/d7 which we denote by
S°. As long as chemical reactions are excluded we may fix S° arbitrarily
for each substance, for example by setting S—0 as T—0. If on the contrary
chemical reactions are admissible then the values of S° for all substances
are not independent. We may however fix S° arbitrarily for each element.
The accepted convention is S—0 as T7—0 for every element in its stable
form. There are complications in the case of hydrogen which will be
discussed in §3.56. When these conventions for H° and S° are used the
chemical potential is called the conventional chemical potential and the
entropy is called the conventional entropy.

In classical thermodynamics the accepted convention for S° is on a
par with that for H°, but statistical thermodynamics supplements the
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former convention in two ways. Firstly it provides a simple physical
interpretation of the convention for S° which will be given in §3.53.
Secondly by use of this interpretation of the convention it provides
explicit formulae for the conventional entropy of gases. These formulae
will be quoted without derivation in §§3.26-3.29 and interpreted later.

§3.26 Monatomic molecules

For gases having monatomic molecules, when we use the conventions speci-
fied in §3.25, it can be shown by statistical thermodynamics that

2° =exp(u® |RT)=exp(H°/RT) L*'h*P°g,(2nM)}(RT)?  3.26.1

where g, denotes the degree of degeneracy of the ground electronic level of
the free atom. The value of g, is 1 for the noble gases He, Ne, Ar, Kr, Xe,
Rn, and for Zn, Cd, Hg; its valueis 2 for the alkali metals Li, Na, K, Rb, Cs.

When we use (1) in the formulae of §3.19 the conventional values of g, 4,
and S, for a slightly imperfect gas are given by

p=Go=H°—RT in go+RT In{L*h*P®|2nM)}(RT)*} + RT In(P/P®) + BP

3.26.2
In A=H°/RT —In go+In{L*h*P®|2nM)}(RT)*} +In(P/P°)+ BP/|RT

3.26.3
Sm=R In go— R In{L*h*P°|2nM)}(RT)%} +3R— R In(P/P®)~ P(dB/dT).

3.26.4

If the gas is more than slightly imperfect it is a straightforward matter to
include terms in the higher virial coefficients B, B,, . . ..

§3.27 Numerical values in entropy constant

We shall now insert numerical values for the constants in the formulae of
§3.26 taking as our standard pressure P° =1 atm. We have
h =6.6256x10"3*Ts
R =8.3143J K ' mole™!
L =0.60225 x 10** mole ™"
P®=1atm=1.01325x10° T m™>.

With these values we obtain

P |(2nM)}(RT)* = 1.236(kg/mole)}(T/K) ~*
=39.03(g/mole)}(T/K)™* = (g/mole)¥(T/4.333 K) "%, 3.27.1
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Using (1) in the formulae of §3.26 we obtain
In2° =u®/RT=H°/RT —In g, — 3% In(M/g mole ™ *)—$ In(T/4.333K) 3.27.2

In A=u/RT=H°/RT —1n go—3% In(M/g mole™?)
—$1In(T/4.333 K)+In(P/atm)+ BP/RT  3.27.3
S,/R=1In go+3+3 In(M/g mole™ ')+ 3 In(T/4.333 K)
—In(P/atm)—(P/R)dB/dT
=In go+3 In(M/g mole™ ')+ 4% In(T/1.594 K)
—In(P/atm)—(P/R)dB/dT
=10.35+1In g, +% In(M/g mole™ ")+ % In(T/100 K)
—In(P/atm)—(P/R)dB/dT 3.27.4
H,=H°+3RT+(B—TdB/dT)P 3.27.5

Cp/R=%—T(d*B/dT?)PJR. 3.27.6

§3.28 Linear molecules

In the formulae for monatomic molecules the electronic degrees of freedom
were taken care of by g, while the remaining factor in 2° or term in u®
relates to the translational degrees of freedom. In polyatomic molecules
there are the same factors in A° and further factors to take care of the rota-
tional and vibrational degrees of freedom. We shall describe these factors
first for linear molecules and then for non-linear molecules.

For linear molecules the extra factor in A° due to the rotational degrees
of freedom is at ordinary temperatures

Aot =(O/T){1+ O, 3T+O}15T*}"  (T>06,) 3.28.1

where O, is a rotational characteristic temperature inversely proportional
to the moment of inertia I of the molecule and defined by
O, =h*/8n’Ik. 3.28.2

The factor s called symmetry number is 2 for a symmetrical linear molecule
and 1 for an unsymmetrical molecule.
The rotational term in u° is

Hrot=RT In 2., =RT In(s0,/T)—RT In{1+0,/3T +O/15T?}
=RT In(s0,/T)—1RO,— RO?/90T. 3.28.3

The constant term —4RO, may be absorbed into H° and (3) then becomes
Heo=RT In(s0,/T)~RO?/90T. 3.28.4
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The corresponding rotational contributions to S, H,, and C are

S.«=R—RIn(s0,/T)+RO’90T? 3.28.5
H,,=RT—RO?/45T 3.28.6
C..=R+ROZ45T?. 3.28.7

We now turn to the vibrational contributions. A linear molecule composed
of a atoms has 3a— S normal vibrational modes each having a characteristic
frequency v;. Associated with the frequency v; is a vibrational characteristic
temperature O,; defined by

k@v,~=hv,~. 3.28.8
The vibrational contributions to the several thermodynamic functions are
uvib":RTln )‘vib=RTZln{l_exp(_evi/T)} 3.28.9
Sev=R Y 0,/T{exp(0,/T)—1}-R Y In{l —exp(—0O,,/T)} 3.28.10
H,py=R Z 0,,/{exp(0,,/T)—1} 3.28.11
Civ=R Y {(6,4/2T)/sinh(0,;/2T)}". 3.28.12

We have still to discuss the electronic factor g,. For the vast majority of
linear molecules regarded as saturated g, is unity. The outstanding ex-
ceptions are O, and NO. The ground state of O, is *Z and go=3. The odd
molecule NO has a ground state *IT, and an excited state “Il; having an
excitation energy ¢ such that ¢/k is only 178 K. As a result of this the
constant g, has to be replaced by the temperature dependent factor

2+2exp(—178 K/T) 3.28.13
having an effective value 2 when 7«178 K and 4 when 73178 K.

Values of O,, 0,, s, and g, are given* in table 3.1 for the commonest
diatomic molecules and in table 3.2 for a few other typical linear molecules.

33.29  Non-linear molecules

Whereas a linear molecule has 2 rotational degrees of freedom, a non-linear
molecule has 3. For a non-linear molecule the rotational characteristic

* Values taken from Herzberg, Spectrd of Diatomic Molecules, Van Nostrand 1950.
Cf. Fowler and Guggenheim, Statistical Thermodynamics, Cambridge University Press 1939
p. 90. Cf. Slater, Introduction to Chemical Physics, McGraw-Hill 1939 p. 136, observing
that their O,,, is equal to twice our ©,.
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TABLE 3.1

Characteristic temperatures @r and Oy, symmetry numbers s, and electronic weights £
for typical diatomic molecules

Formula  Oy/K 10720,/K s £
H, 85.3 59.8 2 1
D, 42.7 43.0 2 1
N, 2.88 335 2 1
0, 2.07 224 2 3
CO 2.717 30.8 1 1
NO 2.44 27.0 1 -
HCl1 15.0 41.5 1 1
HBr 12.0 36.8 1 1
HI 9.29 32.1 1 1
Cl, 0.344 7.96 2 1
Br, 0.116 4.62 2 1
I, 0.0537 3.07 2 1

TABLE 3.2

Characteristic temperatures ©: and ©,;, symmetry numbers s, and electronic weights g,
for typical polyatomic linear molecules

Formula 6,/K 10—%20,/K s £

9.60
9.60
0oCo 0.560 20.0 2 1
33.8

8.47
8.47
NNO 0.602 18.5 1 1
320

8.80
8.80
10.5
HCCH 1.69 10.5 2 1
28.4
47.3
48.5

10.5
10.5

HCN 2.13 28.7 1 1
49.5
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temperature @, is related to the 3 principal moments of inertia I,, I,, I by

O,=h*[8n(1,1,15) k. 3.29.1
The rotational factor in A° at ordinary temperatures is given by
deoy =50} T, 3.29.2

The symmetry number s is defined as the number of indistinguishable orien-
tations of the molecule. For example s is 1 for NOCI, 2 for OH,, 3 for NH 3,
4 for C,Hy, 6 for BF3, and 12 for C4H,. The rotational contributions to
the several thermodynamic functions are

Proo=RT In 2,,=RT In(s@}/n*T%) 3.29.3
Si=3R—R In(s0}/n*T?) 3.29.4
Ui=3RT 3.29.5
Crot =3R. 3.29.6

The vibrational contributions are exactly as for linear molecules except
that there are 3a—6 normal vibrational modes instead of 3a-5. Thus we have

S,,=R Z 0,/T{exp(®,;/T)—1}—R Z In{l—exp(—0©,,/T)}. 3.29.7

The value of g, is unity for almost all non-linear molecules including OH,,
SH,, NH;, PH;, CH,, SO,, and all organic molecules. Its value for free
radicals such as CH;, C4H;, is 2.

TABLE 3.3

Characteristic temperatures ®; and O,;, symmetry numbers s, and electronic weights g,
for typical non-linear molecules

Formula G/K  1020,/K s )

4.8
* NOCI 8.6 1 1
25.9

229
OH, 22.3 52.5 2 1
54.0

13.7
23.4
NH, 12.3 23.4 3 1
48.0
49.1
49.1

* Landau and Fletcher, J. Molec. Spect. 1960 4 280.
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Values of @, 0,;, 5, and g, for a few non-linear molecules are given* in
table 3.3.

Table 3.4 gives the vibrational contributions of a single normal mode to
the several thermodynamic functions in terms of x=0,/T.

§3.30 Pressure dependence for condensed phases

We turn now from gases to condensed phases. Later we shall consider
equilibrium between a condensed phase and a gas. As we shall see in §3.44
there are conditions of temperature and pressure called critical at which the
distinction between gas and liquid disappears, but except at conditions close
to the critical there is a rather sharp contrast between the properties of a
gas and a liquid. The contrast between a crystal and a fluid, either gas or
liquid, is always a sharp one.

Whereas the isothermal compressibility of a gas is roughly equal to the
reciprocal of the pressure, the isothermal compressibility of a solid and that
of a liquid, except near the critical temperature, is much smaller than that
of a gas and is less dependent on the pressure. We accordingly use the
approximation

~ V-1 (0V[0P)r =kr=const. 3.30.1

We can integrate (1) at constant temperature, obtaining
Va=V"? exp{—kr(P—P°)} 3.30.2

where V© is the value of V,, at the standard pressure P°, usually one
atmosphere.

For typical liquids x7 is about 107 atm™! and for many solids is even
smaller. We may therefore, without appreciable loss of accuracy replace
(2) by the more convenient relation

Va=V{1—k(P—P°)}. 3.30.3

1

We can integrate again with respect to P at constant T obtaining
p=u®+Ve{(P—P°)—Lx (P—P®)?}. 3.30.4
[t is sometimes convenient to rewrite (4) as

p=u® +(P—P°) 4(Vut Vo). 3.30.5

* Values taken from Herzberg, Infra-red and Raman Spectra, Van Nostrand 1945.
Cf. Fowler and Guggenheim, Statistical Thermodynamics, Cambridge University Press
1939 pp. 113-114.



TABLE 3.4

Contributions of a single harmonic oscillator to the several thermodynamic quantities
expressed as functions of x = /kT = O,/T

x —u/RT Hmp/RT Sm/R C/R
= —In{l—exp(—x)} =x/(expx—1) = (Hu—p)/RT = {$x/sinh}x}?

0.01 4.610 0.995 5.605 1.000
0.05 3.021 0.975 3.996 1.000
0.1 2.352 0.951 3.303 0.999
0.2 1.708 0.903 2.611 0.997
0.3 1.350 0.857 2.208 0.993
0.4 1.110 0.813 1.923 0.987
0.5 0.933 0.771 1.704 0.979
0.6 0.796 0.730 1.526 0.971
0.7 0.686 0.691 1.377 0.960
0.8 0.597 0.653 1.249 0.948
0.9 0.522 0.617 1.138 0.935
1.0 0.459 0.582 1.041 0.921
1.1 0.405 0.549 0.954 0.905
1.2 0.358 0.517 0.876 0.888
1.3 0.318 0.487 0.805 0.870
1.4 0.283 0.458 0.741 0.852
1.5 0.252 0.431 0.683 0.832
1.6 0.226 0.405 0.630 0.811
1.7 0.202 0.380 0.582 0.790
1.8 0.181 0.356 0.537 0.769
1.9 0.162 0.334 0.496 0.747
2.0 0.145 0.313 0.458 0.724
2.1 0.131 0.293 0.424 0.701
2.2 0.117 0.274 0.392 0.678
2.3 0.106 0.256 0.362 0.655
2.4 0.095 0.239 0.335 0.632
2.5 0.086 0.224 0.309 0.609
2.6 0.077 0.209 0.286 0.586
2.7 0.070 0.195 0.264 0.563
2.8 0.063 0.181 0.244 0.540
2.9 0.057 0.169 0.225 0.518
3.0 0.051 0.157 0.208 0.496
3.2 0.042 0.136 0.178 0.454
34 0.034 0.117 0.151 0.413
3.6 0.028 0.101 0.129 0.374
38 0.023 0.087 0.110 0.338
4.0 0.018 0.075 0.093 0.304
4.5 0.011 0.051 0.062 0.230
5.0 0.007 0.034 0.041 0.171
55 0.004 0.023 0.027 0.125
6.0 0.002 0.015 0.017 0.090
6.5 0.002 0.010 0.013 0.064

7.0 0.001 0.006 0.007 0.045
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Differentiating (5) with respect to T at constant pressure we obtain

8= —du®/dT—(P—P®) 3(0V,/0T+0V°/oT)
= —du®[dT—(P—P°) 4(aV,+a°V®) 3.30.6

where o and a® are the coefficients of thermal expansion at pressures P
and P® respectively.
From (5) and (6) we derive

Ho=p+TSy=p° —Tdu®[dT+(P-P°) 3{V(1—aT)+V°(1-a®T)}
3.30.7
and
C=Td*u®[dT? - (P—P°®) 4T{V 4do/dT + V°da®/dT}. 3.30.8

§3.31 Temperature dependence for liquids

We have seen that the dependence of the thermodynamic properties of
condensed phases on the pressure is simple and usually small. We have now
to consider how these properties depend on the temperature.

As regards liquids there is nothing fundamental or general that can be
said except that u® can often be represented over quite a wide range of
temperature by an empirical relation of the form

1 =A—(B-C)T-CTInT (4, B, C const.). 3.31.1

From (1) we deduce
S§®=—-du®/dT=B+CInT 3.31.2
H®=A4+CT. 3.31.3

According to this empirical approximation the proper heat capacity C at the
standard pressure P° is independent of the temperature. We have already
mentioned in §3.03 that for many liquids, in particular water, C is nearly
independent of the temperature.

The approximate constancy of C and the consequent validity of relations
of the form (1), (2), (3) also hold for many solids at ordinary and higher
temperatures, but not at low temperatures. This accident has in the past
caused undue importance to be attached to the heat capacity, in contrast to
the enthalpy H and the entropy S. The only real importance of C is that it is
the connecting link between H and S, as explained in §3.02. This link is
especially simple when C is independent of T, but this occurrence, however
frequent, is of no fundamental importance.
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§3.32  Crystals at very low temperatures

It is predicted by statistical theory and borne out by experiment that at
very low temperatures the enthalpy of a crystalline solid varies linearly with
the fourth power of the thermodynamic temperature. That is to say, neglect-
ing the small dependence on pressure,

H,=H>+%aT* (small T) 3.32.1

where a is a constant and H_ is the limiting value of H,, as T—0. Corre-
spondingly we have for the entropy

Sa,=S%+%aT®> (small T) 3.32.2

where S2 is the limiting value of S,, as T—0. The formulae (1) and (2) are
not independent, but are related through the thermodynamic formula

(3.02.3)
TdS=dH  (const.P). 3.32.3

From (1) and (2) it immediately follows that
u=HY—TSp—75aT*  (small T). 3.32.4

We have not stated how small T must be for these formulae to hold, nor is
it possible to make any precise statement since the requirement is different
for different substances. For most substances investigated these formulae
appear to be at least approximately valid at temperatures below 15 K.

We shall see later that a comparison between the constant Sy in (2) and
the constant —du®/dT occurring in the formula for the proper entropy of a
gas is of considerable interest. For this reason it is important to be able to
extrapolate experimental data on the entropy from the lowest experimental
temperature down to 0 K. For this purpose one determines a suitable value
of the constant a from the relation (1) by plotting H against 7% in the lowest
temperature range in which experimental measurements have been made.
This value of a is then used in (2) to give experimental values of S(T)—S(0).
Provided the experimental data extend below 15 K, the contribution to S
from this extrapolation is usually so small that an accurate estimate of a
is not required.

Actually the most important feature of the formulae of this section is not
their precise form, still less the value of a, but the fact that S tends rapidly
towards a constant value as T decreases. This behaviour is in striking con-
trast with the formulae for the entropy of gases at ordinary temperatures
which contain terms in In 7.
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§3.33 Crystals at intermediate temperatures. Debye’s approximation

In the previous section we have described the thermodynamic behaviour of
crystals at very low temperatures. In §3.31 we mentioned briefly that at
ordinary and higher temperatures the behaviour of many solids, as well as
liquids, is represented at least approximately by the formulae of that section
corresponding to a temperature-independent heat capacity. In the inter-
mediate range the heat capacity increases with tempzrature, but its rate of
increase falls rather rapidly. There is no precise quantitative theory except
for the simplest crystals consisting of monatomic molecules. Even for these
the accurate theory is so complicated as to be of little practical use and it is
in fact usually replaced by a much simpler approximation due to Debye.

We shall not here describs Debye’s model, still less discuss* its limitations,
but shall give the formulae which follow from it. The formulae contain apart
from the temperature T, two parameters namely the energy U2 of the crystal
at T=0 and a characteristic temperature @,. Both these parameters U2
and @y, are functions of the proper volume V,,, but are independent of the
temperature. In considering Debye’s model it is therefore expedient to regard
as independent variables 7, V instead of the usually more practically con-
venient 7, P. We accordingly begin by writing down Debye’s formula for
the proper Helmholtz function of a crystal

®p
Fp=U,—~TS,=Uo— TS +3RT J In{1—exp(—0/T)}(30*/03)d0 3.33.1
0

wherein we repeat that U2 and @, are functions of V,, whereas S on the
other hand is a constant indepzndent of V,, as well as of 7, and depends only
on the arbitrary zero of entropy.

From (1) we could derive the pressure by the relation

= —3F)oV. 3.33.2

We have however seen in §3.30 that the thermodynamic properties of a
condensed phase, in particular a crystal, are nearly independent of the
pressure; more precisely PV, << RT. We may consequently regard the pres-
sure as negligible and replace (2) by the condition

oF[oV=0 3.33.3

which gives an equilibrium relation between U° and @y,. From (1) and (3)
we find that this relation is

0 o 3
OUn _3p a@"j@ L 30 4, 3.33.4
oV, Wnlo exp(0/T)—1 0%

* Blackman, Rep. Progr. Phys. 1942 8 11.
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From (1) we can derive formulae for the other thermodynamic functions,
in particular

6o 0/T 362
sm—s,2,=—3Rf [m 1—exp(—0/T —___] 30 13,
. |In{l—exp(=0/T)} op0T)—1) 0390 3335
U,-U° 3Rf9° !—ﬁ—s do 3.33.6
mo e o exp(0/T)-1 O3 o
C 3RJQD{—9/—2T—]23402<19 3.33.7
7)o lsinh(82T)) 03 e

We may note that at very low temperatures, 7@, and we may without
sensible error replace the upper limits of integration in the above formulae
by c. We thus obtain

T* o 3£3d¢ 3n*RT*
f 3.33.8

0 il
Un=Un=3R"gs | expé—1_ 503
which, in view of the negligible difference between U,, and H,, is in agree-
ment with (3.32.1) with a given by
ta= 1@ 3.33.9
503
While we shall not here discuss the extent of agreement or disagreement to
be expected between these formulac and the bechaviour of real crystals,
we shall however devote some space to the consideration of how the com-
parison can most directly be made. Let us therefore consider which quanti-
ties are most directly measurable, bearing in mind that with all condensed
phases it is convenient to make measurements at constant pressure but
extremely difficult to make measurements at constant volume.

The usual calorimetric measurements determine directly how H depends
on T. Provided these measurements have been carried to a low enough
lemperature, the extrapolation to T=0 can be performed as described in
§3.32 so that we know H,(T)—H_ as a function of T. Then by using the
relation (3.32.3) we can without any further experimental data compute
Sm(T)—S3. We can now compare this experimental quantity with the right
side of (5), which is tabulated as a function of @p/T. We thus obtain for
each temperature T a value of @y, fitting the experimental value of S, —Sg.
These values of @, will be constant neither in practice, nor according
to Debye’s model. For we are considering data at constant pressure, conse-
Quently at varying volume, and, as the volume varies, so @y, varies. In fact
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TABLE 3.5
Comparison of proper entropy of gold with Debye’s formula

TIK  (Sy—SS)/R  Op/T Op/K
expt.
15 0.06 10.90 163
20 0.14 8.25 165
30 0.385 5.57 167
40 0.705 4.225 167
50 1.05 3.39 170
60 1.40 2.87 172
70 1.73 2.45 17
80 2.03 2.15 172
90 232 1.91 172
100 2.58 1.72 172
120 3.07 1.44 173
140 3.49 1.23 172
160 3.87 1.075 172
180 4.22 0.95 171
200 453 0.855 171
300 5.77 0.555 167
TABLE 3.6

Comparison of proper entropy of magnesium with Debye’s formula

TIK  (S,—S%)/R  Op/T Op/K
expt.
20 0.01 18.0 360
30 0.05 11.5 345
40 0.13 8.38 335
50 0.26 6.53 326
60 0.41 5.41 324
80 0.77 4.03 322
100 1.15 3.22 322
120 1.52 2.68 322
140 1.87 2.30 322
160 2.20 2.00 320
180 2.50 1.78 320
200 2.76 1.61 322
300 .77 1.06 318

as the volume increases, theory predicts that @ should steadily decrease.
If then it is found that as T increases, the value of @p, determined as des-
cribed above, slowly but steadily decreases then we may say that at least
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there is no contradiction between the experimental data and the model.
If on the other hand as T increases, the value of ©p, thus determined increases
or fluctuates, then we may say with certainty that the experimental data are
in disagreement with the model.

We give typical illustrations of this method of comparison in tables 3.5
and 3.6 for gold* and magnesium' respectively. We observe that for gold
O, rises from 163 K to 173 K and then falls again to 167 K. For magnesium
Oy, decreases steadily from 360K to 318 K. In a few cases, such as copper
and lead, ®p, varies even less than in the case of gold. In other cases, notably
lithium, @p varies by nearly 20 %.

We must emphasize that the entropy is the only simple thermodynamic
function for which we have both a closed formula and an experimental
value obtainable from a single set of calorimetric measurements performed
at constant pressure. In spite of the directness and simplicity of the above
method of comparison, it is not generally used. The usual procedure is,
from the experimental measurements of Hy, as a function of 7, first to compute
dH|dT=Cp; then by measured, or estimated values of a and xr to use
formula (3.07.3) or (3.08.5) to compute Cy from Cp; lastly to compare the
Cy so calculated with formula (7). There are two objections to this procedure
as compared with that recommended here. In the first place the computation
of Cp from H involves a differentiation and so increases any experimental
errors whereas in the computation of S from H the integration helps to
smooth out the errors introduced by the differentiation. In the second place
the computation of Cy from Cp by (3.07.3) or (3.08.5) requires either several
other pieces of difficult experimental measurement or else some guess work,
neither of which is required if one makes comparisons of entropy. When the
value of Cy, thus computed or estimated, is compared with formula (7)
we can calculate at each temperature a value of @p, which fits. Just as in the
comparison of entropies, these values of @, should, if the model is good, de-
crease slowly and steadily as the temperature, and so the volume, increases.
There appears to be a widespread, but mistaken, belief that @y should be
independent of temperature in spite of the thermal expansion.

Quite apart from the change in @ due to thermal expansion, variations
of @p, with temperature are to be expected owing to the limitations of Debye’s
model. In view of all the complications in the lattice theory, Debye’s theory
is remarkable not in the extent of its failure, but rather in the extent of

its success’.

* Clusius and Harteck, Z. Phys. Chem. 1928 134 243.
t Clusius and Vaughen, J. Amer. Chem. Soc. 1930 52 4686.
* Blackman, Rep. Progr. Phys. 1942 8 11.
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§3.34 Corresponding temperatures of crystals

We have seen that Debye’s model is only an approximate representation
of a simple crystal of monatomic molecules and further that even if it were
an accurate representation, the characteristic temperature @pshould still
vary with temperature owing to thermal expansion. Nevertheless it is an
experimental fact that Debye’s formulae with constant @, do give a remark-
ably good approximate representation over a wide temperature range of the
actual behaviour of many simple crystals, especially metals crystallizing in
the cubic system. For such substances the values of S, — S2, of (H,,—H?)/T,
and consequently of G, —G? are universal functions of 7/@p. Thus several
important thermodynamic properties of different crystals have the same
value when 7/Op has the same value. Temperatures of different substances
such that 7/@p has the same value are called corresponding temperatures.
The principle that certain thermodynamic properties have equal values
for different substances at corresponding temperatures is called a principle
of corresponding temperatures. It is to be observed that this principle for
simple crystals makes no reference to the pressure, which is tacitly assumed
to be low and to have no appreciable effect on the values of the properties
under discussion. In §3.48 we shall discuss a more interesting principle of
corresponding temperatures and corresponding pressures for liquids and
gases.

§3.35 Comparison of Debye’s functions with Einstein’s functions

Debye’s model was preceded by a simpler model due to Einstein leading to
the simpler formulae

Upn—TS,,=Up—TS%+3RT In{l —exp(— O/T)} 3.35.1
Un=Up+3ROg/{exp(Og/T)—1} 3.35.2
Sm=5Sn—3R[In{l —exp(Og/T)} — O/ T{exp(O¢/T) - 1}] 3.35.3
Cy =3R{(O/2T)/sinh(O/2T)}* 3.35.4

where O is Einstein’s characteristic temperature.

By comparing Debye’s formulae with Einstein’s we observe that the for-
mer contain integrals from zero to @p, where the latter contain merely simple
functions of @g. Thus Oy in a sense represents an average @ covering the
range from 0 to @p. Thus at any given tempzrature the value of @ which
fits is always smaller than the value of ©p which fits.

If one tries to fit the expsrimental data by Einstein’s formulae with a
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constant @ one fails completely at the lowest temperatures, but at higher
temperatures there is little to choose between Einstein’s formulae and
Debye’s provided the value chosen for O is suitably adjusted. In fact when
T> 10y the values of U, — U2 calculated from Debye’s formula do not differ
appreciably from the values calculated from Einstein’s formula provided
one uses for @g the value given by ©¢=0.730. Similarly when T>160p
the values of S, —S2 calculated from Debye’s formula do not differ appre-
ciably from the values calculated from Einstein’s formula provided one takes
O =0.710. The comparison is shown in table 3.7. The slight difference of

TABLE 3.7
Comparison of Einstein’s formulae with Debye’s assuming
O = 0.730p, for energies
and @ = 0.710p, for entropies

Op/T (Up—UBRT (Sm—So)/3R
Debye Einstein Debye Einstein
0.1 0.964  0.963 364 3.64
0.2 0929  0.929 2.945 2,95
0.4 0.860  0.861 226 226
0.6 0.794 0797 185 186
0.8 0733 0.736 1.575 158
1.0 0.675  0.679 136 137
1.2 0.620  0.625 119 119
1.4 0571 0.575 1.045 1045
1.6 0525  0.527 0925 0925
1.8 0.482  0.483 0.825  0.820
2.0 0.442  0.442 0.735  0.730
2.2 0.405  0.403 0.657  0.650
2.4 0.371  0.368 0.590  0.580
2.6 0.339  0.334 0.529  0.518
2.8 0310 0304 0.476  0.463
3.0 0.284  0.276 0.429 0414

about 2% between the best values of @ corresponding to a given Op
in the cases of the energy and the entropy is a measure of the accuracy lost
by the substitution. Since the experimental data cannot be fitted exactly by
a constant value of @p considerable simplification can often be attained
without significant loss of accuracy by using Einstein’s formulae rather than
Debye’s provided one is concerned only with temperatures greater than
$Op. At lower temperatures Debye’s formulae should be used in preference
to Einstein’s.
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§3.36 Equilibrium between two phases

Having discussed the thermodynamic properties of a single phase, we
now turn to consider two phases in equilibrium. If we denote the two phases
by superscripts * and P, the condition for equilibrium between the two
phases is according to (1.39.5)

wr=pt 3.36.1
or according to (3.15.6)
=28, 3.36.2

Since in any single phase of a pure substance the temperature 7 and pressure
P may be varied independently and u or A may be regarded as a function of
T, P, we may therefore regard (1) or (2) as expressing a relation between
T and P for equilibrium between the two phases. It follows that when the
two phases are in equilibrium, the temperature 7 and pressure P are not
independently variable but either determines the other. We accordingly say
that a single phase of one component has two degrees of freedom but a pair
of phases of one component has only one degree of freedom.

§3.37 Relation between temperature and pressure for two-phase
equilibrium

We now proceed to determine how the equilibrium pressure between two
phases o and B depends on the temperature T. Differentiating (3.36.1) we
have
dp*=dpub 3.37.1
or
(0p*dT)dT +(Bp*/doP)dP=(0puP/dT)dAT +(3uP/oP)dP. 3.37.2

Using (1.28.22) and (1.28.23), we obtain
(VE-v2)dP=(S8 —S2)dT. 3.37.3
Formula (3) can also bz obtained more directly from Maxwell’s relation
(0P[oT), =(0S/oV)r. 3.37.4

We apply this relation to a system consisting of the two phases o and B in
equilibrium with each other. Since for this equilibrium to persist P is com-
pletely determined by T and is independent of ¥, we may replace the partial
differential coefficient (OP/0T), by dP/dT. Moreover at constant temperature
and incidentally also constant pressure, S and ¥ can only change through
some amount of substance passing from the phase o to the phase B or
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conversely. Thus the ratio of the changes in S and in V is independent of
the amount transferred from the one phase to the other. If then we denote
by the symbol A the increase of any property when unit amount passes
from the phase o to the phase B, we have

(0S/0V)r=AS/AV 3.37.5

and so (4) becomes
dP/aT=AS/AV 3.37.6

which is formula (3) in different notation.
Since we may rewrite (3.36.1) as

H:—TS%=H! —TSP 3.37.7

it follows immediately that
TAS=T(S? —S%)=H? —H® =AH. 3.37.8
This relation has an obvious physical meaning, the same as that of (3.02.2).
If unit amount passes isothermally from the phase « to the phase B, the
heat g absorbed is equal to AH because the process occurs at constant pres-
sure and it is also equal to TAS because, the system being in equilibrium

throughout, the change is reversible.
If we now substitute from (8) into (6), we obtain

dP/dT=AH|TAV =(H% — H%)/T(VE-VZ) 3.37.9

which is known as Clapeyron’s relation. This can also be obtained more
directly by starting from

W T=ub|T 3.37.10
instead of (3.36.1). Differentiating (10) we obtain

{0(u*/T)/OT}dT+ T~ ' (0p*/0P)dP={0(uP/T)/dT}dT + T~ *(duP/oP)dP
3.37.11
and so using (1.28.24) and (1.28.23)

—(Hy/T)AT +(Vg/T)dP= —(H/T)dT +(VET)dP  3.37.12

whence (9) follows immediately. We have given these alternative derivations
of (9) because of its great importance, as the prototype of other similar
formulae in systems of more than one component.

§3.38 Clapeyron’s relation applied to two condensed phases

Let us consider the application of Clapeyron’s relation to the equilibrium
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between a solid and a liquid. Using the superscripts $ and * to denote these
two phases, we have for the variation of the equilibrium pressure with the
equilibrium temperature according to (3.37.9)

dP/[dT=(HE —H3)|T(VE=V3)=AH|T(VE—Va)=AS|(Ve—Va) 3.38.1

where A¢H is the proper enthalpy of fusion and AS is the proper entropy
of fusion. Since fusion is always an endothermic process, the numerator of
(1)is always positive, but the denominator may have either sign. It is negative
for water, but positive for most substances. Thus the melting point of ice is
decreased by increase of pressure, but that of most solids is increased.

The application of Clapeyron’s relation to the equilibrium between two
solid phases is analogous. In (1) we need only make the superscript * denote
the phase stable at the higher temperature and ° the phase stable at the lower
temperature, so that H: — HS is positive. The sign of dP/dT will then be the
same as that of V:—p3,

For condensed phases, both VX and V5 are small and their difference is
much smaller. Usually a pressure of some hundred atmospheres is required
to change the freezing point by a single degree. Let us take water as an
illustrative example. We have

—dP/dT=22J K~ ! mole™!/(19.6—18.0) cm® mole™'=22J K™ !/1.6 cm’
=220 atm/1.6 K=1.4x 102 atm/K. 3.38.2

As a second example, let us take sodium. We have

dP/dT=7.1J K~* mole™!/(24.6—24.2) cm® mole ™! =7.1 J K~'/0.4 cm’
=71 atm/0.4 K =1.8 x 10% atm/K. 3.38.3

Hence as long as the pressure does not exceed a few atmospheres, the freezing
point may for many purposes be regarded as unaffected by the pressure.

§3.39 Clapeyron’s relation applied to saturated vapour

Let us now consider the equilibrium between a liquid and a gaseous phase.
Using the superscripts L for the liquid and G for the gas we have according
to (3.37.9)

dP/dT=(HS—HE)|T(VS-Vy). 3.39.1

This exact relation can be transformed by making two approximations. In
the first place we neglect the proper volume of the liquid compared with
that of the vapour. In the second place we neglect the virial coefficients of
the gas and treat it as perfect. With these approximations we have
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VS __Vr~ RT/P 3.39.2
Substituting (2) into (1), we obtain
dInP/dT=(HS—~H%)/RT*=A H|RT? 3.39.3

where A H is the proper enthalpy of evaporation.
We denote equilibrium or saturated vapour pressure of a condensed
phase by P, and accordingly write in place of (3)

dIn P,/dT=A H/RT? 3.39.4

or

d In P,Jd(1/T)=—A, H/R. 3.39.5

It follows from (5) that if we plot In P, against 1/T the curve so obtained has
at each point a slope equal to —AH,/R. Actually A_H varies so slowly with
the temperature that this curve is nearly a straight line.

Formula (5) incidentally provides a method, rarely if ever mentioned, for
determining the proper mass in the vapour. For by measuring P, at several
known temperatures we can use (5) to calculate A,H. We can then make
direct calorimetric measurements to determine what mass of liquid is
converted to vapour when a quantity of heat equal to A H is absorbed. This
mass is then the proper mass of vapour.

The treatment of equilibrium between a solid and its vapour is preciscly
analogous. The saturated vapour pressure P, of the solid is related to the
lemperature by

dIn P/d(1/T)=—AH/R 3.39.6

where A H is the proper enthalpy of sublimation.

$3.40 Heat capacities of two phases in equilibrium

Consider two phases of a single component in mutual equilibrium. Suppose
now that we isolate unit amount of either of these phases and change its
lemperature, not at constant pressure, but adjusting the pressure to the value
corresponding to two-phase equilibrium at each temperature. The quantity
of heat absorbed in this phase will evidently, for a small temperature increase
dT, bz proportional to d7. We may therefore write for either of the two phases

g=C.qdT. 3.40. 1

C.q is the heat capacity at two-phase equilibrium. Since moreover the
change is reversible we may write instead of (1)

dSy=C.dTIT. 3.40.2
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But for the change in question
dS,,={(0Sn/0T)p+(0S,/OP)rdP/dT}dT. 3.40.3
Comparing (2) with (3) we see that
Ceq=T{(0S,,/0T)p+(0S,,/OP)dP/dT}=Cp—aV,TdP/dT 3.40.4

using the definition (3.03.2) of Cp and Maxwell’s relation (1.47.4). Now
substituting from (3.37.9) into (4) we obtain

Coq=Cp—aV AH|AV 3.40.5

where A denotes the increase when unit amount passes isothermally from
the one phase to the other; as regards sign the same convention must of
course be used for AH and AV.

§3.41 Heat capacities at saturation

The most important application of the formulae of the previous section is to
the equilibrium between a liquid and its vapour. The quantities C,, are
then called the heat capacities at saturation and are denoted by C,,. If we
neglect the second virial coefficient of the gas and also neglect the proper
volume of the liquid compared with that of the gas, formula (3.40.5) becomes

Coar=Cp—aA HPV,/RT 3.41.1

where A H is the proper enthalpy of evaporation.

Formula (1) is applicable either to the vapour or to the liquid, but the
importance of the second term on the right is very different in the two cases.
For the vapour we have, still neglecting the second virial coefficient,

a=T"' PV,=RT 3.41.2
so that, using the superscript © for the gas, we obtain
CS,=CS—AH|T=C$—AS. 3.41.3

The second term on the right may be numerically greater than the first,
in which case C3, is negative. For example for steam at its normal boiling
point
Cp=34T K ' mole!
A.S=A H/T=40.6 kI mole™!/373 K=109 J K~ mole™*
so that
€S =(34—109)J K™ ! mole™! = —75J K~ mole™!
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and we see that the heat capacity of steam at saturation is negative.

For the liquid phase on the other hand the second term on the right of (1)
is much smaller than for the gas because V,, is smaller by a factor of some-
thing like 10™2 or less. Consequently for the liquid phase we may neglect
this term and replace (1) by

ch,=Ck 3.41.4

where the superscript “ denotes the liquid phase.

The formulae of this section may also be applied to the equilibrium con-
ditions between solid and vapour. Formula (3) is then applicable to the
vapour and formula (4) to the solid.

§3.42 Temperature dependence of enthalpies of evaporation and

of fusion

Consider any phase change such as evaporation or fusion and let the symbol
A denote the increase in any property when unit amount passes isothermally
from the one phase to the other in the direction such that AH is positive, i.e.
from liquid to gas or from solid to liquid. Then we have

AH|T=AS. 3.42.1

Differentiating with respect to T, varying P so as to maintain equilibrium,
we have
d(AH|T)=d(AS)/dT=A(dS/dT)=AC,,/T 3.42.2
or
d(AH)/dT— AH|T=AC,, 3.42.3

For equilibrium between liquid and vapour, C.,=C,,, is given by (3.41.3)
for the vapour and by (3.41.4) for the liquid. Substituting these into (3) we
obtain

d(A.H)/[dT=C5—Cp 3.42.4

the terms A, H/T on either side cancelling. Formula (4) involves the several
approximations mentioned in §3.41. It is formally similar to the exact for-
mula for a process taking place between pressure limits independent of the
temperature.

To obtain the temperature coefficient of an enthalpy of fusion, we have
to go back to (3.40.5), which we rewrite in the form

Ceq=Cp—(3VnfOT)p(A; H/A V) 3.42.5

where A; denotes the increase of a proper quantity on fusion. Substituting
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(5) into (3), we obtain
d(AH)[AT =ACp+ A H/T—(AHIT)@In AV [0 In T)p, 3.42.6

a formula due to Planck*. The magnitude of the last term on the right is
usually unknown and it is often neglected. Formula (6) then reduces to

Of the two terms on the right, either may be numerically greater. We thus
have aformula not even approximately of the same form as the formula for a
process taking place between pressure limits independent of the tempera-
ture.

Evidently the formulae of this section may mutatis mutandis be applied
to the equilibrium between two solid phases.

§3.43 Triple point

We have seen that the equilibrium condition for a single component between
two phases o and B

YT, P)=u¥(T, P) 3.43.1

is equivalent to a relation between P and T which can be represented by a
curve on a P-T diagram. Similarly the equilibrium between the phases
a and y can be represented by a curve on a P-T diagram. If these two curves
cut, we shall have at the point of intersection

(T, P)= (T, P)= (T, P) 3.43.2

and the three phases o, B, y will be in mutual equilibrium. This point of
intersection is called a triple point and the values of T and P at the triple
point are called the triple-point temperature and the triple-point pressure.

We have seen that a single component in one phase has two degrees of
freedom since temperature and pressure can be varied independently and
that two phases in mutual equilibrium have only one degree of freedom since
temperature and pressure are mutually dependent. We now see that three
phases can exist in mutual equilibrium only at a particular temperature and
particular pressure. Thus three phases of a single component in mutual
equilibrium have no degree of freedom.

In figure 3.4 the conditions of mutual equilibrium for H,O are shown'
on the P-T diagram.

* Planck, Ann. Phys. Lpz. 1887 30 574.
t From Landolt-Bdrnstein Tables.
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Fig. 3.4. Equilibrium between ice, water, and steam

Triple points can also exist for two solid phases and one liquid phase or
for two solid phases and a vapour phase or for three solid phases. More
rarely we may have two liquid phases and a vapour phase or a solid phase.
A triple point can occur in a region where all three phases are metastable.
The conditions of equilibrium for sulphur are shown* in figure 3.5. There
are three stable triple points

T,: equilibrium between monoclinic, liquid, and vapour
T,: equilibrium between rhombic, monoclinic, and liquid
T,: equilibrium between rhombic, monoclinic, and vapour

* From Landolt-Bornstein Tables.
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Fig. 3.5. Phase equilibria of sulphur

and one metastable triple point

T,: equilibrium between rhombic, liquid, and vapour, all three phases
being metastable and the monoclinic being the stable form.

§3.44 Critical points

The P-V,, isotherms of all pure substances fall into two classes according
as the temperature lies above or below a critical temperature T,. Examples
of each class are shown in figure 3.6 for carbon dioxide* and in figure 3.7
for xenon'.

* Michels, Blaisse, and Michels, Proc. Roy. Soc. A 1937 160 367.
t Habgood and Schneider, Can. J. Chem. 1954 32 98.
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Fig. 3.6. Isotherms of carbon dioxide

When the proper volume is sufficiently large both classes approximate to
the rectangular hyperbolae PV,,= RT of a perfect gas. As the proper volume
diminishes, the form of the two classes is quite different. At temperatures
greater than the critical, there is a smooth regular variation along the whole
isotherm, which can be expressed mathematically by saying that it is a
single analytic curve or expressed physically by saying that throughout the
1sotherm there is a single fluid phase. At temperatures below the critical on
the other hand, the isotherm consists of three analytically distinct parts
separated by discontinuities of the slope. The middle portion is a straight
line parallel to the ¥, axis. These parts represent respectively the pure gas,
the saturated vapour in equilibrium with the liquid, and the pure liquid.
The isothermal curve for the critical temperature T is the borderline between
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Fig. 3.7. Pressure—density isotherms of xenon in the immediate neighbourhood of the
critical temperature

the two classes of isotherms. In this isotherm the horizontal portion is reduced
to a single point of horizonta! inflexion.

Both diagrams show the locus of the points representing on the left the
liquid phase under the pressure of its vapour and on the right the locus of the
points representing the saturated vapour. As the temperature increases the
proper volume of the liquid at the pressure of its vapour increases, while
the proper volume of the saturated vapour decreases. At the critical temper-
ature the isotherm has a point of horizontal inflexion where the liquid
and vapour phases cease to be distinguishable. The state represented by
this point is called the critical state; the pressure and proper volumein the
critical state are called the critical pressure P. and the critical volume V.
respectively.
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To recapitulate, above the critical temperature the substance can exist in
only one fluid state. Below the critical temperature it can exist in two states,
the liquid with a proper volume less than the critical volume and the gas
with a proper volume greater than the critical volume. The equilibrium
pressure between the two phases, liquid and vapour, can have values up to
but not exceeding the critical pressure.

$3.45 Continuity of state

The relation between pressure P and proper volume ¥, of a single component
at a temperature below the critical temperature is shown diagrammatically
in figure 3.8. The portion KL represents the liquid state, the portion VW
the gaseous state, and the straight portion LV the two-phase system liquid +
saturated vapour.
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Fig. 3.8. Continuity between liquid and gas phases

At the given temperature the substance can be brought from the liquid
state to the gaseous state, or conversely, only by a change during part of
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which two separate phases will be present. By varying the temperature,
however, it is possible to bring the substance from the gaseous state repre-
sented by W to the liquid state represented by K by a continuous change
throughout which there is never more than one phase present. It is only
necessary to raise the temperature above the critical temperature, keeping
the volume sufficiently greater than the critical volume, then compress the
fluid to a volume below the critical volume, keeping the temperature above
the critical temperature, and finally cool the liquid to its original temperature,
keeping the volume sufficiently below the critical volume. This possibility
of continuity between the liquid and gaseous states was first realized by
James Thomson*, and he suggested that the portions KL and VW of the
isotherm are actually parts of one smooth curve, such as KLMONVW.
In point of fact, states corresponding to the portion VN are realizable as
supersaturated vapour, and under certain circumstances the same may be
true of the portion LM representing superheated liquid. Each of these por-
tions represents states stable with respect to infinitesimal variations, but
metastable relative to the two-phase system liquid +saturated vapour. The
portion of the curve MON, on the other hand, represents states absolutely
unstable, since here

OV ,/0P)y>0 3.45.1

and, according to (1.38.4), such states are never realizable.

Although the states represented by points on the curve LMONYV are
either metastable or unstable, they have been treated' as equilibrium states.
It follows that the sequence of states represented by the curve LMONV
corresponds to a reversible process. The change in the chemical potential u
of the fluid in passing through this sequence of'states is, according to (1.28.23)
given by

G G
,ﬁ-;ﬁ:f (0u/oP)rdP= J V,.dP 3.45.2
L L

where the integrals are to be evaluated along the curve LMONYV. But, since
the two states represented by “ and © can exist in equilibrium with each other,
we have

uC=p" 3.45.3
From (2) and (3) we deduce
G
f VadP=0 3.45.4
L

where the integral is to be evaluated along the curve LMONYV. The geo-

* J. Thomson, Proc. Roy. Soc. 1871 20 1.
t Maxwell, Nature 1875 11 357.



SYSTEMS OF A SINGLE COMPONENT 131

metrical significance of (4) is that the two shaded surfaces LMO and ONV
are of equal area. This condition is due to Maxwell*,

It is instructive to reconsider continuity of state in terms of the Helmholtz
function &. Imagine this to be plotted as vertical coordinate against
T and V as horizontal Cartesian coordinates. The resulting locus is a curved
surface. Consider now cross-sections of this surface by planes T'=const.
Examples of these are shown diagrammatically in figure 3.9 and since

(OF[3V)p=—P 3.45.5

the slope of each curve at each point is equal to —P.

X |

T constant along each curve

[

JE—7

Fig. 3.9. Stable and metastable isotherms

In the upper curve we see that as V increases, the negative slope steadily
decreases numerically and so P decreases steadily. This is typical of any
temperature above the critical.

In the lower curve we see that there are two portions K'L’ and V'W’ in
which the negative slope decreases steadily as ¥ increases and these are
joined by a straight line L'V’ touching K'L' at L’ and touching V'W' at V'.
These three portions correspond to liquid, to gas, and to a two-phase liquid-
vapour system. This is typical of a temperature below the critical. The

* Maxwell, Nature 1875 11 357.
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broken portion of curve L'M’ represents superheated liquid and the broken
portion V'N’ represents supersaturated vapour. We see immediately that al
states represented by these portions of curve are metastable, for any point
on either of them lies above a point of the same volume ¥ on the straight
line L'V’. This means that the Helmholtz function of the superheated liquid
or supersaturated vapour is greater than in a system of the same volume
consisting of a mixture of liquid L' and saturated vapour V.
The portions of curve L'M’ and NV’ have curvature concave upwards
so that
OPjOV=—0*F[dV?*<0. 3.45.6

Hence according to (1.38.4) they represent states internally stable, though
metastable with respect to a two-phase mixture. If however we wish to unite
these two portions into a single smooth curve, the middle portion would
necessarily have a curvature concave downwards. This would correspond
to a positive value of OP/0V and so to unstable states and we saw in §1.38
that such states are never realizable. It may therefore be argued that no
physical significance could be attached to this part of the curve. Nevertheless,
if the realizable parts K'L'M’ and N'V'W’ of the surface could be represented
by the same analytical function, it would be reasonable from a mathematical
point of view to consider the complete surface. Having constructed such a
surface and considering a section corresponding to a particular temperature
below the critical, we could then plot P= —04/0V against V" and so con-
struct a curve such as that in figure 3.8. From this construction it follows of
necessity that in figure 3.8 the area below the broken curve LMONYV and
the area below the straight line LV are both equal to the height of L' above
V' in figure 3.9. Consequently these two areas are equal. From this it follows
immediately that the two shaded areas are equal as already proved. Since the
portion MON of the curve cannot be realized experimentally, instead of
saying that the two-phase equilibrium is determined by the condition of
equality of the two shaded areas, it is perhaps more correct to say that, L and
V being known, if the connecting portion of the curve were sketched in such
a manner as to make the two shaded areas unequal it would be nonsensica!
for then —P would not be the slope of any conceivable curve in the plot of
A& against V.

§3.46 Two phases at different pressures

In our previous considerations of equilibrium between two phases of one
component, we have assumed the equilibrium to be complete so that the
two phases were at the same pressure. The distribution equilibrium of one
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component between two phases at different pressures is also of interest.
Let us denote the two phases by the superscripts “ and P, Then the equilibrium
condition determining the change from the one phase to the other is accord-

ing to (1.42.1)
W=yl 3.46.1

If we vary the common temperature T of the two phases and the pressures
P* and PP of the two phases, the condition for maintenance of equilibrium is

dp*=dyP 3.46.2

or
(0u*OT)AT + (0p*/oP*)dP*=(0pP/dT)AT + (0p*/0PP)dPP.  3.46.3

Substituting from (1.28.22) and (1.28.23) we obtain

—S2dT+V2dP*=—SPdT + VEdPP 3.46.4
or
VEdPP—VidP*=(SE —Si)dT= ASAT 3.46.5
a—p

where A ; is used to denote the increase of a quantity when unit amount
passes from the phase o to the phase P.
Since we may rewrite (1) as

H: —TS* =HE - TSP 3.46.6
it follows immediately that

TAS= AH 3.46.7
a=p a—=p
just as for two phases at the same pressure. In fact formula (3.37.8) is a
special example of (7) and the physical significance is the same in both cases.
If we now substitute from (7) into (5) we obtain
VEdPP—V2dP*= AHAT|T. 3.46.8
a—+p

It is evident that two of the three quantities T, P%, P® are independent and so
the system has two degrees of freedom. The most important application of
these formulae is to the equilibrium between a liquid and its vapour. We
then use the superscript © for the liquid and © for the vapour. In this no-

tation (8) becomes

VSdPC—VLdP =(A H|T)AT 3.46.9

Where A H is the proper enthalpy of evaporation. According to the definition
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(3.17.1) of fugacity p, we may replace (9) by
RTdIn p—VLdP"=(A H/T)dT. 3.46.10

In particular at constant temperature we have for the dependence of the
fugacity of the gas on the external pressure P on the liquid

dln p/dP=VL/RT (T const.). 3.46.11

If we treat the vapour as a perfect gas, we may replace p by PC.
If, on the other hand, we maintain constant the pressure P on the liquid,
we obtain from (10) for the dependence of the gas fugacity on the temperature

dlnp/dT=A.H|RT? (P const.) 3.46.12
or if we treat the vapour as a perfect gas
dIn P°/dT=A,H/RT? 3.46.13
or
dIn P°/d(1/T)= —A. H/R. 3.46.14

It is instructive to compare (14) with (3.39.5). The latter involves neglecting
the proper volume of the liquid compared with that of the vapour, but the
former involves no such approximation. The difference between the exact
formula (14) and the approximate formula (3.39.5) is usually negligible
owing to the fact that in order to affect the saturated vapour pressure P
appreciably by change of the hydrostatic pressure P" at constant temperature,
one requires according to (11) pressures considerably greater than the vapour
pressure itself.

The direct experimental application of these formulae would require the
separation of the liquid from the vapour by a membrane permeable to the
vapour, but not to the liquid. This is difficult to achieve, though not impossi-
ble. Consequently the formulae have not much direct practical application.
They have nevertheless a real importance, which will become clear when we
consider systems of two or more components. We shall find that these
formulae remain true in the presence of another component gas insoluble in
the liquid, provided we interpret P as the partial pressure of the vapour
when mixed with the inert gas. We cannot profitably say more at this stage,
but we shall return to this point in §4.13.

§3.47 Fugacity of a condensed phase

In §3.17 we defined the fugacity p of a gaseous pure substance in terms of its
absolute activity A. We now define the fugacity of a pure substance in any
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condensed phase as being equal to the fugacity in the gas phase with which
it is in equilibrium. Evidently when two condensed phases are in equilib-
rium with each other the fugacities must be equal in the two phases.

With this extended definition we may regard formula (3.46.10), namely

dIn p=(AH/RT*)dT +(VE/RT)dP 3.47.1

as expressing the dependence of p, the fugacity of a liquid, on the temperature
T and the external pressure P. A precisely analogous relation applies to
a solid.

§3.48 Corresponding states of fluids

The principle of corresponding states asserts that for a group of similar
substances the equation of state can be written in the form

where ¢ is the same function for all the substances of the group.
Whereas it is not possible to express the equation of state in any simple
analytical form, the principle of corresponding states is obeyed with a useful
degree of accuracy by a considerable number of substances. It is in fact
obeyed within the accuracy of expzriment by the three inert elements Ar,
Kr, Xe and to a high degree of accuracy by these substances together with
Ne, N,, 0,,CO,and CH, . It would be misleading to try to divide substances
sharply into two groups, those which do and those which do not obey the
principle. It is obeyed more or less accurately by a great variety of sub-
stances. Deviations occur due to any one or several of the following causes:
(a) quantal effects in the lightest molecules, especially H,, He, and to a
much smaller extent Ne;
(b) polarity of the molecule or presence of strong polar groups even though
the resultant dipole moment vanishes as in CO,, SFg;
(c) large departures of shape from rough spherical symmetry as in the
higher alkanes and alkenes.
The principle is not obeyed at all by substances whose molecules form
hydrogen bonds, especially those containing hydroxyl or amino groups, nor
those such as NO, whose molecules associate.
We shall now review* briefly some of the experimental data which show
directly or indirectly how well certain substances especially Ne, Ar, Kr, Xe,
N,, 0,, CO, CH, obey an equation of state of the common form (1).

* Guggenheim, J. Chem. Phys. 1945 13 253; cf. Pitzer, J. Chem. Phys. 1939 7 583.
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TABLE 3.8
Corresponding states of gases and liquids

Formula Ne Ar Kr Xe N, 0O, CO CH,
1  Mjgmole? 20.18 39.94 83.7 131.3 28.02 32.00 28.00 16.03
2 TJ/K 44.8 150.7 209.4 289.8 126.0 154.3 133.0 1903
3  V./cm?mole? 41.7 75.3 92.1 118.8 90.2 74.5 93.2 98.8
4 Patm 26.9 48.0 54.1 57.6 33.5 49.7 34.5 45
5 P,V/RT, 0305 0292 0290 0288 0292 0292 0294
6 Tg/K 121 411.5 327 345 491
7 TyT, 270 273 2.59 2.6 258
8 TJ/K (P,=P50) 25.2 86.9 122.0 167.9 74.1 90.1 78.9 110.5
9 TT, 0.563 0577 0582  0.580  0.588  0.583  0.593 (.54
10 A.H/RK 224 785 1086 1520 671 820 727 1023
11 A H/RT, 8.9 9.04 8.91 9.06 9.06 9.11 9.22 9.26
12 V,/cm? mole-! 228.1 34.1 42.7
13 Val Ve 0.374 0.371 0.376

In table 3.8 the first row gives the proper mass M, the next three rows
the critical temperature T, critical volume V., and critical pressure P..
The fifth row gives values of P,V /RT, which according to the principle
should have a universal value. All the values lie close to 0.29. It is of interest
to note that the value for xenon based on recent measurements is closer to
0.29 than the best experimental value 0.278 quoted in 1945.

In figure 3.10 the experimental data on the second virial coefficients of
Ar, Kr, Xe, and CH, are shown in the form of B/V, plotted against T/T,.
The data for the four substances were shown by McGlashan and Potter* to
be well fitted from high values of T/T, down to T/T,=0.6 by the empirical

formula

B|V,=0.430—0.886(T,/T) —0.694(T,/T)?. 3.48.2

They are also well fitted from high values of T/T, down to 0.5 by the curve
in figure 3.10 which represents the formula®

B/V,=0.440 + 1.40{1 — exp(0.75T,/ T)} 3.48.3

which can be derived theoretically from an interaction energy w between a
pair of molecules distant r apart of the ‘square-well’ form given by

r<o w=00
o<r<l.5¢ W= —¢ 3.48.4
r>1.5¢ w=0

* McGlashan and Potter, Proc. Roy. Soc. A 1962 267 478.
t Guggenheim, Applications of Statistical Mechanics, Clarendon Press 1966 p. 36.
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when the parameters ¢ and & have the values given by
$nLo®=0.447V,
£=0.936kT.,.
The Boyle temperature Ty at which the second virial coefficient changes sign
is given in the sixth row of table 3.8. In the seventh row are given values of
Tg/T. and all these values lie near 2.7.

3.48.5
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Fig. 3.10. Reduced second virial coefficients
The left-hand and upper scales relate to the upper curve.
The right-hand and lower scales relate to the lower curve.
C@, Ar; LA, Kr; &, Xe; 4, CH;,.
@ Recent measurements communicated privately to the author by Rowlinson and by

Staveley.
A Recent measurements communicated privately to the author by Rowlinson.

If o" denotes the density of the liquid and o€ that of the vapour in mutual
equilibrium at the temperature 7, while o, denotes the density at the critical
point, then according to the principle of corresponding states we should
expect ¢"“/o. and ¢%/o, to be common functions of T/T,. How nearly this is
the case is shown in figure 3.11. The curve in the diagram is drawn according
to the empirical formulae

(e"+¢%)/20.=1+3(1-T/T,) 3.48.6
(@~ %/e=3(1-TIT)". 3.48.7



138 SYSTEMS OF A SINGLE COMPONENT

It is a pure accident that the data can be represented by formulae with such
simple numerical coefficients. These formulae as displayed above are of high
relative accuracy, but if used to compute @€ the percentage inaccuracy
increases with decrease of temperature and becomes serious below T
0.65T,. It is therefore not recommended to use these formulae for computing
values of ¢©. There are however occasions when we require relatively accurate
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Fig. 3.11. Reduced densities of coexisting liquid and gas phases

values, not of o€ itself, but of (@"—0%)/e.; on such occasions formula (9)
in view of its extreme simplicity and surprisingly high accuracy, has much
to recommend it. An example of its use will occur in §3.65.

