On the Slopes of Phase Boundaries

ARTHUR D. PELTON

Several simple equations are derived which can be used to check binary phase diagrams for thermo-
dynamic consistency. In many cases, the only thermodynamic data required are the entropies of fusion.

I. INTRODUCTION

PuAse diagram compilation and evaluation is a topic of
great current interest. The alloy phase diagram compilation
program of the American Society for Metals has been un-
derway for several years. The American Ceramic Society
is lauching a similar project for ceramic phase diagrams.
Thousands of diagrams are being evaluated under these
international programs.

In evaluating a phase diagram, it is important to check
that the diagram is consistent with the thermodynamic
properties of the system. ldeally, a complete computer-
assisted optimization of all available thermodynamic and
phase equilibrium data on a system should be performed
with a view to obtaining equations for the Gibbs energies
of the phases which can be used to calculate the phase dia-
gram and the thermodynamic properties in a completely
self-consistent manner. Many systems have already been
fully optimized in this way.

However, there are also a number of simple equations
which can be used for providing a quick check on the
consistency of phase diagrams. These need only a hand
calculator for their solution and often require no more
thermodynamic data than the entropies of fusion of the
components.

The best example of such an equation, which has been
known for a century, but which is still not used regularly,
relates the limiting slopes of the liquidus and solidus in a
binary system when the mole fraction of one component
is unity:

@T/dX5). -y — (dT/dX3): L = Ahjy/R(TeY (1]

where (dT/dX?),, -, and (dT/dX3),,-, are the slopes of the
liquidus and solidus when the mole fraction, X,, of com-
ponent A equals unity, Ahg,, is the molar enthalpy of
fusion of A, and T7,, is the melting point of A (in kelvins).
The only requirement involved in Eq. [1] is that Raoult’s
law be obeyed in the limit for the solid and liquid phases.

In Figure 1 is shown the K-Na phase diagram."! The ex-
perimental points are from Reference 2. The experimental
limiting liquidus and solidus slopes at X; = 1 are drawn on
the diagram. These are read off the diagram as (d7/dX%) =
270 and (dT/dXy) = 1120. From Eq. [1], with Ty, =
336.34 K (63.19 °C) we calculate Ah}’(K) = 2.6 kJ/mol
which is very close to the value of 2.3 kJ/mol found in re-
cent compilations.”™ Hence the limiting slopes of the ex-
perimental diagram are thermodynamically consistent. An
example of a diagram which does not pass this test is pro-
vided by the Na-Sr diagram™ shown in Figure 2(a). Limit-
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ing liquidus and solidus slopes at the melting point of Sr
(774 °C), when substituted into Eq. [1], give Ahgs, =
14.6 kJ/mol which is about twice the correct value[Sf of
7.4 kJ/mol. A recent critical evaluation of the Na-Sr sys-
tem”’ has resulted in the revised diagram shown in Fig-
ure 2(b) in which the limiting liquidus slope is much
steeper. (Probably Na losses by volatilization during the
measurements resulted in the incorrect liquidus of Fig-
ure 2(a).)

In the present article, some other simple relations in-
volving the slopes of phase boundaries of binary systems
are derived and discussed.

II. RATIOS OF SLOPES AT INVARIANTS

In Figures 3(a) through (d) are shown four cases of in-
variants involving three phases: «, 8, and vy in a binary sys-
tem with components A and B. Let o, and o, be the slopes
of the y-phase boundaries of the (y + «) and (y + ) re-
gions at the invariant temperature as shown in the figure:

o-ya = (d’T/dXB)ya o-yB = (dT/dXB)yﬁ [2]

where X is the mole fraction of B.

The following completely general expression for the ratio
0,4/ 0, is derived in the Appendix by applying the Gibbs-
Duhem and Gibbs-Helmholtz equations. The derivation
involves no assumptions.

oy [XA(S% — S + X5(S) — SpIXE — X})

= (3]
O, [XE(SY — S + X5} — SPIXE — X}]
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Fig. 1 —K-Na phase diagram reproduced from Ref. 1. Experimental points
are from Ref. 2. Calculated phase boundary slopes at eutectic and peritec-
tic are shown for different assumed stoichiometries of the compound as
described in the text.
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Fig. 2—-(a) Na-Sr phase diagram as reported by Ref. 4 (reproduced from Constitution of Binary Alloys).
Dashed line is reported limiting liquidus slope at Xg, = 1. Dotted line is liquidus slope at the eutectic calcu-
lated as described in text. (b} Na-Sr phase diagram reproduced from Ref. 5. Liquidus is based on data of Ref. 7.
Dashed line is liquidus slope at the eutectic calculated as described in text.
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Fig. 3—Phase boundary slopes at invariants in a binary system A-B.

where X%, X% etc. are the mole fractions of the compo-
nents in the phases at the equilibrium invariant composi-
tions as shown in Figure 3, and S, S8, etc. are the partial
molar entropies at these same invariant compositions.

