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Abstract

Study of Human Head Impact: Brain Tissue Constitutive Models

Toru Aida

Finite element (FE) models of the human head have been used extensively to assess
engineering response parameters (pressure, shear strain, etc.) that constitute the basis of
various injury criteria including the Head Injury Criterion (HIC). There is a wide range of
brain material properties reported in the literature, and linear elastic models are frequently
used for the brain tissue which is viscoelastic in nature. The uncertainty around the properties
of brain tissue affects the perceived importance of those response parameters under
consideration.

In this research, the effect on head injury criteria of five reported viscoelastic brain models
and their linear elastic alternatives is studied using both a simple spherical head model and a
geometrically realistic head model. It is concluded that even the most proximate linear elastic
model, which employs a Young’s modulus equal to the short term modulus of the
viscoelastic model, does not provide realistic representations of shear responses possibly
associated with head injuries.

The calculated HIC value is found to be insensitive to the choice of brain material model,
whether based on acceleration histories taken at the center of gravity or the side of the head,
despite the fact that the shear strain histories in the brain vary drastically from model to
model. Furthermore, on the basis of a hypothetical shear strain criterion for the threshold of
tissue damage, the percentages of injured brain tissue predicted using different models vary
greatly. The pressure response of all models is found to be virtually identical provided that
the same bulk modulus (that of water) is employed. Parametric studies indicate that
decreasing the bulk modulus leads to lower peak pressures and higher HIC values.

The fact that the widely varying internal responses associated with the various models
considered in this study does not lead to variations in calculated HIC exposes the limitation
of HIC. Therefore, HIC may not be a reliable indicator of actual internal dynamics and tissue
damage. The FE method could be used to address this deficiency and provide guidance for
the experimental determination of realistic constitutive models for brain tissue.
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Chapter 1

Introduction

In the 1930s the crashworthiness of passenger vehicles was literally measured by how well

vehicle structures could maintain their integrity under certain crash scenarios such as barrier

impact and rollover. Today the focus of the passenger vehicle crashworthiness research has

shifted from structural integrity to occupant mechanical responses. Injuries to the head and

brain have received much attention due to their obvious importance and irreversible nature of

injuries to the central nervous system, and attempts to quantify the injury potential to that

particular region of a body have been extensive. Various postulations have been made to

provide guidelines as to what type and level of external loads would produce head injuries.

One criterion that is in wide-spread use today is the Head Injury Criterion (HIC) which is

derived from the resultant acceleration history measured at the center of gravity of the head.

Without regard to any other physical parameters, HIC’s suitability as an injury potential

indicator has been questioned by some. Still, HIC is accepted as one of the United States

government’s vehicle safety assessment criteria [61]1.

Meanwhile, various injury theories have been postulated in an attempt to associate observed

head injuries to certain measurable parameters such as acceleration, pressure or shear strain

in the brain. In order to gain better understandings of the internal dynamics of the human

head under impact or impulse loading, mathematical models are often employed due to their

ease of manipulability and data extraction. Particularly, the finite element method (FEM) has

emerged as the most widely-used analysis tool. While FEM has been used in the area of

structural analysis for years, it was not until the 1970s when the first finite element model of

a human head was developed. Since then the complexity of the models in terms of geometry

has progressively increased. However, material constitutive laws, especially that of the brain,

has received less attention than it should have been. It is well regarded that all biological

1

1Numbers in square brackets indicate the references in Bibliography

materials are assumed to be viscoelastic, or strain rate sensitive, but the majority of finite
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element models developed so far employ linear elastic materials for the brain tissue. This is

crucial since the rate-sensitive nature of those tissue materials most certainly affects the

outcome from high-rate dynamic events such as automobile accidents.

1.1  Problem Statement

It is understandable that the linear elastic model is commonly used for the brain tissue since it

is simple, easy to apply and familiar to most engineers. However, there are three main

problems associated with this practice. First, the implications of such substitutions are not

clear. It is widely-accepted knowledge that the brain tissue is a strain rate sensitive, or

viscoelastic, material. It is not yet known whether or not using the linear elastic model for

such a material is feasible, and if so, how such alternatives can be determined.