At temperatures considerably below the critical temperature say 7<0.657,
it is more useful to consider the saturated vapour pressure P, instead of ¢°.
According to the principle of corresponding states we should expect Py/P.
to be a common function of 7/T,. That this is approximately the case is
seen from figure 3.12, where In(P,/P,) is plotted against 7,/T for several
substances. It is clear that the relation is nearly linear, so that we may write

In(P,/P,y=A~BT,/T 3.48.8
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where A4, B are constants having nearly the same values for the several sub-
stances. In the diagram the straight line which best fits the data for argon,
krypton, and xenon has been drawn. For this line

A=5.29 B=5.31 (triple point to critical point). 3.48.9

The fact that A4 is nearly but not exactly equal to B, means that the straight
line goes near to but not through the critical point. A formula of the
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Fig. 3.12. Relation between vapour pressure and temperature

type (8) has a theoretical basis at low temperatures, where the vapour
does not differ significantly from a perfect gas and the proper enthalpy of
cvaporation is nearly independent of the temperature. Under these conditions
A.H/R=BT,. At higher temperatures where the vapour pressure is greater,
neither of these conditions holds; the vapour deviates appreciably from a
perfect gas and A.H decreases, becoming zero at T=7,. At such tempera-
tures formula (8) is empirical, but remains surprisingly accurate owing to a
compensation between the two deviations.
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In the temperature range between the triple point and the normal boiling
point a formula of the type (8) becomes almost if not quite as accurate ag
the experimental data, but the best value for the constants 4, B over this
temperature range are not quite the same as the best values for the whole
range from triple point to critical point. For argon an excellent fit of the
experimental vapour pressures between the triple point and the normal
boiling point and of the calorimetrically determined enthalpy of evaporation
is attained with the values

A=5.13 B=5.21 (temperatures below n.b.p.) 3.48.10
A H=521RT,. 3.48.11

In the eighth row of table 3.8 are given the temperatures T, at which the
vapour pressure has a value one fiftieth of the critical pressure. In the ninth
row are given values of the ratio T,/T,. These are all close to 0.58.

In the tenth row of this table are given values of the proper enthalpy of
evaporation in the low temperature range where it is nearly independent of
the temperature. In the eleventh row are given values of A H/RT,. All
these values lie near to 9.0. Since A H/T; is the entropy of evaporation, this
aspect of the principle of corresponding states may be formulated thus:
the entropy of evaporation at corresponding temperatures, e.g. temperatures
at which the vapour pressure is one fiftieth the critical pressure, has a com-
mon value. The older rule of Trouton that substances should have the same
entropy of evaporation at their normal boiling points is not in accord with
the principle of corresponding states and is in somewhat less good agree-
ment with the facts.

In the twelfth row of the table are given values of ¥V, the proper volume
of the liquid at temperatures just above the triple point and in the thirteenth
row values of the ratio V,/V.. These values are all near to 0.375.

§3.49 Corresponding states of solids

The principle of corresponding states has a much more restricted applica-
bility to solids. It however applies with high accuracy to the group of the
inert elements Ne, Ar, Kr, Xe. The relevant data for comparison are given
in table 3.9. In the first three rows are given values of T, ¥, and P,.

In the fourth row are given values of the triple point temperature 7, and
in the fifth row values of the ratio T,/T,. All these values are near to 0.555.

In the sixth row are given values of the proper enthalpy of fusion AcH
divided by R and in the seventh row values of the entropy of fusion AgS
divided by R. These are all near to 1.69.
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In the eighth row are given values of P,, the triple point pressure, and in
the ninth row values of the ratio 100P,/P,. These are all near to 1.4.

Finally in the tenth and eleventh rows are given the proper volumes P*
and ¥ of the liquid and solid respectively both at the triple point. In the
twelfth row are given the ratios ¥*/¥5, all near to 1.15.

TABLE 3.9

Corresponding states of solids

Formula Ne Ar Kr Xe

1 T /K 44.8 150.7 209.4 289.8

2 V. cm®mole! 41.7 75.3 92.1 118.8

3 P.atm 26.9 48.0 54.1 58.0

4 T,/K 24.6 83.8 116.0 161.3

5 TT, 0.549 0.557 0.553 0.557

6 AH/RK 40.3 141.3 196.2 276

7 A¢HIRT, 1.64 1.69 1.69 1.71

8 P /atm 0.425 0.682 0.721 0.810

9 100P/P, 1.58 1.42 1.33 1.40
10 VL/cm3 mole-! 28.14 34.13 42.68
11 ¥S/cm3 mole-! 24.61 29.65 37.09
12 yvL/ys 1.144 1.151 1.151

§3.50 Two simple equations of state

Many attempts have been made in the past to represent the equation of
state of gas and liquid throughout the whole P-¥-T domain by an analytical
formula. It is now known that it is not possible so to represent the experi-
mental data accurately except by complicated and unwieldy formulae of
little interest. On the other hand the distinction between liquid and gas
and the existence of a critical point can be deduced qualitatively from various
quite simple equations of state. Of these we shall mention only two of the
simplest.

The earliest attempt to describe semi-quantitatively the behaviour of a
real fluid was made by van der Waals. His well-known formula is

(P+a/V2)(Va—b)=RT 3.50.1
but in the present context it is more convenient to write it as

PV,=RT(1-4y) ' —alV, 3.50.2
where

y=bJ4V,. 3.50.3
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Van der Waals assumed a model of spherical molecules of volume /41,
or yV,/L. He also assumed that the proper attractive potential energy
could be expressed as —afV,.

From (1) or (2) we derive for the proper total energy U,

Up=—0a/Vy 3.50.4
and for the proper entropy S,
—S./R=In{y/(1-4y)}. 3.50.5

In (4) the zero of energy is that at zero density. In (5) the arbitrary constant
in the entropy is chosen so that in the limit of low density S,,/R— —In y.

It is now known that formula (5) for the entropy is valid only for densities
so low that y? is negligible; in other words it leads to a correct contribution
to the second virial coefficient, but very inaccurate contributions to all higher
virial coefficients. Formula (4) for the energy by contrast is inaccurate at
low densities but is a useful approximation at high densities.

We shall compare and contrast equation (2) with the equally simple
formula*

PV,=RT(1-y) *—a|V, 3.50.6

from which follows
Up,=—alV, 3.50.7
—Sa/R=In{y/(1-y)}+ 3y(1—4p)[(1-y)*+y*3(1-y)>. 3.50.8

In the limit of high temperatures the term —a/V,, in (6) becomes unimpor-
tant compared with the term proportional to 7. It is known that the latter
termis correct up to y> in contrast to the van der Waals term RT(1 —4y) which
is correct only up to y. In the limit of high temperatures we have the virial
expansions according to van der Waals

PV, /RT=1+4y+16y*+64y> +256y*+1024y° +...  3.50.9
and according to (6)
PVo/RT=1+4y+10y*+20y> +35y* +56y° +. . . 3.50.10

whereas the accurate expansion for non-attracting rigid spheres is known
to be

PVo/RT=1+4y+10y*+18.36y> +29.4y* +. . .. 3.50.11

* Guggenheim, Molec. Phys. 1965 9 199; Longuet-Higgins and Widom, Molec. Phys.
1964 8 549.
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We shall now compare other consequences of formulae (2), (4), (5) on the
one hand and (6), (7), (8) on the other. Where possible we shall also compare
with experimental data on argon. The complete comparison is given in
table 3.10. We first derive formulae relating to the critical point. These
are determined by the simultaneous conditions

oPjoy=0 9’P[oy*=0 3.50.12

which lead to the values of y. and of V_/b and of a/RT,V, given in the first
three rows.

TABLE 3.10

Comparison of equations of state

Van der Modified

Waals equation Experiment

1y 0.083 0.126

2 Vb 3 1.98

3 a/RT.V, 1.125 1.37

4 Tg/T.,=a/RT b 3.38 2.72 2.73

5 (PV/RT), 0.375 0.33 0.29

6 a/RT, V,E; (8.56) (8.56) 8.56

7 L 0.221 0.416

8 V,%/b 1.13 0.600

9 Vn';/ V. 0.377 0.303 0.374
10 ln(PVn';/RT) —7.40 —6.01 —5.89
11 P_VLRT, 0.141 0.109 0.108

We next obtain the Boyle temperature 7y given by
RTy=alb 3.50.13
and the values of the ratio Ty/T, are given in the fourth row.
The fifth row gives values of (PV/RT), obtained from the values in the
first and third rows by means of the equation
(PV|RT).=1—4y.—a/RT_.V, 3.50.14
or the equation
(PVIRT).=(1—y.)*—a/RT,V,. 3.50.15

Hitherto we have not assumed any experimental values. To obtain quantita-
tive results concerning the liquid denoted by the superscript " at or near the
triple point denoted by the subscript , we equate a/RT, Vg, to the experimental
value for argon, or indeed any substance conforming to corresponding
States with respect to argon, of A, U/RT, where A U is the energy of evapora-
tion. This is shown in the sixth row. We now put PV==0 in (2) and in (6)
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to obtain the values of " in the seventh row and thence the values of V/b
in the eighth row. By combining the figures in the second and eighth rows
we obtain the values of V5/V, in the ninth row.

For the equilibrium between liquid and vapour at the triple point we have

puC=ut. 3.50.16

If we treat the vapour as aperfect gas and set PVu/RT=0 we have the
equations
In y®—1=a/RT,VE+In{y"/(1-4y")} 3.50.17

or alternatively
In y©—1=a/RT, Vg +In{y"/(1-y")} + 3y (1 = 3y")/(1 - y")*
+y"33(1-y4)3. 3.50.18

Using
Y|y =VEIVS=PVEIRT 3.50.19
we can rewrite (17) as
In(PVE/RT)=1+a/RT, Vs —In(1—4y") 3.50.20
and (18) as

In(PVE/RT)=1+a/RT,VE=In(1—y)+3y"3(1 - $y")/(1 - y*)?
+Y33(1—yh)>. 3.50.21

Using the values of a/RT, V% in the sixth row and of y* in the seventh row
we obtain the values of In(PVL5/RT,) in the tenth row.

We observe that the equation of state (6) in contrast to the van der Waals
equation (2) leads to remarkably good agreement with experiment except
for expressions containing V.. This is not surprising. Because 8V/0P— 0
at the critical point a small inexactitude in the P-¥ curve may affect P,
only slightly but will have a pronounced effect on V.. This is borne out by
multiplying (PV/RT), by V,/V,. and obtaining the values of P.V,/RT, in
the last line of the table.

§3.51 Zero-temperature entropy in crystals

In §3.26 we gave formula (3.26.4) for the conventional entropy of a slightly
imperfect gaseous element composed of monatomic molecules. This formula
is composed additively of contributions from

(a) translational degrees of freedom

(b) electronic degrees of freedom

(c) gas imperfection.
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In §3.28 we gave, for the conventional entropy of a slightly imperfect
gas composed of linear molecules, in formulae (3.28.5) and (3.28.10)
respectively, the further contributions from rotational and vibrational degrees
of freedom.

In §3.29 we gave formula (3.29.4) for the rotational contribution to the
entropy of a slightly imperfect gas composed of non-linear molecules and
formula (3.29.7) for the vibrational degrees of freedom.

Thus all the conventional formulae for a slightly imperfect gas include
contributions from

(a) translational degrees of freedom

(b) electronic degrees of freedom, if any

(c) gas imperfection

(d) rotational degrees of freedom, if any

(e) vibrational degrees of freedom, if any
All other possible contributions are excluded, in particular

(f) intranuclear degrees of freedom

(g) mixing of isotopes.

There are two good reasons for disregarding the contribution of intra-
nuclear degrees of freedom. In the first place they are in many cases not
known. In the second place under terrestrial conditions the nuclear contri-
bution of each nuclidic species is a constant independent of temperature,
pressure, phase, composition, and chemical change.

The contribution due to isotopic mixing is ignored because it remains
constant as long as the isotopic composition remains unchanged. Variations
in isotopic composition will be discussed in §3.55.

We have now reinterpreted what we mean by the conventional proper
entropy SS(7, P) of a slightly imperfect single gas at a chosen tem-
perature and pressure. Since any entropy change can be determined by
calorimetric and related measurements, we can in particular determine

SY(T, P)-S3(T', P') 3.51.1

where the superscript ® denotes the solid crystalline phase. If 7" is sufficiently
small we can use Debye’s approximation (3.32.2) to extrapolate 7'—0 so
as to obtain a value of S5(0, P’). The dependence of S,, on P is negligible,
and in fact vanishes as T—0, and we therefore abbreviate S3(0, P) to S3(0).
We thus have a calorimetric value of

SS(T, P)—S5,(0). 3.51.2

The quantity specified in (2) is often called the calorimetric entropy of the
gas at the given temperature and pressure, whereas the conventional
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entropy of a gas So(7, P) is often called the spectroscopic entropy of the
gas at the given temperature and pressure.

It is found experimentally that for all elements the calorimetric entropy
is equal to the spectroscopic entropy. (The exceptional behaviour of hydro-
gen will be discussed in §3.56.) Thus

ST, P)—S5(0)=SS(T, P)  (element) 3.51.3

and consequently
S5(0)=0  (element). 3.51.4

Formula (4) expresses our earlier definition of conventional entropy
given in §3.25. We have now verified that the convention used in §3.25 is
equivalent to the convention described in the present section.

It is found experimentally that the equations (3) and (4) also hold for
most compounds, but there are about half a dozen well-established excep-
tions.

§3.52 Two numerical examples

We shall now illustrate the content of §3.51 by two numerical examples.
We choose N, and CO.

To calculate the conventional or spectroscopic entropy of nitrogen we
use the following data. The proper mass is 28.02 g mole ™!, The rotational
characteristic temperature @, is 2.87 K and the vibrational characteristic
temperature @, is 3.35 x 103 K. The symmetry number s is 2. At the boiling
point 77.32 K and a pressure of 1 atm we have, using (3.27.4) and (3.28.5)

Sa(T,)/R=%+4% In(T,/4.333 K)+3 In(M/g mole™!) +1n(T,/sO.)
=7+3%1n(77.32/4.333) +3 In 28.02+1n{77.32/(2 x 2.87)}
=3.50+7.20+5.00+2.60 =18.30. 3.52.1

The contributions from the vibrational degree of freedom and from gas
imperfection are negligible.

We next calculate the calorimetric entropy. As usual we use superscripts *
for solid, * for liquid, and © for gas. We use subscripts ,, to denote a transi-
tion, ¢ to denote fusion, and . to denote evaporation. We use the follow-
ing data

Ter
f C%dIn T=6.49 cal K~ ! mole™!
(4]

including an extrapolation from 15K to 0 K,
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Te
J C3dIn T=5.59 cal K™ ! mole™!
Ttr

To
f C'd1In T=2.73 cal K™ ! mole™!
Te

T,=3561K  A,H=54.71cal mole™*
T;=63.14 K A;H=172.3 cal mole™!
T,=7732K A H=1332.9 cal mole™".

Hence the calorimetric entropy at the boiling point and at one atmosphere

SY(Ty)-S50)
=(6.49+54.71/35.6145.59+172.3/63.1442.73+1332.9/77.32) cal K™ mole™!
=(6.49+1.544+5.59+2.734+2.73+17.24) cal K" ! mole !

=36.32 cal K™ ! mole™*

and consequently
{SS(T,)—S%(0)}/R=18.3. 3.52.2
From (1) and (2) we conclude that the conventional entropy S5(0) of the
solid at 0 K is zero.
When we do precisely analogous calculations for carbon monoxide
we obtain at 1 atm
S(T,)/R=%+3%1n(81.61/4.333)+3 In 28.01 +1In(81.61/2.77)
=3.50+7.34+5.00+3.38=19.22 3.52.3
Sal(To) = Sm(0)
=(10.09+151.3/61.55+1.23+199.7/68.09
+2.61+1443.6/81.61) cal K™ ! mole ™"
=(10.09+2.46+1.23+2.93+2.61 +17.69) cal K™! mole~!
=37.01 cal K~! mole™!

and consequently
{SS(T,) - S5(0)}/R=18.6. 3.52.4

Comparing (3) and (4) we find for the conventional entropy of the crystal
at 0K
S5 (0)/R=0.6=In2 3.52.5

within the experimental accuracy.
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§3.53 Statistical-mechanical interpretation

We recall that by definition the vanishing of the conventional entropy of a
crystal extrapolated to 7—0
S3(0)=0 3.53.1

holds for all elements. The special behaviour of hydrogen is discussed in
§3.56. Formula (1) also holds for the vast majority of compounds. The
best established exceptions are CO, NNO, NO, H,O0.

Classical thermodynamics has nothing to add to this statement. It is
however instructive and interesting to discuss the statistical-mechanical
interpretation. The interpretation of (1) is that the lowest energy level of the
crystal is non-degenerate. This implies that the structure of the crystal is
perfectly regular showing no kind of randomness.

The condition (1) found for most crystals states that the conventional
zero-temperature entropy of the crystal is zero. This means that the contri-
butions to the entropy from the translational, electronic, rotational, and
internal vibrational degrees of freedom are all zero. In other words dis-
regarding intranuclear degrees of freedom and isotopic composition, we
may say that no other degrees of freedom contribute anything to the entropy.
Statistical theory tells us that this corresponds to the crystal being in a
perfectly ordered state, provided we disregard intranuclear degrees of
freedom and isotopic composition. Thus a combination of statistical theory
with experimental data tells us that as the temperature decreases, most
crystals tend towards a state of perfect order apart from intranuclear
phenomena and isotopic composition. More strictly we should say that this
is how the crystal appears to behave judged by the experimental data in
the region of 0 K.

§3.54 Simple typical exceptions

We shall now consider exceptions to the general rule S5(0) = 0. For this
purpose it is convenient to define a number o by

S3(0)=RlIno 3.54.1

so that usually o=1. The two simplest exceptions are CO and NNO. In
both cases within the experimental accuracy o=2. The statistical interpre-
tation of the value 2 for o is that instead of perfect order in the crystal,
there are two possible orientations for each molecule and the molecules are
randomly distributed between these two orientations. This is what we should
expect to happen in the case of a linear molecule whose field of force is
nearly but not quite symmetrical so that the molecule can be reversed end
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for end without an appreciable energy change. Statistical theory tells us
that the equilibrium distribution of directions will remain random down to
temperatures at which 7 is comparable with the energy difference in the
two orientations. At temperatures where k7 is much smaller than the energy
difference between the two orientations, then only one orientation will be
stable, but at such low temperatures it may well be that the molecules have
not sufficient energy to turn round. In simple words when the crystal is so
cold that the molecules have a preference for one orientation they have too
little energy (are ‘too cold’) to change their orientations. Such a crystal at
the lowest temperatures will remain in a state with 0=2 and this state is
metastable with respect to the ideal unrealizable state of ordered orientation
with o=1. It is believed that this is a true description of the behaviour of
crystalline CO and NNO at the lowest temperatures. It is interesting to
note that the SCO molecule is not sufficiently symmetrical to behave in
this way and the experimental data are consistent with o=1.

The case of NO is somewhat more complicated. It is suggested that at
the lowest temperatures the molecular unit is 5y and that owing to the simi-
larity between N and O atoms the two orientations he and o have nearly
equal energies. There would then be a random distribution over these two
orientations. This would lead to a value of 0=2 for the molecular unit
N,0,; the corresponding value of o expressed in terms of the molecule NO
is 2% and this value is in agreement with experiment within the estimated
accuracy.

The other well established case of 0> 1 believed due to simple orienta-
tional randomness is that of ice. To account for the experimental data the
following assumptions are made.

(1) In ice each oxygen atom has two hydrogens attached to it at distances
about 0.95 A forming a molecule, the HOH angle being about 105°
as in the gas molecule.

(2) Each HOH molecule is oriented so that its two H atoms are directed
approximately towards two of the four O atoms which surround it
tetrahedrally.

(3) The orientations of adjacent HOH molecules are such that only one H
atom lies approximately along each O-O axis.

(4) Under ordinary conditions the interaction of non-adjacent molecules
is not such as to stabilize appreciably any one of the many configura-
tions satisfying the preceding conditions relative to the others.

On these assumptions Pauling* calculated that theoretically o =3. Experi-
mentally this value is verified for both H,O and D,0.

* Pauling, J. Amer. Chem. Soc. 1935 57 2680.
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§3.55 Isotopic mixing

The presence of isotopes can have three effects, which we shall now consider.
The first effect is that In M must be replaced by the suitably weighted sum

Y x/In M, 3.55.1

where x; is the mole fraction of the particular isotope i having a proper
mass M;. Similarly In @, must be replaced by

Y x;In6, 3.55.2

where @, is the value of O, for the particular isotope i. The terms in O,
must similarly be replaced by suitably weighted averages. It should not
be necessary to give details, especially since in almost all cases it is suffi-
ciently accurate to replace these averaging rules by the simpler rules of
replacing

M by z x,'M,' 3.55.3
6, by Z x;0, 3.55.4
0, by Y x,0,. 3.55.5

It is only in the cases of H,, D,, and possibly other very light molecules
containing H, D that these simpler averaging rules may not always be
sufficiently accurate.

The term H° occurring in H,, and in g, but not in S,, must likewise be
replaced by the weighted average

Y x.H). 3.55.6

The second effect is that any phase whether solid, liquid, or gaseous, con-
sisting of a mixture of isotopic molecules in mole fractions x;, has a proper
entropy exceeding the proper entropy of similar phases of the pure isotopes
at the same temperature and pressure, and this excess is

—szi ln xi 3.55.7

which is always positive since x;<1. We shall meet formula (7) again in
chapter 4. In the present context we need only note that as long as the solid
and gas have the same isotopic composition, the terms of the form (7)
cancel and so contribute nothing to o.
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The third effect to be considered is that associated with difference in
symmetry. Let us consider the particular example of Cl,. There are three
kinds of molecules 33C133Cl, 37CI37Cl, and 3°C13"Cl. For the molecules
35C135C1 and 37C137Cl the symmetry number s is 2, while for the molecule
35CI37Cl it is 1. In the crystal, on the other hand, o for 3*CI137Cl will have
the value 2 because each molecule can be reversed to give a physically distinct
state of the crystal of effectively equal energy, whereas for 3*CI*3Cl and
37C137Cl there are not two distinguishable orientations of effectively equal
energy and so o is 1. Thus the product so has the same value 2 for all three
types of molecules. Ignoring the isotopic composition means then assigning
to 35CI137Cl a fictitious value of s=2 instead of s=1 and to o a fictitious
value o=1 instead of 0=2. When we compare the entropies of the gas and
the crystal, and it is only in such comparisons that the values assigned to S,
have any significance, the two errors cancel.

It is instructive to compare the behaviours of CO and N, with those of
35C137Cl and 33CI33Cl. We saw in §3.52 that for CO the value of o is 2 while
of course s=1. We should however obtain correct results if we assumed as
for N, that o=1 with s=2, using this effective symmetry number because
CO is an effectively symmetrical molecule.

The same principle holds in more complicated cases. For example com-
paring the isotopic molecules CH,, CH;3D, CH,D, we see that for the
first s=12, o=1, for the second s=3, 0=4 and for the third s=2, 0=6 so
that in all three cases the product so is 12.

§3.56 The exceptional case of hydrogen

Hydrogen is exceptional in several respects. This is due partly to its molecule
having such a small moment of inertia with a consequently high value of the
rotational characteristic temperature ©,=85.4 K. It is also partly due to
the molecules having an exceptionally small field of force so that even at
very low temperatures they still rotate in the crystal. We shall not here go
into the theory* of the behaviour of hydrogen as this would take us too far
afield. We shall merely state the facts sufficiently to show how the various
thermodynamic formulae must be used so as to obtain correct results.
For the sake of consistency we define the conventional zero of entropy
precisely as for all other molecules, so the formulae of §3.26 to §3.28 are
valid for the gas. As regards the physical meaning of this convention, instead
of completely neglecting the intranuclear degrees of freedom we ignore the

* Fowler and Guggenheim, Statistical Thermodynamics 1939, Cambridge University
Press § 531.



152 SYSTEMS OF A SINGLE COMPONENT

contributions due to any intranuclear degrees of freedom other than result-
ant nuclear spin, and the contribution due to the spin of the two nuclei in a
hydrogen molecule is taken to be the same as if the nuclei were present in
independent atoms. Any actual deviation from this will then appear in o,

We shall first consider the gas. The usual formulae for gases with diatomic
molecules are applicable only at temperatures large compared with O,
and consequently for H, they are valid only above about 300 K.

At ordinary temperatures and a fortiori at lower temperatures the vibra-
tional degree of freedom in H, may be ignored. As the temperature decreases
from about 300 K to about 45 K the rotational contributions to the thermo-
dynamic functions drop from the values for a pair of classical degrees of
freedom to values for unexcited degrees of freedom. In particular at
temperatures around 45 K or lower

— ot/ RT=S,,/JR=%1n3 3.56.1
H, /RT=0. 3.56.2

The constant term £ In 3 in (1) is due to the fact that hydrogen behaves as a
mixture of } para hydrogen with a proper rotational entropy zero at low
temperatures and # ortho hydrogen with a proper rotational entropy R1ln 3
at low temperatures.

Turning now to the crystal, let us first ignore any experimental data
below 12 K and extrapolate smoothly the data between 20 K and 12 K in
the usual way. We thus obtain well determined values of

So(T)—S5(0)=S$(T)—R Ino. 3.56.3

We may use the usual formula for S$(T') with 7>300 K or alternatively
formula (1) for S9(7') with T<45 K; by either procedure we obtain a value
for o agreeing within the experimental error with

Ino=2%1In3. 3.56.4

We notice that the conventional zero-temperature entropy of the crystal
obtained by smooth extrapolation from 12 K is the same as the rotational
entropy in the gas below 45 K.

This would complete the picture of ordinary hydrogen were it not for
the existence of experimental data on the crystal between 12 K and 2 K.
In this range the entropy decreases with anomalous rapidity. In fact the
heat capacity not only is anomalously greater than corresponds to the form
aT?, but it actually increases as the temperature decreases below 6 K.
On theoretical grounds it is clear that the ortho molecules are somehow
beginning to ‘line up’ with a consequent decrease of entropy. There can be
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little doubt that if these experimental data extended to still lower tempera-
tures the heat capacity would eventually become normal again after there
had been a total loss of proper entropy 3R In 3. If we then determined
S3(0) from here instead of by extrapolation from 12 K, we should find

o=1. 3.56.5

Up to this point we have assumed that the crystal, like the gas, consists of
the ordinary metastable mixture of } para hydrogen and # ortho hydrogen.
For a mixture of this composition the contributions of nuclear spin to the
entropy are normal and so their conventional omission leads to no complica-
tions. If however the crystalline hydrogen were converted to stable pure para
hydrogen there would be a decrease in the contributions to the proper
entropy of #R In 3 from the nuclear spins and of —R(3 In3+1% In}) from
the mixing of the para and ortho molecules. This would manifest itself as

o=%. 3.56.6

The conventional zero-temperature entropy of stable para hydrogen has the
negative value
S$(0)=—RIn4  (para hydrogen). 3.56.7

For deuterium D, the general picture is similar with several differences of
detail. The gas behaves like other diatomic gases at temperatures exceeding
200 K. Between this temperature and about 25 K, the rotational contribu-
tions to the thermodynamic functions drop from their values for a pair of
classical degrees of freedom to values for unexcited degrees of freedom. In
particular below 25 K

— o/ RT=8,,/R=%1n3 3.56.8
H,/RT=0. 3.56.9

The constant term 4 In 3 in (8) is due to the fact that D, behaves as a mixture
of 4 ortho deuterium with a proper rotational entropy zero at low tempera-
tures and 4 para deuterium with a proper rotational entropy Rln 3 at low
temperatures.

For the crystal similarly, if one extrapolates in the usual way from a
temperature between 20 K and 10 K one obtains

S$(0))R=Ino=%1n3. 3.56.10

For the ordinary metastable mixture of 4 ortho deuterium and 4 para
deuterium the contributions of nuclear spin to the entropy are normal and
so their conventional omission leads to no complications. When, however,
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the crystalline deuterium is converted to stable pure ortho deuterium there
is a decrease of R(} In 3+ % In 6) in the contribution of nuclear spins to the
proper entropy and a decrease of — R(% In 4+ % In %) from the mixing of the
ortho and para molecules. If we assume that at the lowest temperature the
molecules line up, as we know to be the case with H,, this will manifest
itself as
0=3=4%.
The conventional zero-temperature entropy of stable ortho deuterium is then
S5(0)=RIn%

which is negative.

§3.57 Third law of thermodynamics and the Nernst heat theorem

We recall our formulation of the third law in §1.66 which we now repeat.

By the standard methods of statistical thermodynamics it is possible to
derive for certain entropy changes general formulae which cannot be derived
from the zeroth, first, or second laws of classical thermodynamics. In the
present chapter we have had three distinct examples of this type.

In the first place we have quoted in §§3.26-3.29 results of completely
general validity for the entropy of gases at sufficiently high temperatures.

In the second place we have quoted a result of completely general validity
for the increase of entropy when isotopes, or for that matter any other
very similar molecules, are mixed at constant temperature and pressure.

In the third place we have quoted a result concerning the conventional
zero-temperature entropy of a crystal, namely that its conventional value
is usually but not always zero.

This last result, in the form quoted, is not altogether satisfactory because
it admits exceptions without indicating how or when these occur. It is
therefore desirable to try to replace this statement by a more definite
statement not admitting exceptions. The following statement fulfils these
requirements.

If AS denotes the increase in entropy in any isothermal change which we

represent symbolically by
a—p 3.57.1

and we extrapolate AS to T=0 smoothly in the usual way, then if the states
o and B are both internally stable, or if any kind of internal metastability
present is not affected by the change a—B, then

lim AS=0. 3.57.2

T-0
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If on the other hand « is internally metastable, while B is stable, so that the
change a—p removes the metastability, then
lim AS <0. 3.57.3
T-0
The case where o is stable and P metastable does not arise, since the change
a— B would then be impossible. The above statements constitute an amended
form* of a theorem first stated by Nernst and usually known as the Nernst
heat theorem.

140

120

100

80 °

P/atm

60

40 -

20 (— —]

olllIlll]ll}llllllllllllllltIIIJIIII
-0 15 2:0 25 3-0 35 4.0 45
/K

Fig. 3.13. Melting curve of helium

We shall now verify that the behaviour already described of crystals in
the limit 7—0 is in accord with the above general statement.

We observe that the several exceptional crystals for which o is not unity
are in fact in internally metastable states with some form of randomness of
arrangement of the molecules. If by any means it were possible to change such
a crystal to the stable completely ordered modifications o would be reduced
from a value greater than unity to the value unity and so (3) is satisfied.

* Simon, Ergeb. Exakt. Naturw. 1930 9 222.
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Examples of changes satisfying (2) are allotropic changes such as

white tin—grey tin
monoclinic sulphur—rhombic sulphur.

In each of these examples, although at low temperatures and ordinary pres-
sures the first form is metastable with respect to the second, both forms are
completely stable with respect to internal changes. In each case for both
phases o=1 and so the equality (2) is obeyed.

Another interesting example is that of helium, the only substance which
remains liquid down to 7=0. The liquid is changed to solid under pressure.
The relation between the pressure and the freezing temperature is shown
in figure 3.13 from which it is clear that

lim dP/dT =0. 3.57.4

T-0
But according to the Clapeyron relation this is equivalent to

lim AS/AV =0. 3.57.5

T-0
But AV is certainly finite and so (5) implies
lim AS=0. 3.57.6

T-0

The most numerous and important examples of the relation (2) are those of
chemical reactions between solid phases, for example

Ag+I-Agl
These will be discussed in §6.11.

§3.58 Thermal expansion at low temperatures

It is an experimental fact that the coefficient of thermal expansion of solids
and of liquid helium tends towards zero as the temperature is decreased. But
according to Maxwell’s relation (1.47.4), this implies that

lim (3S/0P);=0. 3.58.1

T-0

If we integrate this from P, to P,, we obtain

lim {S(7; P,)— S(T, P,)} =0 3.58.2

T-0

which is in accordance with the general relation (3.57.2).



SYSTEMS OF A SINGLE COMPONENT 157

This is the only example of the application of (3.57.2) to a simple physical
change which we can discuss at this stage. In chapter 11 we shall consider an
interesting application to variation of the strength of an applied magnetic
field.

§3.59 Unattainability of zero temperature

The general laws formulated in the preceding sections concerning the
behaviour of matter extrapolated to T=0 are equivalent to the following
theorem*,

It is impossible by any procedure, no matter how idealized, to reduce the
temperature of any system to zero temperature in a finite number of
finite operations.

We shall now prove this equivalence. Let us consider a process (e.g.
change of volume, change of external field, allotropic change) denoted
formally by

o—p. 3.59.1

We shall use the superscripts * and ® to denote properties of the system in the
states o and P respectively. Then the proper entropies of the system in these
two states depend on the temperature according to the formulae

T

St =8%+ f (CYT)AT 3.59.2
0
T

SE=52P+ f (CHT)YAT 3.59.3
0

where S, SO are the limiting values of S%, S for T—0. It is known from
quantum theory that both the integrals converge. Suppose now that we start
with the system in the state o at the temperature 7' and that we can make the
process a—f take place adiabatically. Let the final temperature after the
system has reached the state B be T''. We shall now consider the possibility
or impossibility of 7" being zero. From the second law of thermodynamics
we know that for an adiabatic process defined by its initial and final states
the entropy increases if there is any irreversible change and remains constant
if the change is completely reversible. It is therefore clear that the chances
of attaining as low a final T as possible are most favourable when the change
is completely reversible. We need therefore consider only such changes.
* Simon, Science Museum Handbook 1937 3 p. 61. All earlier discussions are unnecessa-

rily restricted. Cf. Fowler and Guggenheim, Statistical Thermodynamics, Cambridge
University Press 1939 § 538.
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For a reversible adiabatic change (1) we have then by (2) and (3)
S% 4 J:'(c"/r)dr= SoP 4 LT”(C”/T)dT. 3.59.4
If 7" is to be zero, we must then have
SO 8% = JOT,(C“/ T)dT. 3.59.5

Now if S% —$9*> 0t will always be possible to choose an initial 7" satisfying
(5) and by making the process a—p take place from this initial 7" it will be
possible to reach T''=0. From the premise of the unattainability of =0
we can therefore conclude that

SO < 80 3.59.6

Similarly we can show that if we can make the reverse process take place
reversibly and adiabatically then we could reach 7' =0 from an initial
temperature 7' satisfying

-
S0 _ 808 = f (C*/T)dT. 3.59.7
0

Further if S2*—S% >0, we can always choose an initial 7" satisfying (7).
From the unattainability of T=0 we can therefore conclude that

So < 508, 3.59.8
From (6) and (8) we deduce
S0 = g% 3.59.9

which is precisely formula (3.57.2) of Nernst’s heat theorem.

We can also show conversely that given (9), neither the process a—p nor
the reverse process B—o can be used to reach T=0. For, assuming (9) to be
true, we now have for the adiabatic process the initial temperature 7’ and
the final temperature 7' related by

- -
f (C“/T)dT:f (CHT)T. 3.59.10
0 0
To reach T"'=0 we should require
-
f (C*T)T =0. 3.59.11
0

But, since C*>0 always, for any non-zero T it is impossible to satisfy (11)-
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Hence the process cannot be used to reach T=0: The proof for the reverse
process f—a is exactly similar.

In the above argument we have assumed that the states « and  are connect-
ed by reversible paths. If all the phases concerned are phases in complete
internal equilibrium the changes concerned must presumably be regarded
as reversible. If any phase occurs naturally in metastable internal equilib-
rium, a process affecting it may or may not disturb the frozen metastability.
If it does not disturb it, then the change may still be regarded as reversible,
but otherwise it will be a natural irreversible change. We shall now verify that
by using internally metastable phases we are still unable to reach 7'=0.
In fact as foreshadowed above the irreversibility involved makes the task
more difficult.

Suppose for example that « is internally metastable, while B is internally
stable. Then according to the Nernst heat theorem

S 08, 3.59.12

But the change a— is a natural irreversible process and the opposite change
is impossible; hence the adiabatic change a—f takes place with increase of
entropy, so that

T T
sﬁ:+f (C“/T)dT<s,‘3,°+f (C*/T)dT. 3.59.13
0 0
Thus to attain 7"’=0 we must have
-
J (CYT)dT <SP —-8%<0 3.59.14
0

using (12). But since C*>0 always, it is impossible to satisfy (14) and so we
again find it impossible to reach 7=0.

We shall revert to the subject of the unattainability of 7=0 at the end
of chapter 11 on magnetic systems.

§3.60 Interfacial layers

We complete this chapter by a consideration of interfacial layers. In a one-
component system we cannot usually have more than one liquid phase and
so we need consider only the interface between a liquid and its vapour. The
interfacial tension of such an interface is called the surface tension of the
liquid.

As we have seen, a one-component system with two bulk phases has one
degree of freedom. We may accordingly treat the temperature as the inde-
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pendent variable; the pressure is then determined by the temperature. Thus
the properties of the interfacial layer, in particular the surface tension, will
be completely determined by the temperature. Our main task is therefore to
consider how the surface tension depends on the temperature.

§3.61 Temperature dependence of surface tension

We begin with formula (1.57.3) which for a single component reduces to
—dy=S%dT —tdP+TI'dy 3.61.1

where S denotes S°/A.

From the equilibrium between the liquid phase, denoted by the super-
script , and the gas phase, denoted by the superscript ¢, we have as in
§3.37

du=—-SLdT+VEdP=—SSdT+VIdP. 3.61.2
When we eliminate du and dP from (1) and (2) we obtain
—dy/dT=(S5—TSL)—(t—TVEXSS-SL)/(VE-VE).  3.61.3

This formula relates the temperature coefficient of the surface tension to
certain entropy changes. Before we examine this formula in any detail,
we shall show how it can be transformed to another relation involving energy
changes instead of entropy changes.
For the two bulk phases we have as usual
p=GL=UL~TS:E+PVE 3.61.4
u=GS=US—TSS+pPVs. 3.61.5

For the surface layer we have by applying to unit area the formulae of
§1.56

Iuy=G4=U3—-TSY+Pt—y 3.61.6

where G denotes G°/4 and Uj denotes U°/4. We now use (4), (5), and (6)
to eliminate S5, S$, and S° from (3). We obtain

—Tdy/dT=(Uy—TUL)+P(t—TV5)—y
—(=TVHUS-UL)I(VE-VE)-P(x—TVy). 3617
The terms containing P cancel and (7) reduces to

y=Tdy[dT=(U-TUL)—(r—=TVEXUS—UL)(VE-VE). 3.61.8
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§3.62 [Invariance of relations

We recall that according to the definition in §1.53 of a surface phase the
properties associated with it depend on the position of the boundaries AA’
and BB’ in figure 1.2. We shall henceforth refer to these as the Lo and the
Go boundaries respectively. Since the precise placing of these boundaries
is arbitrary, the values assigned to such quantities as 7, I', S°, U® are also
arbitrary. We can nevertheless verify that our formulae are invariant with
respect to shifts of either or both of the boundaries. It is hardly necessary
to mention that the intensive variables 7, P, and p are unaffected by shifts of
either boundary. It is also clear from the definition of 7 in §1.58 that its
value is invariant.

Let us now consider a shift of the plane boundary through a distance 57
away from the gas phase. Then I" becomes increased by the amount of liquid
in a cylinder of height 87 of cross-section unity and consequently of volume
7. Thus I' becomes increased by 8t/ V5. It follows immediately that t — ['V%
remains invariant. Similarly S§ becomes increased by the entropy in a
cylinder of liquid of volume &t that is to say by an amount SL&7/VL.
It follows immediately that S5—I'Sy remains invariant. Precisely similar
considerations show that U§—TI'UY remains invariant.

We have now to consider a similar shift of the Go boundary through a
distance 87 away from the liquid phase. Then I is increased by 81/¥'C and
so t—TI'V is increased by (VS — Vk)dt. Similarly S5— I'SL is increased by
(SS—Sk)8t. When we insert these values into (3.61.3) we see that the
resulting variation vanishes. The same holds for (3.61.8).

§3.63  Simplifying approximation

The formulae of §3.61 are strictly accurate and involve no assumptions or
approximations concerning the structure of the interfacial layer. We shall see
that they can be greatly simplified by making use of our knowledge concern-
ing this layer.

In §3.39 we mentioned that, at temperatures well below the critical,
PV, is small compared with RT and may usually be ignored. In the inter-
facial layer the density is comparable to that in the liquid phase so that
©'T" is comparable to ¥, and negligible compared with V. Consequently
the terms containing the factor t— I'V% may be neglected. Formulae (3.61.3)
and (3.61.8) then reduce to, respectively,

—dy/dr=85-rs: 3.63.1
y—=Tdy[dT=US-TUL. 3.63.2



162 SYSTEMS OF A SINGLE COMPONENT

It is worth noticing that the right side of (1) is the entropy of unit area of
surface less the entropy of the same material content of liquid and the right
side of (2) is the energy of unit area of surface less the energy of the same
material content of liquid. More pictorially we may say that when unit area
of surface is created isothermally and reversibly, the work done on the
system is 7, the heat absorbed by the system is the right side of (1) multi-
plied by 7, and the increase of energy, the sum of these two quantities, is
equal to the right side of (2).

If however we are making the above simplifying approximations, then by
making them at an earlier stage we can considerably simplify the derivations.
We accordingly replace (3.61.1) by the approximation

—dy=S85dT+TI'du 3.63.3
and (3.61.2) by the approximation
dy=—-SLdT=SSdT+RTdIn P. 3.63.4
Eliminating du from (3) and (4) we obtain immediately
—dy=(85—TISk)dT 3.63.5

in agreement with (1).
Furthermore we replace (3.61.4) by the approximation
u=UL—TSE 3.63.6
and (3.61.6) by the approximation
Tu=U$—-TS5—y. 3.63.7
Eliminating S§ and Sk, from (5), (6), and (7) we recover (2).
We conclude this discussion with a warning against indiscriminately using

the simplified formulae of this section in the neighbourhood of the critical
point. The necessary condition for their use is that

M —VegVE—vk 3.63.8

In the neighbourhood of the critical temperature VX becomes nearly as
great as V'S and this condition may no longer be taken for granted.

§3.64 Vapour pressure of small drops

Figure 3.14 represents a small spherical drop and a portion of liquid in
bulk both at the same temperature. We denote the interiors of these liquid
phases by o, B respectively and the vapour immediately outside them by
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o', B’ respectively. Let us assume that the external pressures P* and P* are
equal, that is
P*=P". 3.64.1

Then, according to (1.60.9) the pressure P® at the interior a of the drop is
greater than that P® of the liquid in bulk by

P*—PP=2y/a 3.64.2

where 4 is the radius of the drop. But according to (3.46.11) the fugacity p
is related to the pressure P by

dIn p/dP=VX/RT. 3.64.3

/3/

Fig. 3.14. Vapour pressure of droplet

If then we neglect the compressibility of the liquid, the fugacity p® of the
liquid in the drop is related to the fugacity p® of the liquid in bulk by

RT In(p*/p®?)=(P*— P*)Vy. 3.64.4
Comparing (2) and (4) we find
RT In(p*/p*)=2yV}/a. 3.64.5

We see then that at the same external pressure the small drop always has a
greater fugacity than the bulk liquid. Vapour will distil from the drop to the
liquid and as the drop becomes smaller its fugacity increases still more.
Thus small drops are essentially unstable relatively to the liquid in bulk.

§3.65 Empirical temperature dependence of surface tension

Since the surface tension of a liquid decreases with increasing temperature
and vanishes at the critical point, the simplest possible form of empirical
relation between y and T is

y=yo(1=T/T)'*" 3.65.1

where y, and r are constants. For the substances having the simplest and



164 SYSTEMS OF A SINGLE COMPONENT

most symmetrical molecules such as Ne, Ar, Xe, N,, O, excellent agreement
with the experimental data is obtained with =2 as is shown in table 3.11.
The data at the foot of this table will be discussed in §3.66.

The reason for the particular choice r=% will be explained shortly.
Ferguson* in a review of the experimental data for ten esters and four other
organic compounds found r=0.210£0.015, which does not differ significant-
ly from the value Z adopted above.

Another type of formula relates the surface tension to the coexisting
proper volumes V" of the liquid and ¥ of the vapour. The simplest satis-
factory formula of this type is the following

vy }c(1-T/T,) 3.65.2
where y is defined in terms of densities ¢ by
yVe=(e"-e%/e.. 3.65.3

This formula, due to Katayama', is a striking improvement over the older
and less accurate formula of Edtvos, which contained V" instead of y~ 1.
This was shown by Katayama for various organic compounds and we shall
now verify that this is also the case for the substances having the simplest
molecules.

In §3.48 we verified that the substances having the simplest molecules
follow with a high degree of accuracy formula (3.48.7), namely

(€"~e%)/e.=3(1-T/T)*. 3.65.4
Using the definition (3) of y, this can be written
yoc(1=T/T). 3.65.5
If we now eliminate y between (2) and (5), we obtain
yoo(L=T/T)® 3.65.6

of the form (1) with r=3. It follows that the verification of (6) in table 3.11
and the verification of (4) in figure 3.11 together constitute a verification
of (2).

If instead of eliminating y between (2) and (5), we eliminate 7T, between
the same formulae we obtain

yocy? . 3.65.7

* Ferguson, Trans. Faraday Soc. 1923 19 407; Proc. Phys. Soc. London 1940 52 759.
t Katayama, Sci. Rep. Téhoku Univ. 1916 4 373.
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The better known relation of Macleod* with an index 4 instead of 13 is less
accurate, at least for the substances having the simplest molecules. Actually
for the half dozen organic compounds considered by Macleod it is clear that
y in fact varies as some power of y less than 4.

§3.66 Corresponding states of surface tension

The principle of corresponding states, so far as it is applicable at all to
surfaces, can on physical grounds be expected to hold only for subtances
having the simplest and most symmetrical molecules.

According to the principle it is clear from dimensional considerations
that yV2 T ! should be a common function of T/T, for substances obeying
the principle. In particular, if these substances obey (3.65.1) then y, V2T,
should have a common value. The data' at the bottom of table 3.11 show
that this is in fact the case within about + 2% for Ar, Xe, N,, O, while
the value for Ne deviates by rather less than 10 %,.

More recent measurements’ are summarized in table 3.12.

TABLE 3.12
Ar N, CH,
Yo/dyne cm-? 37.78 28.12 39.08
Yo V3T erg K-+ mole—# 4.25 4.48 4.39

§3.67 Sorption of a single gas

In our discussion of the interface between a liquid and a gas the surface
area A was first introduced as an independent variable. The interfacial tension
y was then introduced through the relation

w=yd4. 3.67.1

Both 4 and y are well defined measurable quantities. The situation for a
solid—gas interface is altogether different. The area of the interface may be
difficult, if not impossible, to measure accurately especially if the solid is
porous or a powder. Furthermore the surface area can not be varied rever-
sibly and consequently there is no relation such as (1). There is no quantity

* Macleod, Trans. Faraday Soc. 1923 19 38.

t Guggenheim, J. Chem. Phys. 1945 13 259. Guggenheim, Proc. Phys. Soc. London
1965 85 8i11.

t Sprow and Prausnitz, Trans. Faraday Soc. 1966 62 1102.
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analogous to interfacial tension. For discussing the equilibrium between a
gas and a solid—gas interface a completely different approach is called for.

The name sorption was coined by McBain* to include as special cases
absorption and adsorption which should be restricted to proven cases of
solution and surface condensation respectively.

In the following discussion of sorption we shall assume that the sorbed
gas is a single substance, but no restriction will be placed on the nature of
the sorbent except that we assume absence of hysteresis. In other words
we shall consider the equilibrium between a single gas and a sorbent which
may be a piece of platinum gauze, a lump of impure charcoal, or some pow-
dered glass, or in fact almost anything.

The first question to be considered is how to measure sorption. This may
be done by a sorption balance. Essentially the sorbent is suspended on a
spring balance so that its weight, and thence its mass, can be compared in
vacuo and in equilibrium with a surrounding gas at a given temperature
and pressure. If no correction is applied for the buoyancy due to the surround-
ing gas, the apparent increase in mass recorded by the balance is equal to
that of the excess quantity of the sorbed substance due to sorption over and
above the quantity which would be contained in the same volume, at the
same temperature and pressure, in the absence of the sorbent. This mass
divided by the proper mass of the gas is equal to the excess amount of the
sorbed substance due to sorption over and above the amount of the gas
which would be contained in the same volume, at the same temperature and
pressure, in the absence of the sorbent. We denote this amount by #* and
we shall call »* the sorbed excess. This quantity is the simplest and most
convenient measure of sorption. At a first approach it might seem that a
simpler quantity would be the amount of sorbed substance contained by
the sorbent. Such a quantity would have to be calculated by adding to »*
the quantity oV °/M where g is the density of the gas, M is the proper mass
of the gas, and V*®is the volume of the sorbent. On reflection it becomes clear
that V* is a rather vague quantity, difficult if not impossible to measure
accurately especially if the sorbent is porous or a powder. This difficulty is
completely avoided by using #®, without any buoyancy correction as our
measure of sorption. We shall adopt this approach and shall consider how
n* is related to the temperature and pressure.

§3.68 Temperature dependence of sorption

We consider a vessel of volume V containing the sorbent and a fixed amount
* McBain, Phil. Mag. 1909 18 916.
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n of the sorbate at the temperature T"and pressure P. If V', denotes the proper
volume of gaseous sorbate, then according to the definition of #* in the pre-
vious section we have

V=(n-n*)V,. 3.68.1

We now combine Maxwell’s relation (1.47.4) with (1) and obtain
—(0S/0P)r=(0V/0T)p=(n—n*)0V,/0T)p—(0n*[OT)pV,,  3.68.2

and consequently
— (3S/0n")y = — (0S/0P) (OP/on")y

=(n—n")(0V,/OT)p(OP/0n*)y — (0n*[OT)p V(0P [ON")
=(n—n*)(0V,/0T)p(0P/On*)r +(OP[OT )pa Vip - 3.68.3
We now compare our system with another system consisting of a vessel of
the same volume V containing the same gas at the same temperature and
pressure but without any sorbent. We shall use dashed symbols for quantities

relating to this second system when they may differ from those relating to
the first system. We have then

n'=n—n® 3.68.4

Moreover since both systems are in equilibrium and the gas is in identical

conditions we have also
w=pn 3.68.5

If now we denote by AS,, the entropy increase in the first system per unit
decrease of n* brought about by decreasing the pressure, we have according
to (3)

AS . =(n—n")(0V,/oT)p(0P/0n*)r+(OP[OT )y Vyy - 3.68.6

If further we denote by A’S the entropy increase in the second system
corresponding to the same decrease in pressure, we have

A'S,,=n'(8V,,/0T)p(0P/On%);. 3.68.7
Subtracting (7) from (6) and using (4) we obtain
AS,—A'S,=(3P0T),.V,, 3.68.8
or
TAS,,— TA’'S,=T(3P/0T),V, 3.68.9

It follows immediately from (5) that
Ap=Ayu 3.68.10
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and so subtracting (10) from (9) we obtain the alternative formula
AH,~A'H,=T(OP[0T ) V- 3.68.11

The left side of either (9) or (11) may be called* the equilibrium proper
enthalpy of desorption. 1t is the heat that must be supplied per unit decrease
of n® resulting from decrease of pressure under isothermal equilibrium con-
ditions less the heat that must be supplied to the second system when the
pressure is isothermally decreased by the same amount. We emphasize
that every quantity occurring in (9) and (11) is experimentally determinable
without the use of any approximation or extraneous assumption. This
contrasts with some other formulae which contain quantities such as the
surface area of the sorbent, the spreading pressure, and the volume occupied
by a sorbed molecule. Such quantities play their natural part as parameters
in a model used for a kinetic or statistical mechanical theory of sorption,
but, not being accurately measurable, they have no part in a treatment by
classical thermodynamics.

In all normal applications the pressure will be sufficiently small to justify
neglect of all virial coefficients higher than the second. We then have in

accordance with (3.19.5)
Va=RT/P+B. 3.68.12
Substituting (12) into (9) and (11) we obtain
TAS,—TA'S,,=AH,—AH,=RT?*@In P[3T),.(1+PB/RT). 3.68.13

When the term in B is negligible so that the gas is effectively perfect, (13)
reduces to a form derivable by more elementary methods.

* The derivation of these formulae was presented to the Boston University Conference on
Nucleation 1951.



CHAPTER 4

MIXTURES

§4.01 Introduction

In this chapter we shall discuss homogeneous mixtures of two or more
substances which do not react chemically. Consideration of chemica!
reactions is postponed to chapter 6. The mixtures may be gaseous, liquid,
or solid. So far as possible each of the several component substances of a
mixture will be treated on the same basis. The opposite point of view is
taken in chapter 5 where one substance is regarded as the solvent and the
remaining substances as solutes.

As soon as we turn from single substances to mixtures we introduce the
possibility of new degrees of freedom associated with differences of composi-
tion. For example we can have two or more liquid phases of different com-
position in mutual equilibrium.

There are no differences of principle between the treatments of systems
of two components on the one hand and of systems of more than two com-
ponents on the other. Many of the formulae for the former are however
more compact than the corresponding formulae for the latter. For this
reason we shall in some sections confine ourselves mainly if not entirely,
to systems of two substances, i.e. binary systems.

§4.02 Composition of mixture

The most convenient quantities specifying the relative composition of a
mixture are the mole fractions of the several components. These were
defined in §1.29. We recall that in a mixture of ¢ components only c—1
of the mole fractions are independent owing to the identity

X +x,4. .. 4x.=1. 4.02.1

When we require independent variables it is convenient to use x,, X3, ... X¢
and regard x, as a dependent variable defined by

Xy=1l=X3—=X3—...—X. 4.02.2

170
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In the simple case of a binary mixture the subscripts may be dropped so
that we write x instead of x, and 1—x instead of x,.

§4.03 Partial and proper quantities

We recall the definitions in §1.26 of partial quantities X; and proper quanti-
ties X, in terms of an extensive property X, namely

‘X'l' =(6X/an3)-,~’ P, ny (j # i) 4.03. 1
Xp=X/Y n;. 4.03.2
i

We also recall formula (1.26.3)
X=Zn,‘X,'. 4.03.3
i

If we differentiate this we obtain

dX=z deni+z n,-dX,- 4.03.4
i i

while (1) may be rewritten as

dX=) X,dn, (const. T, P). 4.03.5

Subtracting (5) from (4) we obtain
Y n;dX;=0 (const. T, P) 4.03.6

or dividing by X; n;
Y x,dX;=0  (const. T, P). 4.03.7

In particular for a binary mixture
(1-x)(©X,/0x)+x(8X,/0x)=0  (const. T, P). 4.03.8
In the case of a binary mixture we can express X, and X, in terms of X, and
x. Formula (5) reduces to
dX=X,dn,+ X,dn,. 4.03.9
If we apply (9) to unit amount of varying composition, it becomes
dXp=(X,—X,)dx 4.03.10

or
(aXm/ax)T’p-:Xz—‘X]. 4.03.11
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If we apply (3) to unit arount it becomes

Xo=(1-%)X{+xX,. 4.03.12

Solving (11) and (12) for X, and X, we obtain
X=X pn—x(0X,/0X)r, p 4.03.13
Xo=Xn+(1—=x)(0Xn/0x)r,p. 4.03.14

Formulae (13) and (14) have a simple geometrical interpretation shown in
figure 4.1. The abscissa is x, increasing from zero at O representing the
pure component 1 to unity at O’ representing the pure component 2. Suppose
the curve APB to be a plot of the proper quantity X,, as ordinate and P
to be any point on it. Let the tangent QPR to this curve at P cut the O and O’
ordinates at Q and R respectively. Then from (13) and (14) we see that the
partial quantities X, and X, for the composition at P are represented by OQ
and O'R respectively. It is clear from this construction or otherwise that
for either pure component the partial quantity is equal to the proper quantity.

N
© X =X o

’

Fig. 4.1. Relation between partial quantities and proper quantity

An especially important example of the pair of formulae (13) and (14)
is obtained by setting X'=G. Taking account of (1.28.11) we obtain
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ﬂ1=G1=Gm—‘x(aGm/ax)T,P 4.03- 15
p3= Gy =Gy +(1 = x)(0G/0X)7. p. 4.03.16

§4.04 Relations between partial quantities

As already mentioned in §1.26 from every homogeneous relation between
extensive properties we obtain by differentiation with respect to n; a corre-
sponding relation between the partial quantities at a given composition.
We now give important examples of such relations taking into account
(1.28.11) that

w=G;. 4.04.1
We have with T, P as independent variables

H=U;+PV 4.04.2
=G =U,—TS;+ PV, 4.04.3
S;=—0G,/0T = —ou,/oT 4.04.4
H,=G,—TdG,/0T =p,— Tou,/oT 4.04.5
V,=0G,;/0P =0u,/0P 4.04.6
C;=T0S,/0T=0H,/oT. 4.04.7

Relations of precisely the same form hold between proper quantities.
From (5) and (3.15.2) we deduce

0ln A,/0T=—H,/RT? 4.04.8

§4.05 Partial quantities at high dilution
By rewriting (4.03.8) in the form
(0X,/0x)/(0X ;/0x)= —x/(1 —x) 4.05.1

we make the interesting observation that as x—0 either (0X,/0x)—0 or
(8X,/0x)—00. Both alternatives occur. We shall find that as x—0, the
quantities (0U,/0x), (0H,/0x), (0V,/0x), (0C,/0x) all tend towards zero,
while (8S,/0x) and (8G,/0x)=(0u,/0x) tend to infinity.

In the limit x—1 we of course meet the converse behaviour.

§4.06 Perfect gaseous mixture

In discussing gaseous mixtures, or in discussing single gases, it is expedient
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to begin by taking 7, V as independent variables and later to transform to

T, P as independent variables.
We begin by rewriting some of the most important formulae for an amount

n of a single perfect gas occupying a volume V at a temperature T. The
Helmbholtz function is
F=n{u®—~RT+RT In(nRT/P°V)} 4.06.1

where u® depends on T and on the standard pressure P° but not on 7 or V.
From (1) we derive by differentiation

= —n{du®/dT +R In(nRT/P°V)} 4.06.2
U=n{u®—-Tdu®/dT—RT} 4.06.3
P=nRT|V 4.06.4
H=n{u® —~Tdu®/dT} 4.06.5

G =n{u®+RT In(nRT/P°V)}=n{u® +RT n(P/P®)}.  4.06.6

Formula (6) may be regarded as defining u°.