Equation [3] may be converted into an expression in-
volving partial molar enthalpies rather than entropies by
noting that, at equilibrium, g} = g4%. Hence: (S} — S}) =
(h} — h%)/T. Similar expressions for the other entropy
terms in Eq. [3] can be written. Substituting these into
Eq. [3] yields:

Ty _ (X5 — h3) + X5y — hp)][XE — X3]
Oy [XA(hY — BD) + X5(hy — hp)[X5 — X}]

Equations [3] and [4] are identical. However, Eq. [3] is
more useful than Eq. [4] in applications involving approxi-
mations since it is usually easier to approximate entropies
than enthalpies. For example, the entropies of fusion of most
metals obey Richard’s rule reasonably closely.” Also, en-
tropies of formation of intermetallic compounds are gener-

(4]
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ally small.'"! Furthermore, assuming that the entropy
of mixing of a liquid phase is ideal usually gives rise to
smaller errors than assuming that the enthalpy is ideal.

Some examples of applications of Eq. [3] to binary phase
diagram evaluations are given below.

Case 1 — Eutectic with No Intermediate Compounds

Consider a eutectic as in Figure 3(a), where a and 3 are
the solid end-member phases and vy is the liquid. The term
(S5 — S%) in Eq. [3) may be expanded as:

(S5 =89 = (55— 87 — (S5 =839 + (S — 599
~ =R In(X5/X5) + AS}, [5]

where S" and §¢* are standard molar entropies of pure
liquid and solid A, where ASj,, is the standard molar en-
tropy of fusion of pure A, and where it has been assumed
that the partial entropies of mixing are ideal.
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Similarly, for the term (S5 — S%):
(8% =SB = =R lnX5/XH + (ST — %) [6]

The term (S¢" — $9°) in Eq. [6] is the entropy of fusion of
pure solid A with the B-phase structure. In light of Richard’s
rule, we can assume that this term will be approximately
equal to ASy,.

Similar expressions can be written for the other entropy
terms. Substitution into Eq. [3] then gives the approximate
equation:

T1p _ [XAR In(X5/XD) + AS7,) + X5(R In(X5/X5) + ASps)][X5 — X5)

(S5 — SS9 = (S5 — S5 — (S5 — S7) + (Sg* — $9°)
+ (S3% ~ S5 =~ —R In(X3/X5) + ASg,
+ AS,pm) [9]

where AS Z,,B(B) is the standard molar entropy change for
the o — B transformation of pure B. Substitution into

gy

24

o [X5R InX5/XE) + ASf,) + X5R In(X5/XE) + Ay + ASS_)]IXE = X3]

[X5R In(X§/X%) + ASp.) + X5R In(X§/X5) + AS{e)][X5 — X3

(7]

Eq. [3] yields:

OLa [XAR In(X5/X%) + AS7,) + X3(R In(XE/XE) + ASys)][X5 — X5

Equation [7] contains only the compositions of the three
phases at the eutectic temperature as well as the entropies
of fusion of A and B which are generally well known. In the
case of negligibly small solid solubility (X5 =~ 1,X% = 1),
Eq. [7] takes on the simplified form:

I _ Xi(ASpy — R In X5) (8]
O X5(ASym — R In X5)

An example of the application of Eq. [7] to phase dia-
gram analysis is provided by the Na-Sr system. One ver-
sion of this diagram'¥ is shown in Figure 2(a) while another
version™ based principally upon the liquidus of Reference 7
is shown in Figure 2(b). The liquidus curves between 100°
and 200 °C are very different in the two versions.

In the case of the diagram in Figure 2(b), we apply
Eq. [7] at the eutectic at 94.8 °C where “«” is now solid
Na (in which Sr is negligibly soluble) and “B” is solid Sr.
Hence X = 1, XSr =0, X§, = 0.124, X§ = 0.876,

= 0.9935, X% = 0.0065. Entropies of fusion of Na
and Sr are taken from Reference 3. The slope of the Na-
liquidus taken from the diagram is o, = (97.86 — 94.8)/
(—0.0065) = —471. From Eq. [7], the slope of the Sr-
liquidus (o,p) is then calculated as 10700. (From the sim-
plified Eq. [8] we calculate 10200.) The calculated slope is
plotted on Figure 2(b). Agreement with the experimental
liquidus slope is excellent. Similar calculations performed
for the diagram in Figure 2(a) yield the calculated liquidus
slope shown.The reported liquidus is not in agreement with
the calculations.