Second, even when a viscoelastic model is to be employed, there have been a number of

brain material models published in the literature, and they differ greatly. They are

undoubtedly different facets of the same material and correct in their own domains. It is

naturally expected that different materials produce different results, but the clarification as to

how different they are, and whether or not the differences in results are relevant, must be

examined.

Third, with the material characteristics of the brain tissue still uncertain, there is a question as

to how this uncertainty can affect head injury criteria. This is also part of a larger question of

the applicability of the finite element method in the head injury research. When various

dynamic events in the head are analyzed with a finite element model, the ability of the model

to help predict head injury is, in turn, the ability to evaluate engineering parameters such as

pressure and shear strain. Therefore, it must be known as to how the uncertainty in material

properties can affect those output parameters, which injury criteria, including HIC, are

affected more than others and which are insensitive to it.
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1.2  Objectives

In order to examine of the applicability of the linear elastic model for a viscoelastic material,

namely the brain tissue, first a review of viscoelasticity and literature survey on published

viscoelastic brain models are conducted. As the same time, an implementation of a

viscoelastic model in explicit nonlinear dynamics finite element code DYNA3D is validated.

A very simple model of a human head represented by a sphere is then tested with viscoelastic

and possible linear elastic substitution models for the content (brain). Various responses such

as pressure and shear strain are analyzed to make comparisons between different brain

material models. The discrepancy or the lack thereof among those outcomes signifies the

adequacy of such replacements.

Finally, a slightly more complex model of a human head is generated to examine various

head injury criteria, including the Head Injury Criterion (HIC). The intent of this exercise is

not to predict or make any assessment of head injury potentials. Rather, its main purpose is to

study the sensitivity of the head injury criteria on brain material constitutive relations. This

sensitivity study will suggest the degree of certainty in head injury criteria predicted by the

current state of knowledge of the mechanical characteristics of the brain tissue. In particular,

the effects on HIC, today’s standard in head injury prediction measure, are studied.

1.3  Literature Review

1.3.1  Experiments

Studies on the material constitutive laws of mammalian brains first appeared in the 1950s,

but some basic understanding of the brain tissue’s characteristics such as high

incompressibility was documented in the 1940s [33]. From the late 1960s to early 1970s a

number of studies were conducted on the constitutive behavior of human brain tissue; one of

the most comprehensive was performed at West Virginia University (WVU) [6]. On the basis

of creep experiments Galford and McElhaney [19] reported the compressive compliance of

human and monkey brains to be linear on semi-log scale. Their empirical expression for



Toru Aida Chapter 1  Introduction 4

compliance C  in the human brain is C C C te= +1 2 ln  (psi), C1
13 55 10= × −.  and

C2
22 60 10= × −. . Additionally, relaxation experiments reported by Galford and McElhaney

showed very rapid stress relaxation during the first 10 seconds after loading; the

instantaneous relaxation for the human brain was determined to be approximately 0.95

pounds per square inch (psi) while the equilibrium relaxation modulus appeared to be

nonzero. On the basis of axial free-vibration experiments, the dynamics modulus of the

human brain was determined to be 9 68 3 80. .+ i  (psi) at 34 Hertz (Hz). Shuck [75, 76]

performed oscillatory shear experiments on cylindrical human brain samples up to 350 Hz.

He found that the dynamic shear modulus varied with frequency, but yielding of the brain

material appeared to have affected the results. Apparently, the onset of yielding in brain

tissue is significantly affected by frequency or, equivalently, strain rate. It was difficult to

determine from the data how much yielding had occurred in the material, especially in the

high frequency range [75]. Shuck was able to conclude that there is little variation between

gray and white matter in the brain, and that, for all practical purposes, the brain could be

considered homogeneous. This point is reiterated by Estes [14], who reported only minor

variation between samples that were predominantly white matter and those that were

predominantly gray matter. His interpretation of the experimental data on the human brain in

terms of the three-parameter viscoelastic solid model yielded the following parameters:

E1 4 00= .  psi, E2 1 89= .  psi and η2 0 315= .  lb.-sec./in2, where the three-parameter solid was

described as a combination of a Kelvin unit (E2  and η2 ), and a linear elastic unit (E1) in

series.