We now define a perfect gaseous mixture by the property that at given
T, V the Helmholtz function & of the mixture is equal to the sum of the
Helmholtz functions of the unmixed gases each at the given T, V. We
accordingly have for a perfect gaseous mixture

&=Y n{u’—RT+RT In(n; RT/P°V)}. 4.06.7

The molecular interpretation of formula (7) is that for a mixture of perfect
gases in a container at given temperature and volume the molecules of
each gaseous species behave as if the other species were absent. From the
additivity of the Helmoltz function we deduce by differentiation the additivity
of other functions. In particular we have

S=-Y n{du’/dT +R In(n;RT/P°V)} 4.06.8
U= Y n{u’—Tdu’/dT~RT} 4.06.9
P= Y mRTjV 4.06.10
H= Y n{u’—Tdp’/dT} 4.06.11

G= Y n{u’+RT In(n;RT/P°V)}

i

= Y n{u’ +RT In(x,P|P®)}. 4.06.12
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We repeat that p is a function of T'and P® independent of ¥ and the n,’s.
Formula (10) is called Dalton’s law of partial pressures; a better name
would be the law of additivity of pressures.

§4.07 Slightly imperfect gaseous mixture

A single gas or a gaseous mixture may be regarded as perfect if the interac-
tions between molecules may be neglected. When these interactions between
molecules are not negligible we use a virial expansion in powers of n/V. We
recall the formulae for a single gas
A =n{u®—RT+RT In(nRT/P°V)}

+nRT{nB,|V +4n’B,y/V*+1inB,/V?} 4.07.1
where B,, B;, and B, are the second, third, and fourth virial coefficients
respectively. Higher terms may be added, but when three virial coefficients
are insufficient the virial expansion ceases to be useful.

From (1) we obtain by differentiation with respect to V

P=(nRT|V){1+nB,/V +n*B,/V*+n®B,/V?}. 4.07.2

Either formula (1) or formula (2) defines the virial coefficients B,, B;, B,.
For the sake of brevity and simplicity we shall omit the terms in B;, B,.
There is in principle no difficulty in including them if required. We accord-
ingly abbreviate (1) to

F=n{u® —~RT+RT In(nRT/P°V)}+n’B|V 4.07.3

where we have dropped the subscript 2 from B,.

It is known from statistical mechanics that B, takes account of interactions
between pairs of molecules, B, between triplets, B, between quadruplets.
This tells us how to generalize formula (1) to mixtures. In particular for a
binary mixture

F=n{uf —RT+RT In(n, RT/P°V)}
+n,{u$ —RT+RT In(n, RT/P°V)}
+{niB(11)+2n,ny B(13,+n3B5}RT/V. 4.07.4

Differentiating (4) with respect to ¥ we obtain
PV=(nl +n2)RT+ {nfB(“)+2n1 nzB(12)+ n;'B(“)}RT/V. 4.07.5
From (4) and (5) we obtain by addition for the Gibbs function

G=n{uf +RT In(n, RT/P°V)}
+n,{us + RT In(n, RT/P°V)}
+2{nfB(11)+2n1nzB(12)+n§B(22)}RT/V 4.07.6
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If we may neglect terms in the squares of By, B(12), B(22) as well as terms
in the third and higher virial coefficients, we call the mixture slightly imper-
fect. From (5) we have to this approximation

1n(PV/RT)=ln(n,+n2)+{nfB(m+2n1nzB(12,+n§B(22)}/(nl+n2)V.
4.07.7
Substituting from (7) into (6) we obtain

G=n,{u{ +RT In(P/P®)+RT In[n,/(n, +n,)]}
+n,{u3 +RT In(P/P®)+RT In[n,/(n, +n,)]}
+{n}B(11)+2n, nyB(13)+ 13 B2} Pl(ny+ny) 4.07.8

and consequently for the proper Gibbs function

Gn=x{u? +RT in(P/P°)+RT In x,}
+x,{u$ +RT In(P/P®)+RT In x,}
+{xfB(“)+2x1x23(12)+x§B(22)}P. 4-07-9

It is convenient to define a quantity J.,, by
B12=%(B(11)+B(22))+5(12). 4-07.10
We can now rewrite (9) as

Gn=x{u{ +RT In(PjP°)+RT In x, + By, P}
+x,{ug +RT In(P/P®)+RT In x, + B35, P}
+2X, X, 812y P. 4.07.11

Experimental data on By, or d(,,, are much scantier than data on B,
and B(,,,. When the species 1 and 2 conform to the principle of correspon-
ding states it is possible to estimate B(,,, from B, ,, and B, with useful
accuracy*. When this is not the case it is usual to neglect §y,,. This proce-
dure is due to Lewis and Randall'.

From (11) by use of (4.03.13) and (4.03.14) we deduce

RT In 2y =p, =G, =p® +RT In(P/P®)+RT In x, +(B,, +2x38.1,))P
4.07.12

RT InJ,=p,=G,=p5 +RT In(P/P®)+ RT In x,+(B,, +2x3 ,,)P.
4.07.13

By further differentiations we obtain
—S;=duf/dT + R In(P/P®)+R In x, +(d/dT)(B,, +2x36(,,))P  4.07.14

* Guggenheim and McGlashan, Proc. Roy. Soc. A 1951 206 448.
t Lewis and Randall, Thermodynamics and the Free Energy of Chemical Substances,
McGraw-Hill 1923 p. 226.
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H =p~Tdy, [dT +(1-TA/dT)(B, +2x35,,)P 4.07.15
Vi=RT|P+By,+2x382)- 4.07.16

There are analogous formulae for S,, H,, and V,.

§4.08 Fugacities of gases

The fugacity p, of each species i in a gas is defined by
pi/A;=const. (T const.) 4.08.1
pi/x;P-»1 as P-0 (T const.). 4.08.2

Using these definitions we obtain for a binary mixture from (4.07.12) and

(4.07.13)
p1=x, P exp{(B, +2x}6,,))P/RT} 4.08.3

p2=X, P exp{(B,,+2x28(,,)P/RT}. 4.08.4

The quantity x, P is called the partial pressure of i.
In a perfect gas these simplify to

p1=x1P 4.08.5
p2=x2P 4.08.6

so that the fugacity of each species is equal to its partial pressure.

§4.09 Liquid mixtures

We now turn to liquid mixtures and the equilibrium between such phases
and other phases, especially a gas phase. We begin by certain general
considerations applying to all such liquid mixtures. We shall next consider
a special class of such mixtures, called ideal, which exhibit an especially
simple behaviour. We shall then show how the behaviour of non-ideal
mixtures can conveniently be compared and correlated with that of ideal
mixtures. The procedure will be illustrated in greater detail for a class of
mixtures called simple.

§4.10 Liquid-vapour equilibrium

Let us now consider from a general point of view the equilibrium conditions
between a liquid mixture of ¢ independent species or components and a
vapour phase. Each phase by itself has evidently c+1 degrees of freedom,
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which we can take as given by the ¢+ 1 independent variables T, P, x,, x,,
... X.. Alternatively if we use the c+2 variables T, P, uy, us, . . . 4. these are
not independent, being connected by the Gibbs-Duhem relation

SudT—VyudP+x,dpy +x,dp, +. . . +x.dp,=0. 4.10.1

We now consider two phases, one liquid and the other vapour, in mutual
equilibrium. We shall continue to use x; to denote a mole fraction in the
liquid phase but shall henceforth denote a mole fraction in the vapour
phase by y,. The variables T, P, u,, 4, . - . i, are connected by two Gibbs-
Duhem relations, one for each phase. Thus, using the superscripts “ to
denote liquid and © to denote gas, we have

SLdT—VidP+x,du, +x,du, +. . . +x.du.=0 4.10.2
SSAT -V, dP+y,dp, +y,dp, +. . .+ y.du =0. 4.10.3
1t is hardly necessary to point out that we need not attach superscripts to

the variables T, P, u,, U, ... U, since at equilibrium each of these has the
same value in both phases.

From (2) and (3) we could, if we wished, eliminate any one of the quanti-
ties d7, dP, du,, du,, . . . du. thus obtaining a single relation between the
remaining ¢ + 1 quantities. Whether we do this or not, it is clear that only ¢ of
these quantities are independent. We conclude that a system of two phases
and ¢ component species in equilibrium has ¢ degrees of freedom in agree-
ment with Gibbs’ phase rule.

§4.11 Azeotropy

For a binary liquid-vapour system the relations (4.10.2) and (4.10.3)
reduce to

SLdT —VEidP+(1—x)dpu, +xdp, =0 4.11.1
SSdT—VEdP+(1~y)du, +ydu,=0 4.11.2

where as usual x, y denote mole fractions of the second species. If we sub-
tract (1) from (2) we obtain

(SS—SEYAT — (V.S — Vi )dP +(x—y)(dpu; —dpu,)=0. 4.11.3

We shall show that this leads to particularly simple and interesting results
when the compositions of the two phases are the same, that is to say

when
x=y. 4.11.4
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Such mixtures are called azeotropic, which means that their composition is
not changed by boiling.

Let us first consider variations of pressure and composition at constant
temperature. Then (3) becomes

(Ve — VE)dPjdx=(x— y)(du,/dx—du,/dx)  (const. T). 4.11.5
Hence for an azeotropic mixture, according to (4)
(VS-VE)dP/dx=0  (const. T). 4.11.6
and since Vs VL it follows that
dP/dx=0  (const. T). 4.11.7

This tells us that at a given temperature the total vapour pressure of a
binary liquid mixture is a maximum or a minimum at the composition of the
azeotropic mixture.

Similarly if we consider variations of temperature and composition at
constant pressure, then (3) becomes

—(Se—SEL)T/dx=(x— y)(du,/dx~du,/dx)  (const. P).  4.11.8
and consequently for an azeotropic mixture
(Se~SL)dT/dx=0  (const. P). 4.11.9
Since SS#SL, it follows that
dT/dx=0  (const. P). 4.11.10

This tells us that at a given pressure the boiling temperature of a binary
liquid mixture is a maximum or a minimum at the composition of the
azeotropic mixture.

These conclusions are almost obvious when expressed by diagrams.
For example figure 4.2 shows the boiling point T plotted against composi-
tions of the two phases. For instance the points L and G represent the liquid
and gas phases in equilibrium at one temperature; L', G’ is another such
pair and L", G”” another. The point M represents liquid and gas of the same
composition and in this example the equilibrium temperature or boiling
point is a minimum.

Let us now consider simultaneous variation of temperature and pressure
such that the mixture remains azeotropic. Returning to formula (3) and
substituting the condition for azeotropy (4), we have

(SS~SEMT —(Ve-VE)dP=0 4.11.11
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which we can rewrite as
dP/dT =(SS—Sk)/(VS—-VE)=A.S/AV 4.11.12

of the same form as Clapeyron’s relation (3.37.3).
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Fig. 4.2. Boiling point of mixtures of benzene and ethanol at one atmosphere

§4.12 Relative activities and fugacities in liquids

All the equilibrium properties of each species i are determined by its chemical
potential u; or by its absolute activity A, related to u; by the definition

ll‘=RT ln A',". 4.12.1

Up to the present we have mentioned absolute activities from time to time
and have given formulae for them with the object of familiarizing the reader
with them. We have however hitherto made little use of absolute activities.
Henceforth we shall make considerably increasing use of them, for in the
treatment of mixtures they are often more convenient than chemical poten-
tials.

In our consideration of liquid mixtures we shall be concerned particularly
with a comparison of the equilibrium properties of the mixture with those
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of the pure components. Consequently we shall be concerned not so much
with g, itself as with the difference p,—u where the superscript © denotes
the value for the pure liquid at the same temperature and pressure. From
(1) we have

ti—us =RT In(2,/20) 4.12.2

where the superscript © is used again with the same meaning. We shall be
particularly concerned with the ratios 1,/A). These ratios are called relative
activities and will be denoted by a;. This name and this symbol are due to
G. N. Lewis*. We have then

a;=/‘ti//‘L?. 4-12.3

We must mention that quantities other than the relative activities defined
here have sometimes also been called activities and denoted by the same
symbol g,. In order to avoid confusion we shall make no use or further
mention of such other quantities.

For the equilibrium of the species i between any two phases o and B
we have according to (3.15.6) the simple condition

A=if 4.12.4

and in particular for the equilibrium between a liquid phase L and a gas
phase G
A=28, 4.12.5

From (5) and (4.08.1) it follows that the ratio of the absolute activities of the
species i in any two liquid phases a, B is equal to the ratio of the fugacities
of the species in the gas phases in equilibrium with o, B respectively.

We now define the fugacity p, of a species i in a liquid phase as follows.
We begin by defining the fugacity p? of the pure liquid i at a given tempera-
ture as equal to the fugacity of its saturated vapour. We then define the
fugacity of i in liquid mixtures at given temperatures but variable pressure
and variable composition by

D;/A;=const. (const. T). 4.12.6

An important application of (6) is to the comparison between the absolute
activity A; of i in a liquid mixture and its absolute activity A{ in the pure
liquid at the same temperature and pressure. We then have

a;=A/A =pi/p}. 4.12.7

* Lewis, J. Amer. Chem. Soc. 1913 35 17.
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§4.13 Pressure dependence

We must now describe how p; is determined in a liquid mixture of given
composition at a given temperature and at a given pressure. At the given
temperature and composition we have to determine the total saturation
vapour pressure P, and the composition of the vapour. If the vapour may
be regarded as a perfect gas then the fugacity p; is equal to the partial
vapour pressure y,P,,,. If the vapour is not a perfect gas we have to apply
a correction for non-ideality by use of a formula such as (4.08.3). We then
obtain the value of the fugacity at the given pressure P by means of

Oln p,/oP=01n A,/0P=V;/RT 4.13.1
or in the integrated form
In p(P)—In pi(Py)=(P— P, )Vi/RT 4.13.2

where we have neglected compressibility.

Although at ordinary pressures the quantity on either side of (2) may be
negligible, nevertheless formula (2) is in principle important as showing
that p,(P) is precisely defined and preciszly determinable for any chosen
value of P, not merely for P=P,,,.

Formula (2) is also important in the discussion of osmotic equilibrium in
the following section.

§4.14 Osmotic equilibrium

Suppose we have two liquid mixtures o and P separated by a membrane
permeable to the species 1 but impermeable to all other species present in
either mixture. In this connection we shall follow the customary practice
of calling the permeant species 1 the solvent and the nonpermeant species
solutes. We assume that the two phases are at the same temperature, but
not necessarily at the same pressure. The condition that the two phases
should be in equilibrium with respect to the solvent species 1 is

A=A 4.14.1
or if we use (4.12.6)

(2

p1=pf. 4.14-2

For the relations to be satisfied it will generally be necessary for the two
phases to be at different pressures. There is then equilibrium with respect
to the solvent species 1, but not with respect to the solute species; nor is
there hydrostatic equilibrium between the two phases, the difference of
pressure being balanced by a force exerted by the membrane. A partial
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equilibrium of this kind is called osmotic equilibrium of the solvent species 1.
By using the relation (4.13.1)

0ln p,/oP=01n A,/0P=V,/RT 4.14.3

we can determine the pressure P*—PP® required to preserve osmotic equili-
brium.

We shall use the notation p, (P, x) to denote the value of the fugacity of
the solvent in a liquid phase of composition x at a pressure P. We do not
refer to the temperature as this is assumed constant throughout. The
condition (2) for osmotic equilibrium becomes in this notation

pl(Pa, xa)=p1(PB, xﬁ). 4-14.4
Dividing both sides of (4) by p,(P®, x*) and taking logarithms, we obtain
In{p,(P*, x)/p,(P*, x*)} =In{p,(P’, x*)/p, (PP, x)}. 4.14.5

If we integrate (3) from PP to P* and substitute the result on the left side of
(5) we find

1 [
27 VidP=In{p,(P?, xP)/p,(PP, x*)}. 4.14.6

PP
In order to evaluate the integral in (6) it is for most purposes sufficient to
ignore compressibility and treat V, as independent of P. In case greater
refinement should be desired, we can obtain all the accuracy that can ever
be required by assuming that ¥/, varies linearly with P. We then obtain

KViy(P*—PP)/RT =In{p,(PP, x*)jp,(P®, x*)} 4.14.7

where the symbol (V) denotes the value of V'] at a pressure equal to the
mean of P* and P®.

Formula (7) is the general relation determining the pressure difference
across the membrane at osmotic equilibrium. The case of greatest interest is
when the phase B consists of the pure solvent. The pressure difference
P*— PP is then called the osmotic pressure and is denoted by I1. We can in
this case replace the superscript ? by ° and drop the superscript *. We thus
have

KV, >[RT =In{p{(P)/p,(P)} 4.14.8
or if, as is often the case, we may ignore compressibility
IV, /RT =In{p3(P)/p,(P)}. 4.14.9

If moreover the pressure P on the pure solvent is roughly atmospheric,
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then regardlesss of how great IT may be we may regard p?/p, as essentially
independent of P. Formula (9) can then be simplified to

1V, /RT =In(p}/p,) 4.14.10

from which we see that, provided the pressure P on the pure solvent is low,
the osmotic pressure II does not depend significantly on P.

If instead of dividing both sides of (4) by p,(P®, x*), we divide both sides
by p,(P*, x*) and otherwise proceed in the same way, we obtain instead of (7)

CVEY(P*~PP)RT =In{p,(P*, x)[p,(P*, x*)} 4.14.11
and instead of (8)
IIVYYRT =In{p(P+I)/p,(P+ 1)} 4.14.12

It can be shown that the alternative formulae (8) and (12) are equivalent.
On the whole formula (8) is the more useful.

§4.15 Pressure on semi-permeable membrane

The osmotic pressure is by definition a pressure that must be applied to the
solution to bring it into a certain equilibrium condition. It is not a pressure
exerted by the solution or part of the solution at its normal low pressure.
It is analogous to the freezing point of a solution, which has no relation to
the actual temperature of the solution, but is the temperature to which it
must be brought to reach a certain equilibrium state. The osmotic pressure
is nevertheless sometimes defined as the pressure exerted on a membrane,
permeable only to the solvent, separating the solution from pure solvent.
This definition, unless carefully qualified, is incorrect. Another definition
sometimes given is the pressure exerted by the solute molecules on a mem-
brane permeable only to the solvent. This definition is still more incorrect
than the last. The truth as regards the pressure on the membrane is as
follows. When the solution is at the same pressure e.g. atmospheric, as the
solvent, there will be a resultant flow of solvent through the membrane
from the solvent to the solution, but the resultant pressure on the membrane
itself is negligibly small, and may be in either direction. If, however, the
solution is subjected to a certain high external pressure, the flow of solvent
through the membrane is equal in either direction; there is then osmotic
equilibrium and the excess pressure on the solution over the pressure of the
solvent is by definition the osmotic pressure. Under conditions of osmotic
equilibrium, but only under these conditions, is the external pressure differ-
ence required to prevent the membrane from moving equal to the osmotic
pressure.
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§4.16 Duhem—Margules relation

We recall the Gibbs-Duhem relation

Z nidﬂi=0

or
Y ndlni=0
i

From (4.12.6) and (2) we deduce
Y ndln p,=0

or dividing by X;n;
Y x;dIn p,=0

(const. T, P)

(const. T, P).

(const. T, P)

(const. T, P).

185

4.16.1

4.16.2

4.16.3

4.16.4

This important relation is known as the Duhem-Margules relation*.

In the simple case of a binary mixture (4) reduces to

(1-x)0In p,/0x+x01n p,/ox=0

(const. T, P)

4.16.5
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Fig. 4.3. Tllustration of Duhem-Margules relation

* Margules, Sitz.ber. Akad. Wiss. Wien 1895 104 1258—1260.
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where as usual x denotes the mole fraction of species 2. It follows from this
relation that if p, and p, are plotted against x, the shape of either curve
completely determines the shape of the other. An example of this inter-
relation* between the pair of curves is shown in figure 4.3 and table 4.1,
where the subscript ; denotes water and , denotes ethanol. In this illustration
no correction has been applied for gas imperfection. In other words p, has
been taken as equal to (1 —y)P,,, and p, as equal to yP,,,.

TABLE 4.1
Verification of Duhem-Margules relation for mixtures of water and ethanol at 25 °C

i (1—y)Pg,, py~y P, —(1—x)0lnp,/Ox
mmHg mmHg =x 0 ln p,/Ox
0 23.75 0.0 1.00
0.1 21.7 17.8 0.76
0.2 20.4 26.8 0.41
0.3 19.4 31.2 0.37
0.4 18.35 34.2 0.355
0.5 17.3 36.9 0.41
0.6 15.8 40.1 0.53
0.7 13.3 43.9 0.655
0.8 10.0 48.3 0.77
0.9 5.5 53.3 0.915
1.0 0.0 59.0 1.00

§4.17 Temperature coefficients

Formula (4.04.5) is equivalent to

o(uw/T)/0T = —H,/T? 4.17.1
or
olnp,/oT=—H/RT? 4.17.2

Consequently from (4.12.7)
9In a;/0T =0 In(p,/pd)/0T = —(H,— H)/RT?. 4.17.3

§4.18 Ideal mixtures

In order to obtain more detailed information concerning the equilibrium
properties of liquid mixtures it is necessary to know or assume something

* Adam and Guggenheim, Proc. Roy. Soc. A 1933 139 231,
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about the dependence of the chemical potentials y, or the absolute activities
J; on the composition of the mixture. Thermodynamic considerations alone
cannot predict the form of this dependence, but only impose certain restric-
tions such as the Gibbs-Duhem relation.

We shall begin by considering liquid mixtures having the property that
at constant temperature and pressure the dependence of the Gibbs function
G, and consequently also of functions derived from G, on the composition is
of the same form as for a perfect gaseous mixture. This means that the value
of G in a mixture containing amount »; of the species i exceeds the value of G
for the unmixed species at the same temperature and pressure by the negative
amount

AG=RT Y n,In{n/Y n}. 4.18.1
i k

Such mixtures are called ideal mixtures. We shall devote considerable atten-
tion to such mixtures for several reasons.

In the first place the behaviour of ideal mixtures is the simplest conceivable
either from a mathematical or from a physical aspect.

In the second place statistical theory predicts that mixtures of very similar
species, in particular isotopes, will be ideal.

In the third place it is found experimentally that almost ideal mixtures
exist, for example benzene+ bromobenzene.

In the fourth place although real mixtures, other than isotopic mixtures,
are not ideal, in many cases the resemblances between a real mixture and an
ideal mixture are more striking than the differences.

§4.19 Thermodynamic functions of ideal mixtures

From formula (4.18.1) we can immediately derive formulae for all the
thermodynamic functions of an ideal mixture. In particular we have, using
the superscript © to refer to the pure liquids at the same pressure,

#;=RT in ,;=03G/dn,=pl +RT In{n,/y n}=p} +RT Inx;  4.19.1
k

a=Ali =x, 4.19.2
Gm =2 Xipi=2 X;pf +RT ¥ x; In x; 4.19.3
Sm=—. x,{0u/0T}—R Y x;In x; 4.19.4

Hn=Y x{u’—T(Ou0T)} = ¥, x,H} 4.19.5
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Va=2 x;{oup/oP} =Y % |2 4.19.6
S;=—0u’/dT—R In x, 4.19.7
Hiy=p? —T{ou)/oT} =H; 4.19.8
V,=0uljoP=Vv". 4.19.9

Furthermore if we use the symbol A,, to denote the increase in a function
when unit amount of mixture is formed from the pure components at
constant temperature and pressure we have

AnG=RT Y x;Inx; 4.19.10

AnS=-RY x;lnx; 4.19.11
i

A H=0 4.19.12

A,V=0. 4.19.13

The relations (10), (11), (12), (13) have precisely the same form as for the
formation of a perfect gaseous mixture from the pure component gases at
constant temperature and pressure.

It must be emphasized that this similarity between ideal liquid mixtures
and perfect gaseous mixtures as regards dependence of the thermodynamic
properties on the composition holds only when the other independent
variables are T and P. There are no correspondingly simple relations in terms
of the variables T and ¥V, which are moreover an inconvenient set of indepen-
dent variables for any phase other than a gas.

There is, of course, no similarity between liquid and gaseous mixtures as
regards dependence of properties on the pressure. For example, in a perfect
gaseous mixture

Ou,/oP=V,=RT/P 4.19.14
while in a liquid ideal mixture
Ow/0P=0ul[0P=V"=V°(1+KkP® —KP) 4.19.15

where 7> denotes the value of ¥/° when P=P® which varies only slightly
with P,

§4.20 Fugacities in ideal mixtures

From formulae (4.08.1) and (4.19.2) we deduce immediately for each species
in an ideal mixture
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pi=x;p;  (const. T, P). 4.20.1
Since at ordinary pressures the equilibrium properties of a liquid are in-
sensitive to the pressure, we may often with negligible error replace (1) by
pi=x;p;  (const. T, P=P,) 4.20.2

where P,,, denotes the total pressure of the saturated vapour.

If moreover we may neglect deviations of the gas from ideality, we may
replace each fugacity p; by the partial pressure y,P so that (2) becomes

YiPa=x,P% ; (const. T, P=P,,) 4.20.3
where PJ, ; denotes the saturated vapour pressure of the pure liquid i.

Formula (3) is called Raoult’s law.
For a binary mixture (1) becomes

pi=(1-x)p?  p,=xp3  (const. T, P) 4.20.4
and formula (3) becomes
(1=y)Pu=(1—x)P%, ,  yPu=xP3 , (const. T; P=P,). 4.20.5
Thus if the fugacities, or less exactly the partial vapour pressures, of the
two components of an ideal binary mixture are plotted against the mole
fraction of one of them two straight lines are obtained. The experimental

data* for the mixture ethylene bromide and propylene bromide at the
temperature 85 °C are shown in figure 4.4 and we see that this mixture is

ZOOJ%I]IIIIIiI
]

15O —

Ethylene bromide
100 —

p/mm Hg

o
O O1 02 03 04 O5 06 O7 08 09 IO
Mole fraction of propylene bromide
Fig. 4.4. Partial and total vapour pressures of mixtures of ethylene bromide and propylene
bromide at 85 °C

* Von Zawidzki, Z. Phys. Chem. 1900 35 129.
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nearly ideal. In figure 4.5 we see a similar plot* for the mixture benzene and
bromobenzene at 80 °C which is also nearly ideal in spite of the considerable
difference between the vapour pressures of the two pure components.

80O T T T T T T T 1
700 +— —
600 — —

SO0 — —
Jotal

Benzene
300 — —

p/mmHg
F-3
0o
0o
1
f

200 — —

100 —
Bromobenzene

0 e et 1 ||
O Ol 02 O3 04 05 06 O7 08 09 IO

mole fraction of bromobenzene

Fig. 4.5. Partial and total vapour pressures of mixtures of benzene and bromobenzene
at 80 °C

§4.21 Osmotic pressure of ideal solution

To obtain the osmotic pressure of an ideal mixture or ideal solution, regard-
ing the component 1 to which the membrane is permeable as solvent, we
have merely to substitute (4.20.4) into (4.14.8). We thus obtain

KV ))/|RT=~1n x, 421.1

wherein we recall that (¥, denotes the value of ¥, averaged between the
pressures of the two phases in osmotic equilibrium. When we neglect com-
pressibility (1) reduces to

V,/RT=—Inx,. 421.2

§4.22 Non-ideal mixtures

Few, if any, real mixtures are ideal, but it is convenient to correlate the
thermodynamic properties of each real mixture with those of an ideal

* McGlashan and Wingrove, Trans. Faraday Soc. 1956 52 470.
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mixture. This is achieved most conveniently by the use of excess functions.
For the sake of brevity we shall confine ourselves almost entirely to binary

mixtures.

$4.23  Functions of mixing and excess functions

Consider the process of mixing an amount 1 —x of the liquid species 1 with
an amount x of the liquid species 2, at constant temperature and pressure,
so as to form unit amount of a liquid mixture. The increase of G in this
process is called the proper Gibbs function of mixing and is denoted by A, G.
If the mixture were ideal we should have according to (4.19.3)

AnG'=RT{(1-x) In(1—x)+x In x} 4.23.1

where the superscript I denotes ideal. For a real mixture we denote the excess
A,,G over its ideal value A, G' by GE and call this the excess proper Gibbs
function. We have then

GEJRT=(A,G—A,G)RT
=(1—x) In{4,/A3(1 —x)} +x In{A,/AI x}
=(1-x)In{a,/(1 —x)} +x In{a,/x}
=(1—-x) In{p,/p3(1—x)} +x In{p,/p3 x}. 4.23.2

Since there has been confusion concerning the precise meaning of (4.23.2)
and related formulae, we emphasize that all the quantities 1, A,, A7, A3,
a,, a, p;, P2, PN, pJ relate to the same pressure P as well as the same
temperature. As explained in §4.13 we measure p,, p, at the total saturation
pressure P, of the mixture and then calculate the values of p,, p, at the
chosen pressure P by means of formula (4.13.2). The chosen pressure P
is usually, but not necessarily, equal to the standard pressure P° =1 atm.

Other excess functions are defined similarly. It is clear that the several
excess functions are interrelated in the same way as the extensive functions
from which they are derived. In particular we have

SE= —3GE/oT 4.23.3
HE =GE —-TOoGE/oT 4.23.4
VE=0GE/oP 4.23.5
UE =GE — TOGE /0T — POGE/OP 4.23.6

CE = —-Ta*GEjoT>. 4.23.7
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Using (4.03.15) and (4.03.16) we also have
RT In{a,/(1—x)} =pF=GE—x0GL/ox 4.23.8
RT In(a,/x)= u5=GE +(1—x)OGE/Ox. 4.23.9
Differentiating (2) with respect to x we obtain
(RT)™! 8GE[ox=(1—x)d In p,/dx+x3 In p,/dx +In{p{ p,(1—x)/p3 p, x}.

4.23.10
By the Duhem-Margules relation we have

(1-x)01n p,/0x+x01In p,/0x=0. 4.23.11
Subtracting (11) from (10) we obtain
(RT)™'0GE/0x =In(p?/p3) +In{(1 —x)p,/xp,}. 4.23.12

Integrating (12) from x=0 to x and observing that G%, vanishes when x =0,
we obtain

(RT)™'GE(x)=x In(p3/p3) + J In o’ dx 4.23.13
(1]
where o is defined by
o' =(1-x)p,/xp; . 4.23.14

Setting x=1in (13) and remembering that G, vanishes when x =1 we obtain
1

f In o’dx =In(p3/p?). 4.23.15
(1]

If then In o’ is plotted against x, the two domains separated by the straight
line parallel to the x-axis and distant In(p3/p?) from the x-axis have equal
areas.

§4.24 Volatility ratio

The ratio (1 - x)y/x(1 —y), where y denotes the mole fraction of component 2
in the saturated vapour, is called the volatility ratio or relative volatility
and is denoted by «. For the purpose of a rough check on the reliability of
dubious measurements it is often sufficient to use the approximation of a
perfect gas. To this approximation we have

p1/p2=(1-y)y 4.24.1
and (4.23.14) becomes

o' =(1-x)y/x(1-y)=a. 4.24.2
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Consequently (4.23.15) becomes
1
f In adx~In(P3 /P, ) 4.24.3
(1]

where P{ ., denotes the saturated vapour pressure of pure 1 and P,
denotes the saturated vapour pressure of pure 2. Formula (3) furnishes a
rough check on the consistency of measurements of a as a function of x.
We can illustrate this by using the experimental data on mixtures of water
and ethanol at 25 °C given in table 4.2.

TABLE 4.2
Volatility ratio of mixtures of water and ethanol at 25 °C

x y o Ina
0.0252 0.1790 8.421 2.131
0.0523 0.3163 8.387 2.127
0.0916 0.4334 7.582 2.026
0.1343 0.5127 6.782 1.914
0.1670 0.5448 5.969 1.787
0.2022 0.5684 5.197 1.648
0.2848 0.6104 3.935 1.370
0.3368 0.6287 3.334 1.204
0.4902 0.6791 2.201 0.789
0.5820 0.7096 1.755 0.562
0.7811 0.8161 1.244 0.218

In figure 4.6 In « is plotted against x and the straight line is at a distance
In(PF (o/P? o) from the x-axis. The two domains separated by this straight

b
20 — —
In e B ]
10 — —
ool L 117
o 02 04 06 08 L]

X
Fig. 4.6. Volatility ratio of mixtures of water and ethanol at 25 °C



194 MIXTURES

line have equal areas in accordance with formula (3). This procedure for
roughly checking experimental consistency was recommended independently
and almost simultaneously by Redlich and Kister* and by Herington®,
This kind of plot had previously been recommended by Scatchard and

Raymond’.

§4.25 Internal stability with respect to composition

We turn now to a discussion of internal stability with respect to composition.
We can conveniently study this problem for a binary system by reference to
a plot of the proper Gibbs function G,, against mole fraction x at given T, P.
Examples of such plots are shown in figure 4.7.

7, Pconstant along each curve

—_—X

Fig. 4.7. Stable and metastable isotherms

If we now imagine a phase of composition x to split into two, one of
slightly greater and the other of slightly smaller x, the new value of G,
is then given by a point on the straight line joining the two points represen-
ting the two new phases. If this point lies above the one representing the
* Redlich and Kister, Ind. Eng. Chem. 1948 40 345 (paper received 25 November 1946)

t MHerington, Nature 1947 160 610 (letter dated 11 July 1947).
1 Scatchard and Raymond, J. Amer. Chem. Soc. 1938 60 1281.
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original phase, the system will revert to its original state which is stable.

In the contrary case the original phase is unstable. It is then clear from the

diagram that while the upper curve represents phases all stable, the phases

represented by the dotted portion of the lower curve between A and B are

metastable with respect to a mixture of phases represented by A and B.
Since according to (4.03.11)

3G, [0x=G,— Gy =p,— i, 4.25.1

we see that the slope of the curve at any point is equal to u, —u, . Since the
two phases A and B are in mutual equilibrium they have equal values of
i1 B2 and consequently of u, —u, in agreement with the fact that the straight
line AB touches the curve at A and B.

§4.26 Critical mixing

It can happen that at some temperatures the behaviour corresponds to a
curve such as the upper one in figure 4.7 while at other temperatures,
lower o1 higher, the behaviour corresponds to a curve such as the lower
one. There will then be some temperature at which the change in type of
behaviour takes place. This state of affairs is called critical mixing. At temper-
atures on one side of the temperature of critical mixing the two liquids are
miscible in all proportions; at temperatures on the other side the miscibility
is limited, only phases to the left of A or to the right of B being stable.

We shall now determine the conditions of critical mixing. The lower curve
in figure 4.7 is concave upwards in the stable regions and in the dotted
metastable regions. In these parts of the curve

0%G,,/0x*>0. 4.26.1

If we imagine the two dotted curves joined into a single curve then in the
middle there must be a part of the curve convex upwards corresponding to
completely unstable phases. Hence between A and B there are two points of
inflexion where

0%G, jox*=0. 4.26.2

At the temperature of critical mixing these two points merge into a single
point at which as well as (2)
0°G,, jox*=0. 4.26.3

Formulae (2) and (3) together express the conditions of critical mixing.
It is convenient to express these conditions of critical mixing (2) and (3)
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in terms of the excess proper Gibbs function GE. According to the definition
of GE we have
Gn=GE+(1—x)ud+xu3+RT(1—x) In(1—x)+RTxInx. 4.26.4

By successive differentiation with respect to x we obtain

0G,,/0x =0GE/ox — pd + p3 + RT In{x/(1—x)} 4.26.5
0%G,,/0x* =0%GE[dx? + RT/x(1 —x) 4.26.6
03G,/0x> =0%GE[ox® + RT(2x — 1)/x*(1 —x)*. 4.26.7

Substituting (6) into (2) and (7) into (3) we obtain the conditions of critical
mixing in the form

92GEfox?= —RT/x(1—x) 4.26.8
9°GEjox® = —RT(2x—1)/x*(1—x)*. 4.26.9

The use of these formulae will be illustrated in §4.30.

§4.27 Excess functions expressed as polynomials

It is convenient to express the excess proper Gibbs function GE of a binary
mixture as a polynomial in x. We might write such a polynomial as a
succession of integral powers of x but such an expression would obscure
any symmetry between the two component species. Bearing in mind that
GL, must vanish identically both when x;=1-x=0 and when x,=x=0,
we find it most convenient to write the polynomial in the form*

GE=x,x,{Ao+A,(x, — x2) + A5(x, — x2)*}
=x(1—x){Ado+ A,(1—2x)+ A,(1—2x)}. 4.27.1
Higher powers of x; —x, can be included if required. The coefficients 4o,

Ay, A, are by definition independent of x but will usually depend on T
and on P.

§4.28 Symmetrical mixtures

We shall begin by considering those mixtures for which G%,, and consequent-
ly G, also, is symmetrical with respect to x, and x,. Such mixtures are of
interest because they correspond to the model of molecular species of the

* Guggenheim, Trans. Faraday Soc. 1937 33 151 (formula 4.1); Redlich and Kister,
Ind. Eng. Chem. 1948 40 345 (formula 8); Scatchard, Chem. Rev. 1949 44 9.
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same size and shape. Moreover mixtures are known which conform within
the experimental accuracy with formulae symmetrical in x; and x,. We call
such mixtures symmetrical mixtures.

For a symmetrical mixture 4,=0 and formula (4.27.1) reduces to

Gr=x(1—x){Ao+A5(1-2x)*}

=(Ao+ A)x(1 —x)—44, x*(1—x)%. 4.28.1

From (1) we derive for other excess functions
—SE = x(1—x)[04,/0T +(34,/3T)(1—2x)*] 4.28.2
HE=x(1—x)[Ao— T(0A4o/0T)+ {A,— T(34,/0T)}(1 —2x)*] 4.28.3
VE=x(1-x)[04,/0P +(34,/0P)(1—2x)*] 4.28.4
pE=RT In(a,/x,)=x3{Ao+ Az(x;—x,)(x5 — 5%,)} 4.28.5
pE=RT In(a,/x,)=x2{Ag+ A,(x, —x,)(x; — 5%,)}. 4.28.6

In (5) or (6) the term in A, vanishes when x=% or  as well as when x=4.
When the deviation of the vapour from a perfect gas is neglected, we obtain
for the volatility ratio o using (4.23.12) and (4.24.2)

RT (P}, 0/ PY o)+ RT In o= —(x; —x,){Ao+(1 8%, X;)4,}. 4.28.7

We observe that the term in A, vanishes when x, x,=} as well as when

x=1%

§4.29 Simple mixtures

We shall now consider those symmetrical mixtures for which the terms in
A, and higher terms are negligible. Writing w in place of 4, we have

Gi=x(1-x)w  w=w(T, P) 4.29.1

where w or A, is independent of x but will in general depend on T and P.
We call mixtures having properties defined by (1) simple mixtures. Such
mixtures are important for several reasons.

In the first place the behaviour of these mixtures is the simplest conceivable
after ideal mixtures either from a mathematical or from a physical aspect.

In the second place some binary mixtures show a behaviour which can be
represented either accurately or approximately by the formulae of simple
mixtures.

In the third place statistical theory predicts that a mixture of two kinds of
non-polar molecules of similar simple shape and similar size should obey
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certain laws to which the formulae of simple mixtures are a useful approxi-
mation.

The formulae of simple mixtures, as here defined, were used by Porter*
to express empirically partial vapour pressure measurements on mixtures
of ethyl ether and acetone at 30°C and a few measurements at 20 °C. The
best value of w at 20 °C was found to be slightly greater than that at 30°C,
Later on Heitler' related these formulae to the model of liquids now usually
called the ‘quasi-crystalline’ model and these formulae have been applied
to experimental measurements on various mixtures especially by Hildebrand®.
It was assumed by Heitler and subsequently generally accepted that the value
of w should be independent of temperature although this by no means follows
from the quasi-crystalline model used in the derivation of the formulae.

From (1) we derive

—SE=x(1—x)ow/oT 4.29.2
HE=x(1—x)(w—T0w/oT) 4.29.3
Ve =x(1—x)ow/oP 4.29.4
ui=RT In{a,/(1—x)} =wx? 4.29.5
p5=RT In{a,/x}=w(1—x)% 4.29.6

We shall now compare the formulae of simple mixtures with the experi-
mental data on mixtures of carbon tetrachloride and cyclohexane. For these
mixtures G= has been determined by vapour pressure measurements at 30, 40,
50, 60, and 70 °C. There are also measurements of the enthalpy of mixing
A H at 10, 25, 40, and 55 °C. The experimental values® of GE are shown
plotted against x(1 —x) in figure 4.8. According to formula (1) the slopes
of the straight lines are the values of w at each temperature. The experimental
values!! of HE=A_H are shown similarly plotted in figure 4.9. According to
formula (3) the slopes of the straight lines are the values of w— T(0w/0T)
at each temperature. The fact that the experimental points for x<4 shown
to the left and those for x>4 shown to the right lie on the pair of
straight lines confirms that the laws of simple mixtures are valid within
the experimental accuracy. The thermodynamic consistency of the two sets
of data requires that both should be fitted by the same values of w and

* Porter, Trans. Faraday Soc. 1920 16 336.

t Heitler, Ann. Phys., Lpz. 1926 80 629,

! Hildebrand and Scott, Solubility of Nonelectrolytes, Reinhold 1950,

§ Scatchard, Wood and Mochel, J. Amer. Chem. Soc. 1939 61 3206; Brown and Ewald,
Australian J. Sci. Res. A 1950 3 306.

I Adcock and McGlashan, Proc. Roy. Soc. A 1954 226 266.
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Fig. 4.8. Excess Gibbs function in mixtures of carbon tetrachloride and cyclohexane
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Fig. 4.9, Enthalpy of mixing in mixtures of carbon tetrachloride and cyclohexane
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Ow/OT. The straight lines in both figure 4.8 and figure 4.9 in fact correspond
to the single relation*

w/J mole™*=1176+1.96T In T —14.18T 4.29.7
so that
(w—Tow/T)/J mole ' =1176—1.96T. 4.29.8

§4.30 Critical mixing in simple mixtures

In figure 4.10 the quantities a, =p, [p? and a, =p,/pJ are plotted against x for
simple mixtures with w/ RT=1and w/RT= —2. When w is positive, the curves
lie above the straight lines representing the behaviour of an ideal mixture;
this situation is called a positive deviation from ideality. On the other hand
when w is negative, both curves lie below the straight line of the ideal mixture
and this situation is described as a negative deviation from ideality.

1o Yol
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w/RT=1  eeeeo w/ﬁT: -2 w/ﬁ7'=2

Fig. 4.10. Relative activities of simple Fig. 4.11. Relative activities of simple
mixtures: (complete mixing) mixture: (temperature of critical mixing)

Figure 4.11 gives similar plots for w/RT=2. We shall now show that this
determines the temperature of critical mixing. We begin by recalling the
general conditions for critical mixing (4.26.8) and (4.26.9)

02GEjax?* = —RT/x(1—x) 4.30.1
8°Go/ox®= —RT(2x —1)/x*(1—x)% 4.30.2

* Adcock and McGlashan, Proc. Roy. Soc. A 1954 226 266.
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We also recall formula (4.29.1) which defines simple mixtures

Gi=x(1-x)w  w=w(T, P). 4.30.3
By successive differentiation of (3) with respect to x we obtain
dGL/ox=(1—-2x)w 4.30.4
9%GEjox?= —2w 4.30.5
9°GEjox® =0. 4.30.6

By substituting (5) into (1) and (6) into (2) we obtain as the conditions for
critical mixing in a simple mixture

—2w=—RT/x(1—x) 4.30.7
0=RT(2x—1)jx*(1—x)%. 4.30.8
From (8) we deduce x =14, which is incidentally obvious from considerations

of symmetry, and substituting this value of x into (7) we obtain for the
temperature 7, of critical mixing

2RT,=w 4.30.9

in agreement with figure 4.11.

When w/RT>2 there is incomplete mixing. A typical example, namely
w/RT=3, is shown in figure 4.12. If x’, x” denote the compositions of the
two phases in mutual equilibrium at a given temperature below that of
critical mixing, then x’, x” are determined by the pair of simultaneous
equations

pi(x")=pi(x") 4.30.10
pa(x")=pa(x"). 4.30.11

Dividing (10) by p? and dividing (11) by p? we obtain the equivalent pair of
simultaneous equations
a,(x)=a,(x") 4.30.12
az(xl)=a2(x”). 4.30. 13
The conditions (12) and (13) hold for the two-phase equilibrium of any
binary mixture. In the particular case of simple mixtures there is complete

symmetry between a, as a function of x and a, as a function of 1—x. It
follows from this symmetry that

x' +x"'=1 4.30.14
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and consequently (12) and (13) lead to
a,(x)=a,(x")=a,(1—x"")=a,(x"). 4.30.15

Hence x’, x'’ are determined by the intersections of the two curves. These
are the points L, M in figure 4.12. The curves between L and M represent
solutions either metastable near L, M or completely unstable towards the
middle of the diagram.

————

o2

ol Lt

o . 02 04 O6 08 -0

w/RT=3 stable  ---- unstable

Fig. 4.12. Relative activities of simple mixture: (incomplete mixing)

When we substitute from (4.29.5) and (4.29.6) into (15) we obtain as the
equation for either x’ or x”
(1—x)/x=exp{(1—2x)w/RT}. 4.30.16

If we use the abbreviation s=1—2x we can rewrite (16) as an equation for s
in the form
s=tanh(sw/2RT) 4.30.17
which can be solved numerically by inspection of tables of the tanh function.
Incidentally we notice from (17) that s—0 as w/2RT—1, that is to say at
critical mixing.
Pairs of liquids are known, for example water and nicotine, which are
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completely miscible above a certain critical temperature and below another
critical temperature, but are incompletely miscible in the intermediate
temperature range. It is interesting to note that even simple mixtures can
behave in this way when w is a quadratic function of the temperature provi-
ded the three coefficients in the quadratic expression have suitable signs and
magnitudes. To be precise if w has the quadratic form*

w/R=2T +{t* —(T - Tp)*}/© 4,30.18

where @, T,, and ¢ are positive constants and t<Tj, then it is clear that
w/R=2T when T=T,—t or T=T,+1¢. It can also be verified that w/R>2T
when To—t<T<Ty+t and that w/R<2T when T>To+t or T<T,—t.
Consequently the temperature range of incomplete miscibility extends from
To—t to To+t.

Incidentally the converse behaviour occurs, that is complete miscibility
only between the two critical temperatures, if © is negative.

§4.31 Critical mixing in symmetrical mixtures

We shall now consider briefly the condition for critical mixing in a symmetri-
cal mixture which is not a simple mixture. If we assume

GE=x(1—x){Ag+A,(1—-2x)* + A,(1—2x)*} 4.31.1

then it is obvious from symmetry that at the critical point x=4%. For this
value of x

azGE‘/ax2= _Z(AO—AZ)' 4.31.2
Consequently by (4.26.8)
—2(Ay—A,)= —4RT 431.3
or
(Ao—A,)/RT=2. 4.31.4

It is interesting to note that this condition is independent of 4,, and in-
cidentally also of coefficients of higher powers of (1—2x)2.

Y4.32  Example of unsymmetrical mixture

By way of contrast with symmetrical mixtures we shall now briefly illustrate
the opposite type of behaviour by a particular hypothetical example.
We return to formula (4.27.1). Instead of setting 4; =0 and so obtaining

* Guggenheim, Faraday Soc. Discussion No. 15 1953 271.
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the formulae of symmetrical mixtures, we now set 4o+ A4;=0 and 4,=0.
We then obtain

GE=Ax*(1—x) 4.32.1
where we have written A instead of 24,.
ro I N
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Fig. 4.13. Example of unsymmetrical excess functions
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Fig. 4.14. Example of relative activities in a mixture having unsymmetrical excess
functions
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From (1) we obtain, using (4.23.8) and (4.23.9)

RT In{a,/(1—x)}=Ax*(2x—1) 4.32.2
RT In{a,/x}  =24x(1—x)% 4.32.3

A remarkable feature* of this pair of formulae is that, whereas In{a,/x}
has for all values of x the same sign as A, the sign of In{a;/(1—x)} changes
at x=%. This behaviour with A=4RT is illustrated in figure 4.14.

§4.33 Athermal mixtures of small and large molecules

According to (4.19.12) when two or more species form an ideal mixture,
then they mix isothermally without increase or decrease of the enthalpy.
Zero enthalpy of mixing is thus a necessary condition for two or more species
to form an ideal mixture, but it is not a sufficient condition. Mixtures,
not necessarily ideal, having zero enthalpy of mixing at all compositions are
called athermal mixtures. Statistical mechanics indicates as a further necessary
condition for a mixture to be ideal that the several kinds of molecules should
not differ greatly in size. It is accordingly of interest to consider the properties
of mixtures of two kinds of molecules sufficiently similar to mix in all
proportions without any enthalpy of mixing, but differing widely in size.
This is a complicated problem in statistical mechanics which has not been
solved completely. It is probable that the shapes of the molecules matter
as well as their sizes. However, when we ignore such complications, there are
reasons for believing that the behaviour due to wide differences in size be-
tween the two species of molecule can be at least semi-quantitatively describ-
ed by means of relatively simple formulae in which the only new parameter
is the ratio of the molecular volumes.

If ¢ denotes the ratio of the volume of a molecule of type 2 to that of a
molecule of type 1, then subject to various restrictions and approximations
which we shall not here go into, we may write for the proper Gibbs function
of mixing'

An G=RT(1—x)In{(1-x)/(1 —x+0x)} +RTx In{gx/(1 —x+0x)}. 4.33.1

Formula (1) is more easily memorized if written in a slightly different form
involving the volume fraction ¢ of the second species defined by

¢ = ox/(1—x+0x). 4.33.2

* McGlashan, J. Chem. Ed. 1963 40 516.
t Guggenheim, Mixtures, Clarendon Press 1952.
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Using (2) we can rewrite (1) in the shorter form
A,G=RT(1—x)In(1—¢)+RTx In ¢. 4.33.3

This simple formula is due to Flory.*
From (3) we deduce using (4.03.15) and (4.03.16)

In a, =In(py/py)=In(A;/47) =In{(1~x)/(1—x+ ex)} + (o= 1)x/(1 — x + )

=In(1-¢)+(1—0"")¢ 4.33.4
ln @, =In(p,/p3)=1n(A,/43)=In{ox/(1—x + gx)} — (e — 1)(1 — x)/(1 - x +gx)
=In ¢—(o—1)(1—¢). 433.5

We notice that when ¢=1 we recover the formulae of ideal mixtures. Of
especial interest is the opposite extreme when ¢ is so great that 1/o may be
neglected compared with unity. Formula (4) then reduces to

Ina,=In(p,/p})=In(1,/A)=In(1-p)+¢  (0— ). 4.33.6

We then have the remarkable situation that the lowering of the vapour
pressure of the ‘solvent’ species 1 is completely determined by the volume
fraction of the ‘solute’ species 2. Under these conditions determinations of
the vapour pressure of the solvent give no information concerning the size
of the solute molecules, except that they are much larger than the solvent
molecules. These formulae are relevant to solutions of rubber or polystyrene
in certain non-polar solvents such as benzene and toluene.

§4.34 Osmotic pressure in athermal mixtures

By substituting (4.33.4) into (4.14.10) we obtain for the osmotic pressure
with respect to a membrane permeable only to the species 1 with small
molecules

IV, )/RT= —In(1—¢)—(1—0 " V). 4.34.1
If we expand In(1—¢) in powers of ¢ we obtain
IViYRT=¢lo+36* +4¢° +. . .. 4.34.2

From (2) and (4.33.2) we see that in the limit of infinite dilution ITocx
as usual, but for this state of affairs it is not sufficient that ¢<1, the much
more stringent condition gp<1 being required. If we merely assume that
¢« formula (2) reduces to

OV )[RT=¢lo+3p*>  (¢<k1) 4.34.3

* Flory, J. Chem. Phys. 1941 9 660; 1942 10 51.
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and the term 4¢? will swamp the term @/o unless ¢p<<o~ . It follows from
this that in a solution of macromolecules measurements of osmotic pressure
cannot yield simple or reliable information concerning the size of the solute
macromolecules unless the solutions are so dilute that ¢<<o ™" which implies
that x<o~ 2.

§4.35 Interfacial layers

We shall now consider the thermodynamics of interfacial layers between
two bulk phases each containing the same two components. There are two
cases to distinguish: first an interface between a liquid mixture and its
vapour, when the interfacial tension is called the surface tension; second an
interface between two liquid layers containing in different proportions two
incompletely miscible components.

We shall first discuss the liquid—-vapour interface using an approximation
sufficient for most if not all practical applications. We shall next give a similar
approximate treatment of a liquid-liquid interface. Finally we shall give an
accurate treatment applicable in principle to either type of interface, but of
small practical use.

§4.36 Liquid-vapour interface

We begin with formula (1.57.3) applied to a system of two components
I and 2. Thus

—dy=S83dT—tdP+TI,du, +I,dy,. 4.36.1

In the liquid phase we have according to (4.04.4) and (4.04.6)
dyu,=—S,dT+V,dP+(du,/0x)dx 4.36.2
du,=—S,dT+ V,dP+(0u,/dx)dx 4.36.3

where we have omitted superscripts from quantities relating to the liquid
phase.

In our initial treatment of aliquid-vapour interface we shall make approx-
imations similar to those used in §3.63 for a single-component interface.

In the first place we assume that in the liquid phase PV, and PV, are so
small compared with R7T that they may be neglected.

In the second place we assume that the two geometrical surfaces separating
the interfacial phase from the two bulk phases are placed so near to each
other that terms in Pt may also be neglected. We accordingly replace (1),
(2), 3) by
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_d'y=S;dT+rldﬂ1 +F2dl,l2 4.36-4
dy,=-S,dT+(du,/0x)dx 4.36.5
dy,=—S,dT +(0u,/0x)dx. 4.36.6

Substituting (5) and (6) into (4) we obtain
—dy=(S3—T,8;—T,8,;)dT+{I'(u,/0x)+I',(du,/dx)}dx.  4.36.7

The system of two components in liquid and vapour has two degrees of
freedom. There are consequently two independent variables, for which we
choose T and x. Formula (7) thus expresses variations of the surface tension
y in terms of variations dT" and dx of the two independent variables.

Since the quantities Oy, /0x and Ou,/0x on the right of (7) are related by
the Gibbs-Duhem relation

(1—x)0u, /0x +x(0u,/0x)=0 (T, P const.) 4.36.8

we can use this relation to eliminate either of them. If for example we elimi-
nate Ou,/0x we obtain

—dy=(S3—TI;S,—TI3S,)dT +{I,—xI'{/(1—x)}(0u,/0x)dx. 4.36.9

By this elimination we have unavoidably destroyed the symmetry between
the components | and 2.

§4.37 Invariance of relations

We recall that according to the definition in §1.53 of a surface phase the
properties associated with it depend on the positions of the boundaries
AA’ and BB’ in figure 1.2. As in §3.62 we shall henceforth refer to the boun-
dary between surface layer and liquid as Lo and that between surface layer
and gas as Go. Since the precise positions assigned to these geometrical
boundaries are partly arbitrary, the values assigned to such quantities as
r,, r,,S°are also arbitrary. We can nevertheless verify that our formulae
are invariant with respect to shifts of either or both of these boundaries. It is
hardly necessary to mention that the intensive variables T, u,, u, are un-
affected by shifts of either boundary. It is also clear from the definition of y
in §1.54 that its value is invariant.

Let us now consider a shift of the plane boundary Lo a distance 8t
away from the gas phase. Then I', becomes increased by the amount of the
species 1 in a cylinder of liquid of height &7, of cross-section unity and so of
volume 37. But the total amount of substance in the volume 87 is 81/Vp
of which the amount of species 1 is (1—x)8t/V,,. Similarly I', becomes
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increased by x8t/V,,. Consequently although shifting the boundary Lo
alters the values of I'y and I',, the quantity

r,—xI[(1-x) 4.37.1

remains unchanged. The invariant quantity (1) is essentially the same as a
quantity defined by Gibbs in a more abstract manner which he denoted
by the symbol I'yy,.

Similarly when the boundary Lo is shifted a distance 87 away from the
gas phase, S° becomes increased by the entropy contained in a cylinder of
liquid of volume &7, that is to say by an amount

887/ Vi={(1—x)S; +x8,}5t/ V. 4.37.2

At the same time I'; S, is increased by S;(1—x)3t/V, and I',S, by
S,x8t/V,,. Consequently the quantity

SS~I,S,-T,S, 4373

occurring in (4.36.9) remains invariant.

With regard to a shift of the geometrical surface Go, little need be said
in the present connection. For our approximation of neglecting terms in
Pz, as we are doing, is equivalent to assuming that the amount of substance
per unit volume in the gas phase is negligible compared with that in unit
volume of the surface layer. Consequently if we shifted the geometrical
surface Go away from the liquid even to the extent of doubling the value
of 7, the change in the amount of substance contained in the surface layer
would be negligible and consequently the values of I';, I',, S§ would not be
appreciably affected.

§4.38 Temperature coefficient of surface tension

If we apply formula (4.36.9) to variations of temperature at constant com-
position x of the liquid we obtain

—dy/dT=S85-I,S,—-I,S, (const. x). 4.38.1

This relation involving entropies can be transformed to one involving ener-
gies as follows. Since we are neglecting terms in PV, and PV, we may
replace (4.04.3) by the approximation

p=F=U,—TS, 438.2
#2=12=U2_’I‘SZ' 4.38.3

Applying formula (1.56.1) to unit area and neglecting the term containing
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V°=1A4, we have

[ypy+Typy=US—TS%—y. 4.38.4
We now use (2), (3), (4) to eliminate ST, S,, S, from (1). We thus obtain
y=Tdy/dT=US-I,U,~T,U,. 4.38.5

It is worth noticing that the right side of (1) is the entropy of unit area of
interface less the entropy of the same material content in the liquid phase.
Likewise the right side of (5) is the energy of unit area of interface less the
energy of the same material content in the liquid phase. More pictorially
we may say that it is the energy which must be supplied to prevent any
change of temperature when unit area of surface is formed from the liquid.
It may appropriately be called the surface energy of formation of unit area.