Case 2 — Invariant Associated with an Allotropic
Transformation

Consider an invariant associated with the « — 3 al-
lotropic transformation of component B as shown in Fig-
ure 4. In this flgure the invariant is similar to Figure 3(b),
since X > X4, but the following denvatlon also applies
for the case (like Figure 3(d)) where X5 > X3.

The entropy terms of Eq. [3] are once again expanded as
in Eq. [5], and the assumption of ideal mixing entropies is
made. We note now that:
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[10]

If the solid solubilities are small (X5 = 1, X§ = 1), then
Eq. [10] simplifies to

g _ AS;(B) + ASi—»B(B) - R InX§
Ol ASfs — R In X}

An example of the apphcatlon of Eq. [10] is provided by
the Na-Sr phase diagram™ shown in Figure 2(a). At 192 °C
there is an invariant associated with the supposed a — f3
transformation of Sr. In Bq. [10] we set: X5 = (1 — X%) =
0.14, X% = 0.88, X5 = 0.90, and entropies of fusion are
taken from Reference 3. The liquidus slope ratio is read
graphically from the dlagram as oy Jo, = 6.5. Substltu—
tion into Eq. [10] then gives AS,HB(B) = 123 J/mol -
(The simplified Eq. [11] gives 134.) This is 1mposs1bly
large for the entropy of an allotropic transformation by a
factor of approximately 50. Hence, the liquidus slope ratio
at 192 °C shown in Figure 2(a) is also impossibly large.
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Fig. 4 —Liquidus slopes at an invariant associated with an allotropic
transformation.
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Case 3 — Peritectic Melting of a Compound

We consider the liquidus slopes o, and o4 at a peritec-
tic associated with the melting of an incongruent compound
A,_,B, as shown in Figure 5. In this example, X3 = (1 — y)
and X3 = y.

The entropy of fusion of completely ordered intermetal-
lic compounds may be approximated as the average of the
entropies of fusion of the elements plus the entropy of
mixing of the liquid.” This is equivalent to saying that the
entropy of formation of the compound from the solid ele-
ments is zero, or that the partial molar entropies of A and
B in the compound are equal to the standard molar en-
tropies. Hence, in Eq. [3] we may make the substitution:

(S5 — 89 = (55 — 839 = (55 — S + (53" — 529
~ —R In X5 + AS7, [12]
where, as before, the entropy of mixing of the liquid has
been assumed to be ideal.
A similar substitution for (S5 — S3) may be made. Sub-

stitutions for (S5 — %) and (S5 — S%) may be made as
before, with the following results:

o _ [(1 =y (“RIn X5 + AS7) + y(=R In Xj + AS7) (X5 — Xp)

Temperature

Al—y By B

Fig. 6—Liquidus slopes at a eutectic involving the compound A,_, B, .

o [XE(R In(X§/X5) + AS7,) + X5(R In(X5/X5) + AS;p)1(y — X5)

An example of the application of Eq. [13] is provided by
the K-Na!"? phase diagram shown in Figure 1. At 6.92 °C
the compound Na,K melts incongruently. From Figure 1,
o, is read as 165. From Eq. [13], with y = 2/3, X} =
1.0, X5 = 0.60 and the entropies of fusion of K and Na
taken from Reference 3, we calculate o, = 24. As shown
in Figure 1, this agrees very well with the measured lig-
uidus slope.

In order to show the sensitivity of the calculations to the
stoichiometry of the compound, o,, was recalculated for
y = 0.75 (i.e., for Na;K) and plotted on Figure 1. (Clearly,
fory = X5 = 0.60, o,, = 0, and for y = X5 = 1.0,
0. = 015.) Equation [13] can thus be used to check that
the slope ratio is consistent with the known stoichiometry
of the compound or, conversely, to use the measured slope
ratio to estimate the stoichiometry of the compound.
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Fig. 5— Liquidus slopes at a peritectic involving the compound A,_, B, .
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[13]

Case 4 — Eutectic with an Intermediate Compound

This case is illustrated in Figure 6. The « phase is the
compound A, B, (X3 =1 —y, Xj = y). With the same
assumptions as in case 3 above, we find that Eq. [13] also
applies in this case.