Non-human mammalian brains have been investigated by a number of researchers since [2,

5, 54, 73, 83], but only a handful of studies on the human brain or the central nervous system

have been attempted. Bilston and Thibault [4] performed in vitro tension experiments on the

human cervical spinal cord at various strain rates and fitted the data with a four-parameter

viscoelastic models. The four parameter model is characterized by the following parameters:

E1 0 65 0 36= ±. .  MPa, E2 10 6 8 2= ±. . MPa, η1 119 49= ±  sec-1 and η2 15 0 13 1= ±. .  sec-1.

Donnelly and Medige [11], concerned that oscillatory experiments such as those done by

Shuck [75] may damage the tissue, elected to conduct parallel-plate shear experiments on

human brain tissue at different strain rates. Specimens were deformed to the maximum

engineering strain of 1 (45 degrees deformation angle) by using an impact loading device.

The data were fit with a three-parameter linear viscoelastic solid model: the associated model

parameters are: α1 550=  Pa, α2 291=  Pa and ξ = 9 4.  Pa-s for the brain in shear, where α2
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and ξ  define the Kelvin unit and α1, the linear elastic unit in series.

1.3.2  Finite Element Models

In the past fifty years numerous attempts have been made to mathematically model a human

head, particularly using the finite element method. King and Chou [41] presented a review of

mathematical models of the human head developed between 1966 and 1974, and more recent

review was presented by Hardy et al. [31]. The models so far developed can be grouped in

two basic categories; analytical and numerical. Analytical models tend to be simplified in

order to obtain closed-form or exact solutions to the problem. Examples of analytical models

include one dimensional models such as ones developed by Kopecky and Ripperger [43]

where the main focus was to analyze pressure variation along the direction of impact, or

fluid-filled spherical rigid/elastic shell models such as the ones by Engin [13] and Chan and

Liu [7], or a spheroidal model such as the one proposed by Talhouni and DiMaggio [81].

However, as King and Chou [41] and Dawson et al. [9] pointed out, it is questionable that

those overly simplified models have much relevance in solving head injury mechanism

problems.

On the other hand, numerical models such as finite element models have advantages over

analytical ones in terms of flexibility and expandability to accommodate complex geometry,

though some of the early models have been quite simple. Kenner and Goldsmith [36] used a

finite element model of an axisymmetric elastic shell filled with a compressible, inviscid

fluid to compare the results from their analytical solution and experiments with good

agreement. The model developed by Khalil et al. [38] was similar to the one in [36], but their

axisymmetric model was used to analyze a head-helmet system, and the bone (skull) was

modeled using a viscoelastic material. Once again the finite element solutions were

compared against their experiments. Shugar and Katona [76] developed an axisymmetric,

plane strain and three-dimensional models of a human head, the first two of which have been

used to analyze dynamic responses for a time-varying pressure load. All models had

distinctive three layers of the skull (outer/inner table and diploë). The brain was modeled as

an inviscid compressible fluid, later replaced by linear elastic and viscoelastic materials. In

the three dimensional model, the subarachnoidal space which was filled with cerebrospinal

fluid (CSF) was explicitly modeled as well. Validation was made only for the axisymmetric
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model by comparing a coup pressure history with finite difference solutions; no other

attempts to verify other models were made. The intracranial pressure distribution, skull

displacement and influences of difference material representations were analyzed. The

three-dimensional model was prepared for discretization only. Another attempt to model a

human head through axisymmetric representation was made by Khalil and Hubbard [39],

who developed three different models; a spherical model with a single-layered skull, an oval

model with two spherical caps with a single-layered skull and a spherical model with a

three-layered skull. Materials used in the models were linear elastic, and the brain was

simulated as a compressible inviscid fluid, with a density and bulk modulus of water. Head

injuries were categorized in three different groups; scalp, skull and brain injuries. Skull

injuries were interpreted as failure of the cranial bones, which corresponded to 0.5 percent

strain in tension and 1.5 percent strain in compression. The cause of brain injuries was

attributed to cavitation which was assumed to take place when the fluid pressure was reduced

by 1 atmosphere.