§4.39 Variations of composition

If we apply (4.36.7) to a variation of composition at constant temperature
we obtain, using (4.12.7),

—0p[0x =T du,/0x+ I';0p,/0x
=RT(I'y01n 4,/0x+TI,0 In 1,/0x)
=RT(I'y01lna,/0x+1I',0 In a,/0x)
=RT(I',0In p,/ox+I,01n p,/0x) (T const.). 4.39.1

When we combine (1) with the Gibbs-Duhem relation (4.16.1) or with the
Duhem-Margules relation (4.16.4) we obtain

—0yfox=—RT{(1—x)[,—xI'}x"'d1n 1,/0x
=RT{(1-x)[,—xI' }(1—x)"'81n A,/0x 4.39.2
or alternatively
—0yfox=—RT{(1—x)',—xI';}x~'0In p,/ox
=RT{(1—x)I',—xI'}(1—x)" ' In p,/0x. 4.39.3
From (3) we see that from measurements of y and p, or p, over a range of

compositions we can for each composition compute the value of the quantity

I defined by
I=(1-x)l,—xT,. 4.39.4

We have already verified in §4.37 that I/(1 — x) is invariant with respect to
shift in position of the boundary Lo between the liquid and the interface.
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Obviously the same holds for 7 itself. Values can be assigned to I'y and I',
individually only by adopting some more or less arbitrary convention.*
We shall illustrate this by a numerical example in the next section. Since
Iy, I', must be finite, it follows from (4) that

r/I-1 as x-0 4.39.5
—I,/I-»1 as x—1. 4.39.6

This implies that for small values of x the value of I'; is unaffected by the
position assigned to the boundary Lo and that for small values of 1 —x the
value of I'; is unaffected. Consequently when x<1 we may regard [ as a
measure of the positive adsorption I', of species 2 at the surface and when
1 —x<«1 we may regard —I as a measure of the adsorption I'; of the
species 1. At intermediate values of x no such simple physical meaning
can be attached to /. We may however regard / as a measure of relative
adsorption of the two species.
In the special case of an ideal mixture formula (3) becomes

—(RT) ™ '0y/dx=T,/x—T/(1—x)=I/x(1—x). 4.39.7

§4.40 Example of water+ethanol

We shall now consider the experimental data for mixtures of water and
ethanol in order to illustrate the use of the formulae of the preceding section.
We neglect the difference between fugacity and partial pressure. The experi-
mental data for the partial vapour pressures have already been given in
figure 4.3 and table 4.1 where we verified that they are consistent with the
Duhem-Margules relation. In table 4.3 the first three columns repeat those
of table 4.1, the subscripts ; denoting water and , ethanol. The fourth
column gives experimental values of the surface tension y. The fifth column
gives values of —07/01n p, obtained by plotting y against In p, and measuring
slopes. The sixth column gives values of

I=(1—x),—xI", 4.40.1

calculated from (4.39.3) which can be rewritten in the form
—0y/0In p,=RTI|(1-x). 4.40.2
The values of 7 are given in the sixth column. In the seventh column the

corresponding molecular quantity I/L is given.

* Guggenheim and Adam, Proc. Roy. Soc. A 1933 139 231.
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TABLE 4.3

Mixtures of water and ethanol at 25 °C
Determination of I=(1 —x)I"y,—xI",

P Ds y —0y/01np, 10101 1027/L

o mmHg mmHg erg cm~2 erg cm—2 mole cm™2 A-2
0.0 23.75 0.0 72.2 0.0 0.0 0.0
0.1 21.7 17.8 36.4 15.6 5.6 9.3
0.2 20.4 26.8 29.7 16.0 5.1 8.5
0.3 19.4 31.2 27.6 14.6 4.1 6.8
0.4 18.35 34.2 26.35 12.6 3.0 5.0
0.5 17.3 36.9 25.4 10.5 2.1 3.5
0.6 15.8 40.1 24.6 8.45 1.4 2.3
0.7 13.3 43.9 23.85 7.15 0.8 1.3
0.8 10.0 48.3 23.2 6.2 0.5 0.8
0.9 5.5 53.3 22.6 5.45 0.2 0.3
1.0 0.0 59.0 22.0 5.2 0.0 0.0

As we have repeatedly emphasized, this is as far as one can go without
using some non-thermodynamic convention. We shall now give an example
of such a convention*. Let us assume that the interfacial layer is unimolecular
and that each molecule of water occupies a constant area of interface and
likewise each molecule of ethanol. This assumption may be expressed by

A1F1+A2r2=1 (AI’AZ COHSt.). 4.40-3

We may call 4,, A, the partial areas of the two species in the interface.
The essence of our assumption is not the definition of these quantities, but
the assignment to them of definite constant values which can neither be
determined nor be verified by thermodynamic means.

As an example we might assume

A,;=0.04x10'° cm?® mole™!

40.4
A,=0.12x10'° cm? mole ~* 44
corresponding to molecular cross-sections
A /L= TA?
4.40.5
A,/L=20A%

The relation (3) with the values of 4,, 4, given by (4) is sufficient to deter-
mine values of I',, I', from the values of the expression (1) already given
in table 4.3. The results of the calculation are given in table 4.4.

* Guggenheim and Adam, Proc. Roy. Soc. A 1933 139 231.
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TABLE 4.4
Mixtures of water and ethanol at 25 °C
Values of I'y and I'; calculated from A, +A,=1

with A,=0.04 X 101 cm? mole™ of water
Ay=0.12 X 10** cm? mole~* of ethanol

1017 101r, 101, T,
* mole cm—2 mole cm— mole cm—2 IN+r,
0.0 0.0 0.0 25.0 0.00
0.1 5.6 6.8 4.6 0.60
0.2 5.1 7.25 3.25 0.69
0.3 4.1 7.25 3.28 0.69
0.4 3.0 7.25 3.25 0.69
0.5 2.1 7.3 3.1 0.70
0.6 1.4 7.45 2.65 0.74
0.7 0.8 7.65 2.0 0.79
0.8 0.5 7.9 1.3 0.86
0.9 0.2 8.1 0.7 0.94
1.0 0.0 8.35 0.0 1.00

The first column gives the mole fraction x of ethanol, the second the values
of I taken from the previous table, the third and fourth columns the values
of I'y, I', calculated by means of (3). The fifth column gives the values of
I',/(I'y+T',) which we may call the mole fraction of ethanol in the surface
layer. As the mole fraction, thus calculated, in the surface layer increases
steadily with the mole fraction in the liquid, we may conclude that although
the model on which the assumptions (3), (4), (5) were based is admittedly
arbitrary, at least it does not lead to unreasonable or surprising results.

§4.41 Interface between two binary liquids

We turn now to consider the interface between two liquid phases of two
components 1 and 2. Two such phases may or may not be simple, but they
obviously cannot be ideal. In our initial treatment we shall make approx-
Imations similar to those in §4.36.

We assume that in a liquid phase PV, and PV, are so small compared
with RT that they may be neglected. This assumption now applies to both
liquid phases. Just as in §4.36 we also neglect terms in Pr.

There is an important physical difference between the significance of our
approximate treatment of a liquid-vapour interface in the previous sections
and the approximate treatment we are now about to give of a liquid-liquid
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interface. In the case of the liquid-vapour system we took as independent
variables the temperature and composition of the liquid phase. Since the
system has two degrees of freedom, these determine the composition and
pressure of the vapour phase. Moreover the consequent variations of pressure
are significant in determining the thermodynamic properties of the vapour
phase. In our present discussion of a liquid-liquid system we are assuming
that the thermodynamic properties of all phases, that is both liquids and
interface, are independent of the pressure. We are thus effectively suppressing
variability of pressure as a possible degree of freedom. But when we do this,
a single binary liquid phase has only two remaining degrees of freedom, so
that we might take as variables either 7, x which are independent or T,
Uy, U4y subject to the Gibbs~Duhem relation. Correspondingly in a system of
two binary liquid phases the variables T, u,, u, are subject to two Gibbs—
Duhem relations, one in each phase. Thus the system has effectively only
one degree of freedom instead of two. Hence the temperature completely
determines the composition of both liquid phases and so also the properties
of the interface.

We may alternatively describe the situation as follows. A binary liquid-
liquid system, like a binary liquid-vapour system has two degrees of freedom.
We may therefore take as independent variables 7, P and these will then
determine the composition of both phases and so also the properties of the
interface. When however we use the approximation of treating the properties
of every phase as effectively independent of P, then clearly all the equilibrium
properties are completely determined by 7.

We accordingly proceed to determine how the interfacial tension depends
on the temperature.

§4.42 Temperature dependence of interfacial tension
We begin with formula (4.36.4)
~dy=S3dT+TI du,+T,dpy, 4.42.1

which applies as well to a liquid-liquid as to a liquid-vapour interface.
We also have a Gibbs-Duhem relation in each of the liquid phases. With
the term V,,dP neglected, we have, denoting the two liquid phases by the
superscripts * and P,

SedT +(1—x*)dy, +x*dp, =0 4.42.2
SEAT +(1—xP)dp, +xPdu,=0 4.42.3

wherein we have omitted the superscripts on T, u,, u, since these have the
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same values throughout the system. We recall that S, S% denote the proper
entropies in the two phases.

To obtain the dependence of y on the temperature, we have merely to
eliminate du,, du, from (1), (2), (3). We thus obtain

Si Sm Sh| % Sm Sh
dy |, 1-x* 1-x*| _|r,+r, 1 1
el P ) !_ r, s X 4.42.4
xP—x* xP—x

There seems to be no alternative simpler formula having as high an
accuracy.

§4.43  Accurate formulae

For the sake of completeness we shall now derive formulae, in principle
applicable to any interface in a system of two components, in which we
do not neglect the terms in ¥'dP or tdP. We however warn the reader that
these formulae are too complicated to be of any practical use.

We accordingly revert to formula (4.36.1), namely

—dy=S5dT—tdP+ T du, +I,du, 4.43.1
and formulae (4.36.2) and (4.36.3) applied to each of the two phases a, B
du}=—S7dT+ V;dP+(0u}/0x")dx" 4.43.2
duy= —S3dT + V3dP+(0u5/0x")dx" 4.43.3
dyb = —S8dT + VEdP +(0ps /0xP)dxP 4.43.4
dub = —S8dT + VAdP + (0ub/0xP)dxP. 4.43.5

We shall also use the Gibbs-Duhem relations for both the phases a, B

(1—x*)0p7/0x" +x"0u3/0x* =0 4.43.6
(1—x®)ou’ 0xP + xPoub/oxP=0. 4.43.7

For any variations maintaining equilibrium, we have as usual
dy =dpb=dy, 4.43.8
dpt=dub=dpy,. 4.43.9

If we multiply (8) by 1—x
and add, we obtain using (7)

#_(9) by xP, substitute from (2), (3), (4), (5),



216 MIXTURES

0=—{(1—x°)(S1—SD)+x°(S3 - S)}dT

+H{A=2P)V = VD) +x(V; - V])}dP

+{(1—xP)ou, /0x* + xPOu,/0x"}dx". 4.43.10
If further we substitute (2), (3) into (1) we obtain
—dy=(S4—T, 8% —I,S3)dT—(t— I, Vi —T,V$)dP

+(I0u,/0x™ + T, 0u,/0x")dx". 4.43.11
If we now eliminate dP between (10) and (11) we obtain
—dy=(seS— AoV Ay S/Ay V)AT
+ {4+ A V(1 —xP)|Ayg V}(0p, /0x*)dx"

+ {34 Ay VXP[Ayy V}(0p1,/0x")dx* 4.43.12

where we have used the following abbreviations
A S=(1—xP)(S} - S7)+x*(S5 - 53) 4.43.13
A V=(1-x®)(VP-V])+x*(VE-V3) 4.43.14
AS=S%—T,8—-T,S 4.43.15
AGV=1-T Vi-T,V3. 4.43.16

From these definitions we observe that A, S is the entropy increase and A gV
the volume increase when unit quantity of the phase B is formed at constant
temperature and constant pressure by taking the required amounts of the
two components from the phase a. Likewise A,,S is the entropy increase
and A,, V the volume increase when unit area of the surface layer o is formed
at constant temperature and constant pressure by taking the required
amounts of the two components from the phase «.

Finally we can eliminate Oy, /0x* (or Ou,/0x") between (6) and (12). Thus

—dy=(AyS— Ay VA S/AG V)T
F {3 = x"T /(1 = %)+ Ay V(%P — x*)/Ayg V(1 — x*)}(Op,/0x")dx".  4.43.17

If we vary the temperature and the pressure so as to maintain x* constant,
(17) becomes

—dy/[dT=4,,S—D, s VAS/AgV  (x const.). 4.43.18

This formula applies in principle to any interface. For a liquid—vapour
interface we may assume that A,, V/A,, V is negligibly small and then (18)
reduces to
‘ —dy/dT=A,S  (x"const.) 4.43.19
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which is the same as (4.38.1). For a liquid-liquid interface formula (18),
though strictly correct is of little use since the ratio A, V'/A,z V of two very
small quantities is difficult, if not impossible, to estimate or measure.

§4.44 Solid mixtures

We turn now to a brief consideration of solid mixtures, especially binary
solid mixtures. Much of the treatment of liquid mixtures is directly applicable
mutatis mutandis to solid mixtures. Other parts of the treatment are ob-
viously not applicable, in particular osmotic equilibrium and interfacial
tensions.

There is a further difference between the treatments of liquid and of
solid mixtures, a difference of degree or of emphasis rather than of kind.
Most liquids are sufficiently volatile to have conveniently measurable vapour
pressures and fugacities. Hence the partial vapour pressures and fugacities
of a liquid mixture are familiar experimental quantities. There is consequent-
ly a natural and reasonable tendency so far as possible to express most other
equilibrium properties in terms of the fugacities. Whereas a few solids also
have readily measurable vapour pressures, many are effectively involatile.
This being so, there is no particular merit in expressing other equilibrium
properties in terms of the fugacities rather than in terms of the absolute
activities. If then we compare, for example, the Gibbs—-Duhem formula for a
binary mixture

(1 —x)0p,/0x + x0u,/0x=0 4.44.1
or its corollary
(1-x)01In 4,/0x+x01n A,/0x=0 4.44.2
with the Duhem-Margules relation
(1—x)01n p,/0x+x0In p,/0x=0 4.44.3

whereas these three relations are all equivalent, it is natural to place the
empbhasis on (3) in the case of liquids, but on (1) or (2) in the case of solids.

One of the great similarities between solids and liquids, in contrast to
gases, is their insensitivity to pressure. For most purposes we may ignore
the pressure. When we do this, a single phase of two components has two
degrees of freedom, so that we may use as independent variables T, x.
A pair of such phases in equilibrium has then only one degree of freedom,
the composition of both phases being determined by the temperature.

We shall deal extremely briefly with the aspects of solid mixtures which
are parallel to those of liquid mixtures. We shall quote some formulae
without repeating derivations previously given for liquids.
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§4.45 Stationary melting points

In §4.11 we proved that whenever the relative compositions of a liquid
and vapour in mutual equilibrium at a given pressure are identical, the
equilibrium temperature is a minimum or maximum at the given pressure.
By precisely the same proof the same result can be derived for a solid and
vapour in equilibrium.

Of greater practical interest is the equilibrium between solid and liquid
phases. Using the superscripts® and " to refer to these two phases respectively,
we can derive a formula analogous to (4.11.8), namely

(SE —S3)dT/dx = (x* —x°)(dy,/dx — dy,/dx) 4.45.1

where x denotes the mole fraction of the component 2 in either phase.
Whereas formula (4.11.8) was deduced for constant pressure conditions, as
far as (1) is concerned the pressure is practically irrelevant. If the liquid and
solid phases have identical compositions then

xS=xt 4.45.2
and so (1) reduces to
(S5—S5)dTjdx=0. 4.45.3
Since SL#SS it follows that
dT/dx=0. 4.45.4

Thus when the compositions of the solid and liquid in mutual equilibrium
are identical, the equilibrium temperature is stationary.

§4.46 Solid ideal mixtures

A solid ideal mixture is defined in the same manner as in the case of liquids,
namely by
ALG=RT Y x;Inx; 4.46.1

and in particular for a binary ideal mixture

A,G/RT=(1-x)In(1-x)+x In x. 4.46.2

From this definition it follows immediately for a binary mixture that
=4(1-x) 4.46.3
Ay=23x 4.46.4

where the superscript ° denotes the pure solid phase. Actual examples of
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ideal mixtures are as few among solids as among liquids, but the ideal
mixture remains the convenient standard with which to compare a real

mixture.

The thermodynamic functions and properties of ideal mixtures follow
directly from (1) or (2) as in the case of liquids. In particular the enthalpies
are additive; that is to say the enthalpy of mixing is zero. On the other hand
the proper entropy of mixing is given by

ApS/R=—(1-x)In(l—x)—x1In x. 4.46.5

Probably the most important application of this and related formulae is to
isotopes, as in §3.55.

§4.47 Excess functions

Any real solid mixture, like any real liquid mixture, is conveniently described
by the use of excess functions. For a binary mixture these are defined by

GE=A,G—-A,G'=A,G~RT{(1-x)In(1—x)+x In x} 4.47.1
SE=A,S—A,S'=A,S+R{(1-x)In(1—x)+x In x} 4.47.2
HE=A_H-A,H'=A,H. 4.47.3

Solid mixtures may be classed, like liquid mixtures, into symmetrical
mixtures, including simple mixtures, and unsymmetrical mixtures.



CHAPTER §

SOLUTIONS, ESPECIALLY DILUTE SOLUTIONS

§5.01 Introduction

There is no fundamental difference between a liquid mixture and a
solution. The difference is in the manner of description. In the description
of mixtures in the previous chapter all the constituent species were treated in
a like manner. In the description of solutions in the present chapter we
shall on the contrary single out one species which we call the solvent. All
the remaining species are called solutes. There is no rigid rule to determine
which species shall be regarded as solvent, but it is usually the species present
in the highest proportion, at least among those species which are liquid in
the pure state at the given temperature and pressure. For example we should
at room temperature speak of water as solvent and urea as solute, even if
the urea were in excess, because pure urea at room temperature is a solid.

We shall always denote the solvent by the subscript ; and the solutes by
the subscripts ,, 3, ... in particular or by the general subscript ;.

§5.02 Mole ratios and molalities

We consider a phase containing an amount n, of the species 1, an amount n,
of the species 2, and so on. When considering such a phase as a mixture we
described the composition by the fractions n,/Z;n;, n,/Z;n; and so on.
When considering this phase as a solution we shall on the contrary describe
its composition by the ratios n,/n,, n3/n, and so on.

While the fractions n,/Z;n;, n,/Z,n; were denoted by x,, Xj,..
and were called mole fractions, the fractions n,/n,, n3/n,, . . . will be denoted
by r,, r3, ... and will be called solute-solvent mole ratios. In a phase of ¢
component species there are ¢ different mole fractions, which we recall are
related by T, x;=1 so that only c—1 are independent. There are only c—1
mole ratios r,, r3, . . . r, and these are all independent. We shall use these as
the independent variables together with T and P.

220
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For all purposes of general theory we shall use the variables r,, rs, ... r,
together with T, P. For practical purposes, it is customary to use instead of
r, a quantity m; directly proportional to r, defined by

my=r,/r° 5.02.1
where r° is a standard value of r, customarily and here defined by
r®=M,/kgmole ™! 5.02.2

where M, is the proper mass of the solvent. It follows that r,=r® when there
is one mole of the solute s for each kilogramme of solvent. Thus defined,
re, r°, and my are all dimensionless. This quantity m, is called molality.
We shall derive most of our formulae in terms of the mole ratios r and shall
transcribe only a few important ones into terms of molalities m by use of
(1). The mole fractions x and mole ratios r are interrelated by
ra=X3/x;=X,/(1=3 x) 5.02.3

s

x;=ry/(1+Y 1) 5.02.4

and similar relations for the other solute species. We also note the relation

A+ r)(1=-Y x)=1. 5.02.5

§5.03 Partial and apparent quantities

If X denotes any extensive property such as V, U, S, &, G then the correspond-
ing partial quantities are defined in §4.03 by

X1=(6X'/an])1"p’n2'ns, PO 5-03-1
Xo=(0X/ON)T p,nyimar -+ 5.03.2
According to (4.03.6) these are interrelated by
n,dX,+Y ndX,=0 (T, P const.). 5.03.3
Dividing (3) by n, we have
dX;+)Y rdx,=0 (T, P const.). 5.03.4
In particular, if there is only one solute species 2 formula (4) reduces to

0X,[or+rdX,/or=0 (T, P const.). 5.03.5

When there is only one solute species 2 the quantity X, defined by
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n2X¢=X"'n1X? 5-03.6

where X7 denotes the proper X of the pure solvent, is called the apparen:
proper X of the solute*. We can obtain the relation between X, and X, by
differentiating (6) with respect to n, keeping n; constant. We find

Xz =aX/an2=X¢+ nz(aX¢/an2)nl = X¢+rdX¢/dr. 5.03.7

There is no such quantity as X, when there is more than one solute species.
We recall the important relations between the several partial quantities in
§4.04. These apply both to the partial quantities of the solvent and to those
of the solute species.
We also recall the important equality (1.28.11) which holds both for the
solvent and for the solute species

H1=G, Us=Gy 5.03.8
with the consequent relations
Oy joT= -8, Ou,/oT=—S; 5.03.9
dln A,/0T=—H,/[RT? 8In i /0T=—H,/RT? 5.03.10
oy, /oP=V, ou,/oP=V,. 5.03.11

§5.04 Gibbs-Duhem relation

We recall the Gibbs—Duhem relation

n du,+Y ndp,=0 (T, P const.) 5.04.1
or ’
ndlni +) ndlni=0 (T, P const.). 5.04.2
Dividing through by n; we obtain the alternative form
dp +Y rdu,=0 (T, P const.) 5.04.3
or )
dini;+Y rdlni;=0 (T, P const.). 5.04.4
In the case of a single solute (3) reduces to
du,/dr+rdu,/dr=0 (T, P const.) 5.04.5
or
dini,jdr+rdln 2,/ dr=0 (T, P const.). 5.04.6

* The notation ¢, used by some authors instead of Ve is deplorable.
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§5.05 Partial quantities at high dilution

If X denotes any extensive property, so that X, X, are the corresponding
partial quantities in a solution of a single solute, we have according to

(5.03.5)
0X,/or+rdX,/or=0 (T, P const.). 5.05.1

It follows that when r—0 either 8X,/0r—0 or 8X,/dr— 0. The former case
occurs when X denotes V or U or H; the latter occurs when X denotes S or &

or G.

§5.06 Ideal dilute solutions

Let us consider a solution of a volatile solute 2 in the solvent 1 so dilute that
n,&n;. It is then physically obvious that, if the vapour may be regarded
as a perfect gas, the partial pressure y,P,,, of the solute will be directly
proportional to n,. More generally, whether or not the vapour may be
regarded as a perfect gas, the fugacity p, of 2 will be directly proportional
to n,, that is to say

p2Xn,. 5.06.1

This however raises the question whether the proportionality (1) holds at
constant n; +n,, that is to say

P2CX, 5.06.2

or at constant ny, that is to say
paocr,. 5.06.3

The answer is that in the limit as x, and r, tend to zero (2) and (3) become
equivalent and it is only in this limit that either is obviously true. At finite
values of x, and r, we must not expect either (2) or (3) to be accurate, but
we may use either as a basis for comparison with the actual behaviour of
solutions. It is true that (2) can under favourable conditions hold for all
values of x from 0 to 1 in which case we have an ideal mixture as described
in §4.18. Formula (3) on the contrary becomes untenable as we approach
the state of the pure liquid 2, when r,— 1, since it would lead to the absurd
conclusion that pj is infinite. We must however remember that in this chapter
our convention that the species 1 is the solvent implies that this species is
present in excess and we are consequently not concerned with conditions
approaching that of the pure liquid 2. In fact we are concerned mainly with
the condition r,<1. Bearing in mind this implied restriction we are free to
choose either (2) or (3) as a basis of comparison with actual behaviour.



224 SOLUTIONS, ESPECIALLY DILUTE SOLUTIONS

In practice it has been found that (3) is more convenient than (2) because the
value of r, is unaffected by the addition to a given solution of other solute
species. This practical advantage will become clearer in the next chapter
when we consider chemical reactions between solute species.

We shall accordingly choose as a basis of comparison with actual behaviour
formula (3) after we have generalized it for several solute species when it
becomes

PsCTg (T, P const.). 5.06.4

It is clear from the relations in §4.12 that (4) is equivalent to
isocrs (T, P const.) 5.06.5

and (5) is applicable to solute species of immeasurably low volatility. We
shall now adopt (5) as our basis of comparison with actual behaviour and
we define a solution as being ideal dilute when the proportionality (5) is
obeyed for all values of r, less than or equal to that of the solution under
consideration.

We can write (5) in the alternative form

de=A2r, 5.06.6

where 1° depends on the nature of the solute, the nature of the solvent,
the temperature, and the pressure, but not on the mole ratio r, of the solute
considered nor on the mole ratio of any other solute species. In numerical
applications, as opposed to general theory, it is customary to use molalities
instead of mole ratios. We then replace (6) by

A=A2m, 5.06.7
Ao =22[r® 5.06.8
where r® is defined by (5.02.1).

Finally we may, if we prefer, use chemical potentials instead of absolute
activities. We then have in analogous notation

u=p’+RT Inr, 5.06.9
ps=pS +RT In my 5.06.10
pe=u®—RT Inr®. 5.06.11

§5.07 Thermodynamic functions of ideal dilute solutions

Having defined an ideal dilute solution in terms of the absolute activities or
chemical potentials of the solute species, we can deduce the relations for the
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properties of the solvent by means of the Gibbs-Duhem relation (5.04.4)
dini,+Y rdIni;=0 (T, P const.). 5.07.1
From (5.06.5) we have
r{dInA,=rdinr,=dr, (T, P const.). 5.07.2
Substituting (2) into (1) we obtain

dinl; ==Y dr=—d(},r) (T, P const.) 5.07.3

and so by integration
—In(1,jA)=Yr, (T, P const.) 5.07.4

where as usual the superscript ® denotes the value for the pure liquid
solvent. We can rewrite (4) in terms of chemical potentials

py=pl—RTY r, (T, P const.) 5.07.5
and in terms of absolute activities
InA=lnA0-Y r,. 5.07.6
By use of (5.03.11) we deduce |
V=V (T, P const.) 5.07.7
V.=V (T, P const.) 5.07.8

where V° denotes the limiting value of V; at infinite dilution of all solute
species. We see then that ¥, and ¥, are in an ideal dilute solution in a given
solvent independent of the composition.

By use of (5.03.9) we deduce

S;=S{+RYr, (T, P const.) 5.07.9
S,=SP—RlInr, (T, P const.) 5.07.10

where S.° is defined by
SP=—-0pZ2/0T 5.07.11
and is thus in an ideal dilute solution in a given solvent independent of the

composition.
By use of (5.03.10) we deduce

H,=H¢ 5.07.12

H,=H® 5.07.13
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where H;” denotes the limiting value of Hat infinite dilution of all solute
species.

It follows from (7), (8) and from (12), (13) that any two ideal dilute
solutions in the same solvent mix at constant temperature and pressure
without change of volume and without change of enthalpy.

§5.08 Real solutions

As already mentioned, we do not expect a real solution to be ideal dilute
except in the limit of infinite dilution but it is convenient to compare the
behaviour of any real solution with its hypothetical behaviour if it remained
ideal dilute at all compositions extending from infinite dilution to its actual
composition. We then express the deviations between the real behaviour and
this hypothetical behaviour by means of certain coefficients as will be
described in the succeeding sections.

§5.09 Activity coefficients of solute species
We define the activity coefficient y, of the solute species 2 by the relations
Ay=ATryy,=4i5myy, (T, P const.) 5.09.1

y,—1 as ) m~0. 5.09.2

Alternatively we may express (1) in terms of chemical potentials
py=p3+RT In(ryy,)=p5 +RT In(myy,) (T, P const.) 5.09.3

in conjunction with (2). It is clear that the deviation of y, from unity
or of Iny, from zero is a measure of deviation from an ideal dilute
solution.

It need hardly be mentioned that similar relations hold for every solute
species. Thus (1) may be generalized to

he=ATrys=aCmyy, (T, P const.) 5.09.4
and (3) to
ps=pL +RT In(ryy)=p + RT In(myy,) (T, P const.). 5.09.5

It is unfortunate that the same name activity coefficient is sometimes
used for the quantity a/x of the previous chapter as well as for y,.
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§5.10 Osmotic coefficient of solvent

Following Bjerrum* we define the osmotic coefficient ¢ of the solvent by
~In(1,/A)=—In(p,/p})=¢ Y, r, (T, P const.). 5.10.1

By comparing (1) with (5.07.4) we see that ¢ —1 is a measure of deviation

of behaviour from that of an ideal dilute solution.
We can also write (1) in terms of chemical potentials as

pi=p}—RTo Y r, (T, P const.). 5.10.2

§5.11 Relation between activity coefficients and osmotic coefficient

When we substitute (5.10.1) and (5.09.4) into the Gibbs-Duhem relation
(5.04.4) we obtain

d(¢ Y rg)=Y rdin(r;y) (T, P const.) 5.11.1

which can be rewritten as
d{(¢—-1)> r}=> rdlny, (T, P const.) 5.11.2

a relation due to Bjerrum." In the case of a single solute species (2) reduces

to
d{(¢—1)r}/dr=rdlny/dr (T, P const.) 5.11.3

or
(p—1)/r+dé/dr=d In yjdr (T, P const.). 5.11.4

If for example ¢ is related to r by
¢—1=Ar" (A, n const.) 5.11.5
then by substituting from (5) into (4) we obtain after integration

Iny=(l+n"")Ar"=1+n"")(¢-1). 5.11.6

§5.12  Temperature dependence
By substitution of (5.09.4) into the second of equations (5.03.10) we obtain
0ln A2/dT +01ny,/0T = —H,RT?>. 5.12.1

* Bjerrum, Fysisk Tidskr. 1916 15 66; Z. Electrochem. 1918 24 325.
* Bjerrum, Z. Phys. Chem. 1923 104 406.
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In the limit of infinite dilution (1) reduces to
0ln AP[dT=—H®|RT?. 5.12.2

Subtracting (2) from (1) we obtain for the temperature dependence of the
activity coefficient

9 1In y,/0T = —(H,— H®)/RT?. 5.12.3

In particular we observe that y, will be independent of temperature if H, is
independent of composition.
By substitution of (5.10.1) into the first of equations (5.03.10) we obtain

- r,0¢/0T+01n 2}/0T=—H,/RT?. 5.12.4

For the pure solvent (4) reduces to
d1n idjoT=—HYRT?. 5.12.5

By subtraction of (§) from (4) we find for the temperature dependence of
the osmotic coefficient

rsd¢/0T =(H,— H®)/RT?>. 5.12.6
1

In particular we observe that ¢ will be independent of temperature if H,
is independent of composition.

§5.13 Pressure dependence
By substitution of (5.09.5) into the second of equations (5.03.11) we obtain
Ou°/OP+RT 0 lnyfoP=V,. 5.13.1
In the limit of infinite dilution (1) reduces to
ulfoP=Vy>. 5.13.2

By subtraction of (2) from (1) we find for the pressure dependence of the
activity coefficient

0 In y,/oP=(V,~ V°)/RT. 5.13.3
By substitution of (5.10.2) into the first of equations (5.03.11) we obtain
ouf/OP—RT Y rd¢[oP=V,. 5.13.4

For the pure solvent (4) reduces to

oudfoP="v?. 5.13.5
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By subtraction of (5) from (4) we obtain for the pressure dependence of the
osmotic coefficient
Y r0¢/oP=—(V,—V{)/RT. 5.13.6

All these pressure dependences are usually negligible at ordinary pressures.

§5.14 Temperature dependence of fugacity of solvent

From (5.10.1) we have
~In(p,/pN)=¢ 3. 1. 5.14.1

Differentiating (1) with respect to T and using (5.12.6) we obtain for a
solution of given composition

—01In(p,/p))OT =Y r,0¢/0T=(H,—H?)/RT>. 5.14.2

§5.15 Temperature dependence of fugacity of solute

For a volatile solute species we may replace (5.09.4) by
Ps=D{Ts7= D5 Mgy, 5.15.1
where p®, p® are independent of the composition but depend on the nature

of the solute s and the solvent. Differentiating (1) with respect to T and using
(5.12.3) we obtain

=3 1In(p,/py")OT = —0 In(p,/p)OT =(H, —H)RT>.  5.15.2

§5.16 Osmotic pressure

We recall formula (4.14.8)
144 V1>/RT=IH(P(1J/P1) 5.16.1

where (V) denotes the value of ¥, at a pressure equal to the mean of the
pressure P on the pure solvent and the pressure P+ IT onthesolution at osmotic
equilibrium while both p; and p{ are values at an external pressure P.
Since formula (1) does not contain mole fractions it is equally applicable to
solutions described in terms of mole ratios.

Substituting (5.10.1) into (1) we obtain

MCV,)/RT=¢ Y r,. 5.16.2

If we use the superscript * to denote a hypothetical ideal dilute solution
Wwith the same composition as the actual solution we have
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M'V,)/RT=Y r,. 5.16.3

Dividing (2) by (3) we find
O=¢mI" 5.16.4

and this relation explains the origin of the name osmotic coefficient.

§5.17 Freezing point

Let us now consider the equilibrium between the liquid solution and the
pure solid solvent 1. We assume that the pressure is either constant or
irrelevant. We use the superscript * to denote the solid phase, the superscript °
for the pure liquid, and no superscript for the liquid mixture. Then for
equilibrium between the pure solid and the liquid mixture at its freezing
point temperature T

MWT)=2(T). 5.17.1

If T° denotes the corresponding equilibrium temperature for the pure liquid,
that is to say the freezing point of the pure liquid, we have correspondingly

AATO)=2(T°). 5.17.2
Dividing (2) by (1) we obtain
(T A (T)=A(T°)/A5(T) 5.17.3
which can be rewritten in the form
AATYAT)= AT ATV HA(TYA(TO). 5.17.4

Taking logarithms we have
In{A(T)A(T)} = n{AUTYAATO} ~In{S(TYA(T)}. 5175
Now applying the first relation (5.03.10)

0ln 4,/0T=—H,/RT? 5.17.6
to the pure solid and pure liquid in turn and integrating we obtain

T

In{A(T)/A5(T°)} = - j (H}/RT*)dT 5.17.7
TO
T

In{AYT)/ANT%)} = - f (HY/RT?)dT. 5.17.8
TO

Substituting (7) and (8) into (5) we obtain

In{AAT)2(T)}= - j;{(H?—Hf)/RTZ}dT=— f;(AfH‘;/RTz)dT 5.17.9
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where A¢HY is the proper enthalpy of fusion of the pure solvent. We now
substitute (5.10.1) into (9) and obtain

T
¢y r= —f (AHY/RTHAT 5.17.10
s TO

where ¢ denotes the osmotic coefficient of the solution at its freezing point.
We can rewrite (10) more simply as

¢ Y re=<AHY(1/RT—1/RT®) 517.11

where (A H?) denotes the average value of A;H; over the reciprocal
temperature interval 1/7° to 1/T. Since A;H} is always positive it follows
that T<T?°. Thus the freezing point of the solution is always below that of
the pure solvent if the solid phase is pure solvent.
For dilute solutions when T° — T<T° we may replace (11) by the approx-
imation
¢y re=AHY(T°-T)/RT*? 5.17.12

or
T°—T=¢ Y r(RT°*/AHY). 5.17.13

In numerical calculations it is customary to use the molalities m, instead
of the solute-solvent mole ratios r,. We recall the definition (5.02.1) of
molality

my=ry/r° 5.17.14

where r® is a standard value of r, customarily chosen so that r,=r> when there
is one mole of the solute s for each kilogramme of solvent. We accordingly
rewrite (13) as

T°—-T=¢ Y m(r°RT°}AHY). 5.17.15

The factor r° RT°2/A; HY which is a property of the solvent but common to
all solute species, is called the cryoscopic constant. We note that when r°®
is given the value M,/kgmole~! then A, H?/r® is numerically equal to the
enthalpy of fusion in joules per kilogramme of the solvent. For water we
have
RT°=2.2712x10* J mole™*
T°=273.15K
A¢HY/r® =3.335x 10° J mole ™"

so that the cryoscopic constant is

2.2712x 10> I mole™ ' x 273.15 K/3.335x 10° I mole ' =1.860 K.  5.17.16
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§5.18 Boiling point

We shall now consider the equilibrium between the liquid solution and the
gas phase in the case that all the solute species have negligible vapour pres-
sures. We accordingly regard the gas phase as consisting entirely of the
component 1 and we use the superscript © to denote this phase.

We then proceed to consider the equilibrium between the two phases at a
given pressure precisely as in the case of equilibrium with a pure solid phase
studied in the previous section. The steps of the argument are precisely analo-
gous and we obtain eventually the relation

oY re=<AH(1/RT°—1/RT) 5.18.1

where (A H?) denotes the value of the proper enthalpy of evaporation
A H? for the pure liquid averaged over the reciprocal temperature interval
1/T to 1/T° and ¢ is the osmotic coefficient at the boiling point of the
solution. Since A, H} is always positive it follows that 7> T°. Thus the boiling
point of any solution of non-volatile solutes is above that of the pure

solvent.
For dilute solutions when 7—T°«T° we may replace (1) by the approxi-

mation
¢ Y re=AHY(T-T°)/RT®* 5.18.2

or
T—-T°=¢ Y r(RT°*/A HY)). 5.18.3

For purposes of numerical calculation it is customary to use the molalities
m, instead of the solute-solvent mole ratios r;. We accordingly rewrite
3) as
T-T°=¢ Y m(r°RT°*/A HY). 5.18.4
S

The factor r° RT®%/A H? is called the ebullioscopic constant of the solvent.
We note that when r° is as usual chosen to be M, mole kg~! then A, H/r®
is numerically equal to the enthalpy of evaporation in joules per kilogramme
of solvent. For water we have

RT°=3.1026 x 10* J mole ~*
T°=373.15K
A HY[r® =2.2567 x 10° J mole ™!

so that the ebullioscopic constant is

3.1026 x 10° J mole™ " x 373.15 K/2.2567 x 10° J mole™ ' =0.513 K.  5.18.5
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§5.19 Distribution between two solvents

For the equilibrium of a solute species s between two solutions in different
solvents we have

ii=a8 5.19.1
where the superscripts * and P relate to the two phases. Substituting from
(5.09.4) into (1) we obtain

A0t meys =27 Pmlyk 5.19.2

or by rearrangement

o

mPyB/meyt = I2P 5.19.3

where [ is independent of the composition of the two phases and is defined

by
1B =49%/) 28, 5.19.4

In the special case that both solutions are ideal dilute (3) reduces to
mbim? =128 5.19.5

which is known as Nernst’s distribution law.

§5.20 Solubility of pure solid
For the equilibrium with respect to the species s between a solution and the
pure solid phase we have the condition

A=A 5.20.1

where the superscript 5 denotes the pure solid phase. Substituting from
(5.09.4) into (1) we obtain

Mgy =ig AS (saturated solution). 5.20.2

From (2) we see that if several solutions in the same solvent at the same
temperature are all saturated with the same solid phase of the species s,
then in all these solutions myy, has the same value.

Taking logarithms of (2), differentiating with respect to 7 and using
(5.12.3) we obtain

0 In(m,y,)/0T=(H? —H{)JRT?>  (saturated solution)  5.20.3

and we observe that the quantity H® — HS occurring as the numerator on
the right is the proper enthalpy of dissolution of s at infinite dilution.
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§5.21 Experimental determination of ¢

The most accurate direct method of determining ¢ experimentally is by
measurements of freezing point and use of formula (5.17.11) which for
a single solute species reduces to

pmy=or Jr° =(T°—T)<AH>/r®RTOT). 5.21.1

All the quantities m, A¢HY, T° T can be measured and substitution of
their values into (1) leads to experimental values of ¢ at the freezing point.
Let us suppose that freezing-point measurements have been made so as to
determine ¢ over a range of steadily decreasing values of m and let us
consider what results are to be expected.
Since we know that as m—0 so ¢—1 we may reasonably expect that
¢ —1 can be expressed as a series of integral powers of m say

p—1=Am+A4,m*+.... 5.21.2

This is in fact the case for non-electrolytes and we may then hope to determine
by a series of accurate freezing-point measurements the coefficients in such a
formula as (2) so as to obtain a good fit. Formula (2) is not applicable to
solutions of electrolytes; these will be discussed in chapter 7.

Let us now consider what will happen if the measurements are extended
down to gradually decreasing values of m. If the measurements are performed
with sufficient care, we may expect to reach a range where all terms of (2)
are negligible except the first. In this range (¢ —1)/m has a constant value
A, and we may confidently and reasonably assume that this behaviour
persists down to m=0. Suppose however we tried to confirm this experi-
mentally, let us examine what would happen.

We may reasonably assume that the experimental error in measuring
T°—T is at least roughly independent of m. Since at low values of m the
value of T°—T is itself roughly proportional to m it follows that the frac-
tional experimental error in ¢ is inversely proportional to m. Hence accord-
ing to (2) the fractional errorin ¢ —1 will be inversely proportional to m?.
It is therefore clear that by proceeding to experiment at smaller values of
m we eventually reach a stage where the experiments tell us nothing.

The most reasonable procedure is then to carry the experiments down to
values of m where one finds experimentally

(p—1)im=A4; (A, const.) 5.21.3

and then assume that this simple law persists down to m=0.
We may mention that for solutions of non-electrolytes the limiting law
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(3) has not merely an empirical basis, but also a theoretical one based on
statistical mechanics.

§5.22 Determination of y from ¢

We recall Bjerrum’s relation for a single solute species (5.11.3)
d{(¢—1)r}/dr=rdIny/dr (T, P const.) 5.22.1

which we may also write as

d{(¢ —1)m}/dm=md In y/dm (T, P const.) 5.22.2
or as

dIny=[d{(¢—1)m}/dm]dInm (T, P const.). 5.22.3

Integrating (3) from O to m and observing that ¢ —1 and In y tend to zero
as m tends to zero, we obtain

Iny= fm[d{(d)—- m}/dm]dInm=¢—1+ fm(¢— 1)d In m. 5.22.4

If ¢ has been determined at all molalities from 0 to m we see that by using
(4) we can in principle calculate y at a molality » but caution is required so as
to avoid spurious results. We saw in the previous section that with regard
to the experimental determination of ¢ there are three ranges of m arranged
in order of decreasing m with the following characteristics.

1. Large molalities, where ¢ can be measured and fitted to a more or less
complicated formula.
2. Intermediate molalities, where ¢ can be fitted to the formula

¢—1=A,m (A, const.). 5.22.5

3. Lowest molalities, where no useful information about ¢ can be obtained
by experiment and we assume that (5) continues to hold.

In using (4) it is expedient to break the range of integration at some
value m’ of m in the range where (5) is found to hold. We accordingly rewrite
4) as

1"‘/=4’—1+f (¢—1)dlnm+f (p—1)d Inm. 5.22.6
0 m’

We evaluate the first integral as follows

f ((f)—l)dlnm:j Ajdm=A,m'=¢'—1 5.22.7
0 0
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where ¢’ denotes the value of ¢ at m=m’. Using (7) in (6) we obtain finally
lny=¢—1+¢'—l+J (p—1dlnm 5.22.8

and the integral in (8) can be evaluated from the experimental values of ¢,
either by fitting these to a formula or graphically.

The important point emerging from this discussion is that we cannot
calculate y from experimental determinations of ¢ for example by freezing-
point measurements, without making an assumption concerning ¢ at low
values of m. Since such an assumption has to be made anyway, it is just as
well to make it explicitly and so obtain a closed formula for y as well as for
¢ in the range of small m. For solutions of non-electrolytes, with which we
are here concerned, the usual and most reasonable assumption is formula (5).
In chapter 7, when we study solutions of electrolytes, we shall meet a different
situation.

§5.23 Fugacity of saturated solution

Throughout this chapter and the previous one we have never yet considered
any equilibrium involving more than two bulk phases, nor shall we do so in
any detail. No new principles are involved and the methods already described
are applicable. We shall confine ourselves to a single interesting example.

We consider the following problem. How does the fugacity of the solvent
vary with the temperature in a solution kept saturated with a single non-
volatile solid? Using the subscripts , for the solvent, , for the solute, and the
superscripts © for the gas phase, S for the solid, and none for the solution,
we have for variations maintaining equilibrium

dln i;=dln A7 5.23.1
dlnd,=dIn 73. 5.23.2

Expanding these, and neglecting the effect of pressure on each of the conden-
sed phases we have

—(H,/RT?)AT+(0 In A,/dm,)dm, = —(H$/RT*)dT+dInp, 5.23.3
—(H,/RT?)AT +(3 In A,/dm,)dm, = —(H3/RT?)dT. 5.23.4

Using A, H to denote the proper enthalpy of evaporation from the solution
and A¢H to denote the proper enthalpy of fusion into the solution, we can
write (3) and (4) as

dln p;=(01n 1,/0m,)dm, + (A H,/RT?)dT 5.23.5
(01n A,/0m,)dm,=(A;H,/RT*)dT. 5.23.6
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We now use the Gibbs-Duhem relation in the form
0ln 4,/0m,+r(®1In A,/0m,)=0 5.23.7
to eliminate 4;, 4, from (5), (6). We thus obtain
dlnp,/dT=(A.H,—rAH,)/RT?. 5.23.8

It is interesting to observe that the expression inside the brackets is equal
and opposite to the enthalpy of formation of the quantity of solution contain-
ing unit amount of solvent from the gaseous solvent and from the solid
solute.

§5.24 Surface tension

We conclude this chapter with a brief discussion of interfacial layers, parti-
cularly those between a liquid and its vapour. As described in §4.36 we shall
neglect effects of pressure on the liquid phase and on the surface layer.
For the sake of brevity we use the symbol D to denote the operator
Z,dr,0/0r,. We have then by analogy with (4.36.4), (4.36.5), and (4.36.6)

—dy=S5dT +Tdp, +Y I'dp, 5.24.1
dl“'l = —SldT_'_DHl 5.24.2
dp,= —S,dT + D, 5.24.3

where (2) and (3) relate to the liquid phase*. We also have in the liquid phase
the Gibbs-Duhem relation (5.04.3)

Dy, +Y r, Dy, =0. 5.24.4

Substituting (2) and (3) into (1) we obtain
—dy=(si_rlsl—zrsss)dT+F1Dﬂl+stDﬂs. 5.24.5

Now eliminating Dy, between (4) and (5) we obtain finally
—dy=(83—-I,8, =) IS)dT+Y (I'y—r,Iy)Dy,. 5.24.6
By reasoning similar to that of §4.37 we can verify the invariance of the

coefficients of dT and Dy, with respect to shifts of the geometrical surfaces
bounding the surface layer.

* There should be no confusion between y denoting surface tension and the activity
coefficients y,.
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§5.25 Temperature dependence

For the temperature dependence of the surface tension at constant composi-
tion of the liquid we obtain immediately from (5.24.6)

—dy[dT=85-TS,-Y, IS, 5.25.1
H
where the right side is the entropy of unit area of the surface layer less

the entropy of the same material content in the liquid phase.
By proceeding as in §4.38 we can transform (1) to the equivalent relation

y—THPT=US—T,U,-Y I,U,. 5.25.2

The right side is the energy which must be supplied to prevent any change
of temperature when unit area of surface is formed from the liquid.

§5.26 Variations of composition

For variations of composition at constant temperature (5.24.6) reduces to

—dy=Y (I'y—r,I)Dpy, 5.26.1
or using
Du,=RT DIn iA,=RT D In p, 5.26.2
—dy=RT ¥ ([,—r,[)D In p,. 5.26.3
Each of the quantities
F—rJ0, 5.26.4

occurring on the right side of (3) is called the surface excess per unit area of
the solute species s. The corresponding quantity for the solvent species 1
vanishes by definition. As we have repeatedly stressed, each quantity (4),
in contrast to the individual I”sisinvariant with respect to shift of the bound-
ary between the liquid phase and the surface phase and is therefore physi-
cally significant. The quantities (4) are the same as the quantities which
Gibbs* denoted by Iy, but his definition of these quantities was more
abstract and more difficult to visualize.

§5.27 Interfacial tension between two solutions

For the interface between two liquid phases «, B neglecting dependence on

* Gibbs, Collected Works, Longmans, vol. 1 pp. 234-235.
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pressure, we have
—dy=S5dT+TIdu,+Y I, dy,. 5.27.1

The Gibbs-Duhem relation for phase o can be written
1+ r)SedT+du, + ), ridp,=0 5.27.2

and that for phase B
1+ r)SEdT +dp, +Y ridu,=0. 5.27.3

If there are c—1 solute species, there are c+ 1 quantities d7, du,, du, in (1)
of which any two can be eliminated by using (2) and (3). The results obtain-
able are complicated and we shall not pursue them here.

§5.28 Volume concentrations

[n analytical work it has long been the usual practice to describe the compo-
sition of a solution by the volume concentration ¢, of each solute species
defined as

c.=n/V=rnV. 5.28.1
As long as we are concerned with the properties of the solution at only one
temperature this practice is unobjectionable. But in thermodynamics we
are much interested in the temperature dependence of properties, and volume
concentrations are then inconvenient. For whatever quantities be used to
describe the composition of a liquid solution, it is expedient to use as the
other two independent variables temperature and pressure, so that differen-
tiation with respect to temperature implies constant pressure. We therefore

have
Oc,/OT = —acg 5.28.2

where a is the thermal expansivity. It is evident from (2) that, if ¢, is chosen
as a variable, it will not be an independent variable. On these grounds volume
concentrations are not convenient in liquid solutions and we shall not use
them.

Volume concentrations of course play an important part in the theory of
gas kinetics. The implication, sometimes met, that they must therefore play
a parallel part in the theory of solution kinetics shows a lack of appreciation
of the utterly different and much more complex meaning of the word
collision applied to a solution in contrast to a gas. We have not yet a complete
theoretical treatment of collisions in solution, but the author believes that
a successful theory would be based on molecular ratios rather than on
volume concentrations.



CHAPTER 6

SYSTEMS OF CHEMICALLY REACTING SPECIES

§6.01 Notation and terminology

Any chemical process may be written in the form

Y vaA-Y v B 6.01.1
x B

where A, B denote chemical species and v, , vy are integers or simple rational
fractions. Since the meaning of formula (1) has sometimes been misunder-
stood it is desirable to state unambiguously what it means and what it does

not. It means that in a system containing a large amount of A, ..., B,...
the amounts reacting are v,,..., vg,.... It does not mean that a system
composed of an amount v, of A,. . ., is changed completely into an amount
vg of B, ....

We can measure the extent to which the process (1) takes place by the
extent of reaction defined in §1.44 such that a change of ¢ to £ 4 d& means
that an amount v, d¢ of A and the like react to given an amount vgd¢ of B
and the like. We also recall that the affinity of the reaction is defined as

— QF[3E) 7, y=—(0G[OE)r, ps 6.01.2

where P® is the pressure of each phase a.
If & increases by d¢ in a time df we then have the concise universal law
that in any natural process

—(0G[0¢)r, pdé/dt>0  (natural) 6.01.3
and consequently for equilibrium

—(0G/3¢)r, p=0  (equilibrium). 6.01.4
Formula (4) is equivalent to

Y vaua=Y vauy  (equilibrium). 6.01.5
ry B
240
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We now recall the abbreviated notation described in §1.44 according to
which we replace (1) by
0=3 v3B 6.01.6
B

where now each vy is negative for a reactant and positive for a reaction pro-
duct. In this abbreviated notation (5) becomes

Z VB#B=0' 6.01. 7
B
Since the absolute activity is related to the chemical potential by
u=RTIn A 6.01.8
formula (7) is equivalent to
[T1(s)®=1  (equilibrium). 6.01.9
B

We shall now further abbreviate our notation. Let I denote any intensive
property relating to the species B such as Ag, pg, Xp, rs, Mp, Ps. Then we
shall use the contracted notation IT(I) defined by

[TM=T1Us)™ 6.01.10

When the I;’s have values corresponding to a state of chemical equilibrium
we shall call IT (1) the equilibrium product of the Ig’s.
Our first application of this notation is to (9) which we contract to

[1(A)=1  (equilibrium) 6.01.11

and the general condition for chemical equilibrium may be stated as:
the equilibrium product of the absolute activities is unity.

§6.02 Enthalpy of reaction
Consider the constant temperature process

0=Y vsB (T const.) 6.02.1
B

and let the operator A denote the excess of a final over an initial value corre-
sponding to unit increase in the extent of reaction. If the process occurs at
constant pressure then the heat absorbed is equal to AH. For this reason
AH is called either the heat of reaction at constant pressure or better the
enthalpy of reaction.

If on the other hand the process occurs at constant volume the heat
absorbed is equal to AU, which is therefore called the heat of reaction
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at constant volume. This quantity is of little importance except for reactions
involving a gas phase, for which it is related to AH by

AU=AH—RTY' vy 6.02.2
B

where X' denotes summation over gaseous species only, the second virial
coefficients and proper volumes of condensed phases being neglected.

We recall that for a perfect gas H is independent of the pressure and for a
condensed phase the effect of variations of pressure is negligible. It is there-
fore often unnecessary to specify the pressure when speaking of enthalpies of
reaction.

§6.03 Hess’ law

Since H is a function of the state of a system, AH is for successive processes
at the same temperature an additive function. This property of AH, known
as Hess’ law, is useful in enabling us to calculate AH for a reaction, difficult
to produce quantitatively, from other reactions which give less difficulty.
The following simple example illustrates the point

C(graphite)+ O,(g)—CO,(g) —AH=393.5k]J
CO(g)+10,(g)—~CO,(g) —AH=283.0kJ.

In both the above cases AH is readily measurable. By subtraction we obtain
C(graphite) +30,(g)— CO(g) —AH=110.5kJ

a reaction difficult, if not impossible, to study quantitatively.

Other numerous examples are the calculations of the enthalpies of
formation of organic compounds from the enthalpies of combustion. A simple
example is

CH,(g)+20,(2)»CO,(g)+2H,0(1)  --AH=890.3 kJ

C(graphite) + O,(g)—CO,(g) —AH=3935k)

2H,(g)+ 0,(g)—2H,0(l) —AH=571.6 kJ
from which we immediately deduce

C(graphite)+2H,(g)—CH,(g) —AH=74.8KkJ.

Unfortunately in calculating an enthalpy of formation as the difference
between much greater enthalpies of combustion there is considerable loss in
percentage accuracy since the experimental errors add up. Nevertheless this is
the standard method for determining enthalpies of formation of organic
compounds from their elements.
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Unfortunately some authors have used the name heat of reaction for
— AH instead of for AH. This practice is deplorable. In particular the name
‘heat of combustion’ is commonly used for —AH. It might be pleaded in
excuse that in this case — AH is always positive and that there is no other
convenient name. There is on the other hand no excuse whatever for the
habit of calling —AH for adsorption a ‘heat of adsorption’ when there
exists the perfectly good name keat of desorption. The simplest and safest way
to avoid any possible ambiguity is to write explicitly AH=... or —AH=...
as in the above examples.

§6.04 Kirchhoff’s relations

We often need the value of AH at one temperature when it has been measured
at a different temperature. This causes no difficulty provided the dependence
of H on the temperature has been measured or is known theoretically for
the initial and final states.

Let T denote the temperature at which we want the value of AH and T’
the temperature at which it has been measured. Then

AH(T)— AH(T") =Y, vs Hy(T)— ¥, v Ho(T')= ¥, v Ho(T) — Hy(T)}. 6.04.1

Although (1) is the form in which the experimental data are available and
should be used, it is customary to express it in the differential form

dAH/dT:—Z deHB/dT=Z "BCB~ 6.04.2
B B

Formula (2) is known as Kirchhoff’s relation. Since values of the heat
capacities C are usually obtained by differentiating experimental measure-
ments of H(T)— H (T’) and formula (2), if used, has to be integrated, it is
difficult to see any advantage of (2) over (1). As already mentioned in §3.03
the main function of a heat capacity is to serve as the connecting link between
the enthalpy and the entropy.

There is a second formula also associated with Kirchhoff, similar to (2),
but relating the energy change AU with the heat capacities at constant
volume, but this formula is not needed.

§6.05 Prescription of standards

As already explained in §3.25 the formulae for chemical equilibrium require
a consistent choice of standards P°, 1°, H®, and S°. We now prescribe
the choice used almost universally and used henceforth in this text.
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The standard pressure P° is prescribed as
P®=1atm. 6.05.1

The standard enthalpy is prescribed by stating that
H®=0 (T=298.15K) 6.05.2

for every element in its stable state. The standard entropy is prescribed by

stating that
5°=0 (T-0) 6.05.3

for every element in its stable state.

Since H®(T)—H®(298.15K) is determinable by purely calorimetric
measurements, the convention expressed by (2) determines unambiguously
the value of H®(T) for any 7. Similarly since $°(T")— S° (0) is determinable
by purely calorimetric measurements, the convention expressed by (3)
determines unambiguously the value of S°(T) for any 7. Then A° is un-
ambiguously defined by

In A°=H®/RT-S°/R. 6.05.4

Extensive tables exist of values of H°®(298.15K) and of $°(298.15 K).
Less extensive tables exist of H°(T) and of S°(T) for other values of 7.

Most of these tables give values of H® in kcal mole~! and of S° in
cal K™ mole™" although all precise calorimetric measurements are made in
terms of joules. It would save considerable unnecessary calculation if the
tabulated quantities were H#°/R and S°/R.

§6.06 Construction of tables

As already mentioned extensive tables exist of values of H® and of S° for
T'=298.15 K. We now summarize briefly how these are constructed. We
begin with H°.

The first step in determining H° for a given substance is to choose a set of
reactions for which the enthalpy of reaction can be measured directly and
which add up to the process of formation of the given substance from its
elements. Two simple examples have already been mentioned in §6.03.
The set of reactions may include isothermal changes of pressure so as to
convert each measured AH to the required AH®. The values of the enthalpies
of reaction at the several experimental temperatures are reduced to values
at 298.15 K by use of Kirchhoff’s relation. The values at 298.15 K for the
several reactions are combined according to Hess’ law to obtain the heat
of formation A; H®. Finally from the chosen convention that H® at298.15K
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is zero for every element in its stable state it follows that for each compound
H®=A;H® and this is the quantity tabulated. In the most extensive tables*
H®(298.15K) is denoted by AHf®.

We now consider the tabulation of S©. Purely calorimetric measurements,
as illustrated in §3.52, lead directly to $°(298.15 K)—S®(crystal, T—0).
When we choose the convention that $°(7—0) is zero for every element in
its stable crystalline form we have for any substance

S®(crystal, T»0)=Rin o 6.06.1
and consequently
5°(298.15 K)={5°(298.15 K)— S®(crystal, T-»0)} +Rlno.  6.06.2

The expression { } is often called the calorimetric entropy. In order to
determine the tabulated quantity S©(298.15 K) we need to know or assume
the value of 0. There are three different possibilities. For about thirty sub-
stances with simple molecules S°(298.15 K) for the gas has been determined
from purely spectroscopic data and this value, often called the spectroscopic
entropy, is found to be equal to the calorimetric entropy. It follows for all
these substances that o=1 or In 0=0. For a few substances with simple
molecules, namely CO, N,0, NO, H,O the spectroscopic entropy is found
to exceed the calorimetric entropy by amounts RIn2, RIn2, {RIn2,
R 1n % so that o has values differing from unity. These non-zero values of In o
are understood and have been explained in §3.54. In each case they are due
to metastability in the crystal. Finally for all other substances the value of o
has not been determined experimentally. Its value is assumed to be unity.
It is conceivable that there are other cases of 0> 1 but they are likely to be
few if any. The use of the assumption o=1 can thus conceivably lead to
equilibrium constants wrong by a factor such as 2. In the most extensive
tables* $°(298.15 K) is denoted by S°.