An example is provided by the eutectic in the K-Na sys-
tem (Figure 1). From the figure we read ;5 = 190. From
Eq. [13] with y = 2/3, X& = 0.05, X} = 0.32, and the
entropies of fusion from Reference 3, we calculate o, =
149. As shown in Figure 1, this agrees very well with the
measured liquidus slope. The slope o, was recalculated
with y = 1/2 (i.e., NaK) and with y = 1. Results are also
plotted on Figure 1 to show the sensitivity of the calcula-
tions. (Note that when y = 1, Eq. [13] reduces to Eq. [7]
with X3 = 1.) Hence, Eq. [13] can be used to estimate the
stoichiometry of a compound from the measured slope ratio.

III. CALCULATING SOLIDUS
COMPOSITION FROM THE LIQUIDUS SLOPE

For many binary systems, the liquidus has been mea-
sured, but data on the solidus are imprecise or lacking. If
the mutual solubility of the solid components is extensive,
then a good approximation can often be made of the solidus
composition by means of a thermodynamic relationship
presented earlier.”” In general, to calculate the solidus com-
position at a given temperature it is necessary to know the
composition and slope of the liquidus at the same tempera-
ture as well as the excess Gibbs energy of the liquid and
the excess entropy of the solid. However, in systems with
extensive solid solubility, it is usually a good assumption
that the excess entropy of the solid is small. Furthermore,
when the components are very miscible in the solid phase,
the liquid solution is generally close to ideal. Under the
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assumptions that the excess Gibbs energy of the liquid and
the excess entropy of the solid are both zero, the general
relationship® reduces to:

X3ln X5 — (T/X3) (dT/dX5) ' — ASj./R]
+ X3lln X5 + (T/X5) (@T/dX5) ™ — ASgg/R]
=XSInX5 + X, InX; [14]

where X%, X%, X5, X5 are the liquidus and solidus com-
positions in equilibrium at temperature T, dT/dXj is the
liquidus slope, and ASf, and ASg,, are the entropies of
fusion of A and B.

An example of the application of Eq. [14] is provided by
the Cs-K (A-B) system® in Figure 7. At —15 °C (258 K),
X% = 0.27 and (dT/dX3) as read from the figure is —150.
Entropies of fusion were taken from Reference 3. With
these substitutions, Eq. [14] may then be solved for X3
(1 — X3) by trial and error. The result is X3 = 0.175 which
agrees within 0.005 with the measured solidus composition.

IV. CONCLUSIONS

Equations have been derived which can be used to test
binary phase diagrams for thermodynamic consistency.
The general relationship, Eq. [3], for the ratio of phase
boundary slopes at an invariant can be simplified through
various approximations so that in many cases the entropies
of fusion of the components are the only thermodynamic
data required. It is better to formulate the general equation
in terms of entropies rather than enthalpies, since entropies
are more amenable to approximations.

Several examples of the application of these equations
have been given. Although these examples involved liquid-
solid equilibria and eutectic or peritectic invariants, the
same equations apply to solid-solid equilibria, and eutec-
toid or peritectoid invariants.

APPENDIX

Equation [3] for the ratio of the slopes o4 and o, as
defined in Eq. [2] and as illustrated in Figure 3 will be
derived. The derivation applies to all four cases of Fig-
ures 3(a) through (d). For the slopes of the other boundaries
at an invariant we use the notational scheme illustrated in
Figure 3(a). That is, for example, (d7/dX),, is the slope
of the phase boundary of the a-phase in equilibrium with
the y-phase.

For the three phases in equilibrium at the invariant, the
partial Gibbs energies of the components are equal:

gY=8i=84 81 =85= 85 (15]
(for a total of 4 independent equations). Taking the first
equation, g} = g5, and differentiating, we obtain:

9gi/aT + (0g1/9Xp)05, = 984/9T + (3g4/0X5)

+ (dT/dX )y [16]

That is:

(0g)/3X5)0s — (3g4a/0Xs) (dT/dXy),, = S§ — Si

[17]
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Fig. 7— Cs-K phase diagram reproduced from Ref. 9. Experimental points are from Ref. 10.
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where S} and S§ are partial molar entropies. By differentiat-
ing the other three equations (g} = g4, ¢} = g5, and g} =
g we obtain three more equations similar to Eq. [17].

In each of the three phases, the Gibbs-Duhem equation

may be written. For the « phase, for example:
X3 dgy+ X5 dgp =0 (18]

The four equations of the form of Eq. [17] and the three
equations of the form of Eq. [18] can then be rearranged
and substituted into one another to yield Eq. [3].
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