Ward and Thompson [87] generated one of the first detailed three dimensional brain models

based on the “actual” geometry of the head, which incorporated the cerebrum, cerebellum,

dura (including falx cerebri, tentorium cerebelli), ventricles and brain stem. The cerebrum

and cerebellum were modeled as elastic solid materials, while the dura, falx cerebri and

tentorium cerebelli were modeled using membrane elements with linear elastic material

properties. The lateral and third ventricles were approximated by reducing the elastic

modulus of the surrounding areas (labeled as “composite material”), and the forth ventricle

was simulated as a soft elastic solid. The last assumption was an attempt to simulate the

release mechanism facilitated by the foramen magnum through which CSF escapes under

pressure, even though CSF in vitro exhibits high incompressibility [34]. The skull was not

included in their model; instead, special boundary elements were incorporated in order to

simulate the interaction between the brain and skull. While only the static and modal

analyses were performed on this model, subsequent revisions of this model by Nahum et al.

[57] and Ward et al. [87] were used to analyze transient dynamic responses of the brain

whose results, primarily in the form of intracranial pressure histories, were compared with

those from experiments using human cadavers and primates. Nahum et al. found a high

damping ratio of the brain and a correlation between maximum intracranial pressure and

acceleration in the brain. Ward et al. proposed intracranial pressure as a brain injury criterion

based on empirical observations which showed that intracranial pressure above 34 psi could
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produce brain contusions. This magnitude of intracranial pressure was correlated to the

magnitude and duration of an input acceleration pulse to the brain. By varying the pulse

magnitude, the brain pressure tolerance (BPT) curves were generated. Comparisons of the

BPT criterion against other injury criteria such as Wayne State Tolerance (WST) curve,

Viena model injury criteria, maximum strain criterion (MSC) and head injury criterion (HIC)

were made, which showed a relatively good agreement between the BPT and HIC.

Another model with similar complexity was developed by Hosey and Liu [34]. Their model

contained the cerebrum, cerebellum, skull, dura, CSF layer, spinal cord, vertebrae and

intervertebral disks. An effort was made to match the initial inertial characteristics of the

brain with experimental data by adding point masses at various locations on the brain

surface. Mid-sagittal symmetry was assumed, and the model was further simplified by

utilizing thin shell elements in portions of the skull. Materials were presumably isotropic

linear elastic, and the brain and CSF were assigned a Poisson’s ratio of 0.499, thus simulating

near incompressibility. An occipital pressure pulse was applied, and the resulting intracranial

pressure histories were analyzed.

Ruan et al. [69] developed three models in order to investigate feasibility of the finite

element method, to analyze influence of interior membranes (meninges) and variations in

material properties. The first model was an axisymmetric, single-layered shell filled with an

inviscid fluid in order to reproduce the results from Khalil and Hubbard [39] in an attempt to

prove the feasibility of the finite element method. The second and third models were two-

dimensional plane-strain bilaterally symmetric models in the coronal section, passing through

10 millimeters posterior to the auditory canal. The external geometry was taken from an

actual anatomical data, and the skull was assumed to be a single-layered structure. The

weight of this section was assumed to be 71 percent of the actual mass of an adult-size

human head. The second model consisted of a single-layered skull and an inviscid fluid as

the intracranial contents, while the third model included the CSF layer, falx cerebri and

tentorium. The brain in the third model was also modeled an inviscid fluid. Tissue materials

in all three models were assumed to be linear elastic, homogeneous and isotropic.

Comparisons between the second and the third model revealed that the presence of the

membranes affected the intracranial pressure distributions. Parametric study on material

properties was performed using the second and third models, and their effects on pressure

responses were analyzed. It was found that the Young’s modulus of the membrane, bulk
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modulus of fluid and the Young’s modulus of the shell (skull) all had effects on intracranial

pressure distribution and magnitudes.

Another plane strain model was developed by Chu et al. [8], which was a parasagittal section

of a human head from anatomical and anthropometric data. The rationale for the selection of

the parasagittal plane approximately 3.5 centimeters off the midsagittal plane was based on a

clinical fact that cerebral contusions would not normally occur in the midsagittal plane. Most

of features in the cranium were omitted, leaving only the skull and brain as explicit

components. The elastic modulus of the brain, however, was chosen to be higher than the

average to compensate the lack of the meninges in the model. The foramen magnum was

modeled by detaching the brain from the skull near the bottom of the brain thus creating

approximately 1.5 centimeters wide “opening” which contributed to a 15 percent reduction in

the contracoup pressure. Though only the occipital pressure was used for validation of the

model, their results and clinical observations seemed to indicate that cerebral contusions

were caused by shear strain in the brain.