Tables' less extensive than those for 298.15 K exist relating to other tem-
peratures. These tables give values of the purely calorimetric quantities
H®(T)—H®(298.15K) and S°(T)—S°(298.15 K).

§6.07 Gaseous equilibria

For every component B in a gas phase we have according to (4.08.1)
Ap=Ag pa/P® 6.07.1
where pj is the fugacity of B, P°® is a standard pressure, normally one

* Rossini et al., Circular no. 500 of National Bureau of Standards, 1952.
t Kelley, U.S. Bureau of Mines, 1949, Bulletin 476.
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atmosphere, and A5 is the value of A5 when pg is equal to P°. Substituting
(1) into (6.01.11) we obtain the equilibrium condition

[1(»=K 6.07.2
where K is a function of temperature only defined by
K=T1(P®/2°) 6.07.3

and is called the equilibrium constant. Lack of experimental data on virial
coefficients in gaseous mixtures usually makes it impossible to correct for
gas imperfection, even though the procedure is in principle straightforward,
When we adopt the approximation

pg=xgP  (perfect gas) 6.07.4
(2) becomes
T[] (xP)=K. 6.07.5
We may rewrite (5) as
[Tx)=K, (perfect gas) 6.07.6
where
K,=K/[](P) 6.07.7

so that K as well as depending on the temperature is inversely proportional
to P¥'®. There is no advantage in using K, instead of K.

§6.08 Egquilibria between gases and solids

We turn now to a discussion of the equilibrium of reactions involving pure
solids as well as gases. Examples are

CaCO,(s)—CaO(s)+CO,(g) 6.08.1
NH, Cl(s)— NH,(g)+ HCi(g) 6.08.2
C(graphite)+ CO,(g)—2CO(g). 6.08.3

We have the general equilibrium condition (6.01.11)
[T()=1 6.08.4

where the 1 of each gaseous species is related to its fugacity by (6.07.1).
On the other hand we may regard the A of each pure solid as a function of
temperature only, since the effect of change of pressure on a solid is usually
negligible.

We now extend our I notation as follows. We write

H(I)=TGI(1)1;[(I) 6.08.5
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where Il;(J) contains all the factors of II(I) relating to the gaseous species
and ITg(I) all the factors relating to the solid species.
For example in the case of reaction (1)

I(;[ (A)=4co, 6.08.6
IS;I (A)=2ca0lAcaco, - 6.08.7
Using this notation, the equilibrium condition (4) may be written
];I(l) ];[(A)=1. 6.08.8
Now substituting (6.07.1) into (8) we obtain
[Tp=kK 6.08.9
where K is a function of tempethure only given by
K=T](P®/i®)T] (1/4®) 6.08.10
and is called the equilibrium conGstant. For esxample for reaction (3), we have
PolPco, =K 6.08.11
K =28, 48 P°Jicd. 6.08.12

§6.09 Temperature dependence

For any reaction
0=) vgB 6.09.1
B

between gases and solids, or between gases only, the equilibrium constant X
is given by (6.08.10)

K=TT(P®/A°)T] (1/4°). 6.09.2
G S
For each species B whether gaseous or solid we have
dln A§/dT=—HS/RT?. 6.09.3

Taking logarithms and differentiating (2) with respect to T and using (3)
we obtain

dln K/dT=Y Hg/RT*=AH®|RT? 6.09.4
B

where AH® is the standard enthalpy of reaction. This may be written in the

alternative form
dIn K/d(1/T)=-Y Hg/R=—AH°®|R. 6.09.5
B
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§6.10 Numerical example

We shall now illustrate the use of our formulae and of standard tables by a
simple example. We choose the reaction

0=2CO(g)— C(graphite)— CO,(gas) at 1000 K. 6.10.1
The equilibrium is determined by
Péo/Pco; =K 6.10.2
where
K=P®18,A8 1288 = (Ao, A [Ad) atm. 6.10.3

The tabulated experimental data* are as follows

B C(graphite) CO,(g) CO(g) Y
B
vB - 1 - 1 + 2
Hg (25 °C)/kcal mole ™! 0 —94.05 —26.42
S5(25 °C)/cal K™ mole™! 1.36 51.06 47.30
Hg (1000 K)— Hg (25 °C)/kcal mole™!  2.810 7.993 5.186
S5(1000 K)—Sg(25 °C)jcal K™ ! mole™" 4.47 13.28 8.82
Hy (1000 K)/kcal mole ™ * 2.810 —86.059 —21.230 40.789
S5 (1000 K)/jcal K™ mole™! 5.83 64.34 56.12  42.07

From these we deduce

In(K/atm)= —AH®/RT +AS®/R=(42.07—40.79)/1.987=0.64
K=1.9 atm.
The accuracy of a calculation of this kind is at best about +0.05 in each term
of In K. This usually leads to an uncertainty of at least 0.1 in In K or 10%,

in K. In most cases the experimental uncertainty in a direct measurement
of K is no less.

§6.11 Reactions between pure solids or liquids

We must now consider reactions between pure solid phases without any

gases. Examples are
0=Pbl,—Pb-2I 6.11.1

0=CuS—Cu-S. 6.11.2

* Rossini et al., Circular no. 500 of National Bureau of Standards, 1952.
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Incidentally, for the following considerations it is immaterial whether any
of the phases is a pure liquid instead of a pure solid. As an example we may
mention

0=Ag+HgCl-Hg—AgCl 6.11.3
The simplest type of reaction between solid phases is an allotropic change,
such as

0 =monoclinic sulphur—rhombic sulphur 6.11.4
0=white tin—grey tin. 6.11.5

The equilibrium condition for a reaction involving pure solid and liquid
phases can still be expressed in the form (6.01.11)

[1(4)=1  (equilibrium) 6.11.6

but each A is now a function of temperature only, if we disregard the small
effect of changes of pressure. Hence the equilibrium condition (6) may be
regarded as an equation determining the temperature of reversal of the
change considered. This equation may or may not have a solution for T
positive. Reactions (1), (2), (3) proceed naturally towards the right at all
temperatures and there is no solution of (6). In point of fact very few reac-
tions between pure solids and pure liquids have a reversal temperature.
The most important exceptions are allotropic changes such as (4) and (5),
among which we may, if we like, include simple fusion.
For reactions such as (1), (2), (3) at all temperatures we have

[TW<1 6.11.7
or taking logarithms and writing in full,
Y vg In A <0. 6.11.8
B

Another way of expressing the same thing is to state that the affinity, defined
in §1.44, is positive at all temperatures. We shall see in chapter 8 how the
affinity of some reactions can be accurately determined by measurements
of electromotive force.

We shall now consider (6) in more detail and for this purpose we write

it in the expanded form
Y vgIn A5=0. 6.11.9
B

But by definition
In Ag=pg/RT =Hg/RT — Sg/R. 6.11.10
Substituting (10) into (9), we obtain

T=z VBHB/Z VBSB~ 6.11.11
B B
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The numerator of (11) is the enthalpy of reaction AH and the denominator
is thz entropy of reaction AS. We now consider these separately.
For AH we write formally

AH(T)=AH(T')+ Y vg{He(T)— Hg(1")}, 6.11.12

If for each of the substances the dependence of H on temperature has been
determined calorimetrically and if in addition AH has been measured at
any one temperature 7", then by means of (12) AH can be calculated at any
other temperature.

For AS we write formally

AS(T)=AS°+Y vs{Sp(T)—S3} 6.11.13
B

where the superscript ® denotes the value obtained by smooth extrapolation
to T=0. If now the dependence of H on temperature has been measured
throughout the temperature range from 7 down to a temperature from
which one can extrapolate to =0, then (13) determines AS for all tempera-
tures apart from the constant AS°. But S° is the quantity discussed in detail in
§§3.51-3.57. It has the value zero except for a few well understood exceptions
for which its value is known to be R In 0, with o0 a small number such as 2
or 3. With this knowledge of AS° or in the absence of evidence to the contra-
ry assuming AS®=0, formula (13) determines AS for all temperatures.

Using (12) and (13) together, we can solve (11) for the transition tempera-
ture T. Alternatively using the experimental value of 7, we can use (11),
(12), (13) to determine an experimental value for AS°.

§6.12 Transition of sulphur

We shall now illustrate the formulae of the preceding section by a numerica!
example. As already mentioned it is difficult to find an example of an equili-
brium temperature for a reaction between solid phases except in the simplest
case of an allotropic change. We accordingly choose as our example

0=monoclinic sulphur—rhombic sulphur 6.12.1

and we shall use the subscripts p and , for the rhombic and monoclinic
forms respectively. The transition temperature is

T=368.6K (transition). 6.12.2

The enthalpy of transition at this temperature is given by

AH/R=(Hy—Hg)/R=(475+5)K  (T=368.6K).  6.12.3
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Consequently the entropy of transition at this temperature is
AS/R=(Sy— Sg)/R=47.5/368.6=0.12+0.01 (T=368.6K). 6.12.4

According to calorimetric measurements* on the two forms from 15 K to
the transition temperature

{Sr(368.6 K)—Sg(15 K)}/R=4.38+0.03 6.12.5
{S\(368.6 K)—S\(15 K)}/R=4.49+0.04. 6.12.6
Combining (4), (5), and (6) we obtain

{Su(15 K)— Sg(15 K)}/R=0.12—4.49 + 4.38
=0.01+0.05. 6.12.7

We conclude that well within the experimental accuracy

Sy —Se=0. 6.12.8

§6.13 Homogeneous equilibrium in solution

We turn now to homogeneous chemical equilibrium in a liquid solution.
We again start from the general equilibrium condition (6.01.11)

[T(H)=1 6.13.1
and use
A=1%my. 6.13.2

Substituting (2) into (1) we obtain

[T (m) T )=Kx 6.13.3

where K,,is defined by

Kn.=[1(1/4°) 6.13.4
and so depends only on the solvent and the temperature. K, is called the
molality equilibrium constant. Formula (3) tells us that the equilibrium
molality product is inversely proportional to the equilibrium activity

coefficient product.
In the special case of an ideal dilute solution (3) reduces to

[1(m)=Kn. 6.13.5

* Eastman and McGavock, J. Amer. Chem. Soc. 1937 59 145.
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§6.14 Temperature dependence

If we take logarithms of (6.13.4) we have
InK,=-Y vgInig. 6.14.1
B

Differentiating with respect to 7 and using (5.15.2) we obtain
dIn K, /dT=Y vgHy/[RT?*=AH®|RT?. 6.14.2
B

where AH® is the enthalpy of reaction at infinite dilution in the given
solvent.

§6.15 Use of volume concentrations

As mentioned in §5.28 volume concentrations are sometimes used instead
of molalities but the practice is not recommended. In place of (6.13.3) one

then obtains
[T@II»=K. 6.15.1

where ¢ denotes volume concentration and y denotes a new kind of activity
coefficient. We shall not go into details, but will only point out that the
temperature dependence of K, is given by*

dln K /oT=AH*/RT*—a ) vg 6.15.2
B

where « denotes the thermal expansivity of the solvent. Spurious formulae
for 8 In K_/OT obtained by false analogy with gaseous equilibria have some-
times been quoted, both in the past and recently’.

§6.16 Heterogeneous equilibria involving solutions

We might also discuss equilibria involving solutions and vapour phases,
or solutions and solids, or even solutions, solids, and vapour phases, but this
is unnecessary because any equilibrium however complicated can be regarded
as a superposition of a homogeneous equilibrium in a single phase, liquid or
gaseous, and distribution equilibria of individual species between pairs of
phases. Both these elementary types of equilibrium have been discussed in
sufficient detail.

§6.17 Transitions of second order

This is perhaps the most convenient place to describe a phenomenon called

* Guggenheim, Trans., Faraday Soc. 1937 33 607.
t E.g. Clarke and Glew, Trans. Faraday Soc. 1966 62 547.
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a transition of the second order. It is quite different from anything we have
yet met, having some of the characteristics of phase changes and some of
the characteristics of critical phenomena. We shall first show by a particular
example how a transition of the second order arises from certain assumed
properties of the thermodynamic functions. We shall then discuss briefly
how and when such transitions occur.

As a preliminary step to our discussion, we shall consider the thermodyna-
mic properties of the equilibrium between two isomers under the simplest
conceivable conditions. Thus we consider the isomeric change

A-B 6.17.1

occurring in a mixture of A and B in the absence of any other species. We
further assume that the mixture is ideal. Finally we assume that the proper
enthalpy of reaction has a value w independent of the temperature; in other
words we assume that A and B have equal heat capacities. If then x denotes
the mole fraction of B the proper Gibbs function G, has the form

Gn=Go(T)+xw+RT{(1—x)In(1—x)+x In x} 6.17.2

where w is a constant and G5 (7) depends only on the temperature. From
(2) we deduce

H,=GS —TdGS/dT + xw 6.17.3
from which we verify that the proper enthalpy of reactionis w. We also deduce
Sm=—dGo/dT —R{(1—x) In(1—x)+x In x} 6.17.4
showing that the proper entropy of mixing has its ideal value
—R{(1=x)In(1—x)+xIn x}. 6.17.5
The equilibrium value of x is obtained by minimizing G,. We find
0G,/0x=w+RT In{x/(1—x)} =0 6.17.6
so that
x/(1—x)=exp(—w/RT). 6.17.7

Formula (7) is, of course, the simplest possible example of the equilibrium
law. Before we dismiss this extremely simple system, there remains one
important point to be investigated, namely the verification that (6) and (7)
do correspond to a minimum of G,,, not to a maximum. We have

0°G,/0x*=RT{l/x+1/(1-x)}>0 6.17.8

thus verifying that we have found a minimum, not a maximum.
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Let us now arbitrarily introduce a modification into the form of G,
assumed in (2), without at this stage enquiring into the physical significance
of the change. We replace the term wx by wx(l1 —x). We then have

Gu=Go(T)+x(1—x)w+RT{(1-x)In(1—=x)+xInx}  6.17.9
H,=G2—TdG/dT +x(1—-x)w 6.17.10

w=—dGS /[dT—R{(1—x) In(1—x)+x In x} 6.17.11

from which we observe that the enthalpy is affected by the modification,

but the entropy is not.
We now seek the equilibrium value of x by minimizing G,. We find

0G,,/ox=—(2x—)w+In{x/(1 —x)}=0 6.17.12
so that
x/(1—x)=exp{(2x—1)w/RT}. 6.17.13

One solution of (13) is obviously x=4, but this is not always the only solu-
tion. Nor is this solution necessarily 2 minimum rather than a maximum of
G- We must investigate these points and shall do so in the first place
graphically. Figure 6.1 shows (G,,— G2 )/ RT plotted against 2x — 1 for various
values of 4w/RT. Owing to the complete symmetry between x and 1—x,
we can without loss of generality assume that x>1—x.

04
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Gm=Gon
G =Gm

00

-0-2

- 0.4
(o) 0-2 04 06 o8 1O
s=2x-|

Fig. 6.1. Dependence of Gm on x for various values of 4w/RT. The numbers attached to
the curves are values of $w/RT or T)/T
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We see that if w>0 then at high temperatures, that is at small values of
w/RT, the root x =4 is the only root and it corresponds to a minimum of G,,.
At low enough temperatures, that is at large values of w/RT, there is another
root $<x <1 and this root corresponds to a minimum of G,, while the root
x=% now corresponds to a maximum. Thus there exists a temperature T,
such that at temperatures below 7, the equilibrium value of x is greater than
4 and decreases as the temperature increases; the equilibrium value of x
becomes 1 at the temperature 7, and remains } at all high temperatures.
The change occurring at the temperature 7, is called a transition of the
second order and the temperature T, is called a lambda point for a reason
which will be explained later.

It is clear from figure 6.1 that T, is the temperature at which the two roots
of (13) become equal, the root at x=1 changing from a minimum to
a maximum. Thus there is a point of horizontal inflexion at x=4. We

have then
0°Gp/ox? = —2w/RT,+1/x(1—x)=0  (x=1) 6.17.14

whence
w/RT, =2. 6.17.15

It is clear from figure 6.1 that for negative values of w the minimum is
always at x=1 and there can be no lambda point.

§6.18 Cooperative systems

Before proceeding to a more detailed examination of transitions of the second
order, we shall explain in very general terms how they may arise. As a pre-
liminary step, let us determine the enthalpy of change in the process (6.17.1).
For the enthalpy H of the whole sytem, we have according to (6.17.10)
changing to the variables n,, ng

H=(ny+ng)H® +n,ngw/(ny+ng) 6.18.1

where H® is independent of n,, ng. Differentiating with respect to n,, ng
in turn we obtain for the partial enthalpies

Hy=H® +n}wji(ns+ng)*=H® +x*w 6.18.2
Hy=H®+niwj(ns+ng)*=H® +(1-x)*w 6.18.3

so that the proper enthalpy of change from A to B is
Hg—H,=(1-2x)w. 6.18.4
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Since we are considering a condensed phase, (4) is effectively equivalent to
Ug—U,=(1-2x)w. 6.18.5

The outstanding characteristic of (5) is that the energy required to convert a
molecule A into a molecule B depends in a marked degree on what fraction
of all the molecules is present in each form. Such a characteristic would not
be expected when the process

A-B 6.18.6

represents a chemical change of one isomer to another, nor in such a case
do we find a lambda point. It is however not difficult to mention other inter-
pretations of (6) which might reasonably be expected to have the charac-
teristic just mentioned. Suppose for example we consider a regular array of
polar molecules or atoms in a lattice. Suppose further that each moleule
or atom can point in either of two opposite directions. Suppose finally that
-we denote the molecules by A or B according to the direction in which they
point. Then it is easily understandable that the energy required to turn
round a molecule or atom may depend markedly on how many other mole-
cules or atoms are pointing in either direction. This behaviour is typical of
systems called cooperative. The significance of the name should be clear from
this and the following examples.

Another more complicated, but possibly more important, interpretation
of (6) is for A to represent a state of molecular libration and B a state of
molecular rotation.

Another example occurring in certain alloys is the following. Suppose we
have an alloy of the composition ZnCu containing N atoms of Zn and N
atoms of Cu arranged on a regular lattice of 2N lattice points. We can picture
two extreme arrangements of the two kinds of atoms on the lattice, one
completely ordered, the other completely random. In the completely ordered
arrangement every alternate lattice point A is occupied by a Zn atom and the
remaining lattice points B are occupied by Cu atoms. In the opposite extreme
arrangement every lattice point A or B is occupied by either Zn or Cu
atoms arranged at complete random. We can moreover consider intermediate
arrangements such that a fraction x of the Zn atoms occupy A lattice points
and the fraction 1 —x of Zn atoms occupy B lattice points. The remaining
lattice points are of course occupied by the Cu atoms. We can then without
loss of generality take x=4. In such a system the average energy required to
move a Zn atom from an A point to a B point will depend markedly on how
many A points are already occupied by Zn atoms. It is therefore at least
conceivable that such a system might have a lambda point.
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As a matter of fact the alloy having the composition ZnCu does have a
lambda point and the thermodynamic properties of this system can be at
least semi-quantitatively represented by a Gibbs function of the form
(6.17.9). This form was first suggested by Gorsky* and later independently
derived by approximate statistical considerations by Bragg and Williams'.
It is outside the scope of this book to consider this aspect of the phenomenon
and we shall accordingly confine ourselves to a purely phenomenological
thermodynamic investigation of some of the general properties of lambda
points, among others the property leading to the name.

§6.19 Alternative notation

The notation which we have used to introduce the subject of transitions of

the second order seems natural. It is not however the notation most used.

For the sake of completeness we describe briefly the alternative notation.
A quantity s called the degree of order is defined by’

s=2x—1 6.19.1
or
x=31+s). 6.19.2

In this notation formula (6.17.9) becomes
Gpn=Gg +H1—s)w+RT{}(1+s) In(1+5)+4(1 —s) In(1 —s)—1In 2}. 6.19.3

The equilibrium value of s is determined according to (6.17.12) by

In{(1+s)/(1—s)}=sw/RT 6.19.4
which is equivalent to
tanh(ws/2RT)=s. 6.19.5
Using (6.17.15) we can transform (5) to
T,/T=(tanh ™ 's)/s. 6.19.6

These formulae, of course, contain nothing which is not already contained
in the formulae of §6.17. It is merely a historical accident that pioneer
workers in this field used the variable s instead of x.

§6.20 Lambda point
We have seen how a Gibbs function of the form (6.17.9) leads without any

* Gorsky, Z. Phys. 1928 50 64.
T Bragg and Williams, Proc. Roy. Soc. A 1934 145 699.
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further assumption to the occurrence of a transition of the second order and
we have explained how this type of behaviour can occur in a cooperative
system. We do not assert that a Gibbs function of approximately this form
is the origin of all transitions of the second order. Still less do we assert
that a Gibbs function of this form accounts accurately for any transition
of the second order. We merely assert that the form (6.17.9) of the Gibbs
function is one possible form which leads to the occurrence of a lambda
point having certain general characteristics which we shall describe. We shall
continue to make use of the particular forms of thermodynamic functions
described in §6.17 merely for illustrative purposes.

From figure 6.1, or more accurately by calculation from (6.17.13), we can
determine the equilibrium value of x as a function of 7. The result is given
in figure 6.2, where s=2x—1 is plotted against 7'/7,. We notice that at
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Fig. 6.2. Dependence of equilibrium value of degree of order on temperature

temperatures immediately below 7, the equilibrium value of s changes rapidly
with temperature and at temperatures below 47, this equilibrium value
differs hardly appreciably from unity. There is then a rapid change of the
equilibrium value of s in the temperature range between 7, and 47, . Asso-
ciated with this change in s there is a rapid change in the part of the proper
energy or enthalpy which depends on s namely the term

x(1—x)w=4(1—s")w. 6.20.1

This is shown in figure 6.3. The term (1) occurs in the energy additional to
other terms due to the translational and internal degrees of freedom of the
molecules. Thus as the temperature is decreased through the lambda point
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Fig. 6.3. Temperature dependence of enthalpy due to variation in degree of order
there is a sudden change in the temperature coefficient of the enthalpy, or in
other words a discontinuity in the heat capacity C. This is shown in figure 6.4.

The shape of the curve recalls a Greek capital A whence the name lambda
point suggested by Ehrenfest.*
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Fig. 6.4. Contribution to heat capacity of variation in degree of order

o

For the particular model considered in detail, we observe that in the
immediate neighbourhood below the lambda temperature

0H/3s=0 6.20.2
0S/3s=0 6.20.3
ds/dT =00 6.20.4

* Keesom, Helium, Elsevier, 1942 p. 216.
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in such a manner that
(0H/0s)(ds/dT) is finite 6.20.5
(8S/0s)(ds/dT) is finite. 6.20.6
The properties (5) and (6) are independent of the choice of s. On the other
hand the relations (2), (3), (4) depend on the definition of 5. For example if
we replace s by o=s2, then
O0H/d0 is finite 6.20.7
0S/0¢ is finite. 6.20.8
We may then describe a transition of the second order as a discontinuity
in C, with continuity of H, S, G, at a certain temperature T; called the
lambda point.
The lambda point known longest is the one discovered by Curie and there-
fore called the Curie point, below which a substance such asiron has perma-

nent magnetization and above which it has not. The Curie point will be
referred to again in chapter 11.
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Fig. 6.5. Heat capacity of liquid helium near lambda point

Probably the most interesting, most studied, but perhaps least under-
stood lambda point is that of helium at 2.2 K. The experimeatal data*
for C plotted against T are shown in figure 6.5.

* Keesom, Helium, Elsevier, 1942 p. 215.
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Many other lambda points are known to occur in crystals and are usually
associated with a sudden change in the extent to which the molecules in the
crystal can rotate freely. Few however, if any, have been studied in such
detail as to be completely understood.

§6.21 Comparison with phase change and critical point

Since a substance has measurably different properties above and below the
lambda point, there is a temptation to regard a transition of the second order
as a kind of phase change. The expression phase change of the second order
has been used, but as it has in the past led to considerable confusion it is
better avoided.*

A. Phase change B. Lambda point

Fig. 6.6. Contrast between phase change and lambda point

The contrast between a lambda point and a phase change may be made
clear by a plot of the proper Gibbs function against the temperature. This
is shown in figure 6.6. Diagram A depicts a phase change. The curves of the
two distinct phases o and B cut at the transition point, the dotted portions
of the curves representing metastable states. Diagram B depicts a transition
of the second order. The curve marked O represents the Gibbs function of a
hypothetical phase with s=0, which is usually associated with complete
randomness. The curve marked eq represents the Gibbs function of a phase
in which at each temperature s has its equilibrium value. Below the lambda
point the dotted curve marked O lies above the curve marked eq and conse-
quently the former represents metastable states.

At the lambda point the two curves touch. We might ask what happens
to the eq curve above the lambda point. If we extend the eq curve by the
simplest analytical formula, ignoring physics, the curve would continue below
the O curve, thus suggesting that it represents states more stable than the
O curve. On further study we should however find that this hypothetical

* Guggenheim, Proc. Acad. Sci. Amst. 1934 37 3.
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curve corresponds to negative values of s? and has therefore no physical
meaning. It is therefore safer and more profitable to forget about such a
curve.

On the other hand a comparison between a lambda point and a critical
point, if not carried too far, is less dangerous. At temperatures below the
lambda point there is a stable phase with a value of s determined by the
temperature and there can also be a metastable phase with s=0; the latter
can in fact sometimes be realized in practice by sudden chilling from a
temperature above the lambda point. The difference between these two
phases, measured by the values of s? gradually decreases as the temperature
is raised and vanishes at the lambda point when the two phases become
identical. This recalls the behaviour of liquid and vapour phases at the
critical point, but here the resemblance ends.

§6.22 Dependence of lambda point on pressure

Up to this point we have considered how a transition of the second order
occurs at a certain temperature, disregarding the pressure. This is in practice
justifiable for most such transitions, but in principle there can be a depen-
dence on the pressure. In practice the only known example where pressure
changes are likely to be important is that of liquid helium. Let us then
consider how the lambda point is affected when the pressure is changed.

In the particular model represented by (6.17.9) the dependence on pressure
would result from the energy parameter w being a function of the pressure.
We shall however not assume this model nor any other detailed model,
but shall rather derive formulae of complete generality.

Regarding G as a function of s, as well as of T, P we have

dG=—-SdT+ VdP+(0G/os)ds 6.22.1
and differentiating throughout with respect to s
d(0G/ds)= —(9S/0s)d T +(0V/0s)d P +(0°G/ds*)ds. 6.22.2
Now the equilibrium value of s at each temperature is determined by
0G/os=0  (equilibrium) 6.22.3
and in particular at the lambda point
s=0  (lambda point). 6.22.4

If then we follow the lambda point at varying pressure we have (3) and
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owing to (4) we have
ds=0 (lambda point). 6.22.5

Substituting (3) and (5) into (2) we obtain

—(0S/0s)dT +(8V/0s)dP=0  (lambda point) 6.22.6
or
4T, _ (OV[3s)smo
dP  (8S/ds)s~o

Formula (7) describes in the most general way how the temperature of the
lambda point depends on the pressure. The right side of (7) can however
usefully be transformed into alternative forms more directly related to
experimental quantities.

We accordingly multiply numerator and denominator of (7) by ds/d7,
where s here denotes the equilibrium value. We obtain

dT, 3V ds /as_di

dP  0s dT| s dT

where every quantity on the right side is given its equilibrium value at or
immediately below T;. We shall now examine the physical significance of the
numerator and denominator on the right of (8).

Let us use the superscripts ~ and * to denote the value of quantities imme-
diately below and immediately above the temperature 7,. Then we have

6.22.7

6.22.8

G =G* 6.22.9
H™ =H* 6.22.10
s~ =s* 6.22.11
C™ =C™" +T,(0S/0s)(ds/dT) 6.22.12

so that the denominator on the right of (8) is (C™—C™)/T;.
Similarly if « denotes coefficient of thermal expansion

vV =V*=V, 6.22.13
a” V,=a*V, +(0V/0s)(ds/dT) 6.22.14

so that the numerator in (8) is (¢~ —a*)V,. Hence substituting (12) and
(14) into (8) we obtain

dT,/dP=(a" =", T,j(C™ —C"). 6.22.15

This formula shows how the effect of pressure on the lambda point is related
to the discontinuities in C and in .
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Returning to (7), instead of multiplying numerator and denominator by
ds/d7, we multiply by ds/dP, obtaining

LA Y 2216

But if x; denotes isothermal compressibility, we have

k1 Vi=x7 V, —(8V/ds)(ds/dP). 6.22.17
Similarly

- +

and so using Maxwell’s relation (1.47.4) we have

a” V,=a*V,—(8S/ds)(ds/dP). 6.22.19
Substituting (17) and (19) into (16) we obtain

dT,/dP=(k7 —x7)j(a” —a™). 6.22.20

This formula relates the dependence of the lambda point on the pressure to
the discontinuities in o and xr.
Formulae (15) and (20) are due to Ehrenfest.*

§6.23 Transitions of higher order

In an ordinary phase change, which we may call a transition of the first order,
we have

1st order

G continuous
transitions.

S=—0G/0T discontinuous
In the transitions of the second order, which we have been discussing, we have

G, 0G/oT continuous } nd order

. . transitions.
C=-—-T0*G/doT? discontinuous

In a like manner we can define a transition of the third order by
2 2 :
G, 0G[0T, 0°G/oT* continuous } 3rd order

, . . transitions.
9*GjoT? discontinuous

* Ehrenfest, Proc. Acad. Sci. Amst. 1933 36 153.
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It is possible that transitions of the third order exist. It is further possible
to extend the above definitions to transitions of still higher order. We shall
however not pursue this matter any further.

§6.24 Components and degrees of freedom

Since the equilibrium condition for the chemical change

0=y vsB 6.24.1
B

is given by (6.01.7)
Y vpup=0 6.24.2
B

all variations of temperature, pressure, and composition consistent with
chemical equilibrium must satisfy

; VB d”’B = 0. 6.24. 3

This is a relation between the chemical potentials additional to and indepen-
dent of the Gibbs—-Duhem relations. The existence of this relation reduces
by one the number of degrees of freedom of the system.

Let us consider a particular example, namely a gaseous mixture of
N,, H,, and NH;, regarded as perfect. This single-phase system can be
described by T, P, xy,, Xy,, Xnu, Subject to the identity

xN2+tz+xNHJ=1 6.24.4
or alternatively by T, P, uy,, Uy, Hnu, Subject to the Gibbs—Duhem relation
xdeﬂNz+XH2dﬂHz+xNH3d[.lNHJ=O. 6.24.5

Hence in the absence of chemical reaction between the three components
the system has four degrees of freedom. If however, for example by intro-
ducing a catalyst, we enable the process

N, +3H,=2NH, 6.24.6
to attain equilibrium, then there is the further restriction
AN, + 3y, = 2UNy, 6.24.7

which reduces the number of degrees of freedom from four to three. This
situation is sometimes described by saying that of the three species N, H;,
and NH, there are only two independent components. Whether or not this
terminology is adopted the number of degrees of freedom is certainly three.
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As a second example consider the system consisting of PCl3, Cl,, and PCI,,
There are three chemical species but owing to the equilibrium condition
for the reaction

PCl;=PCl, +Cl, 6.24.8

there are only two independent components. For the gaseous phase alone
the situation is similar to that in the system N,, H,, and NH,. There are
two independent components in one phase and so three degrees of freedom.
If we consider the system consisting of the solid phase PCl, together with
the gaseous phase we have two independent components in two phases
and so two degrees of freedom. This means that there are two independent
variables which we shall take to be the temperature T and the stoichiometric
ratio r of Cl to P in the gas phase. The temperature determines the equili-
brium constant K for the process

PCl5(s)=PCl;(g)+ Cl,(g) 6.24.9

and the fugacities are then determined by the simultaneous equations
Peci, P, =K 6.24.10
(3peci, +2Pc1,) Prcr, =T 6.24.11

In the particular case =35 the stoichiometric composition of the gas phase
is the same as that of the solid phase PCl;. In this case some authors go so
far as to describe the system as of one component PCls. This attitude has
nothing to recommend it. We have seen that the system as initially described
has two degrees of freedom. These two degrees of freedom are of course
reduced to one by specifying the value of r but the value r =35 has no unique
thermodynamic feature. The statement that the ratio of Cl to P in the gas
phase is equal to its ratio in the solid phase is no different in kind from the
statement that the ratio in the gas phase is one half, or double, the ratio in
the solid phase. The distinction between =5 and other values of r is artificial
and pointless. Furthermore it can lead to confusion. Suppose we are interes-
ted in the surface phase between solid and gas. Then although the ratio of
Cl to P may be 5 in both gas phase and solid there is no reason to expect
the ratio to be 5 in the surface phase. In other words there may well be pre-
ferential adsorption of either PCl; or Cl, and this can not be described in
terms of the single component PCl5. Again suppose there is a gravitational
field. Then, as we shall see in chapter 9, the proportion of PCl; to Cl,
will vary from layer to layer and can have the value unity at one height only.
It is then essential to treat the system as of two components even though
the overall stoichiometric composition may be that of PCl,.
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Now consider a system in which several chemical changes can take place.
Some such changes may be expressible as linear combinations of others,
but there will always be a definite number of chemical changes which are
linearly independent. Consider for example a system consisting of solid
graphite and a perfect gaseous mixture O,, CO, CO,. Then of the chemical
changes

C+40,-CO 6.24.12
C+0,-CO, 6.24.13
C0+40,-CO, 6.24.14
C+C0,-2CO 6.24.15

the third is obtained by subtracting the first from the second, while the fourth
is obtained by subtracting the third from the first. Thus only two of these
changes are independent. By a comparison of (1) and (2) it is clear that in-
dependent chemical processes have independent equilibrium conditions,
whereas linearly related chemical processes have linearly related equilibrium
conditions. Hence each linearly independent chemical equilibrium corre-
sponds to a restrictive relation between the chemical potentials leading to a
decrease by unity in the number of degrees of freedom. For example in the
two-phase system consisting of solid graphite and a gaseous mixture of
0,, CO, CO, the effect of the two independent chemical equilibria is to
reduce the number of degrees of freedom from four to two; thus the state of
the system is completely determined by the temperature and the pressure.
Incidentally in this particular system at equilibrium the amount of free O,
is so small as to be undetectable. The system may therefore be more simply
described as a two-phase system containing the three species C, CO, and CO,
between which there is a single chemical reaction

C+C0,-2CO. 6.24.16

The equilibrium condition for this process reduces the number of degrees
of freedom from three to two. Whichever way we consider the system we
find that the number of degrees of freedom is two. Whether we regard the
system as consisting of four components with two independent chemical
processes, of three components with one independent chemical process, or
of two independent components is a mere difference of terminology without
practical importance.



CHAPTER 7

SOLUTIONS OF ELECTROLYTES

§7.01 Characteristics of strong electrolytes

When certain substances such as common salt are dissolved in water, the
solution has a comparatively high conductivity showing that charged ions
must be present. We owe to Arrhenius the suggestion that for these substan-
ces, called strong electrolytes, the solute is composed largely of the free ions,
such as Na‘* and Cl™ in the case of common salt. Study of the optical
properties by Bjerrum* led him in 1909 to the conclusion that at least in
dilute solutions there are at most very few undissociated molecules and in
many such cases the properties of the solution can be accurately accounted
for on the assumption that no undissociated molecules are present.

It would be outside the province of this book to discuss whether a dilute
solution of a strong electrolyte contains a small fraction of undissociated
molecules or none at all. All that matters is that the description of a salt
solution as completely dissociated into independent ions, though admittedly
an oversimplification, is at least an incomparably better model than any
other of equal simplicity. We shall therefore compare the properties of
every real solution of strong electrolytes with an idealized solution con-
taining independent ions.

§7.02 Ionic mole ratios and ionic molalities

In accordance with the programme outlined in the previous section, we
describe the composition of solutions of electrolytes in terms of the ions,
not in terms of the undissociated molecules. We accordingly describe the
composition of a solution containing one or more electrolytes by the
mole ratio r; of each ionic species i defined by

ri=nn,. 7.02.1
* Bjerrum, Proc. 7th Int. Cong. Pure and Appl. Chem. London 1909 Sect. 10 p. 58;
Z. Elektrochem. 1918 24 321.

268
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In practice it is customary instead of mole ratios to use molalities m; defined
by
my=r;r° 7.02.2

where r° is a standard value of r corresponding to one mole of the ionic

species per kilogramme of solvent and equal to M, /kg mole™?.

§7.03 Electrical neutrality

When we carry out our intention of describing the properties of electrolyte
solutions in terms of the ionic species, we shall find that most of the formulae
have a close resemblance to those for non-electrolytes. There is however one
important difference, namely that the molalities m; of all the ionic species
are not independent because the solution as a whole is electrically neutral.
We now proceed to express this condition mathematically.

We use the symbol z to denote the charge on an ion measured in units of
the charge of a proton, so that for example

For Na* z=1
BaZ* z=2
La’t z=3
Cl- z=-1
SO;~ =2
PO4~ =—3

FeC Ni™ z=—4.

We call z the charge number of the ion.
If then m,; denotes the molality of the ionic species i having a charge num-
ber z,, the condition for electrical neutrality of the solution may be written

Y z,m;=0. 7.03.1

Alternatively if we use the subscript . to denote positively charged ions or
cations and _ to denote negatively charged ions or anions, then we may write
(1) in the form

;z+m+=2|z_lm_ 7.03.2

wherein |z_|= —z_ is a positive integer.

Owing to the condition of electrical neutrality (1) or (2), a solution con-
taining c ionic species, as well as the solvent, has ¢ not c+ 1, independent
components,
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§7.04 Ionic absolute activities

Since most equilibrium conditions are expressible in a general, yet conve-
nient, form in terms of absolute activities we shall make continual use of the
absolute activity 4; of each ionic species i. By following this procedure we
shall in fact obtain formulae closely resembling those already obtained for
non-electrolytes. There is however one important difference. We saw in the
previous section that if there are c ionic species i and so c ionic molalities
m;, then only c—1 are independent. There must clearly be some analogous
or related property of the set of ¢ quantities 4;. We shall now discover this
property by considering the physical significance of the 4;’s first in particular
cases and then in general.

Let us consider the distribution of NaCl between two phases, of which at
least one o is a solution; the other B may be a solution in a different solvent
or the solid phase. We shall now determine the equilibrium condition for
NacCl ab initio on the same lines as in §1.39 but in terms of Na* and Cl~.
We assume the temperature, but not necessarily the pressure, to be the same
in the two phases. Suppose now a small quantity dny,+ of Na* and a small
quantity dng,- of Cl™ to pass from the phase o to the phase f, the temperature
of the whole system being kept constant. Then the increase in the Helmholtz
function is given by

d1F= —PadVa—[l;a+ ana+ _ﬂ:':l—dn(:l—
—PPAVE 4 B, dny, s +pb-dng-. 7.04.1

By an argument analogous to that of §1.39, if the two phases are in mutual
equilibrium with respect to the NaCl, the process being considered must be
reversible and so the increase in the free energy must be equal to the work
done on the system. Thus

dF=—-P*dV*—PPdVP 7.04.2
Subtracting (2) from (1) we obtain
(MRa+ — i+ )dnng s + (- — - )dng - =0. 7.04.3

The condition for electrical neutrality (7.03.2) in this case takes the simple
form

ann+ =dnc1— =dn. 7.04.4
Substituting (4) into (3) we have
(/‘ga*‘_ﬂ;a*'l'”gl‘_Auaél‘)dn=0 7.04.5

or dividing by dn
P+ F UG - = Uar + 8 - . 7.04.6



SOLUTIONS OF ELECTROLYTES 271

Since according to the definition of A,

ﬂ,=RT ln A‘i 7.04.7
we may rewrite (6) as
In A%+ +1n A% -=In 28+ +1n 28, - 7.04.8
or
Mg+ Ay =2+ 2&1- . 7.04.9

We thus see that any phase equilibrium relating to NaCl involves only
the sum

Hna+ + Ucr- 7.04.10
or the product

Ana+ At - 7.04.11

In the same way an equilibrium relating to BaCl, would involve only the
sum

Hpa2+ +2/1C|- 7.04. 12
or the product
Apar+ A1~ 7.04.13
and an equilibrium relating to LaCl;, only the sum
Hypgs+ +3lcr- 7.04.14
or the product
Aass Adi- 7.04.15

and so on.

But it might be asked what about an equilibrium relating to the chloride
ion by itself? The answer is that the transfer of a chloride ion, or any other
ion alone from one phase to another involves a transfer of electrical charge,
that is to say an electric current. We shall consider such processes in detail
in the following chapter on electrochemical systems. Meanwhile as long as
we exclude processes involving an electric current, and in this chapter
we do so, we shall meet the y,’s and A,’s only in combinations corresponding
to zero net electric charge. We can express this mathematically by stating
that the only linear combinations

Y v 7.04.16
i

and the only products
IT ()" 7.04.17
i
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which will occur will be those in which the v,’s satisfy the relation

Z V,~Z,~=0. 7-04.18

This means that, apart from electrochemical flow of charge, with which
we are not concerned in this chapter, we could in each phase assign an
arbitrary value to the absolute activity 4; of one ionic species, for instance
the chloride ion. The A;’s of the remaining ions would then be unambiguously
determined. Nothing is however gained by thus arbitrarily fixing the values
of the A;’s. We can just as well leave the arbitrary factor in the 1;’s undeter-
mined, knowing that only those combinations (17) of the 4,’s satisfying
(18) will ever occur and that in these combinations the arbitrary factors
cancel.

§7.05 Ideal dilute and real solutions

It would be rational, as in the case of non-electrolytes, first to define an ideal
dilute solution of electrolytes and thereafter to compare the properties of
real solutions with ideal dilute solutions. Since however no solution of a
strong electrolyte is even approximately ideal dilute even at the highest
dilution at which accurate measurements can be made, there seems no
point in devoting space to such solutions. We therefore pass straight to real
solutions, of which ideal dilute solutions constitute an idealized limiting case.

§7.06 Osmotic coefficient of the solvent

We can define the osmotic coefficient ¢ of the solvent in complete analogy
with the case where the solute species are non-electrolytes merely replacing
rs by r; the mole ratio of an ionic species, or m, by m, the molality of an
ionie species. For electrolyte solutions (5.10.1) becomes

—In(Ay/A9)=—1In(p,/p)=0 ¥ r;i=¢r° Y m,. 7.06.1
i i

We shall use (1) to describe the several equilibrium properties of the solvent.
Before doing so we however point out that if the solution contains non-
electrolytes as well as electrolytes, the former may be included formally
inside the summation ;. We merely treat an electrically uncharged species
as if it were an ionic species with z=0.

§7.07 Freezing point and boiling point

Formula (5.17.11) relating the freezing point T of a solution to the
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freezing point T° of the pure solvent, becomes
¢S ri=¢r®Y m;=¢(M,/kgmole™ ")y m;=(AHI)(1/RT —1/RT®) 7.07.1
i i i

where (A, H?) denotes the value of the proper enthalpy of fusion A, H? of the
pure solvent averaged over the reciprocal temperature range 1 T® to 1/T.
In (1) the value of ¢ is that at the freezing point of the solution.

The relation (5.18.1) between the boiling point T of a solution of involatile
solutes and the boiling point T° of the pure solvent becomes

¢ ri=¢r® Y m=¢(M kg mole“);m,:(A,H?)(l/RT"—1/RT) 7.07.2

where (A, H®> denotes the value of the proper enthalpy of evaporation A, HY
of the pure solvent averaged over the reciprocal temperature range 1/T
to 1/T°. In (2) the value of ¢ is that at the boiling point of the solution.

§7.08 Osmotic pressure

Formula (5.16.2) for the osmotic pressure IT becomes for a solution of
electrolytes
O¢V,Y/RT=¢ Y r;. 7.08.1

§7.09 Ionic activity coefficient

[n analogy with (5.09.1) and (5.09.2) the activity coefficient y; of the ionic
species i is related to the absolute activity 4; by

Ay=2myy; 7.09.1

y—1 as Y m—0. 7.09.2

The proportionality constant 4> depends on the solvent and the temperature.
Furthermore, as explained in §7.04 in each solution an arbitrary value may be

assigned to A, for any one ionic species; the values for the remaining ionic
species are then determined in that solution.

§7.10 Mean activity coefficient of electrolyte

Let us consider an electrolyte which consists of v, cations R of charge num-
ber z, and v_ anions X of charge number z_ so that according to the con-
dition of electrical neutrality v,z, +v_z_=0. The absolute activity 4g,x
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of the electrolyte R,, X,_ is then related to the absolute activities of the
two ionic species by

I, x=Ax*Ax . 7.10.1
Substituting (7.09.1) into (1) we have
A, x=(i§ mr7R)"* (Ax mx¥x)"~ 7.10.2
and in the limit of infinite dilution
Ir,x—(Axmg)"*(Axmy)’~ as Zi:m;—v(). 7.10.3

Since Ag,x and my and my are all well defined quaantities it is clear from (3)
that in spite of the indefiniteness in A7 and A§ separately, the product
(’R)"*(Ax)"~ is completely defined. Returning now to (2) since i x,
my, my, and, as we have just seen, the product (Ag)"* (1)~ are all well
defined, it follows that the product yx* y% is also well defined.

We now introduce a quantity yg x called the mean activity coefficient of the
electrolyte, related to y; and yx by

X =R 7.10.4
Substituting (4) into (2) we have
e, x=0R)"* (Ax) - myt m v 7.10.5

Since yg,x is well defined, while yg and yx individually are not, it would be
wrong to regard (4) as a definition of yg x in terms of y, and yx. Nevertheless
formula (4) does contain something of physical significance. For let us
consider a solution containing two cations R, R’ and two anions X, X'
from which we can form four different electrolytes, for each of which we
can write a relation of the form (4). What these relations together tell us is
that the four mean activity coefficients are not independent. We can best
illustrate the point by a simple example. Let us consider the two cations
Na®, K* and the two anions C1~, NO;. Then we have formally

VRa, c1=TNa* Yci- 7.10.6
?Izc,C1='}’K+ Yci- 7.10.7
Ve, NOs = INa+ INOF 7.10.8

71%, No; = Yk + YNoj - 7.10.9

In a given solution each of the quantities on the left of formulae (6) to (9)
is well defined, while the individual factors on the right are not. But these
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four formulae together lead to the physically significant result

INa, ci/ VK, c1="7Na, N0/ VK, NOs - 7.10.10

§7.11 Temperature dependence
Just as for non-ionic species, we have according to (5.03.10)
dln A,/0T=—H,RT? 7.11.1
so that according to (7.09.1)
9 In(Ay,)/0T = —H,/RT?. 7.11.2
Proceeding to the limit of infinite dilution (2) becomes
d1n A°/0T=—H|RT? 7.11.3

where H;® denotes the limiting value of H; when X;m;—0. Now subtracting
(3) from (2) we find
01n 9,/0T = —(H,— H)|RT>. 7.11.4

For reasons previously given, only linear combinations of these formulae
will occur of the type defined by (7.04.18). In particular for an electrolyte
composed of v, cations R and v.. anions X, we have according to (1)

0 In Ay x/0T = —Hg x/RT? 7.11.5

where
HR,X=V+HR+V—HX 7.11.6

is the partial enthalpy of the electrolyte. Similarly from (4) we deduce
(v4+v_)d1In yp x/0T = —(Hg x—HZ x)/RT? 7.11.7

where Hg x denotes the limiting value of Hy x as Z;m;—0.

§7.12  Distribution of electrolyte between two solvents

The equilibrium condition for the distribution of an electrolyte consisting
of v, cations R and v_ anions X between two solvents o and B can be written
either in terms of the electrolytes as

7.12.1

o B
AR,X*AR,X
or in terms of the ions as

() (A =Ry (A% . 7.12.2
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According to (7.10.1) the two conditions are equivalent. Substituting (7.10.5)
into (1) we obtain
Ve V-, Vi +v_B
[mgmx yrlx "] =1an 7.12.3

V-, Vs tvoa

v
[my*mx y'x

where
Rx=0R%A%)* (Ax*/ax®)'~ 7.12.4

and according to (7.11.3) we have
0 In IR+ /0T =(HX% — HY%)/RT? 7.12.5

We notice that the numerator of the right side is the limiting value as
X,m;—0 of the partial enthalpy of transfer of the electrolyte from the solvent
o to the solvent P.

§7.13  Solubility

For the equilibrium between the solid electrolyte composed of the ions
R, X and a solution containing R, X and possibly other electrolytes,

we have
g, x =A%, x 7.13.1

where we denote the solid phase by the superscript ° and the solution by no

superscript.
Substituting from (7.10.5) into (1) we obtain
my My YRix T =K 7.13.2
where
shex =4 x/(R)" (%) 7.13.3

is called the solubility product of the electrolyte and s; x is called the mean
solubility of the electrolyte. Since

0ln A3 x/0T=—Hj x/RT? 7.13.4
we have, using this and (7.11.3) in (3)
0ln s x/0T =(Hg*x— Hg, x)/(v. +V_)RT? 7.13.5

We notice that the numerator on the right of (5) is the limiting value
as X;m;—0 of the enthalpy of dissolution of the solid electrolyte in the given
solvent.
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§7.14 Chemical reactions

If we consider the chemical reaction

0=Y vB; 7.14.1

where some or all of the species B; may be ionic, the condition of equilibrium,
in the notation defined in §6.01 is according to (6.13.3)

[T(m:) T1(v)= K1) 7.14.2

The fact that some or all of the reacting species may be ions has no effect on
the form of (2). It is however of interest to notice that, owing to the conser-
vation of net electric charge, it follows from (1) that

ZV,-Zi=0 7-14.3

and so
InT](y) 7.14.4

conforms to the type of product which is physically well defined according
to the condition (7.04.18).
We shall illustrate the point by an example. Consider the reaction

0=2Fe?* +Sn** —2Fe3* —Sn?*. 7.14.5

According to (2) the equilibrium condition is

2 2
MEe2+ Mgna+ PFez+ Ysna+ =K 7.14.6
2 2 —Om e
mFe3+ ms,,z + 'ylre:H» 'ysn2+

wherein the activity coefficients product is well defined. It can in fact be
expressed in terms of mean activity coefficients as follows

2 2 8 6 5
YFe2+Ysn4+ _ VFe2+Vsn4+Yoi- _ VFez+, cl-Vsn+, CI- 7.14.7

Vrz-'c“ Psn2+ y:‘é* Vsn2+ 'Ygl- ')’ge“,cr an“, cl-
For the temperature dependence of K,, we have (6.14.2)
dIn K, /dT=AH*/RT? 7.14.8

where AH® denotes the enthalpy of reaction at infinite dilution.

§7.15 Gibbs—Duhem relation for electrolyte solutions

For any phase whatever we have the Gibbs-Duhem relation (1.30.2). For
a solution of electrolytes in a solvent 1 this becomes
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SdT—VdP+nld/11 +Z n,-d,u,-=0 7.15.1

or considering variations of composition at constant temperature and
pressure

nydp,+Y ndy=0 (T, P const.). 7.15.2
We may rewrite (2) in terms of absolute activities 4, as
n,dini;+Y ndln4,=0 (T, P const.). 7.15.3
i
According to the definition of mole ratios and molalities given in §5.02 and
extended to ions in §7.02 we have
n/n,=r;=r°m;=(M,/kg mole ™ ")m,. 7.15.4
If then we divide (2) and (3) throughout by n, and use (4) we obtain
dp, ==Y ridp=—(M,/kg mole™ )Y m,dy; (T, P const.) 7.15.5
i i

dlnl,=-) rdlni=—(M/kgmole™)) mdIni, (T, P const.).
' ‘ 7.15.6

As explained in §7.03 all variations of composition of an electrolyte solution
are subject to the condition for electrical neutrality

Y z;m;=0 7.15.7
so that
Y z,dm;=0. 7.15.8

The variations in formulae (1), (2), (3), (5), (6) are all subject to the condi-
tion (8); but for variations satisfying (8) these formulae hold just as well for
electrolyte solutions as for other solutions.

We now recall the definition of the osmotic coefficient (7.06.1)

—In(1,/2)=¢ ¥, r;=$(M kg mole™ )3 m; 7.15.9

and the definition of ionic activity coefficients y; by (7.09.1)
A=A>mpy;. 7.15.10

Differentiating (9) with respect to changes of composition at constant
temperature and pressure we obtain

dln A =—(M,/kgmole™")d(¢ Y m,) (T, P const.). 7.15.11
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Taking logarithms of (10) and differentiating we obtain
din4=dlnm+dlny, (T, P const). 7.15.12
Now substituting (11) and (12) into (6) we obtain

d{(¢p—-1)Y m}=Y mdiny, (T, P const.) 7.15.13
i i

of the same form as formula (5.11.2) and due to Bjerrum*.
In particular for a solution of a single electrolyte having v, cations R and
v_ anions X, formula (13) becomes

(v +v.)3{(1—@)m}/om= —v, mOIn yg/Om—v_mdInyx/om  17.15.14

where m denotes the molality of the electrolyte. The mean activity coefficient
7r,x Of the electrolyte is related to the ionic activity coefficients y; and yx
by (7.10.4)

TRIX T =ROK - 7.15.15
We now divide (14) throughout by (v, +v_.)m and use (15) obtaining
—01In yg x/Om=m"18{(1—p)m}/om 7.15.16
or integrating from 0 to m
—Inyg X=Jma_-—{(1‘¢)’"} dm 7.15.17
’ 0 om m

Just as in a solution of a single solute non-electrolyte, formula (16) or (17)
may be used to determine either of the quantities y or ¢ if the other is known
as a function of composition at all molalities less than m. On the other hand
the more general relation (13) should not be used in this manner, but rather
as a check on the self-consistency of assumed formulae for ¢ and the
7’s because it is also necessary for the y,s to satisfy the relations of
the type

01n y,/0m,=0!ny,/Om;. 7.15.18

As an example of (17) suppose

l—¢=am' (a,t const.). 7.15.19

Then substituting (19) into (17) we obtain
—Inyg, x=(141"Nam'=(1+t"1)(1-¢). 7.15.20

* Bjerrum, Z. Physik. Chem. 1923 104 406.
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§7.16 Limiting behaviour at high dilutions

It was already proved* over fifty years ago that deviations from ideality
due to the long-range electrostatic interactions between ions in highly dilute
electrolyte solutions are quite different from the deviations in non-electrolyte

solutions.
The distinction can for a single solute be expressed in the form

I—¢ocm as m—0  (non-electrolyte) 7.16.1
l—¢ocm' as m—-0  (t<1)  (electrolyte). 7.16.2
This distinction is most strikingly expressed in the form
d(1—¢)/dm—finite limit as m-0  (non-electrolyte) 7.16.3
d(1-¢)/dm—>o0 as m—0  (electrolyte). 7.16.4

The latter behaviour is shown graphically in figure 7.1 which is of historical
interest being taken from a paper by Bjerrum' written as early as 1916.
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Fig. 7.1. Osmotic coefficients in aqueous solutions of potassium chloride. + + Freezing-
point measurements. Electrostatic interaction according to Milner. ——-- In-
complete dissocation ignoring electrostatic interaction

Milner* in 1912 had shown by statistical methods that the theoretical value
of t is near 1. Various values of ¢ in (2) were used empirically in the
period around 1922, some authors using different values of ¢ for different
electrolytes. Bronsted* pointed out in 1922 that in the limit of high dilutions

* Milner, Phil. Mag. 1912 23 551.
t Bjerrum, 16te Skand. Naturforskermete 1916 p. 229.
! Brensted, J. Amer. Chem. Soc. 1922 44 938.
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the value of ¢ and likewise the proportionality factor in (2) must be the
same for all electrolytes of the same charge type. For 1-1 electrolytes
Bronsted proposed t=3. Finally in 1923 Debye and Hiickel* determined
by a statistical treatment the theoretical law valid in the limit m—0.
According to this law ¢=1% and the proportionality constant in (2) is also
determined by the theory.

§7.17 Limiting law of Debye and Hiickel

As already mentioned the behaviour of a strong electrolyte in the limit of
high dilution is given quantitatively by the formulae due to Debye and
Hiickel.* We shall now specify these formulae. All the deviations from
ideality are most concisely expressed in terms of two characteristic lengths
denoted by s and k1. The definition of s is

s=e?/4neye kT 7.17.1

where e is the elementary charge, ¢, is the rationalized permittivity of empty
space (so that 4ne® is the unrationalized permittivity of empty space),
¢, is the relative permittivity (‘dielectric constant’) of the solvent and &
is the Boltzmann constant. The other characteristic length x~! is defined by

k*=8nLgs Y }z7n;n M, 7.17.2

where L is the Avogadro constant, ¢ is the density of the solvent, and M,
is the proper mass of the solvent.

If G denotes the Gibbs function of the solution and G'* denotes the Gibbs
function of an ideal dilute solution of the same composition, then at high
dilutions

(G—G/RT=-1Y nzixs. 7.17.3
Differentiating (3) with respect to n, and noting that kocn;* we obtain
(1“¢)Zni/n1=(ﬂ1—lli1d)/RT=%zniziz"s/m 7.17.4

so that

1-d=3} nizf/z n;)ks. 7.17.5

Differentiating (3) with respect to n; and noting that Koc(E,n,z,-z)* we
obtain
—In y;=4z%ks. 7.17.6

* Debye and Hiickel, Phys. Z. 1923 24 185.
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We readily verify that Bjerrum’s condition (7.15.13)
d{(1 —¢)Z m}= —Z mdlny, (T, P const.) 7.17.7
is satisfied when used with (7.15.20) and ¢=14.

We now rewrite the above formulae for numerical calculations. We recall
that the molality m; of an ionic species i is defined by

my=rrd =r/(M,/kg mole™*)=n,/n, M, mole kg™ *. 7.17.8
We also define the ionic strength, following Lewis and Randall*, by
I=1~Zzi2m,.. 7.17.9

We further define a dimensionless parameter o depending on the nature of
the solvent and on the temperature, by

a=(2nLgs® mole kg™ ')* 7.17.10
and we observe that
dxs=alt. 7.17.11
We can now rewrite (3) as
(G-G*)RT=—-3%aY zin,I* 7.17.12
and (5) as
and (6) as
—Iny,=az?I?. 7.17.14

In the simple case of a single electrolyte composed of v, cations of charge
number z, and v_ anions of charge number z_ formula (13) becomes

1—¢p=3a{(vy 2% +v_22)/(vs +v_)}E 7.17.15
Using the condition for electrical neutrality
Vezy+v_z_=0 7.17.16
we can rewrite (15) as
1—¢p=1%az, |z_|I% 7.17.17

From (14) it follows that the mean activity coefficient y, of an electrolyte
composed of v, cations of charge number z, and v_ anions of charge

* Lewis and Randall, J. Amer. Chem. Soc. 1921 43 1141.
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number z_ is given by

—Iny,=af{(vizi +v_z2)/(vy +v )HE 7.17.18
Using (16) we can rewrite (18) as

—Inyy =0z, |z_|I% 7.17.19

§7.18 Aqueous solutions

We now illustrate the formulae of the previous section by giving numerical
values for water. At 0 °C we have

L=0.60225 x 10** mole !

0=0.9999 x 10° kg m 3

e=1.6021x10"* C
4me,=8.85416x 1072 CV ! m™!

k=1.3805x10"23JK™!

T=273.15K

¢, =88.23.

As usual we take r®=M,/kg mole~!. These values lead to

§=6935A  a=1.123. 7.18.1

o
-0-02
-0:04
p—I
— _0. Ba Cl
7,z "0 NaCI’
-0 08 K2504
Bd(NO;)z
-0'10
KNO,
~0-12
o Ol 02 03
=

Fig. 7.2. Osmotic coefficients of electrolytes of various charge types at 0 °C
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Similarly for water at 25 °C we have
0=0.9971x10* kg m™~?3
T=298.15K
£,=78.54.
These lead to
s=7.134A  a=1.171 7.18.2

Figure 7.2 gives a plot of (¢—1)/z,.]z_|, determined by freezing-point
measurements, against I¥ for several electrolytes of various charge types.
The tangent at the origin shown as a broken line has the theoretical slope
}o according to formula (7.17.17).

§7.19 Less dilute solutions

The limiting law of Debye and Hiickel described in the previous two sections
is most valuable in providing a reliable means of extrapolating experimental
data to infinite dilution, since experimental measurements determine only
ratios of the values of y in the several solutions. To determine values of y
itself in the several solutions some assumption has to be made concerning
the value of y in at least one such solution, for example the most dilute.
The limiting law of Debye and Hiickel provides the necessary assumption.

On the other hand this limiting law is accurate only at very high dilutions.
For example when the solvent is water it is accurate enough at I=10"3,
but already at I=10"2 deviations are experimentally detectable and at
I=10"1 deviations are serious. In other solvents having smaller permittivi-
ties deviations from the limiting law appear at correspondingly lower ionic
strengths.

For less dilute solutions various formulae can be used, all reducing to the
limiting formula of Debye and Hiickel at high dilutions and all more or
less empirical at less high dilutions. Two of these will be described in the
succeeding sections,

§7.20 Formulae of Debye and Hiickel

We saw in §7.17 how the limiting law of Debye and Hiickel can be conve-
niently and succinctly expressed in terms of two lengths s and k™!, the former
being completely determined by the solvent and the temperature, and the
latter being inversely proportional to the square root of the ionic strength.
The formulae for less dilute solutions contain another characteristic length a
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representing an average distance of closest approach between pairs of ions
and therefore called the ionic diameter.
Formula (7.17.3) of the limiting law is replaced by*

(G—GY)RT= -} ) n;zfes {3(1 +xa) ™' —3o(ka)} 7.20.1

where o(y) is a tabulated function' defined by

o(y)=3y *{1+y—(1+y) ' =2In(1+ )} 7.20.2
or when y<1
o()=1+43Y (t+1)(t+3)"'(=y)  (y<?). 7.20.3
t=1

By differentiating (1) with respect to n, and noting that kocny* we deduce
for the osmotic coefficient

(1 _¢)Zi: nifng =(u —.uild)/RT= —4rd{(G— Gid)/RT}/d’C
=1 Z niz,-zlcspf lo(xa) 7.20.4

so that
1—¢=¥3 mzi[y, n)eso(xa). 7.20.5

By differentiating (1) with respect to n; and noting that x2ocZ;n;z? we
obtain
—Iny;=3%z}ks(l+xa)” . 7.20.6

As in §7.17 we now rewrite the above formulae for numerical calculations in
terms of the ionic strength 7 and the dimensionless parameter a. Formula
(1) becomes

(G—G)RT=—3%a ) z}n,I*{3(1+2ul%afs) ™" —4o(2al*a/s)}. 7.20.7

Formulae (5) and (6) become respectively
1—¢=1} z?m,/Y, m)IFo(2ul*afs) 7.20.8
i i

—In y,=az?I*(1+ 2ala/s)~ . 7.20.9

For solutions containing only a single electrolyte composed of v, cations
of charge number z, and v_ anions of charge number z_ these formulae,
when we use the condition of electrical neutrality,

VieZoe+v_oz_=0 7.20.10

* Debye and Hiickel, Phys. Z. 1923 24 185.
t Harned and Owen, Physical Chemistry of Electrolyte Solutions, Reinhold 2nd ed.
1950 p. 597.
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reduce to
1—¢p=1%az,|z_|I*o(2al*a/s) 7.20.11

—Iny, =0z, |z_|[I*(1+2alta/s)"". 7.20.12

§7.21 Specific interactions

The formulae of Debye and Hiickel enunciated in the previous section
contain a single adjustable parameter a. By ad hoc adjustment of the value
assigned to ¢ it is usually possible to account for the behaviour of a solution
containing a single electrolyte at ionic strengths not exceeding 0.1. In a
mixture of several electrolytes these formulae predict the same value of
y .. for all electrolytes of the same charge type and this contradicts the experi-
mental facts. To conform with these facts further adjustable parameters are
essential. We shall describe the use of a simple and convenient set of such
parameters. For the sake of brevity and simplicity we shall here consider
solutions containing only ions of charge number +1.

We begin by choosing a real or hypothetical single electrolyte as a standard
with which to compare other electrolytes either alone or in a mixed solution.
We shall find that it does not matter how this standard electrolyte is prescrib-
ed provided it resembles a typical real electrolyte. We shall mention alter-
native convenient choices of the standard electrolyte:

1. Some real electrolyte, say NaCl.

2. A hypothetical electrolyte accurately described by the formulae ot
Debye and Hiickel with 2xa/s =1 which corresponds to ax3A in water.

3. A hypothetical electrolyte accurately described by the formulae of
Debye and Hiickel with 2a/s=1 which corresponds to a~3.5A in
water.

We use the superscript © to denote the standard electrolyte and we repeat
that what follows is independent of the choice of standard.

We assume that the Gibbs function G of a solution containing ny cations
R and nx anions X is related to the Gibbs function G® of a solution of
the standard electrolyte at the same total molality m by

(G—G®)/RT =n, ;;2ﬁk,xmkmx. 7.21.1

The outstanding feature of this formula is that there is a single interaction
parameter Py x for every combination of a cation R and an anion X, that
is to say one parameter for each electrolyte. The formula contains no para-
meter for interaction between two cations, nor between two anions. This is
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the essence of a principle enunciated by Bronsted* in 1921 and called by
him the principle of specific interaction of ions. According to this principle
two ions of the same sign will so rarely come close to each other in dilute
solution that their mutual interactions may be assumed to be determined by
their charges, but otherwise to be non-specific. Ions of the opposite sign on
the other hand often come close to each other and their mutual interactions
are therefore specific depending on their sizes, shapes, polarizabilities, and
so on. When this principle is introduced into a statistical treatment' it
leads to parameters of the type Bz x but none of the type fg g- or fx x--

By differentiating (1) with respect to n; noting that myocn; ' and myocn; !
we obtain

(; "R'F;"x)(¢e*¢)=—;;25mxmkmx 721.2
so that
¢_¢e=;;ﬁk,xmnmx/m 7.21.3
where
m=y mg=)y my. 7.21.4
R X
By differentiating (1) with respect to n; noting that mgzocn, we obtain
In(yafy ) =23, Br.xmx - 7.21.5
Similarly
In(yx/y®) =23, B, xma: 7.21.6
Consequently the mean activity coefficient yg x of RX is given by
In(ye, x/)’e)=; Br.x: mx'+RZ Br:, x Mg - 7.21.7
In a solution of a single electrolyte RX these formulae reduce to
¢—¢°= Br,xm
ln()’k, x/?e)=2ﬁk,xm~ 7.21.8

We see that every parameter f; x can be determined by measurements on
solutions of the single electrolyte RX. Thus the properties of all solutions of
mixed electrolytes can be predicted from the properties of solutions of single
electrolytes.

* Brensted, J. Amer. Chem. Soc. 1922 44 938.
t Guggenheim, Phil. Mag. 1935 19 588; Guggenheim, Applications of Statistical Mecha-
nics, Clarendon Press 1966 chapter 9.
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The principle of specific interaction leads to a number of conclusions
concerning mixtures of electrolytes which have been confirmed experimen-
tally by Brensted*. We shall not give details, but shall merely mention
one illustrative example of the usefulness of the principle.

From formula (7) it follows that the mean activity of NaCl present as a
trace in a solution of HCl at m=10""! is equal to that of HCI present as a
trace in a solution of NaCl at m=10""'. The latter can be measured electro-
metrically, as we shall see in the next chapter, while there is no convenient
experimental method for determining the former. Hence the former is best
determined by measuring the latter.

TABLE 7.1

Interaction coefficients

Values of fp x—Bna,c1 at 25 °C

NaF —0.08 KF —0.02
HCl 0.12 NaCl 0.00 KCl —0.05 RbCl —0.09
HBr 0.18 NaBr 0.02 KBr —0.04 RbBr —0.10
HI 0.21 Nal 0.06 K1 0.00 Rbl —0.11
HCIO, 0.15 NaClO, —0.05 KClO, -—0.19 RbNO; -0.29
NacClo, —0.02 RbAc 0.11
LiCl 0.07 NaBrO, —0.14 KBrO, —-0.22 CsCl —0.15
LiBr 0.11 KIO, —0.22 CsBr —0.15
Lil 0.20 NaNOQ, —0.11 KNO, —0.26 Csl —0.16
CsNO; —0.30
LiClO, 0.19 NaAc 0.08 KAc 0.11 CsAc 0.13
LiNO; 0.06 NaCNS 0.05 KCNS —0.06 AgNO; —-0.29
NaH,PO, —0.21 KH,PO, —0.31 TIClO, —0.32
LiAc 0.03 TINO, —0.51
TIAc —0.19

Values of the parameter B x are known for a large number of 1:1
electrolytes in water. The values of f; x of course depend on the choice
of standard electrolyte, but the difference between the values for any two
electrolytes is almost independent of this choice. For this reason we give'
in table 7.1 values of fg x —Pnaci @t 25 °C. The values for HCl, NaCl,
and KCl are obtained from electromotive-force measurements by use of the
theory given in the following chapter. These values are probably accurate
to +0.02. The remaining values are obtained by the isopiestic measurements

* Bronsted, Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. 1921 4(4); J. Amer.
Chem. Soc. 1922 44 877; 1923 45 2898.
t Guggenheim and Turgeon, Trans. Faraday Soc. 1955 §1 747.
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relative to NaCl or KCl of Robinson and Stokes*. Some of the § values
may be uncertain by as much as 4-0.1 but most of them are probably more
accurate than this.

§7.22 Chemical reactions involving solvent

In §7.14 we obtained the condition for equilibrium in a chemical reaction
between solute ionic species, including non-ionic species as if they were ionic
with z=0. We shall now consider how in dilute solution this condition can
be extended to include chemical reactions involving the solvent.

A reaction involving the solvent is called solvolysis with the exception of
simple addition called solvation. In particular if the solvent is water it is
called hydrolysis.

For the sake of brevity we shall consider not the general case, but a
specific example. We choose the hydrolysis of chlorine

Cl,+2H,0-H,0" +Cl” + HOCL. 7.22.1
The equilibrium condition in its most general form is
A0+ Aci- AocilAci, Ao =1 7.22.2
which we rewrite as
Mso+ Aci- AnocilAc, = Mo - 7.22.3
According to (7.06.1) we have
Auy0/ ;ngo =exp(—¢ Z r). 7.22.4
Indilute solution it is sufficiently accurate to replace (4) by the approximation
Aol Aho=1 7.22.5

with an accuracy depending on the composition of the solution. As a typical
example in an aqueous solution of 1:1 electrolytes at a total molality one
tenth, we have approximately

Y rx3.6x107°
$~0.92
so that
Ayol Ao exp(—3.3x 107%)~0.997. 7.22.6

Hence we may usually replace (3) by

}‘HJO" 'A‘Cl - A’HOCI/ ;ic1z = lﬁﬁo . 7.22.7

* Robinson and Stokes, Trans. Faraday Soc. 1949 45 612.
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Using the relation (7.09.1) for each reacting species other than the solvent
H,O we obtain

(Mmy 0+ M- Myoci/ mch)(')’n,o'f Yci- Yroct/ YCIZ) = Km(T) 7.22.8

the constant A%, being absorbed as a factor of K,,.

From this typical example we see that for a chemical reaction involving
the solvent, the equilibrium condition takes the approximate form in
dilute solution

[T(m:y)=Kan(T) 7.22.9

where IT’ differs from IT by the omission of factors relating to the solvent,

§7.23 Acid-base equilibrium

One of the most important classes of chemical processes between ions in
solution, is that of the transfer of a proton from one ion or molecule to
another. Any ion or molecule capable of losing a proton is called an acid;
any ion or molecule capable of gaining a proton is called a base. These defini-
tions due to Bransted* are simpler and more rational than earlier definitions
which they supersede. The acid and base which differ from each other by one
proton are called a conjugate pair'. Obviously the electric charge number of
any acid exceeds by unity that of its conjugate base. Table 7.2 gives examples
of well-known conjugate pairs of acids and bases. It is clear from several
examples in table 7.2 that an ion or a molecule may be both an acid and a
base.

TABLE 7.2

Typical conjugate acids and bases

Acid Base
CH;CO,H CH;CO,
NH] NH;,
H,0 OH~-
H,0+ H,0
H,PO, H,PO;
H,PO; HPOY”
HPO?2- PO

H,N+CH,CO,H  H,N+CH,CO;
H,N+CHyCO;  H,N-CH,CO;

* Bronsted, Rec. Trav. Chim. Pays-Bas 1923 42 718.
t Brensted and Guggenheim, J. Amer. Chem. Soc. 1927 49 2554.
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If A and B denote an acid and its conjugate base, while A’ and B’
denote another conjugate pair then the chemical reaction

A+B'->B+A’ 7.23.1
is typical of acid-base reactions. The equilibrium condition is
(mgmy/mymy)(yeyar/vave)=K 7.23.2

where K depends on the solvent and the temperature, but not on the com-
position of the solution. As a typical example we have, using Ac as an
abbreviation for CH;CO,

NH; +Ac~—NH, +HAc 7.23.3
(Myp, Muac/ MNu; Mac —)(VNﬂg YHAc/ YNu} YAc -)=K. 7.23.4

Since water is both a base and an acid it can react with either an acid or a
base dissolved in it. As examples of acids reacting with water, we mention

HAc+H,0-Ac” +H,0" 7.23.5
NH; +H,0-»NH;+H,0" 7.23.6
H,PO; +H,0-HPOZ™ +H,0" 7.23.7
and as examples of bases reacting with water
H,0+Ac™->OH™ +HAc 7.23.8
H,0+NH,—»OH™ + NH; 7.23.9
H,0+H,PO; -OH™ +H,PO,. 7.23.10

We note that according to the definition of hydrolysis given in the preceding
section, reactions (5) to (10) are all examples of Aydrolysis. On the other
hand reaction (3) does not involve the solvent H,0 and is therefore not a
hydrolysis.
The reactions (5), (6), and (7) are all examples of the general type
A+H20—)B+H30+ 7.23.11
of which the equilibrium condition in dilute solution becomes
(mpmu,0+(Ma)(VpYr,0+/7a)=Ka 7.23.12

where K, is called the acidity constant of A in water at the given temperature.
K, is a measure of the strength of the acid A relative to water. The reciprocal
of K, may likewise be regarded as a measure of the strength of the conjugate
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base B. For example the acidity constants Ky, of HAc and Kyu; of NH}
have the values at 25 °C
Kyac=1.75%x10"% 7.23.13
Ky =6.1x 10710, 7.23 14

Two molecules of H,O can react together, the one acting as an acid, the
other as a base, thus:

H20+H20—)OH— +H30+.
The equilibrium is determined by
My,0+ Mon- YH;0+ You- = Ky 7.23.15

where K, is called the ionization product of water. Its values at various
temperatures are as follows:

0°C K,=0.115x10"1* 7.23.16
20°C K,=0.68x107'* 7.23.17
25°C K,=1.01x10"1%, 7.23.18

The equilibrium constants for reactions of the type
H,O0+B-OH™ +A 7.23.19

can always be expressed in terms of an acidity constant and the ionization
constant of water. For example for reaction (8) we have

(Mon- Myac/Mac-YVou- TuaclPac-) = Ku/Kyac 7.23.20

where Ky, is the acidity constant K, of HAc. Similarly for reaction (9)
we have

(mon- "'NH:/mNH,)(')’OH - PNH} /“yNHg) =K. /Knu; 7.23.21

where Kyy: denotes the acidity constant of NH;.
If we apply the definition (12) of an acidity constant to H;O* we obtain

Ky,o0+ =(mH10 mH,o+/mH,o+)()’Hzo ?H30+/7H30+)
=My,071,0
R My, 0% 55.5. 7.23.22

From (12) and (22) we see that no molecule or ion which is a much stronger
acid than H;O" can exist in appreciable quantity in water. For example
HCl is a much stronger acid than H;0%. Consequently when dissolved in
water it is almost completely changed to H;0" and Cl~. Similarly H,S0.
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is a much stronger acid than H,O" and is therefore almost completely
changed to H;0* and HSO;. On the other hand Kjyso; =1.0x1072 so
that HSO, being a much weaker acid than H;O" can exist in appreciable
amount in water.

Similarly no base much stronger than OH ~ can exist in appreciable quan-
tity in water, since it would be hydrolysed to its conjugate acid and OH ™.
Examples of bases too strong to exist in water are O?~ and NH; which are
hydrolysed as follows

H,0+0?">OH" +OH" 7.23.23
H,0+NH; -OH™ +NH,. 7.23.24

Examples of very strong bases, but not so strong that they cannot exist
at all in water are S~ and CN™.

When a strongly alkaline substance such as NaOH is dissolved in water,
the base present in the solution is OH™. Often NaOH is itself referred to
loosely as a base.

Similar relations hold in other solvents which can react as both base
and acid. Reactions of an ion or molecule with the solvent are called
solvolysis.

§7.24 Weak electrolytes

An electrically neutral molecule, not itself an electrolyte, which by hydrolysis
or other reaction is partly changed into ions is often called a weak electrolyte.
[n particular an electrically neutral acid such as HAc which is partly hydro-
lysed according to

HAc+H,0-Ac™ +H,0" 7.24.1

and an electrically neutral base such as NH, which is partly hydrolysed
according to
H,0+NH,-OH™ +NH{ 7.24.2

are by this definition weak electrolytes. For these substances the names
electrically neutral acids and electrically neutral bases are sufficient and
more informative.

§7.25 Surface phases

The formulae previously derived for surface phases apply just as well to
solutions of electrolytes as to solutions of non-electrolytes. In particular for
variations of composition at constant temperature formula (5.26.1) becomes
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—d7'=2(ri—-rirl)dy,i (T ConSt.) 7.251
i

where the summation Z; extends over all ions and other solute species,
Expressed in terms of absolute activities (1) becomes

~dy=RT Y (I';—r,I'})dIn2;, (T const.). 7.25.2

Even if the solution is extremely dilute the term r,I"; must not be omitted
for although r; <1 at the same time |[I'y|>|I"}].

The above relations, and in fact all the relations, for the surface of an
electrolyte solution are formally analogous to those for the surface of a
non-electrolyte solution. There is however a significant difference requiring
careful treatment, namely counting the number of independent components.
Let us consider some typical examples beginning with the simplest.

A solution of hydrochloric acid in water contains the species H,O,
H;07, and CI~. We omit OH ™, not so much because it is present in negli-
gible amount as because it is in any case not an independent component,
since

OH =2H,0-H,;0". 7.25.3

Of the three species H,0, H,0™, and C1™ the condition for electrical neu-
trality imposes the restrictions

My,0+ =Mc- 7.25.4

Fyo+=Tq- 7.25.5

so that there are only two independent components. We may take these to

be H,0 on the one hand and (H;0* +Cl™) on the other. More simply we
may choose as independent components H,O and HCL.

Similarly a solution of sodium hydroxide in water contains the species

H,0,0H", and Na*. We omit H;0* not so much because it is present in

negligible amount as because it is in any case not an independent component
owing to (3). The condition for electrical neutrality imposes the restrictions

Mop - = Mg+ 7.25.6

FOH'=FN3+ 7.25-7

so that there are only two independent components which we may take to be
H,0 and NaOH. Thus for the surface tension of the solution of NaOH we
have at constant temperature

"'d'y=RT(FNa+ —INa+ FHZO) d ln j’Na"’ +RT(FOH- —TroH- FHzO) dIn A'OH'
=2RT(I'noon— TNaon '1,0) 4 In (Maon¥ne, on) 725.8
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where my,on and I'y,on are defined by, respectively,

MiNa+ = Moy~ = MNaoH 7.25.9
I+ =Ton-=I'naon- 7.25.10

The reader should have no difficulty in distinguishing between y without
any subscript denoting surface tension and yy,,on denoting the mean activity
coefficient of NaOH.

Let us now consider a solution made by dissolving both hydrogen chlori-
de and sodium hydroxide in water. Of the five species H,0, H;0*, OH™,
Nat, and Cl~ in the system only three are independent. For the equilibrium

H,0+H,0-H;0" +OH~ 7.25.11
imposes the restriction

M0+ Mon - Yiz0+ You- = Kw 7.25.12
and the condition for electrical neutrality imposes the restrictions

Minas + Mo+ = Mer- -+ M ogr- 7.25.13
FNa"’ +FH30“' =rCl'+rOH' . 7.25. 14

If the hydrogen chloride is in excess, it is natural to choose as the three
independent components H,0, NaCl, and HCL. In this case mgy- is negli-
gible compared with all the other terms in (13). If on the contrary the sodium
hydroxide is in excess, it is natural to choose as the three independent
components H,0, NaCl, and NaOH. In this case my,o+ is negligible compar-
ed with the other terms in (13). These remarks apply equally to the bulk of
the solution and to the surface layer.

Suppose now we stipulate that precisely equivalent amounts of hydrogen
chloride and sodium hydroxide are contained in the solution. Then the rela-
tion (13) is replaced by the two relations

Mpa + =Mcy- 7.25.15
My, 0+ =Mon- 7.25.16

so that the solution contains only two independent components, which
we naturally take to be H,0 and NaCl. But the restriction (15) which reduces
by one the number of independent components in the bulk of the solution,
does not imply any analogous restriction on the I'’s. In other words the surface
layer can contain as well as H,O and NaCl either an excess of HCl or an
excess of NaOH. Thus the number of components necessary to describe the
composition of the surface phase is still three, not two.
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We shall now analyse this problem, beginning with unspecified quantities
of NaCl and NaOH dissolved in water, introducing the restriction that the
quantity of NaOH is zero only at a later stage. There are four ionic species
Na*, C17, H,0%, and OH " in the solvent H,O. These are not independent,
but are subject to the conditions for electrical neutrality

Mg+ + My 0+ = Moy + Moy - 7.25.17
Ina+ +T'hy0+ =T'ci- +Tou- 7.25.18

and to the condition for ionization equilibrium of the solvent water
A0+ Aon- =Afi,0 =const. 7.25.19

For variations of the surface tension with composition at constant tempera-
ture we have the general relation of the form (2)

—dy/RT =(I'ng+ — Ina+ Thy0) d In Ay, s
+(Tci- —rai- Thyo) d In Ay
+(Iyy0+ — Ts0+ Thyo) d In Ao+
+(Ton-—ron-Tu,0) d1n Aoy-. 7.25.20
Using (17), (18), and (19) we can replace (20) by
—dy/RT=(I¢- — - I'n,0) d In(Ana + Acy-)
+([Iyva+ —Ta-1=[rna+ = 7ci-1Tny0) d In(Ana + Aon-)
=(Tci- —rei- Tiyy0) d In(my, + mey- '))K%Ja,Cl)
+([Inva+ —Ta-1=[rna+ —rc1-1hy0) d In(myg + Moy - 7163,0H)'
7.25.21
Thus by studying the dependence of the surface tension on the composition

by variqtions of the molalities of NaCl and of NaOH, provided the activity
coefficients are known, we can determine the separate values of

and of
[Mya+—Tei-1=[rnar —ra-iso- 7.25.23

The expression (22) is a measure of the adsorption of NaCl relative to H,O,
while the expression (23) is a measure of the adsorption of NaOH relative
to H,O. In particular as the molality of NaOH is made to tend to zero, sO
the quantity (23) tends to

Iyar—Tgy- . 7.25.24
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The value of (24) then becomes the surface concentration of NaOH in a
solution which in the bulk contains only NaCl and H,O.

To recapitulate, by varying the molalities of both NaCl and NaOH
and measuring surface tension we can determine separately the coefficients
of the two terms on the right of (21), namely the quantities (22) and (23)
of which the latter reduces to (24) in a solution containing no excess NaOH.
By measuring the surface tension of solutions containing varying amounts
of NaCl only without any NaOH it is not possible to separate the two terms
on the right of (21) and consequently the quantity (22) can not be deter-
mined in this way.



CHAPTER 8

ELECTROCHEMICAL SYSTEMS

§8.01 Electrically charged phases

In the previous chapter we saw how a solution containing ions can be treated
by means of the same formulae as one containing only electrically neutral
molecules. In particular the formula

dG=—SdT+VdP+Y pdn 8.01.1

from which follows
1i=(8G/[On;)r, p,n, 8.01.2

are applicable. The only significant difference in our treatment of ions was
the imposition of the condition for electrical neutrality

Z n;z;=0 8.01.3

where z; is the charge number of the ionic species i. We shall now consider
what happens if we try to relax the condition (3).

To obtain a clear picture of what happens it is useful to begin with some
simple numerical calculations. The charge e on a proton is given by

e=1.6021x10"!° C. 8.01.4

Consequently the proper electric charge, associated with an ionic species
having a charge number 1, called the Faraday constant and denoted by F is
given by

F=Le=0.96487 x 10° C mole ™ ". 8.01.5

Let us now consider a single phase surrounded by a vacuum and thus

electrically insulated. Let us further imagine that this phase, instead of

satisfying the condition of electrical neutrality (3), contains an excess of 10~ 10

moles of an ionic species with charge number + 1. Then most, if not all,

the excess electrical charge will accumulate at the surface of the phase.

For simplicity let us suppose that the phase is spherical with a radius one
298
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centimetre, The electrical potential y of a charged sphere of radius r in
vacuo is determined by

U=Q/dneyr 8.01.6

where Q is the charge on the sphere and ¢, is the rational permittivity of
a vacuum. Substituting the values

Q=10""" F mole=0.96x10"° C
4rgy=1.11x10"°CV ™ !'m™!
r=10"2m 8.01.7

into (6), we obtain
Y=(0.96x10"%/1.11 x 107 1°x 107 %)V=0.86 x 10" V. 8.01.8

From this example we have reached the striking conclusion that a departure
from the condition of electrical neutrality corresponding to a quantity of
ions far too small to be detected chemically corresponds to an electrostatic
potential which could be encountered only in specialized high tension labora-
tories. Any other numerical example would lead to the same conclusion.

§8.02 Phases of identical composition

The above general result leads to the use of the following terminology.
We speak of two phases having the same chemical content, but different
electrical potentials. Actually two such phases differ in chemical content
but the difference is too small to be detectable by chemical means, or any
other means, except electrical. For example suppose we mention two spheres
of copper each containing precisely one gramme differing in electrical
potential by 200 V. If this electrical potential difference is ascribed to an
excess of copper ions Cu?* with a charge number +2, then the amount of
this excess is about 3.5 x 107!® moles or 2 x 10™!* grammes. This excess
is so small as to be entirely negligible except in its electrical effect. Conse-
quently it is of no importance or interest whether the electrical charge is in
fact due to an excess of Cu?* ions or to an equivalent deficiency of electrons
or even to some extraneous kind of ion such as H;O %, present as an impurity.

Similar considerations apply to a pair of phases of different size but of the
same chemical composition.

§8.03  Electrochemical potentials

Having agreed as to what we mean when we speak of two phases having
the same chemical composition but different electrical potentials, we see
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that the u;s occurring in the formulae mentioned in §8.01 have values
depending on the electrical state of the phase as well as on its chemical
composition. To stress this fact we call the u, of an ionic species its electro-
chemical potential *

The difference of the electrochemical potential u; between two phases of
identical chemical composition will clearly be proportional to the proper
electrical charge z; I associated with the species in question but independent
of all its other individual characteristics. Hence for any two phases o and B
of identical chemical composition we may write for any ionic species i

ul—ui =2z, F(I* — ") 8.03.1

where # —y® is the electrical potential difference between the two phases.
Formula (1) may be regarded as the thermodynamic definition of the elec-
trical potential difference between two phases of identical chemical composi-
tion. The equilibrium condition for a given ionic species between two phases
of identical composition is that the two phases should be at the same electri-
cal potential. In fact the laws of mathematical electrostatics are applicable
to any ionic species, in particular to electrons, only in so far as differences
in chemical composition between several phases are excluded or ignored.

For the distribution of the ionic species i between two phases o, B of diffe-
rent chemical composition the equilibrium condition is equality of the
electrochemical potential u;, that is to say

uy=p. 8.03.2

Any splitting of uf—py? into a chemical part and an electrical part is in
general arbitrary and without physical significance.

As long ago as 1899 Gibbs wrote:' ‘Again, the consideration of the elec-
trical potential in the electrolyte, and especially the consideration of the
difference of potential in electrolyte and electrode, involve the consideration
of quantities of which we have no apparent means of physical measurement,
while the difference of potential in pieces of metal of the same kind attached
to the electrodes is exactly one of the things which we can and do measure.’
This principle was however ignored or forgotten until rediscovered and
reformulated thirty years later as follows:* “The electric potential difference
between two points in different media can never be measured and has not
yet been defined in terms of physical realities. It is therefore a conception
which has no physical significance.” The electrostatic potential difference

* Guggenheim, J. Phys. Chem. 1929 33 842.
* Gibbs, Collected Works, Longmans, vol. 1, p. 429.
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between two points is admittedly defined in electrostatics, the mathematical
theory of an imaginary fluid electricity, whose equilibrium or motion is
determined entirely by the electric field. Electricity of this kind does not
exist. Only electrons and ions have physical existence and these differ funda-
mentally from the hypothetical fluid electricity in that their equilibrium is
thermodynamic not electrostatic.

Although the above considerations seem almost obvious to anyone who
has thought about the matter, there has in the past been considerable
confusion due to misleading terminology. It therefore seems worth while
considering in more detail some simple examples. Consider a potentiometer
wire made of copper and in particular two sections of the wire o’ and o’
between which the electrical potential difference '’ —y’ is say 2'V. Since
o and a” are both in copper, there is no ambiguity in the meaning of
Y — ', If two pieces of copper wire are attached to o’ and o”’, then the
electrical potential difference between these two is also Y’ —y'=2V.
If instead of copper wire we attach two pieces of silver wire §’ and B” to
o' and o respectively, then the difference of electrical potential between
B’ and B is likewise 2 V. The electrical potential difference between a piece
of copper and a piece of silver is however not defined. The silver wire p’
and the copper wire o’ are in equilibrium with respect to electrons, so that

wo-=ub- 8.03.3
where the subscript .- denotes electrons. Likewise
Ha-=pb- . 8.03.4
Thus the situation is completely described by (3) or (4) together with
par- —par- =phi-—pli- = —F"' =y"). 8.03.5
Suppose further that the two pieces of silver wire §’, "’ be dipped respectively
into two solutions y’, y”” both having the same composition and both con-
taining a silver salt. Then between each piece of silver wire and the solution

with which it is in contact there will be equilibrium with respect to silver
ions Ag*. Hence

“Ks* =yg’g, 8.03.6
“Z\';,, =,;ﬁ';+ . 8.03.7

At the same time
Phg — Hhgs =Hg+ =g =F(Y''—y)=Fx2V. 8.03.8

If the two solutions y', "’ are contained in insulating vessels and the silver
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wires are removed without otherwise touching or disturbing the two solu-
tions then the relations (8) remain valid until one solution is touched by
some other electrically charged or electrically conducting body. From this
it is clear that the value of y15,+ in a solution of a silver salt depends not only
on the composition of the solution but also on its, usually accidentally
determined, electrical state. If the solutions also contain nitrate ions NO3
then, since both solutions have the same composition,

ﬂ%; —ﬂﬁo; =—F@y"'—y’). 8.03.9
Adding (8) and (9), we obtain

Phg+ + Hlos =phg+ +Ho; 8.03.10
the electrical terms cancelling. We accordingly speak of the chemical

potential of a salt, for example psgno, =Hag+ +Hno; > but of the electro-
chemical potentials of ions, for example p,,+ and uyo; -

§8.04 Absolute activities of ions

Since the absolute activity A; is related to u; by
‘ui= RT ln A"i 8.04.1

it is clear that the absolute activity of an ionic species contains a factor
depending on the, usually accidentally determined, electrical state of the
system. The same applies to the activity coefficient of an ionic species.
As already emphasized in the previous chapter all such indeterminacy dis-
appears in formulae relating to electrically neutral combinations of ions,
in particular to salts.

§8.05 Dilute solutions in common solvent

According to (7.09.1) the absolute activity A; of an ionic species i is related
to its molality m; and its activity coefficient y; by

A=A myy; 8.05.1

where A depends on the solvent and temperature and moreover contains a
partly undetermined factor, which however cancels in all applications to
processes not involving a net transfer of electric charge. Correspondingly
the electrochemical potential u; has the form

#;=RTIn AP +RT Inm;+RT Iny, 8.05.2
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and includes an undetermined additive term which cancels in all applications
to processes not involving a net transfer of electrical charge. We shall in-
vestigate this term in greater detail,

Let us formally write

wi=2z;Fy+RTInI7+RT Inm;+RT Iny, 8.05.3

where /7 is independent of the electrical state of the phase and y is the
electrical potential of the phase. Let us now apply (3) to two phases denoted
by a single and a double dash respectively and then subtract. We obtain

' = =2 F(Y" =)+ RT In(I"JI?")+ RT In(m{’/m{)+ RT In(y{'}y}).
8.05.4

We now re-examine the condition for the term containing '’ —y’ to be
physically defined.

The easiest case is when the two phases have the same chemical composi-
tion so that

127 =17 8.05.5
m;’ =m; 8.05.6
yi'=7i. 8.05.7
Formula (4) then reduces to
pi'—pi=z;F(y"" —y"). 8.05.8
Since u;’ —u; is always well defined, formula (8) in this special case defines

Y=y

We now consider the extreme opposite case of two solutions in different
solvents or two different pure phases. In this case there is no means of
distinguishing in (4) between the term containing ¢’ —’ and the term
containing In (/°"/I?"). The splitting into these two terms has in this case no
physical significance. These remarks merely repeat and confirm what has
already been stated in the preceding sections.

We have still to consider the intermediate case of two solutions of different
composition in the same solvent, of course at the same temperature. We then
have

o
L

=17 8.05.9
so that (4) reduces to
W' — i =2,F" =)+ RT In(m'/m])+ RT In(y{'jy}). ~ 8.05.10

Since pt;" — p; is well defined and m;’, m; are measurable, the question whether
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J'' — /' is determinate depends on our knowledge of y;'/y;. If both the solu-
tions are so dilute that we can evaluate y, by an explicit formula such as
(7.20.9), then we may consider that (10) defines ¢’ —y'. If on the other
hand either solution is so concentrated that our knowledge of the value
of y, is incomplete, then the value of Y’ —y' becomes correspondingly
indefinite.

§8.06 Volta potentials

It is outside the province of this book to consider thermionic phenomena.
In case however any reader may be puzzled by the fact that the so-called
Volta potential difference or contact potential difference between two metals
can be determined, it seems worth while stressing that the only measurable
potential difference of this kind is that between two regions in free space
immediately outside the two metals respectively.

§8.07 Membrane equilibrium (non-osmotic)

Suppose two solutions « and P at the same temperature and pressure in the
same solvent be separated by a membrane permeable to some ions, but not
to others, nor to the solvent. We call this a non-osmotic membrane equilib-
rium. Then for every permeant ion we have the equilibrium condition

pi=pb. 8.07.1
If for example one of the permeant ions is the Ag™ ion, we have
Hag+ =Higs - 8.07.2

If then we place in each of the two solutions a piece of silver wire since each
piece of wire is, with respect to Ag™®, in equilibrium with the solution in
which it dips, the equality of y,,+ also holds between the two pieces of silver
wire. Hence the two pieces of silver wire have equal electrical potentials,
as could be verified by connecting them to a potentiometer or electrometer.
We have yet to consider what, if anything, can be said concerning the
electrical potential difference between the two solutions. Since the solvent is
the same in both solutions, we may in accordance with (8.05.10) replace (2)
by
F(W®—y*)+RT In(mf,+ /ms, )+ RT In(y8,+ [73,+)=0.  8.07.3

Supposing that m, ;. has been measured in both solutions, the determination
of y®—y® reduces to that of the values of Yag+ in the two solutions. If the
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solutions are so dilute that accurate or at least approximate, formulae for
the activity coefficients y are available then the electrical potential difference
Y® —y* can be evaluated with greater or less accuracy as the case may be.
If either solution is so concentrated that y,,. cannot be evaluated, then no
more can yP—y°.

If there are several permeant ions, then the relations of the form (1)
can be combined into relations corresponding to processes involving no
net flow of electric charge. For example for a salt composed of v, cations
R of charge number z, and v_ anions X of charge number z_, both
permeant, the equilibrium condition is

Vo sV pk=v.pk+v_pd 8.07.4
which can be written in the equivalent form

(mR)"* (m%)" (%, x)"* "~ =(mR)*(m%) (R, x)"* "~ 8.07.5

§8.08 Osmotic membrane equilibrium

In the preceding section we assumed that the membrane was impermeable
to the solvent. The more usual case when the membrane is permeable to
the solvent, called osmotic membrane equilibrium, is less simple. In this case
equilibrium as regards the solvent between two phases separated by the
membrane, will generally require a pressure difference between the two
phases, the osmotic pressure difference, and this pressure difference complica-
tes the exact conditions of equilibrium for the solute ions. We shall consider
only the case of one and the same solvent on both sides of the membrane.

The conditions for membrane equilibrium can be written in the general

form
e =ub 8.08.1

for the solvent and
pi= M? 8.08.2

for each permeant ionic species.

We have now to take account of how each p depends on the pressure, but
for the sake of brevity we shall neglect the compressibility of the solutions.
We have then in accordance with (7.06.1)

Nl(P)=I~‘(1)(P)_RT¢ z ¥

=ﬂ‘l’e+PVf—RT¢Zri 8.08.3
i
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where uJ(P) is the value of y, for the pure solvent at the pressure P, while
u3° is the value for the pure solvent in the limit of zero pressure.
Similarly for each ionic species i we replace (8.05.3) by

ui=PVi+2z,Fy+RT In(I° myy,) 8.08.4

where [ is independent of the pressure.
Using (3) in (1) we obtain for the equilibrium value of the pressure
difference

P’ P*=RT(¢? Yri-¢t L )Ivy. 8.08.5
Using (4) in (2) we obtain
RT In(m?y8/miy?)+ z, F(YP —y*) = (P*— PP)V;. 8.08.6
Finally substituting (5) into (6) we have

In(m?y¥/miy)+ 2, FWP— ") RT=V(* Y. i —¢* ¥ )P, 8.08.7
Whether formula (7) by itself has any physical significance depends, as
explained in §8.05, on whether values of y; can be computed. If they can,
then from formula (7) the value of y*—y* can be computed, since all the
other quantities occurring in (7) are measurable. In any case the term
containing ® — /* can be eliminated by applying (7) to several ionic species
together forming an electrically neutral combination. Thus for the equilib-
rium distribution of a permeant electrolyte consisting of v, cations R
and v_ anions X we obtain

Byv+ By\v-(.B Vi tvo
O XV 2 (v Vet v- V9" 2 =00 T V)
(mg)"* (M%)~ (Ve x)"* i ;

8.08.8
At high dilutions when all r;<1 the quantity within the { } on the right side
of (8) may be so small that it can be neglected. Under such conditions (8)
reduces to

(mR)"*(m%) =GR x)* ** =(mR) (%) (e )T 8.08.9

of the same form as (8.07.5) for a non-osmotic membrane equilibrium.

The thermodynamic methods of Gibbs were first applied to osmotic mem-
brane equilibria by Donnan. Such an equilibrium is accordingly called a
Donnan membrane equilibrium.
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§8.09 Contact equilibrium

The most important and simplest example of non-osmotic equilibrium is that
of two phases with one common ion, the surface of separation being in
effect a membrane permeable to the common ion but impermeable to all
others. This may be called contact equilibrium.

We have already met several examples of contact equilibrium. For example,
for two metals say Cu and Ag in contact there is equilibrium between the
metals as regards electrons, but not as regards the positive ions Cu?* or
Ag™*. This equilibrium is expressed by

pat =pbt 8.09.1

the subscript .- denoting electrons and the superscripts denoting the two
phases.

Likewise for a piece of metal M of say Cu dipping into a solution S
containing ions of the metal, in this case Cu®”, the contact equilibrium is
completely described by

P+ =+ 8.09.2

the metal and solution being in mutual equilibrium as regards the metallic
ions only.

In neither of these cases is any contact electrical potential difference
thermodynamically definable.

§8.10 Examples of galvanic cell

We shall now introduce the subject of galvanic cells by the detailed study of
a simple example in terms of the electrochemical potentials. At a later stage
we shall proceed to derive more general formulae applicable to all galvanic
cells.

We describe a cell symbolically by writing down in order a number of
phases separated by vertical lines, each phase being in contact with the
phases written down immediately to its left and right. For example

. ! . ‘
' Solution [ Solution 11 . Ag|Cu £.10.1

|
Cul!Zn

=" containing Zn?>* | containing Ag

may be regarded as denoting a copper terminal attached to a zinc electrode
dipping into a solution I containing zinc ions; this solution is in contact
with another solution II containing silver ions in which there is dipping a
silver electrode attached to another copper terminal. We shall use the follow-
ing superscripts to denote the several phases:
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' the copper terminal on the left
Zn  the zinc electrode
T the solution on the left
' the solution on the right
A% the silver electrode
""" the copper terminal on the right.

In the metal phases, since there is equilibrium between electrons, metallic
ions, and the metal atoms, we have

ucur+ +pa- =das + - =H0c 8.10.2
Jugna+ +ust =4uz, 8.10.3
HAS+ + pt = k. 8.10.4
The contact equilibrium conditions are
P = pa- 8.10.5
Hznzs = Hzn2+ 8.10.6
uﬁf =uﬁ§+ 8.10.7
palt =i~ - 8.10.8
From (5) and (8) we deduce
Pai- = P~ = pE — pa- 8.10.9
and so using (3) and (4)
B~ — B~ = pAS— dpuFn — ulS s + duFea 8.10.10
and then using (6) and (7)
pii- — - = HAS — duZn — Hag+ +tizar+ 8.10.11
We may further write
Hei-—Ha-=—FQ@"' —y’) 8.10.12

where '’ —y’ denotes the electrical potential difference between the two
copper terminals. It is evident from relations (5) and (8) that the value of
(12) would be the same if both copper terminals were replaced by any
other metal provided both were of the same metal. Thus "’ — y is determined
by the nature of the two electrodes and of the two solutions. The electric
potential difference y" —y’ is called the electromotive force of the cell
and is denoted by E. We accordingly replace (12) by

i~ — piy- = —FE. 8.10.13
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Substituting (13) into (11) we then obtain
—FE=p{8—3uln— s oo + 3 . 8.10.14

We shall now assume that there is at least one anion, say NO; present in
both solutions I and II so that

$pnze = i‘ﬂlzﬂ(No,)z - #Lo; 8.10.15
l‘Hw =ﬂggN03 —ﬂgo; . 8.10.16

Using (15) and (16) we can rewrite (14) as
FE={3uZs— $tzanos), +RT In myos }
+ {l‘:wo; —ﬂgo; +RT ln('"go;/m}qo;)}
— {A% — tagno, + RT In mio: ). 8.10.17

We have now a formula for E containing three terms in { } of which the
first relates only to the Zn electrode and the solution around this electrode
and the last relates only to the Ag electrode and the solution around this
electrode. The middle term on the other hand is independent of the nature
of the electrodes and relates to an anion present in both solutions. One
might be inclined to call the first of these three terms the electrode potential
of the Zn electrode, the second the liguid-liquid junction potential, and the
last the electrode potential of the silver. Such a procedure is harmless provided
it is realized that

(a) this decomposition of E into three terms is affected by our arbitrary
choice of the anion NOj for use in our formulae;

(b) other alternative decompositions of E into three terms can be obtained
by the arbitrary choice of some other ion instead of NOj3 in our for-
mulae;

(c) any such decomposition of E is no more nor less fundamental than
another;

(d) there is in general no means of decomposing E into three terms which
is less arbitrary than the one described.

In view of some inevitable arbitrariness in the decomposition of the
electromotive force of a cell into two electrode potentials and a liquid-
liquid junction potential, we shall for the most part abandon any attempt at
such a decomposition. We shall accordingly in the next section derive a
general formula for the electromotive force of any cell by a more powerful
method which makes no reference at all to the localization of separate
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terms in the electromotive force. Before proceeding to this general treatment,
we shall however draw attention to a special case where the arbitrariness
referred to above effectively disappears.

Reverting to formula (17), let us now consider the particular case where
the molalities of Zn** and Ag* in the two electrode solutions are extremely
small compared with the molalities of other ions in these solutions and the
compositions of the two electrode solutions are apart from their content
of Zn?* and Ag"* nearly identical. Under these particular conditions we
may regard the two electrode solutions as effectively identical except with
regard to the equilibrium between solution and electrode. We may accor-
dingly drop the superscripts ' and " so that (17) reduces to

FE= {%ﬂ%: - %llz,\(No,)z} - {I‘:g _#AgNos} 8.10.18

where the y’s without superscripts refer to the solution. We may then regard
the cell (1) under consideration as

Solution containing
Zn®* and Ag*

bearing in mind that in reality the Ag* must be kept away from the Zn
electrode to avoid irreversible dissolution of Zn with plating out of Ag.

It is usual to describe certain cells in this manner as if containing only
one solution, but in reality there must always be some real, though possibly
small difference between the composition of the two electrode solutions.
Consider for example the cell commonly described as

Pt, H, | Aqueous solution of HCl|AgCl|Ag | Pt 8.10.20

Cu|Zn

l
Ag ! Cu 8.10.19

This description implies that an electrode consisting of platinum in contact
with hydrogen and another electrode consisting of a mixture of AgCl and
Ag are dipping into the same solution. In fact the platinum dips into a solu-
tion saturated with H,, but containing no AgCl, while the silver is immersed
in a solution saturated with AgCl but containing no hydrogen. If in fact
any part of the solution contained both hydrogen and silver chloride, these
might* react irreversibly to give silver and hydrogen chloride. Thus the cell
is more accurately described by

] Solution I | Solution II ‘ }

|
{ Aqueous solution | Aqueous solution |
.10.21
of HCl saturated | of HCI saturated AgCl !Ag v 810
with H, with AgCl | b

* Actually in the case of this cell the irreversible process will usually be too slow to affect
the accuracy of the electromotive force measurements.

Pt, H2
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By an analysis of (21) similar to that applied to (1) it can be shown that the
electromotive force E is given accurately by

FE=4pg, — i+ + HASG — A — pcy- 8.10.22

where the superscript © denotes the gas phase. Since however as far as the
HCl is concerned we may regard the solutions I and I as essentially identical
we may drop these superscripts and (22) reduces to

FE=14ug, + uadci — was — tuci 8.10.23

where pyc denotes the chemical potential of HCI in the solution.

§8.11 General treatment of electromotive force

We now proceed to a more general treatment applicable to any galvanic cell.
We begin by describing the characteristics common to all such cells. In so
doing it is convenient to assume that the system to which we refer as the
cell is terminated at both ends by terminals of the same metal. The essential
characteristic of the galvanic cell is that a process involving ions can take
place in it in such a manner that the process is necessarily accompanied by
a transfer of electric charge from one terminal to the other without building
up any charge in any of the intermediate phases of the cell. Moreover the
charge which flows from the one terminal to the other is directly propor-
tional to the change in the extent of the process.
For example in the cell, already discussed in the previous section,

Pt, H, | Aqueous solution of HCI | AgClIAgI Pt 8.11.1

the process accompanying the flow of one mole of positive charge from the
left to the right is

1H,(g)+AgCl(s)~Ag(s) + HCl(aq) 8.11.2

where (g) denotes gas, (s) denotes solid, and (aq) denotes aqueous solution.

We now suppose the two terminals of the cell to be put into contact respec-
tively with two points of a potentiometer bridge so placed that the electric
potential of the right contact exceeds that of the left contact by an amount
E’. Then in general an electric current will flow through the cell and between
the two points of contact with the potentiometer bridge. If either of the points
of contact is moved along the bridge the current will increase or decrease
and it will change sign when E' has a certain value E. When E' is slightly
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less than E there will be a flow of current from left to right in the cell and from
right to left in the potentiometer bridge; this flow of current will be accom-
panied by a well-defined chemical change in the cell. When E’ is slightly
greater than E there will be a flow of current in the opposite direction and
the accompanying chemical change in the cell will also be reversed. When E’
is equal to E there will be no flow of current and no chemical change, but
by a small shift in the point of contact between cell terminal and potentio-
meter bridge a small current can be made to flow in either direction. This
is a typical and a particularly realistic example of a reversible process. The
value E of E’ at which the current changes sign is the electromotive force
of the cell. We note that a positive value of E means that the electrode on
the right is positive.

We now stipulate that E’=F so that the electromotive force of the cell
is balanced against the potential difference in the potentiometer bridge and
we consider the flow of one mole of positive charge from left to right in the
cell, the temperature being maintained constant throughout and the pressure
on every phase being kept constant. The pressures on different phases will
usually, but not necessarily always, be all equal. Then since, as we have
seen, this process is reversible and isothermal, it follows from (1.33.5) that
the work w done on the cell is equal to the increase in the Helmholtz
function, that is to say

w=AAH. 8.11.3

In the present case w consists of two distinct parts, namely

(a) the work —Z,P*AV* done by the pressures P* acting on the several
phases a,

(b) the electrical work — FE done by the potentiometer on the cell in trans-
ferring one mole of positive charge through a potential difference E.

We may therefore replace (3) by

—FE=AF+) P*AV*=AG. 8.11.4

It must be emphasized that the symbol A in both (3) and (4) denotes the
increase of a function when the process taking place is that associated
with the flow in the cell of one mole of positive charge from the left to
the right.

From (4) we sec that the electrical work obtainable from a reversible
isothermal process, at constant pressure on each phase, is equal to the de-
crease in the Gibbs function G.
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§8.12 Temperature dependence
By combining (8.11.4) with the Gibbs-Helmbholtz relation (1.49.5) we obtain*
F(E—TOE[0T)=—AH. 8.12.1
By subtracting (1) from (8.11.4), or by a more direct method, we obtain
F(OE[0T)=AS. 8.12.2

In both (1) and (2) the symbol A denotes increase when the chemical change
takes place which accompanies the flow of one mole of positive charge from
left to right in the cell.

It is perhaps worth while drawing attention to the physical meaning of
AH and AS. If the cell is kept in a thermostat and balanced against a potentio-
meter so that any flow of current is reversible, then when one mole of posi-
tive charge flows from left to right in the cell

(a) the work done on the cell by the potentiometer is —FE

(b) the work done on the cell by external pressures is —Z,P*AV*®

(c) the heat absorbed is TAS=FT(OE/OT)

(d) the increase in the energy of the cell is the sum of the above three terms
namely AU=—FE—-X, P*AV®+ FT(QE[0T)

(e) theincreaseintheenthalpy is AH=AU+ZX,P°AV*=—F{E—-T(QE/OT)}.

If, on the other hand, the cell is kept in a thermostat and short-circuited
so that the process takes place irreversibly without the performance of
electrical work, then when the process takes place to the same extent
as before,

(a) the electrical work done on the cell is zero
(b) the work done on the cell by external pressures is —X, P*AV*
(c) the heat absorbed is AH.

§8.13  Application of Nernst's heat theorem

The measurement of electromotive force provides a method of determining
AG for the accompanying chemical reaction; this can be combined with a
value of AH, determined calorimetrically, so as to obtain the value of AS.
Since however the magnitude of TAS is often small compared with those
of AG and AH, the relative error in AS determined in this way can be large.

* Although formula (1.49.5) is generally called the Gibbs-Helmholtz relation, it is in
fact due to Gibbs, while its corollary (8.12.1) was derived by Helmholtz.
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If on the other hand accurate measurements of electromotive force are
made over a range of temperatures so as to give an accurate value of the
temperature coefficient of the electromotive force, this provides directly
the value of AS for the cell reaction. Values of AS thus obtained for any
chemical reaction between only solid phases may be used to test Nernst’s
heat theorem, provided heat capacity data down to low temperatures are
available for each substance. The procedure is illustrated by the following
example.*
In the cell

Solution of Pb salt

(Hg)
Po saturated with Pbl,

Pt Pbl, | I Pt 8.13.1

where the superscript ®® denotes that the lead is in the form of an amalgam,
the chemical process when one mole of positive charge flows from left to
right is

1Pb™® 4 15 4PbI, . 8.13.2

For the cell at 25 °C it is found that

E=893.62 mV 8.13.3
OE[0T =(—0.042+0.005)mV K" 8.13.4

In the cell
Pt | Pb™® | Pbl, | Solution of KI|Agl|Ag]|Pt 8.13.5

where Pb®® denotes the same lead amalgam as in (1), the cell process
accompanied by the flow of one mole of positive charge from left to
right is

1Pb™M® 4 Agl»1PbI, +Ag. 8.13.6

For this cell at 25 °C it is found that!
E=(207.8£0.2)mV 8.13.7
OE/0T =(—0.188+0.002) mV K" 8.13.8

The data for neither of these cells can be used directly for testing Nernst’s
heat theorem owing to lack of calorimetric data for Pbl, down to low
temperatures. However by subtracting (7) from (3) and (8) from (4) we
obtain for a cell at 25 °C in which the cell process is

* Webb, J. Phys. Chem. 1925 29 827.
t Gerke, J. Amer. Chem. Soc. 1922 44 1703.
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Ag+I-Agl 8.13.9
E=(685.8+0.2)mV 8.13.10
OE[0T =(0.1464+0.004)mV K™*. 8.13.11

Multiplying (10) and (11) by

F=0.9649 x 10° C mole~*
=0.09649 k] mV ™! mole ™! 8.13.12

and using (8.11.4) and (8.12.2), we obtain for the process (9) at 298K

AG=—66.17 kJ mole ! (T=298K)  8.13.13
AS=(14.06+04)J K ' mole™! (T=298K). 8.13.14

From (13) and (14) we derive incidentally

AH=AG+TAS
=(—66.17+4.22) kJ mole ™!
=—61.95 kJ mole™*
= —14.81 kcal mole ™! 8.13.15

with which may be compared the calorimetrically measured value*
—14.97 kcal mole™!.

We must now convert the value of AS at 298 K given by (14) to the corre-
sponding value in the limit 7—0. The following calorimetric data are
available' for S(298 K)—S(0).

Agl  (1155+1.2)J K ' mole™! 8.13.16
Ag (42.54£0.4) J K™ ' mole ™! 8.13.17
1 58.4J K™ mole™". 8.13.18

Although accurate calorimetric data for Agl are available down to T=15K,

at this temperature C/R has the exceptionally high value 1.45 which leads

to the rather high uncertainty, due to the extrapolation to T=0, shown in (16).
Combining (16), (17), and (18) we obtain for the process (9)

AS(298 K)—AS(0)=(14.6+1.2) J K~ ! mole™". 8.13.19

* Webb, J. Phys. Chem. 1925 29 827.

t Agl, see Pitzer, J. Amer. Chem. Soc. 1941 63 516; Ag, :see Griffiths and Griffiths, Proc.
Roy. Soc. A 1914 90 557; I, see Lange, Z. Physik. Chem. 1924 110 343. Experimental data
for Ag and I recomputed by Kelley, U.S. Bureau of Mines 1932 Bulletin 350.
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Now comparing (19) with (14) we obtain
AS(0)=(—-0.5+1.3)J K™ ! mole™ . 8.13.20

so that within the experimental accuracy AS(0)=0 in agreement with
Nernst’s heat theorem.

§8.14 Cells without transference

When a galvanic cell contains only two solutions, one surrounding each
electrode, and these two solutions are so nearly alike in composition that
they may be regarded as identical except with respect to the reactions at the
electrodes, the cell is called a cell without transference. When a current
flows through the cell there is in fact necessarily transference of some elec-
trolyte from the one electrode to the other, but if the two electrode solutions
are of nearly identical composition the changes in the chemical potentials
of the electrolytes transferred are negligible and so this transference is with-
out importance.

As a typical example of a cell without transference we again consider
the cell

| Solution I Solution II l
Pt, H, | Aqueous HCI Aqueous HCI AgClAg' Pt 8.14.1
saturated with H, | saturated with AgCl

When one mole of positive charge flows from the left to the right, the
following changes take place:

(a) at the left electrode
H,(g)»H*(aq I) 8.14.2

(b) at the right electrode
AgCl(s)—»Ag(s)+Cl (aq II) 8.14.3

(c) there is a simultaneous transfer of some H™ ions from left to right and
of Cl™ ions from right to left such that the net transfer of charge from
left to right is one mole and that electrical neutrality is preserved in
both electrode solutions.

Since however we ignore the effect on the properties of the HCI of saturating
the solution with either H, or AgCl, we need not distinguish between the
two electrode solutions. We may therefore replace (1) by

Pt, H, | Aqueous HCl | AgCl | Ag| Pt 8.14.4
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Correspondingly (a) and (b) reduce to
(a)  3H,(g)»H"(aq) 8.14.5
(b)  AgCl(s)»Ag(s)+Cl (aq) 8.14.6

and (c) may be ignored. Thus the process accompanying the flow of one
mole of charge reduces to the chemical change

1H,(g)+AgCl(s)—»Ag(s)+ H ™ (ag)+ Ci™(aq) 8.14.7

for which
AG = pijb+ pnci— 31, — Hascl 8.14.8
where the superscript © denotes the gas phase and uyc, denotes the chemical

potential of HCI in the solution.
Substituting (8) into (8.11.4) we obtain

FE= — 38— pyci + hu, + A% 8.14.9

in agreement with (8.10.23).

Explicit formulae for all cells without transference can be obtained
similarly. We shall merely quote, without detailed derivation, one other
example

Solution containing | Solution containing |

Sn’* and Sn** Fe?* and Fe** Pt SaA410

Pt

Provided that both electrode solutions contain a preponderating excess of
other electrolytes and have nearly the same composition so that we may
regard them as a single solution, the process accompanying the flow of one
mole of positive charge from left to right is the chemical change

1Sn** + Fe**4Sn** + Fe?* 8.14.11
for which
AG=-};¢S,,4+ + Upez+ —&us,,u — UFe3+ - 8.14.12

Consequently
FE= %,uSnz ++ HFes+ — %ﬁuSn“ + ™ Upez+
=fHSnc12+#Fec1,—%#Sncu— HUreci, 8.14.13

provided there is some Cl~ ion in the solutions.