One of the most complex and detailed models of a human head was developed by Ruan et al.

[70, 70, 71]. Their model had realistic exterior geometry which included a certain degree of

facial representation in addition to the cranium. It also had explicit cerebral hemispheres and

the falx cerebri separating each other, along with a dura mater surrounding the entire brain.

This model was used to analyze coup, contracoup pressure, shear strain and acceleration

under various impact conditions using an impactor at various speed, weight and location. The

authors concluded that HIC was a reasonable indicator of impact severity, based on

correlations between HIC and other engineering parameters such as coup pressure, maximum

shear stress and von Mises stress in the skull.

1.3.3  Material Constitutive Characterizations

Investigators, in the course of developing finite element models of the head, have

incorporated their own constitutive models based on what they considered to be reasonable

assumptions and/or on data from the experimental studies reported in the preceding section.

Khalil et al. [38] assumed the brain to be an inviscid fluid with a bulk modulus of 2 07 109. ×
Pa. Khalil and Hubbard’s axisymmetric models reported in 1977 [39] explicitly used water to

represent the brain; the water was represented as an inviscid fluid with a bulk modulus of
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2 19 109. ×  Pa.

A model developed by Ward et al. [87, 87] employed a linear elastic material model for the

brain whose properties were derived from [19] and Barber et al. [3]. Similarly, Hosey and

Liu [34] adopted the material property values from McElhaney et al. [50] for their linear

elastic brain model. These models all employ a linear elastic law that is defined by

E = ×6 67 104.  Pa and ν = 0 48. , the former of which is the storage modulus in the vibration

experiment reported in [19] and [50]. The same material characterization was used in the

models reported by Ruan et al. in 1991 [69].

Chu et al. [8] also elected to use the linear elastic model for the brain derived from Khalil

and Viano [40] and Lee et al. [44]. Khalil and Viano’s investigation on the brain material

properties was done using E = ×66 7 103.  Pa, the same value used by [34, 69, 87, 87], while

the Poisson’s ratio was varied from 0.45 to 0.49999. The model investigated by Lee et al.

was that of the Rhesus monkey, and their complex shear modulus for the brain was reported

to be 80 16+ i  kPa with the Poisson’s ratio of 0.49. The actual parameters used by Chu et al.,

however, are E = ×25 104  Pa and ν = 0 49. .

Ruan et al. developed a three-dimensional head model in 1994 [71] that employed a linear

elastic brain with material properties based on their own previous work [69]. Values for bulk

and shear moduli (2 19 109. ×  and 1 68 106. ×  Pa, respectively) and Poisson’s ratio (0.4996)

are reported. Young’s moduli calculated from bulk modulus and Poisson’s ratio is

5 26 106. × and from shear modulus and Poisson’s ratio, 5 06 106. ×  Pa, both of which are

substantially higher than any models reported elsewhere.

Ruan et al. also reported a linear viscoelastic representation of the brain tissue [70, 70] based

on the data of Galford and McElhaney [19]. Their three-parameter linear viscoelastic model

was characterized by short-term and long-term shear moduli of 5 25 105. ×  Pa and 1 68 105. × ,

Pa respectively, and decay constant of 35 sec-1. It is not clear which experimental results were

used to extract these parameters. Further, in [44] predictions of coup and contracoup

pressures resulting from viscoelastic and elastic material representations were compared; on

that basis, the authors concluded that the viscoelastic effect was insignificant. The substitute

elastic properties used for this were not reported.

Other viscoelastic models reported by Estes [14], who performed compression tests, and
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Donnelly and Medige [11], who performed parallel-plate dynamic shear tests on brain

samples, are discussed in details in a subsequent Chapter.

A summary of material properties reported in the literature is presented in Table 1.1.
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Table 1.1  Material Representation Schemes and Parameters

Investigators Brain Constitutive Law Sources and comments
and Parameters

_________________________________________________________________________________________
Khalil et al. [38] Inviscid Fluid: Water?