§8.15 Standard electromotive force

Let us return to the cell described by (8.14.4) and rewrite formula (8.14.9)
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for its electromotive force in terms of absolute activities. We have
FE[RT = —In A3—In Ay —In A- + 3 In A5, +1n A3, 8.15.1

where we have denoted the solid phase by the superscript 5, the gas phase by
the superscript ©, and the liquid phase by no superscript. Using (7.09.1) and
(3.17.1) we can rewrite (1) as

FE/RT=FEe/RT—ln(mH+ mCl—'}’%]. Cl)+% ln(sz/Pe) 8.15.2

where P° denotes the standard pressure, taken to be one atmosphere, and E°
is defined by

FE®|RT=—In A5, —InAg: —In A§-+3In A3, +In &5, 8.15.3

This quantity E° is independent of the composition of the solution and
independent of the pressure of the gaseous hydrogen and is called the
standard electromotive force of cells having the specified electrodes in the
specified solvent at a specified temperature.

Similarly the electromotive force of the cell described by (8.14.10) can be
expressed by the formula

S
FE _FE” 4 jpMsnteVsmts g Mress Veere 8.15.4
RT RT Mgn2 + Psn2+ MEez+ Yrez+

in which the standard electromotive force E€ is defined by

e o "9
UL A 1 8.15.5
RT Asn2+ A,Fe2+

It can readily be verified that in all these formulae only such combinations
of 4°’s and of y’s occur as satisfy the condition (7.04.17) with (7.04.18).

Formulae such as the above have two applications. Firstly by making
measurements of £ over a range of molalities as low as possible and extra-
polation with the help of formulae such as those of §7.20 we can obtain the
value of the standard electromotive force E°. Secondly having determined
the value of £° by extrapolation we can insert this value into the formulae
and so obtain information about certain combinations of activity coefficients
in solutions of given composition.

§8.16 Numerical example

We shall illustrate the procedure described in the previous section by an
example. We choose the cell
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Aqueous HCI

Pt, H, molality m

Hg 8.16.1

] HgCl

for which there exist measurements* at 25 °C of exceptionally high accuracy.
The electromotive force of this cell is given by

FE=FE® —2RTInm—2RTIny 8.16.2

where m is the molality and y the mean activity coefficient of HCl. We
assume that at sufficiently high dilutions y can be represented by

Iny=—am*(14+m*) "' +2pm 8.16.3

where o has the value determined by (7.17.10) arid f is an adjustable constant.
We now define the experimental quantity E°’ by

E®'=E+(2RT/F)In m—(2RT/F)am*(1 4+ m*)~ ' 8.16.4
Using (3) and (4) in (2) we obtain
E®' =E® —(4RT/F)pm. 8.16.5

If then we plot E°' against m, in so far as y can be represented by formula
(3), we shall obtain a straight line of slope —4RTB/F and of intercept at
m=0 equal to E®. This plot is shown in figure 8.1 from which we find that
E® =267.96 mV and f=0.270. We further see from the diagram that with
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Fig. 8.1. Determination of E® by extrapolation to m=0

* Hills and Ives, J. Chem. Soc. 1951 315.
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this value of f§ formula (3) is as accurate as the experimental measurements
for all values of m up to about 0.08.

§8.17 Standard electromotive force of half-cell

Let us consider the three cells

Solution Solution

Pt, H, containing H* | containing Ci~ AgCl]Ag.Pt 8.17.1
Solution Solution |
Pt, H, containing Pt 8.17.2

ntaining H*
contaiming Sn?* and Sn**

Solution
Pt containing
Sn?* and Sn*

In each cell we assume that the two electrode solutions have nearly the
same composition. The standard electromotive forces of the three cells
are given respectively by

FE®°|RT=%1InAg,—In A8+ +1In 23, —In 25, ~In 18- 8.17.4
FE®|RT=4%In 5, ~In A5. +3 In(ASe+/AS24) 8.17.5
FE®|RT=—}In(Agu+[Agpz+)+In B, —In 25, —In AS-  8.17.6

Solution

+ | containing CI~ AgCl | Ag Pt 8.17.3

and we observe that the value of E® for the third cell is equal to the difference
between the values of E® for the first and second cells. It is clear from this
example that if there are available n different kinds of electrodes, although
these can be paired to give 4n(n—1) different cells, only n—1 of these E°
values are independent. For example if we know the E€ values for all cells
in which one of the electrodes is the Pt, H, electrode, then the E° values of
all other:combinations can be obtained by adding and subtracting.

The E® value of a cell consisting of an electrode o and a Pt,H, electrode
is called the standard electromotive force of the half-cell o. We recall the
convention that a positive value of E means that the electrode on the right
is positive. We shall now illustrate by an example how this convention is
extended to the electromotive force of half-cells.

We may state that the right hand half-cell

Cl™ | AgCl | Ag 8.17.7

has the standard electromotive foice ES =222.5 mV at 25 °C. This means
that the cell
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Solution
containing Cl1™

Solution
containing H* Ag  8.17.8

Pt, H, 'AgCl

has E®=222.5mV with the electrode on the right positive. Alternatively
we may state that the left hand half-cell

Ag|Agcl|cl 8.17.9

has the standard electromotive force Ef = —222.5 mV at 25 °C. This means
that the cell

Solution
containing H*

Solution

containing CI~ Pt,H, 8.17.10

Ag l AgCl

has E° = —222.5 mV with the electrode on the right negative. These con-
ventions, which are unambiguous, have now been internationally agreed.*

§8.18 Cells with transference with two similar electrodes

Any cell which does not satisfy the conditions in the definition of a cell
without transference, is called a cell with transference. The detailed discussion
of a cell with transference is more involved than that of a cell without trans-
Sference. We shall initially restrict ourselves to the case that the two electro-
des are of the same chemical nature so that the chemical processes taking
place at the electrodes are the converse of each other. For example we may
consider the cell

| Solution I| o .. |Solution II
Ag | AgCl| containing . containing |AgCl |[Ag  8.18.1
ar- solutions ar-

We assume that the two electrode solutions I and 1I are connected by
bridge solutions in which the composition varies continuously. It is essential
to exclude any discontinuity of composition, for in that case the passage
of an infinitesimal current would not be reversible and it would not then be
possible to apply thermodynamic equations. Suppose for example in two
solutions in contact the cation Na* were present in that on the left but not
that on the right, while the cation K* were present in the solution on the
right but not that on the left. Then an infinitesimal current from left to right
would transfer Na* from the left solution to the right solution. Reversal
of the current would on the other hand transfer K* from the right solution
to the left solution. If however any two solutions in contact differ only

* LU.P.A.C,, C.R. XVII Conference 1953 p. 83; L.U.P.A.C. Manual of Physico-
chemical Symbols and Terminology, Butterworths 1959.
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infinitesimally in composition, the passage of current will be reversible. It is
true that simultaneously there is taking place an irreversible diffusion between
the two solutions tending to equalize their compositions.

This condition of continuity of composition is the only condition imposed
on the nature of the bridge solutions. In view of this condition the compo-
sitions of the outermost bridge solutions are identical respectively with
those of the electrode solutions. If the bridge solutions are formed by
natural mixing or interdiffusion of the two electrode solutions, then their
compositions throughout will be intermediate between those of the two
electrode solutions. On the other hand the middle portion of the bridge
solutions may consist of a solution of entirely different composition from
either electrode solution, but such solution must be connected to each
electrode solution through solutions of continuously varying composition.
The formulae which we are about to derive are applicable to all cases, but
we begin by considering the more elementary cell

| Solution Solution
]molalities m | molalities m+dm

Ag } AgCl AgCl 1 Ag 8.18.2
where the two electrode solutions differ only infinitesimally in composition.

Even in the elementary cell (2) there is not thermodynamic equilibrium
and there is inevitably a state of interdiffusion between the two solutions.
We are consequently compelled to introduce some assumption extraneous
to classical thermodynamics which applies strictly only to equilibrium
conditions. Initially we make the simplest, but not the least restrictive,
assumption leading to correct conclusions. In chapter 13 it will be shown
how the same conclusions can be reached by a less restrictive assumption.
We here assume that the flow J; per unit area per unit time of the ionic
species i is directly proportional to the gradient of its electrochemical
potential u;. We may, for simplicity and without any loss of generality in
our conclusions, assume that the gradients are in the y-direction. Our
assumption thus becomes

Ji=—Lidﬂi/dy 818.3
where L; may depend on the composition of the solution but is independent
of the gradient of the composition and independent of the flow. We consider
the condition of zero electric current which exists when the cell circuit is
open or alternatively when the cell is exactly balanced against a potentio-
meter bridge. At each electrode we have the equilibrium

Cl™ +Ag=AgCl+el” 8.18.4

where Cl~ denotes chloride ion in solution and el ~ denotes an electron in the
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silver. The condition for this equilibrium is
zgt dpg- = —dpy - 8.18.5

since the silver has the same chemical potential at both ends and likewise
the silver chloride. The charge number of the chloride ion is of course —1,
but we have deliberately displayed it as z.,- in order to facilitate generali-
zation to other cells having electrodes reversible with respect to ions other
than the chloride ion. The electromotive force dE of the cell (2) is then given
by

FdE= —dp, - =25 dpg - 8.18.6

which we may also write as
FdEjdy=z5dug-/dy. 8.18.7
The condition for zero electric current is

ZZ,'Ji=O. 8.18.8

Substituting (3) into (8) we have
Y z;L;du,/dy=0. 8.18.9

We now multiply (7) by Z;z2L,; and subtract (9) obtaining
Y 2L, FAE[dy=Y z2L(—z 'dw/dy+z& duc-/dy)  8.18.10

and consequently

FdE[dy=Y z}L(—z ‘du/dy+zq" dug-/dy)/y. z2L;.  8.18.11

Formulae (10) and (11) in contrast to the deceptively simpler formula (7)
contain only such linear combinations of dy;’s as satisfy the condition
for unambiguity (7.04.18).

Formula (11) is a complete and unambiguous formula for the electromotive
force in terms of the quantities L; defined in our assumption (3). We can
however transform the expression on the right of (11) into a more perspicuous
form by considering the different condition where the two electrode solutions
are identical and an external potential difference dE°® is applied across the
electrodes. Under these conditions we have

z7'dy=FdE*  (all i). 8.18.12
Hence according to (3)

J,'= _ziLleEe/dy (all i) 8-18'13
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and the electrical current per unit cross-section carried by the ionic species j
will be
z;FJ;= —z?L,F*dE*/dy. 8.18.14

The fraction of the total current carried by the ionic species i, called the
transport number t; of the species i is then given by

ti=z7L(Y z}L,. 8.18.15
i

Comparing (11) with (15) we deduce
FdE:Z t(—z; 'dp+zg- dpr-). 8.18.16

Returning now to cell (1) we see that this may always be regarded as several
cells of type (2) in series, all electrodes other than the two extreme ones
cancelling in pairs. We accordingly deduce from (16) for the electromotive
force E of cell (1)

FE= fz t(—z; 'dp+zgt dug-) 8.18.17

where the integration extends through all the bridge solutions from the left
electrode solution I to the right electrode solution II.
We can rewrite (17) in terms of absolute activities as

FE/RT=J.Zt,-(—z,.“d1n L+zaldin Ag-) 8.18.18

i

or in terms of molalities and activity coefficients as
FE/RT=JZti{—z,-"‘dln(miyi)+za’_dIn(mCl_yCl-)}. 8.18.19

We again stress that only such combinations of activity coefficients occur in
(19) as are, in accordance with the condition (7.04.18), unambiguously
defined.

§8.19 Cells containing single electrolytes

Formula (8.18.19) gives an explicit value of the electromotive force E, but to
apply it or test it we require to know the values of the transport numbers of
all cations, and all anions throughout the bridge solutions. This in turn
involves a knowledge of the compositions of all the continuous series of
solutions forming the bridge. Since this knowledge is usually not available,
formula (8.18.19) though exact is not of much use except in specially simple
cases.
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The simplest and the most useful example of a cell with transference is
that in which there is only one kind of cation and one kind of anion in the
whole cell. Let us consider for example the cell

Transition
layer

Aqueous MgCl,
at molality m,

Aqueous MgCl,

Ag‘ AgCl at molality m,

AgCl l Ag
8.19.1

We use the name transition layer to denote the naturally formed bridge
between the two electrode solutions consisting entirely of solutions of
MgCl, of intermediate compositions. For the cell (1) formula (8.18.19)
reduces to

m=mz
FE/RT= J‘ _ hand tMgzq-{%d ll'l(mMgz+ '}’Mgz+)+d ln(ma- '}’C|—)}
= —%f tMg2+d ln(m3 yl?rig, Cl) 8.19.2

where m denotes the molality and yy,, ¢, the mean activity coefficient of the
electrolyte MgCl,.

Since in solutions containing only the single electrolyte MgCl, the value of
tug2+ depends only on the molality, the integral in (2) is completely defined
and is independent of how the molality varies across the transition layer.
In particular it is independent of whether the transition layer has been formed
mainly by mixing of the two electrode solutions or mainly by interdiffusion
between them.

If the molalities of the two electrode solutions do not differ greatly from
each other, it may be legitimate to neglect the variation of #yg,.+ with compo-
sition. In this case (2) simplifies to

FE/RT=—%tM82+ ln(mz‘yz/mlyl) 8.19.3

where 7,, 7y, denote the mean activity coefficients of MgCl, in solutions of
molality m,, m, respectively.

If the values of yy,, ¢, are known either from measurements of the electro-
motive force of cells without transference or by freezing-point measurements
combined with use of the Gibbs-Duhem relation, then formula (2) can be
used to give information concerning the transport number .+ . Conversely
if there are independent measurements of this transport number, then for-
mula (2) may be used to give information about the dependence of the mean
activity coefficient yy, ¢ on the molality.
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§8.20 Cells with transference having two dissimilar electrodes

In §8.14 we discussed cells without transference and in §8.18 cells with
transference having two similar electrodes. We have still to consider cells
with transference having two dissimilar electrodes. These are most easily
disposed of by regarding them as a combination of the two types of cell
previously discussed. This will be made clear by a typical example. The cell

Solution II
containing HCI

Bridge
solutions

Solution I

Pt H, containing HCI

AgCl

Ag ‘ Pt 8.20.1

may be regarded as a combination of the two cells

Solution I

containing HCl Pt 8.20.2

! AgCl ’ Ag

Pt, H,

Solution II
containing HCI

Bridge

| Solution I
solutions

Pt icontaining HCl

AgCl

Ag{Pt 8.20.3

Ag !AgCl

i

Consequently the electromotive force of the cell (1) is the sum of those of
the cells (2) and (3). But cell (2) is without transference and, as shown in
§8.14, its electromotive force E, is given by

FE;= — pg8+3ug, + pasa — thci 8.20.4

where the superscript ' refers to the solution I. Cell (3) on the other hand has
two similar electrodes and its electromotive force E; is given by (8.18.17)

I
FE;=— l ;tk(zlzldﬂk—zal'dﬂcl')

1)

- fl ; tx(zx ' dpux—zgt dug-) 8.20.5
wherein we recall that z - = —1 and all the z, are negative integers. The
electromotive force E, of the cell 1 is then given by

E,=E,+E,. 8.20.6

The accurate expressions for the electromotive force of the most general
type of cell with transference were formulated by P. B. Taylor.*

* Taylor, J. Phys. Chem. 1927 31 1478; Cf. Guggenheim, J. Phys. Chem. 1930 34 1758.



CHAPTER 9

GRAVITATIONAL FIELD

§9.01 Nature of gravitational field

The formulae of chapter 1 are easily extended so as to take account of the
presence of a gravitational field. Such a field is characterized by a gravita-
tional potential & with a definite value at each place. The modification of
the gravitational field by the presence of matter in amounts dealt with in
ordinary chemical and physical processes is completely negligible compared
with the earth’s field or any other field of comparable importance. We may
therefore regard the gravitational field as completely independent of the
state of the thermodynamic system considered. In this sense, we call the
gravitational field an external field, and regard the gravitational potential
at each point as independent of the presence or state of any matter there.
It is owing to this fact that, although the abstract theories of gravitational
potential and electrostatic potential are in some ways parallel, yet their
significance for thermodynamic systems is different.

§9.02 Phases in gravitational field

Since a phase was defined as completely homogeneous in its properties and
state, two portions of matter of identical temperature and composition will
be considered as different phases if they are differently situated with respect
to a gravitational field. It follows that the mere presence of a gravitational
field excludes the possibility of a phase of finite depth in the direction of
the field. In the presence of a gravitational field even the simplest possible
kind of system must be considered as composed of a continuous sequence of
phases each differing infinitesimally from its neighbours.

§9.03 Thermodynamic functions in gravitational field

The characteristic property of the gravitational potential is that the work w
required to bring a quantity of matter of mass m from a place where the
327
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potential is ®® to a place where it is ®P is given by
w=m(P"— %) 9.03.1

thus depending on the mass but not on the chemical nature of the matter,
In transferring an amount dn; of the species i from the phase o to the phase
B, the gravitational work is

(P — &*)M,dn; 9.03.2

where M; is the proper mass of the species i. Thus formula (1.27.2) for
dU® must for each phase o contain the extra terms X,®"M,dn?. That is
to say

dU*=T*dS"—P*dV*+ ) (uf + M;0%)dn} 9.03.3

whence follows directly

dG*=—S*dT*+ V*dP*+ Y (4 + M, &%)dn;. 9.03.4

It follows that to take account of the effect of a gravitational field one has
merely to replace p; throughout by uf+ M;®°

Although in all thermodynamic formulae the quantity @ occurs only in
combinations of the form uf + M; ®%, yet the gravitational potential difference
&P — ¢* between two phases o and B, in contrast to the electric potential
difference " —y°, is thermodynamically determinate owing to the fact that
its value is independent of the presence and nature of the phase there. The
phase may therefore be removed without altering & and then &f — &* can
be determined in empty space by direct mechanical measurements.

§9.04 Equilibrium in gravitational field

For the equilibrium as regards the species i between two phases o and B
defined not merely by their temperature, pressure, and composition, but also
by their gravitational potentials, we have in analogy with (1.39.5) the
general condition

HHM 0= P+ M;®*  (equilibrium). 9.04.1

§9.05 Dependence of u, on T and P

Observing that M; and " are independent of 7 and P*, we obtain, dropping
the superscript * throughout,
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a#i/aT=azG/aniaT= _aS/ant= —Si 9.05.1
O/0P =02G[0n,0P =3V [on,=V, 9.05.2

precisely the same as in the absence of a gravitational field.

§9.06 Single component in gravitational field

For the equilibrium of a single component i in a gravitational field we have
according to (9.04.1)

dpy+M;dd=0 9.06.1
or at constant temperature using (9.05.2)
V;dP+M;d®=0 (T const.). 9.06.2
If ¢ denotes the density, then
o, =MJV,. 9.06.3
Substituting (3) into (2) we obtain
dP=—odo 9.06.4

in agreement with the general condition of hydrostatic equilibrium.
In the case of a single perfect gas we have

V,=RT|P. 9.06.5
Substituting (5) into (2) we obtain
RTdIn P+M;d®=0 9.06.6
and by integration
RT In(P%/P*)= M(&*— &F) 9.06.7
or
P?/P*=exp{— M (" — &")/RT}. 9.06.8

For a liquid, on the other hand, neglecting compressibility and so treating
V; as independent of P, we can integrate (2) immediately obtaining

V{(P® — P*)= M(®"— ¢°). 9.06.9
Alternatively integrating (4) we obtain

PP—P*=g(P*— @P). 9.06.10
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§9.07 Mixture in gravitational field

For the equilibrium of each species i of a mixture in a gravitational field we
have according to (9.04.1)

dy,+M;dP=0. 9.07.1
Using (9.05.2) we obtain at constant temperature

Dy;+V,dP+M;dd=0 (T const.) 9.07.2

where D denotes Z,dx,(0/0x,)rp. But according to the Gibbs-Duhem
relation we have

z X; Dﬂi=0. 9.07.3

Multiplying (2) by x;, summing over all species i, and using (3) we obtain

Zx‘KdP+Z X;M(d¢=0. 9.07;4

Introducing the proper volume V,, and the proper mass M, given respec-
tively by

Va=2 xVi 9.07.5
M,=Y x;M, 9.07.6

we can write (4) as
VdP+ M, d®=0. 9.07.7

But the density g is related to V,, M,,, by
o=M_jV,. 9.07.8

Substituting (8) into (7), we recover the usual condition of hydrostatic
equilibrium

dP= —pd®. 9.07.9
If we substitute for dP from (7) into (2), we obtain
Du;+(M;— VM|V, )dP 9.07.10
or, according to (8),
Dy;+(M;—oV;)d®=0. 9.07.11

The differential equations of this section can be integrated only in certain
exceptionally simple cases which we shall consider in turn.
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§9.08 Mixture of gases

For a mixture of perfect gases it is possible to integrate (9.07.2), but the
same result can be obtained as follows. For any component i in two
gaseous mixtures a, B at the same temperature T, we have

# —pi=RT In(pf/p}) 9.08.1

where p? and p? are the fugacities in the two phases.
Substituting (1) into (9.04.1) we obtain as the equilibrium condition for
the species i in a gravitational field

RT In(p?/pf)=M,(®"— &°) 9.08.2
or
P pf=exp{— M,(d"— &*)/RT}. 9.08.3
If we differentiate (2) we obtain
dp;/p;= —(M,/RT)d®. 9.08.4
If the gas mixture is perfect then using
Pi=Y:RT|Vy, 9.08.5
we can rewrite (4) as
dp;=—(y;M,/V,)dd. 9.08.6

Summing (6) over all species /, we obtain
dP=—(M/V,)d®=—odd 9.08.7

thus verifying that (2) and (3) are consistent with hydrostatic equilibrium.

§9.09 [Ideal dilute solutions

In the case of an ideal dilute solution we may replace (9.07.10) for each solute
species s by

RTdIn mg+(M,— V.M, [V, )d®=0. 9.09.1

In the limit of extreme dilution we may replace M, [V, by M, |V, where
the superscript © relates to the pure solvent, and obtain

RTd In m+(M,—V,M,[V)dd =0. 9.09.2
Neglecting compressibility, this can be integrated directly, giving

mbim? =exp{—(M,— V,M,|V)(#* — &*)/RT}. 9.09.3
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§9.10 Chemical reaction in gravitational field
For the chemical reaction

0=Y vsB 9.10.1
B

the most general form for the condition of equilibrium in the absence of a
gravitational field is

§v3u3=0. 9.10.2

In the presence of a gravitational field the corresponding equilibrium condi-
tion is evidently

; VB(IJB+M3¢)=O. 9-10.3

But owing to the conservation of mass we have

ZVBMB=0' 9.10.4
B

Multiplying (4) by @ and subtracting from (3) we recover (2). It follows that
any chemical equilibrium constant is independent of the gravitational
potential or in other words is unaffected by the presence of a gravitational
field.



CHAPTER 10

ELECTROSTATIC SYSTEMS

§10.01 Introduction

We now propose to study the thermodynamic properties of substances in
an electrostatic field. For this purpose it will suffice to consider the field
in a parallel-plate capacitor neglecting any edge effect. Thus when we
refer to the extensive properties of a parallel-plate capacitor of area A,
we really mean the difference between those of a capacitor of area o7 + A4
and those of a similar capacitor of area &7, where &/ > 4.

§10.02 Parallel-plate capacitor in vacuo

Consider a parallel-plate capacitor of area A, the distance between the plates
being d. Let the charges on the two plates be +Q and — Q. The capacitor
being in vacuo let the work required to transfer an elementary charge
dQ from the negative plate « to the positive plate p be (Y?—y*)dQ. Then
YyP—y* is called the potential difference between the two plates and
E=—(yP—y*)/d is called the electric field strength between the plates.
Then the ratio ¢, defined by

Qd|A(Y*—y*)=Q[AE=¢, 10.02.1
is a universal constant called the rationalized permittivity of a vacuum.
The value of ¢, is given by

£,=8.854x10"12C*) ' m~?!

4mey=1.113x10"1°C*J " Im™!
=1.113x 1071 AsV Im™!

§10.03 Parallel-plate capacitor in fluid

Now consider the same parallel-plate capacitor completely immersed in a
homogeneous fluid. If the charges on the plates are again +Q and —Q,
333
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and if the potential difference between the plates, defined as before, is again
denoted by yP—y" then the ratio e, defined by

Qd/A(W*—y*)=Q/AE=¢ 10.03.1

is called the rationalized permittivity of the fluid. The value of ¢ depends on
the nature of the fluid, on its temperature, and possibly also on E, but is
independent of the size and shape of the capacitor. ¢ has of course the same
dimensions as &,. The ratio ¢, =¢/¢, is called the relative permittivity or the
dielectric coefficient of the fluid.

§10.04 Work of charging a capacitor
According to (10.03.1) we have
WP —y*=Qdled 10.04.1

and so the work required to bring an element of charge dQ from the negative
plate o to the positive plate B is

(QdeA)dQ. 10.04.2

From (10.03.1) we have also
Q=A¢E 10.04.3
dQ=Ad(¢E). 10.04.4

Substituting (3) and (4) into (2) we obtain for the work w required to
increase the field strength from E to E+dE

w=AdEd(¢E)=V,Ed(¢E) 10.04.5

where ¥V, denotes the volume between the plates of the capacitor and is
assumed independent of temperature and pressure.

Formula (5) is valid for any infinitesimal change, including in particular
an adiabatic change and an isothermal change, but the dependence of ¢E on E
will in general not be the same in these two cases. The quantity ¢E is called
the electric displacement.

§10.05 Characteristic functions

If we now consider the system consisting of the whole fluid of volume V
surrounding and including the capacitor, we obtain by using (10.04.5)
the relations

dU=TdS—PdV +V,Ed(¢E)+) wdn 10.05.1
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dF =—SdT—PdV +V,Ed(¢éE)+Y, wdn;. 10.05.2

Formulae (1) and (2) are the extensions of (1.28.6), (1.28.7) respectively
including the extra term (10.04.5) representing the work required to change
the field E between the plates of the capacitor.

We now define the characteristic function G by

G=U—-TS+PV—V,E? 10.05.3
Differentiating (3) and substituting into (1), we obtain

dG=—SdT+VdP-V,eEJdE+Y p,dn,. 10.05.4

In all the above formulae ¥ denotes the total volume of fluid in which the
capacitor is immersed and P denotes the pressure acting on the outside
boundary of the fluid in which the capacitor is completely immersed.
We have carefully avoided reference to any pressure within the fluid between
the plates of the capacitor, for the definition of such a pressure would require
special caution and its use as an independent variable would lead to more
complicated formulae.

§10.06 Analogues of Maxwell’s relations

By forming the second differential coefficients of the characteristic functions
we can obtain several relations analogous to Maxwell’s relations obtained
in §1.47. In particular from (10.05.4) we derive

(0S/E)r, p=V(O[¢E]/OT)p, g=V,E(0e/0T)p g 10.06.1
(0V/OE);, p= — V,(0[¢E]/OP)y, g= — V. E(0¢/oP); g.  10.06.2

This change in volume accompanying change in field strength at constant
temperature and pressure is called electrostriction.

§10.07 Constant permittivity. Dielectric constant

For the sake of generality we have hitherto made no assumption concerning
the dependence of the permittivity ¢ on the field strength E. For almost all
substances at field strengths met in an ordinary laboratory the permittivity ¢
is for a given temperature and pressure independent of the field strength.
We shall from here onwards assume this to be the case. The relative
permittivity or dielectric coefficient ¢, = &/¢, is then called the dielectric constant.
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Formula (10.06.1) may now be written more simply as
(0S/0E);, p=V, E(0¢/0T)p 10.07.1
and the electrostriction formula (10.06.2) as

(a V/aE)T, P=— V;E(aﬁ/ap)T . 10.07. 2

§10.08 Integrated formulae

When we assume that ¢ is independent of E we can integrate (10.05.4) at
constant T, P, n; obtaining

G=G"—14¢E*V, 10.08.1

where the superscript ° denotes the value at zero field at the given tempera-
ture, pressure, and composition.
By differentiation of (1) we obtain

S =5°+14(3¢/0T)E?Y, 10.08.2
V =V°—4(0¢/0P)E?V, 10.08.3
= —%(defon,)E*V, 10.08.4

from which we deduce
H=H"+3}{e+ T(3¢/0T)}E*V, 10.08.5
U=U°+14{e+T(3¢/dT)+ P(3¢/OP)}E*V,. 10.08.6

We must point out that the statement occurring in text-books on electricity
that the energy density due to the field is 3¢E? is false.

§10.09 Application to perfect gas

We shall illustrate the use of the relation (10.08.4) by its application to the
simplest case of a single perfect gas.

The rationalized permittivity ¢ of a perfect gas is related to the rationalized
permittivity &, of a vacuum by

e—¢go=(Ln/V)(a+B|T) 10.09.1
where o is equal to the molecular polarizability and g is given by
B=u*3k 10.09.2

where u is the electric moment of the molecule and k the Boltzmann constant.
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Substituting (1) into (10.08.4) we obtain
p=u’—3E*L(e+B|T)
=u® 4+ RT In(nRT/P°V)—3E*L(a+ B/T). 10.09.3
Let us now consider the equilibrium distribution of a gas between the
region, denoted by the superscript /, inside a capacitor where the field

strength is E and the region, denoted by the superscript °, exterior to this
field. We have then

p'=u®+RT In(n'RT/V'P®)—3E*L(a+ B/ T) 10.09.4
p°=u® +RT In(n°RT/V°P®). 10.09.5
The equilibrium distribution is determined by
w=pu. 10.09.6
Substituting (4) and (5) into (6), we obtain, writing ¢ for n/V,
RT In(c'jc®)—3E*L(a+ B/ T)=0 10.09.7
> c'|c®=exp{(3E*/RT)(a+B/T)}. 10.09.8

Since « is always positive and f is either positive or zero, it follows that ¢
is always greater inside the field than outside it. Thus every perfect gas is
attracted into an electric field.



CHAPTER 11

MAGNETIC SYSTEMS

§11.01 Introduction

In order to apply thermodynamics to magnetic systems we have merely to
extend our previous formulae by including extra terms for the magnetic
work. In principle the procedure is straightforward and should cause no
difficulty. There is however a serious incidental difficulty, namely that of
finding the correct general expression for magnetic work. We should expect
to be able to discover such an expression by consulting any reputable text-
book on electromagnetism. Unfortunately this is far from the case. The
treatment given in most text-books is altogether inadequate. In most cases
the derivations of formulae for magnetic work assume either explicitly or
implicitly that the permeability of each piece of matter is a constant, whereas
from a thermodynamic viewpoint one of the questions of greatest interest
is how the permeability varies with the temperature. It is therefore desirable,
if not essential, to start from formulae which are not restricted to the assump-
tion that the permeability of each piece of matter is invariant. In many, if
not most, text-books on electromagnetism the treatment of magnetic work
suffers from other even more serious defects. In some text-books the treat-
ment is based on a discussion of permanent magnets imagined to be con-
structed by bringing together (reversibly?!) from infinity an infinite number
of infinitesimal magnetic elements. Actually a permanent magnet is an
idealization far from reality. It is true that magnets can be made which are
nearly permanent with respect to changes in position, but they are never
permanent with respect to changes of temperature. Increase of temperature
is usually accompanied by an irreversible loss of magnetization. Whatever
may be the use of the conception of a permanent magnet in the theory of such
instruments as compasses, galvanometers, and dynamos, it is not a useful
conception as a basis for the analysis of magnetic work when changes of
temperature may be important. The worst text-books give formulae for
magnetic work which not only are of restricted applicability, but even
338
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contain wrong signs. Others confuse the external magnetic field B, with the
local internal field B. Fortunately there are a few text-books* on electro-
magnetism which give a clear correct treatment of magnetic work. Here we
shall assume the correct formula for magnetic work after first recalling the
physical meaning of the several electromagnetic quantities involved and how
they are related to one another.

§11.02 Fundamental electromagnetic vectors

As elsewhere in this book we use the rationalized system of electromagnetic
quantities. We recall that the strength and direction of an electrostatic field
is described at each point by a vector E such that the force acting on a small
stationary test charge Q placed at this point is QE. This vector E is called
the electric field strength. The analogous magnetic vector describing the
force acting on a small test element of current is denoted by B and has the
property' that the force on each element ds of a linear conductor of current
i is given by the vector product ids x B. This vector B is called the magnetic
induction.

§11.03 Permittivity and permeability in a vacuum

In a vacuum the value of E at each point is determined by the distribution
of electric charges and is the sum of independent contributions from each
charge. The contribution to E of a charge Q at a distance r is directed along r
and is of magnitude

Q/4ne, r? 11.03.1

where ¢, is a universal constant called the rationalized permittivity of a
vacuum. Alternatively we may say that each charge Q makes an additive
contribution

Q/4ne,r 11.03.2

to the electrostatic potential ¢ and that E is then determined by
E= —grad y. 11.03.3

We turn now to the analogous magnetic formulae. Each element ds of a
linear conductor carrying a current i makes an additive contribution

U ids/4nr 11.03.4

* In particular Stratton, Electromagnetic Theory, McGraw-Hill 1941, hereafter referred
to as S., E.T.
t S., E.T. p. 96.
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to A, called the magnetic vector potential, and B is then determined by
B=curl A. 11.03.5

The quantity s, occurring in (4) is a universal constant called the rationalized
permeability of a vacuum.

Before proceeding further it is instructive to consider the physical dimen-
sions of the quantities occurring above in terms of the four independent
dimensions length L, time T, energy U, and electric charge Q. For the present
purpose it is more convenient to choose energy than mass as one of the four
independent dimensions. The dimensions of the most important quantities
are given in table 11.1.

TABLE 11.1
Dimensions of electromagnetic quantities
L denotes length, T time, U energy, and Q electric charge

Symbol Name Dimensions
Q Electric charge Q
i Current QT
ds Element of length L
ids Element of current QLT
y Electrostatic potential vo—
A Magnetic vector potential UL'TQ
E Electric field strength ULQ*
B Magnetic induction UL™*TQ™!
&E QL™?
u7'B QLT
& QLU
Ho vo—L-'T?
”;1 QLT-:U-!
Eolby L-T?
&E? UL
uy'B? UL

The following points are worthy of note.

1. Inasmuch as an element of current is the analogue in a magnetic system of
an element of electric charge in an electrostatic system, it is clear* that
Uo !, not g, is the analogue of &.

2. (eotto)~* has the dimensions of a velocity; it is well known that this
quantity is equal to the speed of propagation of electromagnetic waves in
a vacuum.

* Sommerfeld, ‘Electrodynamics’, translated by Ramberg, Academic Press 1952 p. 21.
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3. The quantities e, E* and pg 'B* both have the dimensions of energy
density or pressure.

The values of ¢, and p, and related quantities in the rational system are as
follows:

€,=8.854x10"'2C*j"im™!
Ho=4nx1077 Js*C"2m™1=1.2566x10"°Js>C " *m™!
oplo=1.1126x10"17s2 m™2=(2.9979 x 10* m s~ )~ 2.

§11.04 Simplest examples of fields in a vacuum

The formulae of the previous section are sufficient to specify completely the
E field due to any given distribution of charges in a vacuum or the B
field due to any given distribution of currents in a vacuum. The quantita-
tive application of these formulae is however complicated and tedious except
for systems having a high degree of symmetry. We shall consider briefly
one such electrostatic system and one such magnetic system.

As the electrostatic system we choose the parallel-plate capacitor, already
discussed in the previous chapter, neglecting edge effects. If charges Q and
— Qare distributed uniformly over the two plates each of area 4 at a distance
d apart, then in the absence of any matter between the plates the electric
field is uniform, normal to the plates, and has the value

|E|=Q/eo A. 11.04.1

As an example of a magnetic system having simple symmetry we choose a
long uniform solenoid and we ignore end effects. The magnetic induction
inside the empty solenoid is then uniform, parallel to the axis, and has the
value

|B|=po i/l 11.04.2

when the current is i and there is one turn per length /.
For reasons which will appear later it is instructive to rewrite (1) and (2)
in somewhat different forms. We rewrite (1) as

eolE|=0d]V, 11.04.3

where d is the distance between the plates so that V,=d4 is the volume in-
cluded between the plates of the capacitor. The product Qd of the charge ona
plate and the distance between the plates may be called the electric moment
of the charged capacitor. Thus according to (3) we observe that in this
system with simple symmetry &o|E| is equal to the electric moment per unit
volume.
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We likewise rewrite (2) in the form
uo Y |Bl=nid]V, 11.04.4

where n denotes the total number of turns, A denotes the cross-section of the
solznoid, and V,=nlA denotes the volume contained by the solenoid.
We may regard the solenoid as an electromagnet and we call the product
niA its magnetic moment. We see then according to (4) that ug !|B| is equal
to the magnetic moment per unit volume of the solenoid.

From these relations we again perceive that po !, not y,, is the analogue
of ¢,.

§11.05 Presence of matter

We shall now discuss briefly the effect of filling the parallel-plate capacitor
and the solenoid respectively with uniform matter,

When the space between the plates of the capacitor is filled with uniform
matter, this matter becomes electrically polarized as a result of the field
due to the charges on the plates. The electric polarization P is defined as
the electric moment per unit volume induced in the matter. Owing to the
symmetry of the system under consideration P is in this case uniform and
normal to the plates. It is not difficult to see what will be the resultant
effect on the field E. We interpreted formula (11.04.3) to mean that ¢y|E|
is equal to the electric moment per unit volume of the charged capacitor.
It is evident that ¢,|E| will now be equal to the resultant electric moment per
unit volume due partly to the charges + Q on the plates and partly to the
polarization of the matter between the plates. Thus in place of (11.04.3)
we shall have

&l|E|l=0Qd/[V,.—|P| 11.05.1
or
golE|+|P|=0Qd|V,=Q/A. 11.05.2

Thus ¢, E + P is now related to the charge on the capacitor plates in precisely
the same manner as ¢, E was related to it when the capacitor was empty.
In other systems having lower symmetry the situation is less simple because
E and P vary from place to place. The composite vector gq E + P still how-
ever plays an important role. It is called by the curious name electric dis-
placement and is denoted by D. Thus by definition

=g, E+P. 11.05.3

From the identity (3) it is evident that any two of the vectors E, P, D
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completely determine the remaining one. It is however a fundamental
assumption of electrostatics, borne out by experiment, that at any point
in a piece of matter of given composition, given temperature, and given
pressure any one of the vectors E, P, D completely determines the other
two. If moreover the matter is isotropic, then E, P, and D have the same
direction. If then we write

D=¢E 11.05.4

the coefficient ¢ is a scalar quantity, provided the matter is isotropic. (Other-
wise € would be a tensor of rank two.) The quantity ¢ defined by (4) is called
the permittivity of the matter. Its value in general depends on the composition
of the matter, the temperature, the pressure, and the field strength. The ratio

D/80E=8/80 11.05.5

is called the relative permittivity or the dielectric coefficient or, when its value
is independent of E, the dielectric constant. It is evident from (3) that P and D
have the same dimensions as &, E, namely that of charge/area. It is likewise
evident from (3) and (4) that ¢ has the same dimensions as ¢,, so that the
dielectric coefficient e, is a dimensionless number.

Much of the above was implicitly assumed in the previous chapter, is
moreover well known, and is seemingly irrelevant to magnetic systems.
It is however convenient to have these relations before us for comparison
with analogous but less understood magnetic relations.

We turn now to consider the effect of filling the uniform solenoid with
uniform matter. As a result of the current in the solenoid the matter will
behave as if it contained induced microscopic molecular current circuits or
elementary magnets. According to (11.04.4) their contribution to ug'B
will be equal to the magnetic moment per unit volume; this quantity is
called the magnetization and is denoted by M. Owing to the symmetry of the
solenoid, M will be parallel to the axis and so (11.04.4) has to be replaced by

Uo '|Bl=niA|V,+ M| 11.05.6
or
uo Y |Bl— M| =nid|V,=i/l. 11.05.7

Thus the composite vector uy B —M is now related to the current through
the solenoid in precisely the same manner as p ' B was related to it when the
inside of the solenoid was empty. In other systems having lower symmetry
the situation is less simple because B and M vary from place to place.
The composite vector g 'B—M still however plays an important role. It is
denoted by H and is called by the misleading name magnetic field intensity.
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Thus

H=u;'B—M. 11.05.8
The names generally used for E, B, D, and H are extremely confusing.
A few of the better authorities use better names. In particular Sommerfeld*
uses the names

E electric field strength B magnetic field strength
D electric excitation H magnetic excitation

while Stratton! uses the names

E electric force vector B magnetic force vector
D electric derived vector H magnetic derived vector.

From the identity (8) it is evident that any two of the vectors B, M, H
completely determine the remaining one. It is however a fundamental
assumption of electromagnetic theory that at any point in a piece of matter
of given composition, given temperature, and given pressure any one of
the vectors B, M, H completely determines the other two. The phenomenon
known as hysteresis contradicts the assumption; such phenomena are here
expressly excluded from consideration. With this proviso we write

H=u"'B 11.05.9

and the coefficient p is called the permeability of the matter. Provided the
matter is isotropic u is a scalar, (Otherwise u would be a tensor of rank
two.) The value of p in general depends on the composition, the temperature,
the pressure, and the field strength. The ratio u/p, is called the relative
permeability of the substance and is denoted by ;.

§11.06 Electric and magnetic work

Having completed our elementary review of the physical significance of the
vectors E, D and B, H we shall quote without proof general formulae for
electric and magnetic work.

We first consider an electrostatic system consisting of charged conductors
and dielectrics. For any infinitesimal change in the system, produced by
moving either an electric charge or a conductor or a dielectric, the electric
work w done on the system is given byt

w=deEdD 11.06.1

* Sommerfeld, ‘Electrodynamics’, translated by Ramberg, Academic Press 1952 Part 1§2.
t's., ET. p. 12.
t s, ET. p. 108.
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where dD denotes the increment of D in the element of volume dV and the
integration extends over all space, or that part of space where the electric
field does not vanish.

In the simplest case of a parallel-plate capacitor containing a uniform
dielectric, if we neglect edge effects, E and D vanish outside the capacitor,
while between the plates they are uniform having the values

ID|=Q/A 11.06.2
|E|=Q/eA 11.06.3

where + Q denotes the charge on either plate of area 4. If then d denotes
the distance between the plates and ¥, the volume contained between them,
formula (1) reduces to

w=V,0dQ/eA*=(Qd[eA)dQ 11.06.4

in agreement with formula (10.04.2).

We turn now to a magnetic system consisting of current circuits and
magnetic matter, concerning which our only restrictive assumption is the
absence of hysteresis. For any infinitesimal change in the system either by
changing the current in any circuit or by moving any conductor carrying a
current, the magnetic work done on the system is*

w=deHdB 11.06.5

where dB is the increment of B in the element of volume dV and the integra-
tion extends over all space, or that part of space where the magnetic field
does not vanish.

Since we have been at pains to emphasize that B is the analogue of the
force vector E, while H is the analogue of the derived vector D, the reader
may justifiably express surprise that formula (5) contains as integrand
HdB, not BdH. The explanation of this paradox is that the analogy must
not be pushed too far, because, whereas the electrostatic energy due to fixed
charges is potential energy, the magnetic energy due to electric currents
is kinetic energy. More precisely* while the Hamiltonian contains as
integrands EdD and HdB, the Lagrangian contains as integrands — EdD
and BdH.

In the simplest case of a long solenoid filled with a uniform isotropic
substance, if we neglect end effects, B and H vanish outside the solenoid,

* Guggenheim, Proc. Roy. Soc. A 1936 155 63; Broer, Physica 1946 12 49.
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while inside they are uniform having the values
|H|=i/l 11.06.6
|B| = pifl 11.06.7

where i denotes the current and / the length per turn. If then ¥, denotes the
internal volume of the solenoid, L its length, A its cross-section, and n the
total number of turns, formula (5) becomes

w=V,(i/l)d(ui)/1=(A/L)nid(wi). 11.06.8

§11.07 Formula for Helmholtz function

Once we know the general formula for magnetic work it is, as already
mentioned in§11.01, a straightforward matter to write down thermodynamic
formulae of general validity. For the sake of brevity and simplicity we shall
neglect changes of volume whether due to change of temperature (expan-
sivity) or to change of pressure (compressibility) or change of magnetic
field (magnetostriction). The formulae may be applied to solid and liquid
phases at constant pressure as an approximation.

Consider now a system consisting of linear conductors and magnetic
matter and suppose the currents gradually increased from zero to final values
corresponding to final values of B and H at each point of the system. Then
the magnetic work w done on the system when the field is thus built up is

B
w=JdVJ HdB 11.07.1
0

where the first integration extends over all space. The second integral will
depend on the relation between B and H which in turn depends on the tem-
perature at each stage. Let us now specify that the path of integration shall
be isothermal. Then the work w is equal to the increase in the Helmholtz
function & of the system. We accordingly have

B
Av=i°+def HdB 11.07.2
0

(T const.)
where the superscript © denotes the value when B is everywhere zero, that
is to say when no currents are flowing.
In the simplest case of a uniform field, as when a long solenoid of volume
V is filled with a uniform substance, (2) can be written as
B

B
(/F—,«F°)/V=f Hd8=f u~'BdB. 11.07.3
(/] 0

(T const.) (T const.)
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§11.08 Other thermodynamic functions

From the formula for the Helmholtz function we can immediately derive
formulae for the entropy S and the total energy U by differentation with
respect to T. For the sake of brevity and simplicity we shall confine ourselves
to the formulae valid in a region of volume ¥ where composition and field
are uniform. Using the superscript ° to denote values of a function when B
is zero, we derive from (11.07.3)

_ O B B
5= __ 0% (gap-— [ H g
v 3T J, o 0T
(T const.) (T const.)
B
=_f UK gap 11.08.1
0
(T const.)
779 B
v-v =J :i— Ta—(—l/ﬁ)} BdB. 11.08.2
vV o \u oT
(T const.)

We can introduce other characteristic functions in particular 4 defined by
* H

(T, H)=A~‘—J dVHB=AF°—def BdH. 11.08.3
o]

In the absence of permanent magnets, when B =0 implies H =0 throughout
space, J4 has the property

d:I=—SdT—fHdVBdH. 11.08.4
From (4) we derive ’
(0S/oH) ;= f dV(0B/oT)y 11.08.5
and consequently
5=5°+ de J :(aB/aT),,dH 11.08.6
(T const.)

or in the case of a uniform field

H H
(S=S8%)v =f (0B/oT)udH = f (6u/oT)HAH. 11.08.7
(T conost.) (T cor?sc.)

At first sight formulae (1) and (7) may seem to disagree but in fact their
equivalence follows from
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- f" (0B/OT)ydH = — JB(GB/GT),,(GH/E?B)T dB =fx(aH/aT),dB. 11.08.8
0 0 0

(T const.) (T const.) (T const.)

§11.09 Case of linear induction

Hitherto we have imposed no restriction on the relation between H and B.
The permeability x4 was defined by

u=B/H 11.09.1

and in general u depends on B (or H) as well as on the temperature. For most
materials, other than those exhibiting hysteresis, at the field strengths ordi-
narily used in the laboratory and at ordinary temperatures, it is found that
W is, at a given temperature, independent of B. Under these conditions the
integrations in the formulae of the previous two sections can be performed
explicitly. Thus formulae (11.07.3), (11.08.1), and (11.08.2) reduce respec-
tively to

(F— &)V =3B*|u=4HB=3uH* 11.09.2
(S—S°)/V =4B*(dp/dT)/u* =4H?*du/dT 11.09.3
(U=-UV =$H*(u+ Tdp/dT). 11.09.4

Although a variation of u with B at constant temperature is the exception,
it does occur especially at low temperatures. In particular this phenomenon
of magnetic saturation has been observed for hydrated gadolinium sul-
phate.* The formulae of the present section are then not applicable.

§11.10 Specimen in uniform external field

The relations developed so far involve integration over all space or that
part of space where the field does not vanish. These integrations are usually
too complicated to be practicable except in the case of a long solenoid
completely filled with a uniform material. Unfortunately this example is of
little practical interest. The experimenter is more interested in the behaviour
of a specimen of matter introduced into a magnetic field which was uniform
before the introduction of the specimen. We shall therefore transform our
formulae to describe the behaviour of a specimen of magnetic material
in a magnetic field which before the introduction of the specimen was
uniform and of magnitude defined by B=B,. We call this the external

* Woltjer and Onnes, Comm. Phys. Lab. Leiden 1923 no. 167c.
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field. In contrast to B, the force vector (induction) of the uniform field
before the specimen was introduced, we continue to use B, H, M to refer
to the state with the specimen present. M of course vanishes outside the
specimen. We define H,., B;, H,, respectively by

B.=pu,H. 11.10.1
B=Be+Bi=u0(He+Hi+M)' 11.10.2

By virtue of Maxwell’s electromagnetic equations the following conditions
are obeyed
divB=0 divB.=0 divB;=0 11.10.3

curl H;=0  curl (dH,)=0. 11.10.4
We now have

JdVHdB— JdVHedBe
=deHidB+deHedBi

=J.dVHidB+deBedHi+deB,dM. 11.10.5
But as a consequence of (3) and (4)
deHidB=0 deB,dHi=0. 11.10.6
Using (6) in (5) we obtain
deHdB—deH,dB,:deB,dM. 11.10.7

This relation and its elegant derivation are due to Casimir.*

If we integrate (7) at constant temperature the left side is the Helmholtz
function with the specimen present less the Helmholtz function with the
specimen absent. We call this the Helmholtz function of the interaction
between the external field and the specimen and we use the superscript ' to
denote this. We have then

F'= defB,dM: fB,dm 11.10.8
(T const.) (T const.)

where m={dV'M is the magnetic moment of the specimen.

* Casimir, private communication, 1951 ; Heine, Proc. Cambridge Phil. Soc. 1955 52 546.
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§11.11 Other thermodynamic functions

It is clear from (11.10.8) that 4 is the characteristic function of interaction
for the independent variables T, m. For most purposes a more useful
function is the characteristic function of interaction for the independent varia-
bles T, B, denoted by 4' and defined by

d'=#—-B.m 11.11.1

and obeying the relation

dd'=—-S'dT—mdB,. 11.11.2
From (2) we derive the Maxwell-type relation

(05°/0B.)r =(0m/0T)s, 11.11.3
and consequently

S'= f:e(am/aT),edBe. 1.11.4

(T const.)

§11.12 Specimens of simple shape

The relations containing B, and M, while formally correct, are not of much
use unless we know the relationship between B, and M. This relationship
is complicated unless the magnetic specimen has the shape of a spheroid
having its axis of symmetry parallel to the external field B, . For a spheroidal
specimen with semi-axes a, b, b the vectors B., B, M are parallel throughout
the specimen and obey the linear relation

B./B={uo+D(u—po)} /1 11.12.1

where D is a constant determined by the ratio b/a. It has the curious name
demagnetizing coefficient.

When a/b—0 so that the specimen becomes a circular disc with its plane
normal to the field

D=1 B/B,=1 (circular disc). 11.12.2

When b/a—0 so that the specimen has the shape of a needle parallel to the
field
D=0  B/B.=pufp, (needle). 11.12.3

When b=a so that the specimen is spherical

D=1iB/B.=3u/(2uo+p)  (sphere). 11.12.4
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From (11.05.8) and (11.05.9) we deduce

M =B(1/uo—1/p). 11.12.5
Combining (5) with (1) we obtain
B./poM = po/(u—po)+D. 11.12.6

§11.13 Diamagnetic, paramagnetic, and ferromagnetic substances

Substances are divided into three classes according to their magnetic proper-
ties. These have the names diamagnetic, paramagnetic, and ferromagnetic.

In a diamagnetic substance y has a constant value less than u,, independent
of the field strength and of the temperature. For such a substance there is
no magnetic term in the entropy and consequently there is no distinction
between the energy and the Helmholtz function. Thus the thermo-
dynamics of diamagnetic substances is trivial.

In a paramagnetic substance y has a value greater than u, and varying
with the temperature. The value of p also depends on the field, but usually
varies but little with the field except in high fields or at low temperatures.
Paramagnetic substances form the class to which the application of thermo-
dynamics is most interesting and useful. The remaining sections of this chap-
ter will be devoted almost entirely to paramagnetic substances.

A characteristic of ferromagnetic substances is the occurrence of hysteresis.
This means that M is not a single-valued function of the field. When the
field is varied the changes in magnetization are usually not reversible. The
application of thermodynamics is accordingly difficult. Such attempts as
have been made to apply thermodynamics to ferromagnetic substances are
still controversial and nothing further will be said of them. Our only remarks
concerning ferromagnetic substances will be of a general qualitative nature.

In ferromagnetic substances u is greater than u, and usually considerably
greater than in paramagnetic substances. There can even be magnetization
in the absence of any external field. This is called permanent magnetization
or remanent magnetization.

When the temperature of a ferromagnetic substance is raised, the substance
eventually becomes paramagnetic. The temperature at which this change
occurs is called the Curie temperature. The change is a transition of higher
order as defined in chapter 6. Thus the Curie temperature is a lambda point,
in fact the first example of a lambda point to be discovered.

§11.14 Simple paramagnetic behaviour

We shall describe in some detail the behaviour of those paramagnetic
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substances whose magnetic properties are entirely due to electron spin.
The behaviour of the larger class whose magnetic properties are due, partly
or entirely, to orbital angular momentum is qualitatively similar but quanti-
tatively more complicated. A description of these will not be attempted here
as it would require too much space. The reader interested will have to turn
to a more specialized source of information.*

The fundamental unit of magnetic moment in electron theory is Bohr’s
magneton and all magnetic moments will be expressed in terms of this unit.
Bohr’s magneton is denoted by B and is defined by

B=eh/dnm, 11.14.1

where —e denotes the charge and m, the mass of an electron while 4, as
usual, denotes the Planck constant. If we multiply (1) by the Avogadro con-
stant L, we obtain the corresponding proper unit

LB=Fhl/4mm, 11.14.2
where F denotes the Faraday constant. Inserting the numerical values

F=9.649 x 10* C mole™*
m,=9.109x 1073! kg
h=6.626x10"3* kgm?s~*

we obtain

LB=5.586 A m? mole™". 11.14.3
Correspondingly for B we have

B=5.586x1.6601 x 10 "2* A m?
=9.272x10"2* A m2, 11.14.4

Following standard spectroscopic notation we shall denote the resultant
spin quantum number by S, so that the multiplicity is 25 + 1. Examples of va-
lues of § for some typical paramagnetic ions of transition elements are
given in table 11.2. The first and last ions in the table, having $=0, are dia-
magnetic.

We now consider a substance such as ammonium ferric alum
NH, Fe(SO,),"12H,0 each molecule of which contains a considerable
number of atoms, in this example 52, only one of which, in this case Fe,
is paramagnetic. In such a substance the paramagnetic ions, in this case

* Van Vleck, Electric and Magnetic Susceptibilities, Clarendon Press 1932 p. 259.
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Fe®*, may usually be considered as mutually independent, each making
its own contribution to the paramagnetism of the substance. We shall
denote the proper volume as usual by ¥,,, this being the volume which
contains L paramagnetic ions.

TABLE 11.2

Multiplicities of typical paramagnetic ions of transition elements

Number of 3d

Ions S 25+1
electrons
Sc3+ 0 0 1
Scit, Tid+, Vi+ 1 % 2
Ti+, v+ 2 1 3
Vet Cr3+ 3 13 4
Cr?t, Mn3+ 4 2 5
Mn?+, Fedt 5 2% 6
Fe?+ 6 2 5
Co?t 7 14 4
Nij2+ 8 1 3
Cu?t 9 b 2
Cut, Zn?t+ 10 0 1

We consider a small spherical specimen of such a substance placed in a
uniform external magnetic field with induction B,. Then for the independent
variables T, B, the characteristic function 4’ of the interaction between the
specimen and the field is given by

g Vi — —RTIn sinh{(2S +1)LBB./RT}
sinh{LBB./RT}

S

where V, denotes the volume of the specimen. Formula (5) is essentially
due* to Brillouin.

From formula (5) we can derive all the thermodynamic formulae relating
to the magnetic properties of the specimen. The magnetic moment m
of the specimen is determined by

m=—0.1'/0B, 11.14.6

11.14.5

and the magnetization M by
MYV,=-381'/3B,. 11.14.7

* Van Vleck, Electric and Magnetic Susceptibilities, Clarendon Press 1932; Stoner, Mag-
netism and Matter 1934.
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From (5) and (7) we derive
MV, =(2S +1)LB coth{(2S+ 1)LBB./RT} —Lp coth{LBB./RT}. 11.14.8

We shall study the particular case S=4 before continuing with the general
case. When S=1%, formula (8) reduces to the simple form

MV, =Lp tanh{LBB/RT}. 11.14.9

We see at once that for sufficiently small field strengths we may replace (9)
by the approximation

MV, =(LB)*B./JRT  (LBB.<RT) 11.14.10

so that M is directly proportional to B, and inversely proportional to 7.
This behaviour is known as Curie’s law. At the opposite extreme of sufficient-
ly high values of B, we may replace (9) by the approximation

MV,=LB  (LBB.>RT) 11.14.11

so that M is independent of B, and of T. This behaviour is called magnetic
saturation. We shall soon see that for all values of S Curie’s law holds in
sufficiently low fields and saturation occurs in sufficiently high fields.

We now return to the general formula (5) and consider its simplification
in the two extremes of large and of small B,. Considering first large values
of B, we replace each sinh by 4 exp and obtain immediately

AV, |V,= —2SLBB, (LBB.>RT). 11.14.12
From (7) and (12) we derive
MV, =2SLp (LBB.>RT) 11.14.13

representing saturation.

We turn now to the opposite extreme of small B,. We expand each sinh
as a power series retaining the first two terms. We then expand the logarithm,
again retaining the first two terms. We thus obtain

d'V,|V,= —RT In(2S+1)—4S(S+ 1)(LBB,)*/6RT  (LPB.<RT).
11.14.14
From (7) and (14) we derive

MV, =45(S+1)(LB)*B./3RT  (LBB.<RT) 11.14.15

so that M is directly proportional to B, and inversely proportional to T
in accordance with Curie’s law.

Formula (15) has been verified experimentally for numerous substances.
The more general theoretical relation (8) between M and B, extending from
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the extreme of Curie’s law to the opposite extreme of saturation has been
quantitatively verified* for hydrated gadolinium sulphate, in which the
paramagnetic Gd3* ion is in an 8§ state with S=31.

§11.15 Entropy of simple paramagnetic substances

We continue to restrict our discussion to substances whose paramagretism
is due entirely to electron spin. The behaviour of other paramagnetic sub-
stances is qualitatively similar but more complicated.

By differentiating (11.14.5) with respect to T we can obtain a general
formula for S, the entropy of interaction between the field and the specimen.
For the sake of brevity we shall however confine ourselves to the two extreme
cases of B, large and of B, small

At magnetic saturation according to (11.14.12) the function ' is inde-
pendent of the temperature and the entropy S' vanishes.

Under the opposite conditions of small field we derive from (11.14.14)

V,

N 2
TR =In(2S+1)- ‘%ﬂ? (ﬁ) (LBB.<RT).  1L.15.1

s
R RT

§11.16 Adiabatic demagnetization

In a system whose state can be completely defined by the temperature T
and the external magnetic field B, (all other degrees of freedom such as
pressure and composition being either irrelevant or held constant), the
equation for a reversible adiabatic process is

S(T, B.))=const.  (adiabatic). 11.16.1

In a sample of a paramagnetic substance, such as ferric alum, in the temper-
ature range 2 K to 4 K all contributions to the entropy from translational,
rotational, intramolecular, and vibrational degrees of freedom are effectively
zero, while any contributions from intranuclear degrees of freedom remain
constant. Hence for adiabatic variations of the field B, we have

ST, B.)=const.  (adiabatic). 11.16.2

Provided B, is not too great, we may use formula (11.15.1) for S', so that
(2) leads to
B./T=const. (adiabatic). 11.16.3

* Woltjer and Onnes, Comm. Phys. Lab. Leiden 1923 no. 167c.
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Thus when the field is reduced the temperature drops proportionally. This
is the principle of cooling by adiabatic demagnetization.

§11.17 Unattainability of zero temperature

By means of adiabatic demagnetization temperatures as low as 1073 K
have been reached. It would appear from formula (11.16.3) that by reducing
the external field to zero, we should reach 7=0 in contradiction of Nernst’s
heat theorem. The resolution of this paradox is that before T=0 is reached,
usually in the region T~ 10~ 2K, the formulae of §11.14 and §11.15 cease
to be applicable. In other words, at some such temperature the substance
ceases to be paramagnetic but becomes eventually either diamagnetic or
ferromagnetic.

In the change from the paramagnetic to the diamagnetic or ferromagnetic
state, the proper entropy in zero magnetic field is reduced by an amount

RIn(2S+1). 11.17.1

Hence by comparison with (11.15.1), we see that the value of S for zero
field falls to zero. This is in agreement with the third principle of thermo-
dynamics as expounded in chapter 3. The reader must turn elsewhere*
for details of such changes.

* For example Debye, Ann. Phys. Lpz. 1938 32 85. An excellent elemzntary account is
given by Simon, Very Low Temperatures, Science Museum Handbook 1937 No. 3 p. 58.



CHAPTER 12

RADIATION

§12.01 General considerations

There are several alternative ways of approach to the thermodynamics of
radiation. We shall choose the one according to which the radiation is
regarded as a collection of photons. Each photon is characterized by a
frequency, a direction of propagation, and a plane of polarization. In empty
space all photons have equal speeds ¢. Each photon has an energy U, related
to its frequency v; by Planck’s relation

U,=hy, 12.01.1

and a momentum of magnitude Av;/c. It is convenient to group together all
the species of photons having equal frequencies, and so equal energies, but
different directions of propagation and planes of polarization. We denote
by g; the number of distinguishable kinds of photons having frequencies v,
and energies U,. More precisely g;dv; denotes the number of distinguishable
kinds of photons having frequencies between v; and v;+dv, and energies
between U; and U;+dU,. By purely geometrical considerations it can be
shown* that in an enclosure of volume V

g:dv; =2 x4nV e *vidy, 12.01.2

the factor 2 being due to the two independent planes of polarization.

§12.02 Energy and entropy in terms of g;’s

We denote by N; the number of photons having energy U; and frequency
v, interrelated by (12.01.1). Then the total energy U is given by

U=Z Nl' Ul' 12.02.1

* Brillouin, Die Quantenstatistik, Springer 1931 ch. 2; Fowler and Guggenheim, Statistical
Thermodynamics, Cambridge University Press 1939 §§ 401-403.
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From the fact that photons obey Bose-Einstein statistics it can be shown*
that the entropy S of the system is given by

Slk=Y. In{(g;+ N))!/g:! N;!}. 12.02.2
Differentiating (1) and (2) at constant g;, that is to say constant ¥V, we have

dU=Z UldN, 12-02.3
dS/k=Y In{(g;+ N))/N}dN,. 12.02.4
i

The condition for equilibrium is according to (1.35.1) that S should be a
maximum for given U, V. Hence for the most general possible variation,
the expressions (3) and (4) must vanish simultaneously. It follows that

Ui/ln{(g:+ N))/N;} = Ui/in{(ge+ Ni)/ Ni} (all i, k) 12.02.5
and consequently using (3) and (4)
U,/In{(g;+ N;)/N;} =Z UidNi/; In{(g;+ N;)/N;}dN;

=kdU/dS=kT 12.02.6
since at constant volume
dU=TdS (V const.). 12.02.7
From (6) we have
N/(gi+ N;)=exp(—U,/kT) 12.02.8
and so
N;=gi/{exp(U,/kT)—1}. 12.02.9
Substituting (9) into (1), we obtain
U=} g Uif{exp(U/kT)—-1}. 12.02.10

For the entropy we obtain from (2), using Stirling’s approximation for the
factorials, and by use of (8)

S=). Ni/In{(g;+ N)/N;} +Z g In{(g;+ N))/g:}
=Y N;U/kT -} g In{l—exp(—U/kT)}. 12.02.11

For the Helmholtz function # we deduce from (1) and (11)
F=kTY g In{l—exp(—U,/kT)}. 12.02.12

* Brillouin, Die Quantenstatistik, Springer 1931 ch. 6.
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§12.03 Thermodynamic functions

In the previous section we obtained formulae for the energy, the entropy,
and the Helmholtz function in terms of the U;’s and g;’s without making
any use of (12.01.1) or (12.01.2). If we now substitute the values of U; and
g, given by these formulae, into the relations of the previous section we
obtain

AF=8nVe kT f In{1—exp(—hv/kT)}v*dv 12.03.1
o

U=8nVc'3f hv*{exp(hv/kT)—1}""dv. 12.03.2
o
We can write (2) in the form

o]
U=f U,dv 12.03.3
0

U,=8nVc *hv3{exp(hv/kT)—1}"! 12.03.4

which is Planck’s formula from which quantum theory originated.

§12.04 FEvaluation of integrals

We can rewrite (12.03.1) as
F=—8nVik*T*h 3™l 12.04.1

where I is the integral defined by
I=~ f &2 In{1—exp(—¢&)}dé. 12.04.2
0o

Using the power series for the logarithm and then integrating term by term,
we obtain

I=| Y n ' exp(—né)dé= ;ln_4fowﬂ2 exp(—n)dy

0 n=1

=2Y n"*=n%/45. 12.04.3
n=1

Substituting (3) into (1) we obtain finally
F=—(8n°k*/45¢>h*)T*V. 12.04.4
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§12.05 Stefan-Boltzmann law

We could obtain formulae analogous to (12.04.4) for U and S by evaluation
of the relevant integrals, but it is more convenient to obtain these formulae
by differentiation of (12.04.4).

We first abbreviate (12.04.4) to

F=—-%aT*v 12.05.1

where @ is a universal constant defined by
a=8n’k*/15¢’n>=7.5646 x 10" '1¢ Jm 3 K™%, 12.05.2

From (1) we deduce immediately

S=%aT?V 12.05.3
U=aT*V 12.05.4
P=3}aT*=1UV 12.05.5
G=U~TS+PV=0. 12.05.6

Formula (5) can be derived from classical electromagnetic theory. Formula
(4) was discovered by Stefan and derived theoretically by Boltzmann.
It is called the Stefan—Boltzmann law.

From (4) we see that aT* is the equilibrium value of the radiation per unit
volume in an enclosure. If a small hole is made in such an enclosure then
it can be shown by geometrical considerations that the radiation emitted
through the hole per unit area and per unit time is ¢7*, where o is given by

6=%ac=5.670x10"3IJm 2s ' K¢ 12.05.7

in which ¢ denotes the speed of light. This constant ¢ is called the Stefan—
Boltzmann constant.

§12.06 Adiabatic changes

Suppose that radiation is confined by perfectly reflecting walls and that the
volume of the container is altered by moving a piston. If the radiation
remains in thermal equilibrium its temperature will change. For such a
reversible adiabatic change, we have

S =const. 12.06.1
From (12.05.3) and (1) it follows that
VT?=const. (adiabatic). 12.06.2



RADIATION 361

From (12.05.4) and (12.05.5) we have

P|T*=const. 12.06.3
so that
PV|T=const. (adiabatic) 12.06.4
and
PVi=const. (adiabatic). 12.06.5

From (2), (3), (4), (5) it appears that the relations for a reversible adiabatic
change in radiation are formally similar to those for a perfect gas such that
the ratio Cp/Cy has the constant value 4. This apparent resemblance is
however accidental, for the ratio Cp/Cy of radiation is not %. In fact for
radiation
Cy=(0U/[dT), =T(3S/3T),=4aT?*V 12.06.6
while
Cp=T(0S/0T)p—> 0 12.06.7

since no increase in S, however great, can increase T without increasing P.



CHAPTER 13

ONSAGER’S RECIPROCAL RELATIONS

§13.01 [Introduction

We recall the fundamental properties of entropy stated in § 1.19. The entropy
of a system can change in two distinct ways namely by external and internal
changes. This is expressed symbolically by

dS=d.S+d,S 13.01.1

where d. S denotes the part of dS due to interaction with the surroundings
and d; S denotes the part due to changes taking place in the system. We have
the now familiar equality

d S=q/T 13.01.2

where T is the thermodynamic temperature of the system. As regards d;S
the only property hitherto stressed is the inequality

d;S>0. 13.01.3

We shall in this chapter consider more quantitatively the value of d;S or
rather of d;S/ds which is the rate of internal production of entropy. Such
considerations constitute a subject often called thermodynamics of irreversible
processes. It is a subject on which whole books* have been written and it is
not practicable to devote sufficient space here for an exhaustive discussion.
For the sake of brevity it has been decided to exclude from the present
discussion the interesting field of thermal diffusion.

§13.02  Electric insulators and conductors

We introduce the subject of internal entropy production by considering
electric conductors which we shall compare and contrast with electric

* De Groot, Thermodynamics of Irreversible Processes, North-Holland 1951; Denbigh,
The Thermodynamics of the Steady State, Methuen 1951; Prigogine and Dzfay, Etude
Thermodynamique des Phénomeénes Irréversibles, Dunod 1947.
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insulators. We begin with the simplest case of isotropic media and then pass
on to the more interesting case of anisotropic media.

The Helmboltz function of an electric insulator is related to the elecrric
field strength E and the electric displacement D, under isothermal conditions,

by
d4&=VEdD. 13.02.1

This follows immediately from formula (11.06.1). We recall that D is related

to E by
D=¢E 13.02.2

where ¢ is the permittivity. Under ordinary conditions ¢ is independent of E
and this will be assumed here.

In an isotropic medium D and E have the same direction and ¢ is a scalar
quantity. In an anisotropic medium D and E generally have different direc-
tions. A quantity such as ¢ relating two non-parallel vectors D and E
according to (2) is called a tensor. Without any prior knowledge of tensors
we can see what this means by considering the cartesian components of
(2). The relations for these components have the form

D,=¢ E,+e,E,+eE, 13.02.3
D,=¢,E,+¢,E,+¢,E, 13.02.4
D,=¢, Ex+e,,E,+¢.,E, 13.02.5

where all the quantities are scalars.
Since we are assuming that ¢ is independent of E, we can substitute (2)
into (1) and integrate obtaining, apart from a trivial integration constant,

A|V=14eE*. 13.02.6

In an isotropic medium ¢ is as we have already mentioned a scalar and there
is no difficulty. In an anisotropic medium the meaning of (6) is by no means
so simple and its interpretation requires at least an elementary knowledge
of tensors. However all that we need to record here is that the existence of
the Helmholtz function related to E and D by (1) requires the symmetry
conditions

=E. 13.02.7

Bxy = 8y.\' gyz = szy 8:X z

In the terminology of tensors we say that ¢ must be a symmetrical tensor.
When the relations (7) are assumed, the expression for the Helmholtz func-
tion becomes

F|V=4e, El+%e, E} +4e.,E} +¢ ,E.E,+e,.EE +¢,,EE,. 13.02.8
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When we assume (8) and (7) we can immediately derive (3), (4), and (5) by
means of (1). Without the relations (7) it is impossible to find any formula
for the Helmholtz function consistent with (1).

We now turn from insulators to conductors. If we denote electric field
by E and current density by J we may write

J=0E 13.02.9

where ¢ denotes the electric conductivity. Under ordinary conditions ¢
is independent of E and we shall assume this. In an isotropic medium
J and E have the same direction and ¢ is a scalar quantity. In an anisotropic
medium J and E generally have different directions so that ¢ is a tensor.
The relations between the cartesian components have the form

Ji=0E.+0,E,+06,,E, 13.02.10
J,=06,E;+0,,E,+0,E, 13.02.11
J.,=0,,E.+0,,E,+0,,E, 13.02.12

where all the quantities are scalars.

Let us now determine the rate of internal production of entropy in the
simple case of an isotropic medium so that J has the same direction as E.
It is simplest to assume that the conductor is maintained at a constant
temperature and that J and E are independent of the time. The conductor is
then maintained in an unchanging state so that

dsS/dt=0. 13.02.13
Substituting from (13.01.1) and (13.01.2) into (13) we obtain
d;S/dt=—d,S/dt=— T 'dq/dt 13.02.14

where —g is the heat given up to the thermostat. From elementary electrical

theory we have
—dgq/dt=VIJE. 13.02.15

Substituting (15) into (14) we obtain
Td;S/dt=VIJE. 13.02.16
Finally substituting (9) into (16) we obtain
Td;S/dt=VoE>. 13.02.17

In the more complicated and more interesting case of an anisotropic con-
ductor, we obtain by similar but more difficult reasoning

V='Td;S/dt=J,E,+J,E,+J,E.. 13.02.18
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Substituting (10), (11), and (12) into (18) we derive
V~'Td;S/dt=0,.E2 +0, E +0,, E?

=y
4+(64y+0,)ELE,+(0,,+0,,)E,E, +(0,,+0,,)E,E,. 13.02.19

If we compare (19) with (8) we notice a superficial resemblance but also
two differences which are interrelated. In the first place 4 occurring on
the left of (8) is a function of the state of the medium while d; S/d¢ occurring
on the left of (19) is not. In the second place, and as a consequence of the
first difference, there is no compelling reason from classical thermodynamics
why relations between the ¢’s analogous to the relations (7), namely

Oyy =0y 0y, =0, 0,, =0y, 13.02.20

should always be true. They must in fact be true for reasons of geometrical
symmetry except for crystals of low symmetry, namely those in which the
only element of symmetry is an axis of rotation. It was however suggested
by Clerk Maxwell* that (20) is always true. Even earlier Stokes' had
surmised the truth of relations analogous to (20) for thermal conductivity.

There are moreover reasons based on the kinetic principle of detailed
balancing’, which we shall not here go into, for assuming such relations
and they are in good agreement with experiment. The equations (20) consti-
tute one of the simplest examples of Onsager’s reciprocal relations.

§13.03 Onsager’s reciprocal relations

We are now ready for a more general statement of Onsager’s reciprocal
relations. We denote by J; the flux in a certain direction of something such
as electric charge, as in the previous section, or a particular molecular or
ionic species, or a quantity of energy. We denote by X, the driving force
corresponding to J;. We make our meaning more precise by the statement
that the rate of internal production of entropy per unit volume is given by

v-iTd, S[dt=Y J, X;. 13.03.1

For example when J, is electric current density, then X; is the electric field.
When J; is the flux of a molecular species 7, then X is minus the gradient
of its chemical potential. When J; is the flux of an ionic species i, then X;

* Maxwell, Electricity and Magnetism, Oxford University, Ist ed. 1873; 3rd ed. 1892 ch. 8.
1 Stokes, Cambridge and Dublin Math. J. 1851 6 235.

t Onsager, Phys. Rev. 1931 37 405; Dz Groot, Tharmodynamics of Irreversible Proces-
ses, North-Holland 1951.
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is minus the gradient of its electrochemical potential. When J; is the flux
of energy then X; must be closely related to the temperature gradient.

Provided the gradients X; are not too great the fluxes J; will generally be
linear functions of the driving forces. This may be expressed as

‘,i=z Lika (Lik const.). 13.03.2
k
In the simple case of only two kinds of flow (2) reduces to
Ji=L X,+L;, X, 13.03.3
J2=L21X1+L22X2. 13-03.4

We now state Onsager’s reciprocal relations in the general form
Ly=L,; (all i, k). 13.03.5
In the simple case of only two kinds of flow (5) reduces to

L12=L21. 13.03.6

§13.04 Electrokinetic effects

Electrokinetic phenomena occur when a liquid which is a poor electric
conductor flows through a tube. Generally the tube walls and the liquid
have opposite electric charges together constituting an electric double
layer. There is a consequent interplay between the flow of matter and the
flow of electric charge.

We consider a tube of length / and uniform cross-section 4. We denote
the electric current density by J and the electric field, which is equal and
opposite to the electric potential gradient, by E. We measure the rate of
flow of liquid by the volume per unit time and we denote this by f4. We
denote the pressure gradient by P,. It can be verified that the rate of inter-
nal production of entropy per unit volume is given by

V'Td,S/dt=JE+fP,. 13.04.1

From the form of (1) we see that we may regard E and P, as the driving for-
ces corresponding to the fluxes J and f respectively. We assume the linear
relations

J=L,E+L,P 13.04.2

f=Ly E+L;P,. 13.04.3
We then have Onsager’s reciprocal relation
Li,=L,,. 13.04.4
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Let us now consider briefly the physical significance of the L’s. In the
absence of a pressure gradient (2) reduces to

J=L,E (P,=0) 13.04.5

from which we see that L, , is just the electric conductivity. In the absence of
an electric field (3) reduces to

f=L22Pl 13.04.6
from which we have according to Poiseuille’s law
L,,=r%8y 13.04.7

where # is the viscosity and r the radius of the tube (or the effective radius
if the cross-section is not circular).

The essential consequence of Onsager’s relation is this. All the electro-
kinetic effects require for their quantitative description a knowledge of
the electric conductivity, the viscosity, and one other coefficient, not two. We
shall now formulate briefly the relations for some of the most important
electrokinetic effects.*

In the first place we have the streaming potential, defined as the electric
potential difference per unit pressure difference in a stationary state with
zero electric current. According to (2) it is given by

E|Pj=—Ly,JL,,  (J=0). 13.04.8
In the second place we have electro-osmosis, which is the flow of liquid per

unit electric current in a state with zero pressure gradient. According to (2)
and (3) it is given by

flI=Ly /Ly (P,=0). 13.04.9

The third effect is the electro-osmotic pressure, which is the pressure difference
per unit potential difference in the stationary state with zero material flow.
According to (3) it is given by

P[/E=_L21/L22 (f=0). 13-04-10

The fourth effect is the streaming current, which is the electric current per
unit material flow for the steady state of zero electric field. According to
(2) and (3) it is given by

J/f=L12/L22 (E=0). 13-04-11

* De Groot, Thermodynamics of Irreversible Processes, North-Holland 1951 p. 187.
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As a consequence of Onsager’s reciprocal relation (4) we deduce from (8)
and (9)
(E|P)y=o=—(fT)p,=0 13.04.12

and from (10) and (11)
(P/E)s=0=—(J/f)g=0- 13.04.13

Formula (13), known as Saxén’s relation, has been verified experimentally
with an accuracy of about 2 per cent*. Formula (12) has also been confirmed
experimentally but only with an accuracy of about 15 per cent.*

§13.05 Electric double layer

We have seen in the previous section how the several electrokinetic effects
can be expressed quantitatively in terms of the conductivity, the viscosity,
and one further parameter denoted by L,,=L,;. It was not necessary to
consider the physical significance of L,,. We shall now show that this quan-
tity is closely related to the strength of the electric double layer at the bound-
ary between the wall of the tube and the liquid in the tube. It does not matter
which of the electrokinetic effects we consider in order to establish the re-
quired relation. We choose to consider electro-osmosis.

We consider a thin strip of liquid near to and parallel to the wall. We
denote by du the difference of velocity along the tube between the inner and
outer surface of this strip. We denote by dt the strength of the electric
double layer in this strip, that is to say the electric moment per unit area of
the strip. We consider a steady state of motion under an applied electric
field E. We now equate the two opposing couples due to the viscous effect
of the velocity gradient on the one hand and the effect of the electric field
on the dipoles on the other. We thus obtain the condition

ndu=Edr. 13.05.1

Integrating from the wall, where the liquid is stationary, to the interior we
obtain for the velocity u in the interior of the liquid

nu=Ezr 13.05.2

where 7 is the strength of the whole double layer, that is to say the total
electric moment per unit area of the wall.
The flow f4 expressed as volume of liquid per unit time is related to u by

fA=ud’ 13.05.3
* Miller, Chem. Rev. 1960 60 20.
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where A’ is an area less than the total internal cross-section A of the tube
but greater than the cross-section of liguid having a velocity inappreciably
different from u. In practice the thickness of the double layer is small com-
pared with the width of the tube and consequently the difference between the
cross-sections 4 and A’ is negligible. We may then regard 4’ as the internal
cross-section of the tube and substituting (2) into (3) we have

S =7E[n 13.05.4
while from (13.04.3) we have
f=L,E (P;=0). 13.05.5
Comparing (4) with (5) we deduce
L, =1/y. 13.05.6

Formula (6) expresses a relation essentially due to Helmholtz* although
he did not use the same notation. Most authors instead of using Helmholtz’s
strength of the double layer here denoted by 7 prefer to consider another
quantity introduced by Perrint and subsequently denoted by { by Freund-
lich.! This quantity has the dimensions of an electric potential and is called
the {-potential. It is derived from t by division by the rational permittivity.
The introduction of this subsidiary quantity adds nothing except unnecessary
complications.}

§13.06 Electrochemical cells with transference

We shall now use Onsager’s reciprocal relations to obtain a stricter deriva-
tion of formula (8.18.16) for the electromotive force of the cell with trans-
ference described by (8.18.2). We shall not repeat the whole of the textual
argument, but shall merely revise the formulae. The first change is that we
replace (8.18.3) by the less restrictive assumption

Ji=_z Ll'kdy‘k/dy’ 13.06-1
k

The condition for zero electric current then becomes instead of (8.18.9)

>3 z;Lydp/dy=0. 13.06.2
i k

* Helmholtz, Ann. Phys. Lpz. 1879 7 337.

T Perrin, J. Chim. Phys. 1904 2 601.

¥ Freundlich, Colloid and Capillary Chemistry, Methuen 1926 p. 242.
§ Guggenheim, Trans. Faraday Soc. 1940 36 139, 722.
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We still have for the electromotive force formula (8.18.7)
FdE[dy=2z&t dug-/dy. 13.06.3
Combining (2) with (3) we have
Z ; 2,2 Ly(—zi ' dpy/dy + 26" dugy-/dy)
=Z;z;sz,-,‘zc_|1-duC|-/dy

=Z Z ZiszideE/dy. 13.06.4
ik

Consequently, instead of (8.18.11) we have
FdE/d,V:; {(—z¢ 'du/dy + 2ot dpci- [dy)(z4 Z Z Lik/; 2 Zi1ZmLim)}
13.06.5

We now, as in §8.18, turn to the different condition where the two electrode
solutions are identical and an external potential difference dE® is applied
across the electrodes. We have by (8.18.12)

zr'dy=FdE*  (all k) 13.06.6
so that by (1)
J"= _Z szideEe/dy- 13.06~7
k

The electric current per unit cross-section carried by the ionic species /
will be

z;FJ;=—z;) z, Ly, F*dE°/dy. 13.06.8
k

The transport number f;, being the fraction of the total current carried by
the ionic species i, is therefore

ti=z ; zeLalY, kz 2,2, Ly . 13.06.9
The transport number of the ionic species k is likewise
h=z, ), ziL,‘i/Zk: Y zzlu=z), z,-L,‘,/; Y zz,L,. 13.06.10
Comparing (5) with (10) we have

FdEjdy=} t,(-z; 'du/dy+zat duc-[dy)y ziLafY z L. 13.06.11
k i i
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Finally by use of Onsager’s relation
Ly=Ly; 13.06.12
(11) reduces to

FAE[dy=Y ty(—z; 'dug/dy +25" dpc-jdy) 13.06.13
k

which is the same as formula (8.18.16).
We note that in the derivation given in §8.18 instead of Onsager’s relation
(12) we used the more restrictive assumption

Lu=0  (i#k). 13.06.14

The author believes that the assumption (14) is in fact true although this
has not been proved.

§13.07 Thermoelectricity

We shall now discuss the most important and most interesting application
of Onsager’s relations to a non-isothermal system, namely a system in which
electric current is coupled with energy flow. This phenomenon is called
thermoelectricity. The following treatment is similar to that of Callen.*

We consider a straight uniform metallic wire in a non-uniform temperature
through which an electric current can result from a flow of electrons. If the
wire lies in the y-direction the rate of internal production of entropy per
unit volume is given by

V=1d;S/dt=—J. d(u/T)/dy+J,d(T~)/dy 13.07.1

where y is the electrochemical potential of the electrons, — FJ,- is the electric
current density, and J, is the energy flux.

From the form of (1) we may regard d(u/T)/dy and d(7~')/dy as the
driving forces corresponding to the fluxes —J,- and J, respectively. We
accordingly assume the linear relations

~Je-=L,,d(y/T)/dy+L,,d(T"")/dy 13.07.2
Jy=L5d(y/T)/dy+L,,d(T™")/dy. 13.07.3

We could use formulae (2) and (3) as the basis of our discussion and should
of course obtain correct results, but by a simple transformation we obtain
formulae in which the coefficients L have a more direct physical significance.

* Callen, Thermodynamics, Wiley 1960 ch. 17.
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We define J, by

J,=Jy—pl.- 13.07.4

and substitute into (2) and (3) obtaining
—Je-=Ly; T™'dp/dy+L,,d(T™")/dy 13.07.5
J,=L,, T~ 'dp/dy+L,,d(T"")/dy 13.07.6

where

L,=L,, 13.07.7
Li,=L,+L,,u 13.07.8
Ly =L, +Lp 13.07.9
Ly,=L,y,+(L,+ Ly )u+L;, p* 13.07.10

We can also verify that the determinant
D=L11L22—'L12L21=L’11E22—U12L,21. 13.07.11

From (8) and (9) we see that Onsager’s relation L),; =L, is equivalent to
Lyy=L,,.

We next determine the physical interpretation of L, and L,,. If we
consider the case of an isothermal flow of current we obtain for the electric
conductivity

o=—F"J,-/(dy/dy) (dT/dy=0) 13.07.12
so that by use of (5)
To/F*=L,,. 13.07.13

Similarly if we consider a flow of energy with zero electric current we obtain
for the thermal conductivity x

k=—Jy/(dT/dy)=—J,/(dT/dy) (J.-=0) 13.07.14
so that from (5) and (6)

T*k=D|L,, . 13.07.15
From (13) and (15) we derive
T ko/F*=D. 13.07.16

§13.08 Seebeck effect and thermoelectric power

When there is no electric current we have according to (13.07.5)
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and integrating from one end of the wire denoted by the subscript 1 to the
other end denoted by the subscript 2 we have

T
ﬂz_IIl: r (L12/L11T)dT 13.08.2
3
or
T2
uz—ul=—Ff edT 13.08.3
Ty
where ¢, called the thermoelectric power, is given by
FT8= _LIZ/LII’ 13.08-4
a
h T

-~ f—

Fig. 13.1. Thermocouple

We now consider the thermocouple, shown in figure 13.1, consisting of a
pair of wires of different metals o and p with their two junctions 1 and 2 at
temperatures T, and T, . Since u is continuous at both metal-metal junctions,
it follows that the difference between the values g and p, of u at the left and
right terminals is given by

T2
o u,=Ff (P—e)dT. 13.08.5
Ty

But since the two terminals are at the same temperature 7" the electric
potential difference between the two terminals or the electromotive force E

of the thermocouple is given by
T2

E=—(u—w)/F=| (=e’)MdT 13.08.6
Ty

The occurrence of this electromotive force in a thermocouple is called the
Seebeck effect.
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From (4) and (13.07.13) we deduce
—T?0e/F=L,,. 13.08.7

§13.09 Peltier effect

Consider an isothermal junction of two metals o and p through which flows
an electric current of density —FJ,-. Then the flux of energy is discontin-
uous across the junction and the difference in energy flux appears as heat
at the junction. Since both u and J,- are continuous across the junction it
follows from (13.07.4) that
Jo=Jh=u=Jt  (T°=TP) 13.09.1
and from (13.07.5) and (13.07.6) that
(ol o) = (Tuld =Y = (Il - = (Tl oY= (Las Ly = (Lag /Ly ).
13.09.2

The Peltier coefficient n°®, defined as the heat that must be supplied per unit
time to the junction to keep its temperature constant when unit electric
current passes from a to B, is given by

Fr®=(Lay/Ly1)* ~(La /L1 )™ 13.09.3

§13.10 Kelvin’s second relation

We recall that the thermoelectric power ¢ of a metal is given by (13.08.4)

FT£=_L12/’L11 13-10.1
so that for a pair of metals
FT(¢?~¢*)=(Ly2/Ly1)* = (L12/L1 1) 13.10.2
The Peltier coefficient n** is given by (13.09.3)
Fﬂp:(Lzl/Ll1)“"(L21/L11)B~ 13.10.3
When we introduce Onsager’s relation
L, =L, 13.10.4 -

into (2) and (3) we obtain

1 =T(e —¢&%) 13.10.5
which is called Kelvin’s second relation. This has been verified within an
accuracy of one per cent or better for about twenty pairs of metals.*

* Miller, Chem. Rev. 1960 60 19.
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§13.11 Thomson effect

Hitherto we have considered a thermocouple on open circuit only. We now
consider a thermocouple balanced by a different cell with an electromotive
force opposite to and differing infinitesimally from that of the thermocouple.
We then have a flow of current which is reversible apart from the Joule
effect which may be neglected because it is proportional to the square of
the current and is consequently a second-order small quantity. When the
electric current flows in a temperature gradient there is a flow of heat
between the wire and its surroundings of the form td7 called the
Thomson heat superposed on the negligible Joule heat.

We now apply the first law of thermodynamics to this thermocouple when
the two metal-metal junctions are at temperatures T and 74 d7. The heat ¢
absorbed is

g=—-m"(T)+dT +n"(T +dT)—PdT 13.11.1
and the work done on the thermocouple is
w=(e’—¢*)dT. 13.11.2
By the first law of thermodynamics we have for a steady state
q+w=0. 13.11.3
Combining (1), (2), and (3) we obtain
dn*®/dT +1*—1P— "+ P =0. 13.11.4

We emphasize that this relation is a consequence of the first law only.
When we combine (4) with (13.10.5) we obtain

Td(e?—&*)/dT=7"—1" 13.11.5

Formula (5) is called Kelvin’s first relation. The author is not aware of its
having been verified experimentally.

§13.12  Interdiffusion of two fluids

We shall now consider briefly the interdiffusion along the y-axis, at constant
temperature and constant pressure, of two fluids denoted by the subscripts
. and , respectively. We denote the mass fractions of the two components
by %, and X, so that

£ +%,=1. 13.12.1

We denote the specific fluxes or fluxes per unit mass by J; and J,. We
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denote the specific chemical potentials or chemical potentials divided by
the proper masses by /i, and ji,. We take as origin for the coordinate y the
centre of mass of the fluid. This implies that

J,+J,=0. 13.12.2
The Gibbs-Duhem relation may be written as
%,di, +%,d,=0. 13.12.3
From (2) and (3) it follows that
= %,J1/(dus/dy) = — %7,/ (df/dy) 13.12.4

and we call this quantity L. We then have, using (1),
Jy=—Jy=L(djio/dy—dfi,/dy)= —(L/%,)dfi, [dy=(L/%,)dfio/dy.  13.12.5

From (5) we see that J, , J, are related to dji,/dy, dji,/dy by the single coeffi-
cient L. Consequently in this system there is no reciprocal relation.

§13.13 Interdiffusion of two solutes in dilute solution

Having seen that the interdiffusion of two fluids is describable by a single
coefficient L, we now turn to a system of three fluids and shall derive the
reciprocal relations. We use the same notation as in §13.12 with the subscripts
15 2, and ; relating to the three components. Taking as origin the centre of
mass of the fluid we have by analogy with (13.12.1), (13.12.2), and (13.12.3)

R+ R+ R=1 13.13.1
Ji+Jy+J3=0 13.13.2
ildﬁl+izdﬁ2+g3dﬁ3=0. 13.13.3

The rate of entropy production ¢ per unit volume is given by
To=—J,dji,/dy—J,dfi,/dy — J;dji5/dy. 13.13.4
Substituting from (1), (2), and (3) into (4) we obtain
—To=(J,+J3){(%2/%1)di,/dy + (%3/%,)dfis/dy} + T, djiz[dy + T3 dfis/dy
=j2{(1+fz/fx)dﬁz/d}'*“(gsly‘l)dﬁdd}’}
+ 3 {(%a/% )i /dy + (1 + %3/%,)diT/dy}. 13.13.5

If we take as origin for the coordinate y the centre of mass of the component
1, which we now call the solvent, instead of the centre of mass of the mixture,
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we have instead of (2)
J,=0 13.13.6

and instead of (4) we have
To=—J,dfi,/dy —J, djis/dy. 13.13.7

For the sake of brevity and simplicity we shall henceforth confine ourselves
to the case of a dilute solution of 2 and 3 in the solvent 1. We then have

R &H,  R&Ey 13.13.8
and we may accordingly replace (5) by the approximation
To=—J,dj1,/dy —J,dji;/dy 13.13.9

which is identical with (7). Moreover if we had chosen a slightly different
origin for y formula (9) would be unaffected.
We now introduce the linear relations

~

Jy=—L,,dji,/dy—L,;dfi;/dy 13.13.10

Jy=—Lj,djI,/dy—L;3dfis/dy 13.13.11
or the equivalent relations

J,=—L,,du,/dy—L,3dus/dy 13.13.12

J3=—Lj,du,/dy—Lysdus/dy 13.13.13

where J, and J; denote the fluxes per unit amount of 2 and 3 respectively.
Onsager’s reciprocal relation is

Lys=L,,. 13.13.14

Whereas the equation (14) relates to a solution of given composition,
with values of L,; or L;, dependent on the composition, the available
experimental measurements give only values of diffusion coefficients
averaged over a wide range of composition. Consequently the attempt*
to verify (14) is unconvincing. The most that can be said is that there is no
experimental evidence at variance with (14).

* Miller, Chem. Rev. 1960 60 19.



CHAPTER 14

SYSTEMS IN MOTION

§14.01 Introduction

Except in chapter 13 we have hitherto tacitly assumed that each system
considered was at rest or that its kinetic energy was negligible. In this chapter
we shall briefly describe what happens when this restriction is removed. We
shall use the formulae of special relativity since these are more revealing and
not much more difficult than their prerelativistic approximations.

§14.02 Mechanics and hydrodynamics

We begin by quoting without derivation some important relativistic formulae
in the field of mechanics and hydrodynamics. We denote by u the velocity of
the system relative to a chosen frame and by c the constant speed of light in
a vacuum. We define the auxiliary parameter y by

y=(1-u?/cH)<l. 14.02.1
When several parts of an isolated system interact, the energy E of the whole
system remains unchanged and the linear momentum L of the whole system

remains unchanged. We use the subscript , to denote the value taken when
u=0. We have the standard relation

E=y"'E,=y"'m,c? 14.02.2
where m, denotes the rest-mass of the system. E,=m,c? differs from U

of previous chapters only in having an absolute value whereas the zero of U
is arbitrary. We also have the standard relation

L=y 'myu. 14.02.3
When we differentiate (2) we obtain
dE=y"*moudu+y 'dE, 14.02.4

and when we differentiate (3) we obtain

udL=y"3moudu+y~ ‘wtdmo=y " 3moudu+y~'(u?/c*)dE, 14.02.5
378



SYSTEMS IN MOTION 379

Eliminating du from (4) and (5) we obtain

dE=ydE;+udL. 14.02.6

We also have the relations
dv=ydV, 14.02.7
P=P,. 14.02.8

§14.03 Entropy

Since E, differs from U only by an arbitrary constant, we have for a closed
system at rest

dEo = (anlaSO)dso+ (an/a Vo)dVo

=(0E,/0Sy)dS,—PydVy. 14.03.1
Substituting (1) into (14.02.6) we obtain
dE=y(0E,/0S)—yPodVy+udL. 14.03.2

From the statistical mechanical interpretation of entropy it follows that S
is independent of u. Consequently we have

$=5, 14.03.3

and (2) may be rewritten

AE=y(3E,/0S)dS —yPyd Vo +udL. 14.03.4

§14.04 Thermal equilibrium

We now consider two identical systems o and  moving relative to each other
with different but constant values of L. Then by repeating the argument of
§1.17 we obtain as the condition for thermal equilibrium

[y(3Eo/0S)]* = [y(OE,/0S)]°. 14.04.1

§14.05 Temperature

Formula (14.04.1) is a complete and unambiguous statement of the condition
for thermal equilibrium between two identical systems in relative motion.
There is no need to mention temperature and indeed the property of temper-
ature will depend on its precise definition. We may define temperature T by

T=9y(8E,/0S) 14.05.1
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and the condition for thermal equilibrium then becomes

T*=T" 14.05.2

§14.06 Fundamental equations
If we substitute (14.05.1) into (14.03.4) we obtain
dE=TdS—yP,dV,+udL. 14.06.1
Using (14.02.7) and (14.02.8) we obtain the fundamental equation
dE=TdS—PdV+udL. 14.06.2
If we define the Helmholtz function & by
F=E-TS 14.06.3
and use this with (2) we obtain the second fundamental equation

dF =—-SdT—-PdV+udL. 14.06.4
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SUBJECT INDEX

Absolute activities, 73, 95
of ions, 270, 302
Standard, 243
Acid-base equilibria, 290
Acidity constant, 291
Activities, see Absolute activities and
Relative activities
Activity coefficients,
in dilute solutions, 226
in electrolyte solutions, 273
Adiabatic,
change in closed system, 26
change of a gas, 101
change of radiation, 360
compressibility, 89
demagnetization, 355
process, 7
Adsorption, 167
Affinity, 35, 240
Allotropic changes, 249
Amount of substance, 2
Antisymmetric eigenfunctions, 73
Apparent quantities, 221
Athermal mixtures, 205
Avogadro constant, 70, 94
Azeotropy, 178

Bohr’s magneton, 352
Boiling point,

of dilute solution, 232

of electrolyte solution, 272

of liquid mixture, 179
Boltzmann constant, 67, 94
Boltzmann factor, 67
Boltzmann’s relation, 63
Boltzmann statistics, 61, 75

Bose-Einstein statistics, 61, 74
Boyle’s law, 90, 100
Boyle temperature, 100, 137

Calorie, 87
Capacitor, 333
Capillary rise, 53
Carnot’s cycle, 44
Cells, Electrochemical, 307 et seq., see also
Electrochemical cells
Celsius scale of temperature, 18
Changes,
Adiabatic, 26
Isothermal, 27
Natural, 14, 26
Reversible, and reversible processes, 13
Charge numbers of ions, 269
Chemical content of a phase, 19
Chemical equilibrium, 35, 240 et seq.
Acid-base, 290
between gases and solids, 246
between pure solids or liquids, 248
Gaseous, 245
Heterogeneous, involving solutions, 252
Homogeneous, in solutions, 251
in electrolyte solutions, 277, 289
in gravitational field, 332
Chemical potentials, 21, 32
Conventional, 102
in electrolyte solutions, 270
in gravitational field, 328
Standard, 243
Chemical reactions, 34, 240 et seq., see also
Chemical equilibrium
Extent of, 37
Clapeyron’s relation, 119
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Classical and statistical thermodynamics, 59
Classical degrees of freedom, 77
Closed phase, 14
Closed system, 14
Components, 24, 33
in systems of chemically reacting species,
265
Compressibility,
Adiabatic, 89
Isothermal, 38
Compression factor, 95
Concentration, Volume, 239, 252
Condensed phases, 108
compared with gases, 90
Conjugate acid and base, 290
Contact potential, 304
Content, Chemical, of a phase, 19
Continuity between liquid and gas, 129
Conventional chemical potential, 102
Conventional entropy, 102
Cooperative systems, 255
Corresponding states,
of crystals, 116
of fluids, 135 et seq.
of solids, 140
of surface tension, 166
Critical mixing, 195
in simple mixtures, 200
in symmetrical mixtures, 203
Critical point, 126
Critical properties, 126, 128, 136
Cryoscopic constant, 231
Crystals,
at very low temperatures, 111
Debye’s formulae for, 112
Einstein’s formulae for, 116
Zero-temperature entropy of, 144, 148
See also Solids
Curie point, 260, 351
Curie’s law, 354
Cycle,
Carnot’s, 44
Isothermal, 44
Reversible, 43
Thermodynamic efficiency of, 44

Dalton’s law of partial pressures, 175
Debye-Hiickel limiting law for electrolyte

SUBJECT INDEX

solutions, 281

Extension of, to less dilute solutions, 284
Debye’s formulae for crystals, 112
Degree Kelvin, 18
Degree of order, 257
Degrees of freedom,

of a chemically reacting system, 265

of a molecule, 77

of a phase, 24

of a system, 34
Demagnetization, Adiabatic, 355
Demagnetizing coefficient, 350
Diamagnetic substances, 351
Dielectric constant, 335, 343
Diffusion, 375
Dilute solutions, 220 ef seq., see also

Solutions

of electrolytes, 272 et seq., see also

Electrolyte solutions
Displacement, Electric, 334, 342
Distribution, Nernst’s, law, 233

in electrolyte solutions, 275
Donnan membrane equilibrium, 306
Double layer, Electric, 368
Duhem-Margules equation, 185

Ebullioscopic constant, 232
Efficiency, Thermodynamic, of a cycle, 44
Eigenfunctions, 61, 73
Einstein’s formulae for crystals, 116
Electric,

conductivity, 367, 372

displacement, 334, 342

double layer, 368

field strength, 333, 339

insulators and conductors, 362

moment, 341

of molecule, 336

polarization, 342

work, 334, 344
Electrochemical cells, 307 et seq.

without transference, 316

with transference, 321, 326, 369
Electrochemical potentials, 299
Electrochemical systems, 298 et seq.
Electrode potentials, 309
Electrokinetic effects, 366
Electrolytes,
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Strong, 268 Equations of state, 141
Weak, 293 Equilibrium,

Electrolyte solutions, 268 er seq. and reversible change, 14
Chemical equilibrium in, 277, 289 Chemical, 35, 240 et seq., see also
Ideal dilute and real, 272 Chemical equilibrium
Limiting behaviour of, 280 Conditions for, 27
Limiting law for, 281 constant, 247, 251, 277, 291
Specific interactions in, 286 Contact, 307
Surface tension of, 293 distribution between phases, 32

Electromotive force, 308, 311 Donnan membrane, 306
Standard, 317 for two phases of a pure substance, 118
Standard, of half-cell, 320 at different pressures, 132
Temperature dependence of, 313 Frozen, 34

Electronic degrees of freedom, 105 Hydrostatic, 31

Electro-osmotic pressure, 367 Liquid-vapour, for mixtures, 177

Electrostatic systems, 333 et seq. Membrane, 34

Electrostriction, 335 Non-osmotic, 304

Energy, 9 Osmotic, 305
of system in motion, 378 Metastable, 28
Surface, 210 Osmotic, 182

Enthalpy, 22 product, 241
of chemical reaction, 241 Stable, 28

in electrolyte solution, 277 Thermal, 8, 15
of combustion, 242 for systems in motion, 379
of evaporation, 121 Evaporation, Enthalpy and entropy of, 121
of formation, 242 Excess functions, 191
of fusion, 84, 120 Expansivity, Thermal, 38
of sublimation, 121 Extensive properties, 18
of transition, 249 Extent of reaction, 37, 62
Standard, 243

Entropy, 14 Faraday constant, 298
and heat, 16 Fermi-Dirac statistics, 61, 74
Calorimetric, 145, 245 Ferromagnetic substances, 351
Conventional, 102 First law of thermodynamics, 9
Dependence of, on P, 87 Fluctuations, 65
Dependence of, on T, 82 Fluids,
of evaporation, 121 Corresponding states of, 135
of fusion, 85, 120 Equations of state for, 141
of mixing in ideal mixture, 188, 219 Interdiffusion of, 375
of mixing of isotopes, 150 See also Gases and Liquids
of hydrogen, 151 Freezing point,
of paramagnetic substance, 355 of dilute solutions, 230
of sublimation, 121 of electrolyte solutions, 272
of system in motion, 379 See also Melting point
of transition, 249 Frozen equilibrium, 34
Spectroscopic, 146, 245 Fugacities,

Standard, 243 in dilute solutions, 227

Zero-temperature, of crystals, 144, 148 in gas mixtures, 177
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in ideal mixtures, 188
in liquid mixtures, 180
of condensed phases, 134, 180
of gases, 97
of saturated solutions, 236
Fusion, Enthalpy and entropy of, 84, 120

Galvanic cells, 307 ef seq., see also Electro-
chemical cells
Gas constant, 94
Gases,
Adiabatic changes of, 101
at high temperatures, 97
compared with condensed phases, 90
Corresponding states of, 135
Equations of state for, 90, 141
Fugacity of, 93
in gravitational field, 329
Interdiffusion of, 375
Isothermal behaviour of, 90
Joule~Thomson throttling of, 92
Mixtures of, see Gas mixtures
Perfect, 95
in electric field, 336
Slightly imperfect, 98
Virial coefficients of, 90
Gas mixtures,
Fugacities in, 177
Perfect, 173
Slightly imperfect, 175
Gibbs-Duhem relation, 25
for dilute solutions, 222
for electrolyte solutions, 277
for surface phase, 48
Gibbs function, 22
Gibbs geometrical surface, 49
Gibbs-Helmholtz relation, 40, 313
Gibbs’ phase rule, 33
Gravitational field, 327 et seq.

Heat, 9
and entropy, 16
So-called mechanical equivalent of, 86
theorem, Nernst’s, 154, 313
Heat capacities,
at constant pressure, 85
at constant volume, 88
at saturation, 122

SUBJECT INDEX

of two phases in equilibrium, 121
Relation between, 89
Helmbholtz function, 22
Hess’ law, 242
Hydrogen, Entropy of, 151
Hydrolysis, 289
Hydrostatic equilibrium, 31
Hysteresis, Magnetic, 344, 351

Ideal dilute solutions, 233, see also Solutions
of electrolytes, 272
Ideal mixtures, 186, see also Mixtures
Solid, 218
Imperfect gases, 90, see also Gases
Imperfect gas mixtures, 175, see also Gas
mixtures
Interaction parameters (electrolytes), 286
Interfaces, 45, 159, 207, 237, 293
Curved, 50, 54 et seq.
Gas-solid, 166
Gibbs-Duhem relation for, 48
in one-component systems, 159 et seq.
in mixtures, 207 et seq.
in solutions, 237
in solutions of electrolytes, 293
Plane, 45
Thermodynamic functions for, 47
Interfacial tension,
between two solutions, 238
Determination of, 53
of curved interface, 50
of plane interface, 46
Temperature dependence of, for mixture,
214
See also Surface tension
Internal degrees of freedom, 77
Inversion temperature of a gas, 100
Ionic diameter, 285
Tonic solutions, see Electrolyte solutions
Ionic strength, 282
Ionization product of water, 292
Irreversible processes, Thermodynamics of,
362 et seq.
Isothermal,
change in closed system, 26
compressibility, 38
cycle, 44
Isotopic mixing, 150
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Jacobians, Use of, in thermodynamics, 41
Joule-Thomson coefficient, 99
Joule-Thomson experiment, 92

Junction potentials, 309

Kelvin’s relations for thermocouple, 374
Kirchhoff’s relations, 243

Lambda point, 255, 257
Pressure dependence of, 262
Ferromagnetic, 351

Legendre transformation, 22

Liquid junction potentials, 309

Liquids,
Corresponding states of, 135
Equation of state for, 141
Fugacities of, 135, 180
in gravitational field, 329
Interdiffusion of, 375
Mixtures of, 177 et seq., see also Mix-

tures

Phase equilibria involving, 119 et seq.
Relative activities in mixtures of, 180
Surface tension of, 159
Thermodynamics of, 108, 110

Macroscopic system, 63, 68
Magnetic,

field intensity, 343

induction, 339

moment, 342

saturation, 348

systems, 338 et seq.

vector potential, 340

work, 344
Magnetization, 343

Permanent, 351
Magneton, Bohr’s, 352
Magnetostriction, 346
Massieu function, 24

in statistical thermodynamics, 67
Maxwell’s equal area rule, 130
Maxwell’s relations, 39

Analogues of, for electrostatic systems,

335

Melting point,

of pure solid, 120

Stationary, of solid mixture, 218
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See also Freezing point
Membrane, Semi-permeable, 182, 190, 206,
229, 304
Membrane equilibrium, 34
Donnan, 306
Non-osmotic, 304
Osmotic, 305
Metastability, 28, 125, 130, 194
Miscibility, Partial, 195 et seq.
Mixing,
Critical, 195 et seq.
Entropy of, in ideal mixture, 188, 219
Entropy of, of isotopes, 150
Excess functions for, 191
Functions of, 191
See also Mixtures
Mixtures, 170 et seq., see also Solutions
Athermal, 205
Gaseous, 173 et seq.
Ideal, 186
Solid, 218
in gravitational field, 406
Interfacial layers in, 207
Liquid, 177 et seq.
Non-ideal, 190
of isotopes, 150
of large and small molecules, 205
Partial miscibility in, 195, 200
Simple, 197
Solid, 217
Surface tension of, 207 et seq.
Symmetrical, 196
Unsymmetrical, 203
Molalities, 3, 220
Ionic, 268
Mole, 2, 94
Mole fractions, 24, 170
Mole ratios, 220
Ionic, 268
Motion, Systems in, 378 et seq.
Moutier’s theorem, 45

Natural process, 12

Nernst’s distribution law, 233, 275

Nernst’s heat theorem, 154, 313

Non-ideal mixtures, 190, see also Mix-
tures

Nuclear spins, 151
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Onsager’s reciprocal relations, 362 et seq.,
365
Open phase, 14
Open system, 14
Order, Degree of, 257
Ortho hydrogen, 151
Osmotic coefficient of solvent, 226
in electrolyte solutions, 273, 305
Osmotic equilibrium, 182
Osmotic membrane equilibrium, 305
Osmotic pressure, 183
Electro-, 367
of athermal mixtures, 206
of dilute solutions, 229
of electrolyte solutions, 273, 305
of ideal mixtures, 190

Para hydrogen, 151
Paramagnetic substances, 351
Partial areas of surface, 212
Partial miscibility, 195 et seq.
Partial pressures, 177
Dalton’s law of, 175
Partial quantities, 20, 171
at high dilution, 173, 223
in dilute solutions, 221
Partition functions, 63 et seq.
of units, 76
Peltier effect, 374
Perfect gases, 95, see also Gases
Perfect gas mixtures, 173 see also Gas
mixtures
Permeability, 334
of a vacuum, 339
Permittivity, 334, 343
of a vacuum, 333, 339
Phase rule, 33
Phases, 6
at different pressures, 132
Chemical content, of 19
Closed and open, 14
Condensed, 90, 180, see also Liquids and
Solids
Degrees of freedom of, 24
Electrically charged, 298
Equilibrium distribution between, 32
at different pressures, 132
Equilibrium of three pure, 124

SUBJECT INDEX

Equilibrium of two pure, 118
Gaseous, see Gases
in gravitational field, 327
Internal stability of, 30, 33, 194
Liquid, see Liquids
Solid, see Solids
Surface, 45, see also Interfaces
Planck function, 24
in statistical thermodynamics, 69
Planck’s formula for radiation, 359
Polarization, Electric, 342
Pressure,
Critical, 128, 136
Osmotic, 183, see also Osmotic pressure
Partial, 177
Standard, 243
Triple-point, 124
Vapour, 121, 177
Principle of corresponding states, see
Corresponding states
Probability, Thermodynamic, 63, 72
Processes, 7, 12
Irreversible, Thermodynamics of, 362 et
seq.
Proper quantities, 3, 20, 171
Properties, Intensive and extensive, 18, 19

Radiation, 357 et seq.
Raoult’s law, 189
Deviations from, 191 et seq.
Reaction,
Chemical, 34, 240 et seq., see also
Chemical equilibrium
Extent of, 37, 62
Reciprocal relations, Onsager’s, 362 et seq.
Relative activities, 180
Relative volatility, 192
Relativistic formulae, 378
Reversible,
change, 13
cycle, 43
process, 12, 312
Rotational degrees of freedom, 104 et seq.,
151

Second law of thermodynamics, 17
Statistical basis of, 66
Second order transitions, 252, 351
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Second virial coefficient of a gas, 91
at high temperatures, 97
Dependence of, on temperature, 99
Dependence of, on composition, 175
Seebeck effect, 372
Separable degrees of freedom, 77
Simple mixtures, 197, see also Mixtures
Slightly imperfect gas mixtures, 175
Solenoid, 341
Solids, 108, 111 et seq., see also Crystals
Chemical reactions between, 248
Corresponding states of, 116, 140
Mixtures of, 217
Solubility,
in dilute solutions, 233
in electrolyte solutions, 276
Solubility product, 276
Solutions, especially dilute solutions, 220 ez
seq., see also Mixtures
Chemical reactions in, 251, 277
Ideal dilute, 223
in gravitational field, 331
Interdiffusion of, 376
of electrolytes, 268 et seq., see also
Electrolyte solutions
Real, 226
Surface tension of, 237, 293
Solvation, 289
Solvolysis, 289
Sorption, Temperature dependence of, 167
Specific interaction of ions, 286
Specific quantities, 3
Spin, Nuclear, 151
Stability and metastability, 28, 125, 130, 194
Stability, Internal, of a phase, 28 et seq., 194
Standard,
electromotive force, 317, 320
thermodynamic quantities, 243
State,
Continuity of, 129
Critical, 128, 136
Equations of, for fluid, 141
Thermodynamic, 6
States, Corresponding, see Corresponding
states
Statistical thermodynamics, 59, 61 et seq.
Stefan—-Boltzmann law, 360
Stoichiometric numbers, 36
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Streaming current, 367
Streaming potential, 367
Sublimation, Enthalpy and entropy of, 121
Sulphur, Transitions of, 250
Surface, Gibbs geometrical, 49
Surface energy, 210
Surface excess per unit area, 238
Surface phases, see Interfaces
Surface tension, 46, see also Interfacial
tension
Corresponding states of, 166
of dilute solutions, 238
of electrolyte solutions, 293
of liquids, 159
of liquid mixtures, 207
Symmetry numbers, 104, 107, 151
Symmetry of eigenfunctions, 61, 73
Systems,
Closed and open, 14
Cooperative, 255
Electrochemical, 307 et seq., see also
Electrochemical
Electrostatic, 333 et seq.
in gravitational field, 327 et seq.
in motion, 378 et seq.
Macroscopic, 63, 68
Magnetic, 338 et seq., see also Magnetic
of a single component, 82 et seq., see also
Gases and Liquids and Solids
of chemically reacting species, 240 et seq.,
see also Chemical equilibrium
of several components, 170 et seq., 220 et
seq., 268 et seq., see also Mixtures and
Solutions and Electrolyte solutions

Temperature, 5, 8
Absolute, 9
Boyle, 100, 137
Celsius scale of, 18
Corresponding, of fluids, 135 et seq.
Corresponding, of solids, 116, 140
Critical, 126, 136
Critical mixing, 195
Curie, 260, 351
Debye’s characteristic, 112
Einstein’s characteristic, 116
for systems in relative motion, 380
in statistical thermodynamics, 66
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Inversion, 100

Kelvin scale of, 9, 18

Lambda-point, 255

Measurement of thermodynamic, 93

Rotational characteristic, 104

Thermodynamic, 9, 15, 93

Transition, 250

Triple-point, 124

Unattainability of zero, 157, 356

Vibrational characteristic, 105
Thermal,

conduction, 8

conductivity, 372

contact, 8

equilibrium, 8, 15

for systems in relative motion, 380

expansivity, 38

insulation, 7

internal stability, 30

power, 372
Thermochemical tables, 244
Thermochemistry, 241
Thermocouple, 371
Thermodynamic efficiency of cycle, 44
Thermodynamic functions,

defined, 22

Dependence of, on T, P, 39

Dependence of, on T, V, 41

for magnetic systems, 347

for surface phases, 47

for systems in motion, 378 er seq.

related to partition functions, 63 et seq.,

72,76

Standard, 96, 243
Thermodynamic probability, 63, 72
Thermodynamic process, 7
Thermodynamics,

Basis of laws of, 58

First law of, 9, 58

of irreversible processes, 362 et seq.

Scope of, 5

Second law of, 17, 58

Statistical, 59, 61 et seq.

Statistical basis of laws of, 66, 80

Third law of, 60, 80, 154 et seq.

Zeroth law of, 8, 58
Thermodynamic state, 6
Thermodynamic temperature, 9, 15, 93, see

also Temperature

SUBJECT INDEX

Thermodynamic tables, 244
Thermoelectricity, 371
Thermoelectric power, 373
Thermometer, 8
Gas, 93
Thermostat, 8
Third law of thermodynamics, 60, 80, 154
et seq.
and Nernst’s heat theorem, 154
and unattainability of zero temperature,
157, 356
Exceptions to, 148
Statistical basis of, 80
Thomson effect, 375
Throttling, 92
Transitions,
between pure solids or liquids, 124, 248
of higher order, 264
of second order, 252, 351
Translational degrees of freedom, 77, 78,
103 et seq.
Transport numbers of ions, 324
Triple point, 124
of water, 18
Trouton’s rule, 140

Unattainability of zero temperature, 157,
356

Unexcited degrees of freedom, 77

Units, 1, 18

Unnatural process, 12

Van der Waals’ equation, 141
Vapour pressure, 121, 177
Vibrational degrees of freedom, 104 et seq.
Virial coefficients,
of gas mixture, 175
of pure gas, 90, 97, 137
Volatility, Relative, 192
Volta potential, 304
Volume, Critical, 128, 136
Volume fractions, 205

Work, 9
Conversion of, to heat, 11
Electric and magnetic, 344
of charging capacitor, 334

Zeroth law of thermodynamics, 8, 58
Statistical basis of, 66