K = ×2 07 109.  Pa
ρ = ×1 05 103.  kg/m3

_________________________________________________________________________________________
Ward and Thompson [87] Linear Elastic: From WVU Final Report [6]

E = ×6 67 104.  Pa* (*Later revisions such as [57]
ν = 0 48. used this value which is the
ρ = ×1 04 103.  kg/m3 storage modulus from the

vibration experiment). Density
from Barber et al. [3]

_________________________________________________________________________________________
Khalil and Hubbard [39] Inviscid Fluid: Water.

K = ×21 9 108.  Pa
ρ = ×1 01 103.  kg/m3

_________________________________________________________________________________________
Hosey and Liu [34] Linear Elastic: The storage modulus of the

E = ×6 67 104.  Pa vibration experiment by
ν = 0 48. Galford and McElhaney [19]
ρ = ×1 04 103.  kg/m3 is used as Young’s modulus.

_________________________________________________________________________________________
Ruan et al. [69] Linear Elastic: Same as Hosey and Liu above.

E = ×6 67 104.  Pa
ν = 0 48.
ρ = ×1 04 103.  kg/m3

_________________________________________________________________________________________
Chu et al. [8] Linear Elastic: Khalil and Viano [40] and Lee et

E = ×25 104  Pa al. [44]. [40] used 66.7 kPa as
ν = 0 49. their choice of E, the latter reported
ρ = ×1 00 103.  kg/m3 the dynamic shear modulus of

80 16+ i  kPa for primate brain.
_________________________________________________________________________________________
Ruan et al. [71] Linear Elastic: Based on their previous study

E = ×5 06 106.  Pa* [69] and Shugar [78], whose data
E = ×5 26 106.  Pa† are based on Goldsmith [23],
ν = 0 4996. who in turn extracted data from
ρ = ×1 04 103.  kg/m3 Galford and McElhaney [19].

(* G = ×1 68 106.  Pa, ν = 0 4996. )
(†K = ×2 19 109.  Pa, ν = 0 4996. )

_________________________________________________________________________________________
Ruan et al. [70, 70] Linear Viscoelastic: Data published by Galford and

G t G G G e bt( ) = + −( )∞ ∞
−

0 McElhaney [19]. It is unknown
G0

55 28 10= ×.  Pa which experimental data is used
G∞ = ×1 68 105.  Pa to derive the parameters.
b = 0 035. * (* time in milliseconds)
K = ×1 28 108.  Pa† (†E = ×1 68 106.  Pa, ν = 0 4996. )

_________________________________________________________________________________________
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1.3.4  Injury Mechanisms

It must be noted that the phrase, “injury mechanisms” seems to be poorly defined in the

literature. It is assumed that the phrase refers to mechanical causes which inflict particular

types of head injuries. Clinically observable injuries such as the ones described in the

previous section are, “…caused by deformation of biological tissues beyond their recoverable

limit” [85] which can be defined as the tissues’ failure strength. In other words,

biomechanical nature of injuries is strain; and the type, magnitude and distribution pattern of

strains determine the types and levels, or severity of resulting injuries, or more loosely, the

“failure” of tissues results in injuries. Failure in conventional engineering materials such as

metal is usually defined in terms of stress and strain in a region of a body, and the same

applies to the biological systems as well. However, “failure” in such cases can be defined as

an anatomical structural breakage observable through visual inspection or certain scanning

methods, such as computerized tomography (CT) scan, magnetic resonance imaging (MRI)

or positron emission tomography (PET) scan, or as a physiologic dysfunction which can

occur in the nervous system before any structural damage is observed [18, 65]. To complicate

things further, a set of events that eventually leads to head injuries can be interpreted from

different angles. In other words, one postulated injury mechanism theory can contain

common components shared with others, leaving gray areas between different injury

mechanism theories. With this in mind, however, a categorization scheme which seems to be

widely accepted will be used to differentiate popular injury mechanisms [9, 31]. They are;

negative pressure theories, positive pressure theories, pressure gradients theories and

rotational theories. It will be seen that shear strain is suggested as an underlying cause for

many postulations.

Negative pressure theories attribute negative, or tensile pressure and subsequent phenomena

such as cavitation as causes of head injuries. This idea has been used to explain contracoup

injuries by Denny-Brown and Russell [10], later more extensively by Gross [26] and

speculated by Gurdjian et al. [28]. In Denny-Brown and Russell’s experiments the main

focus was on concussion inflicted on animals whose heads were free to move when struck by

a pendulum, and contracoup injuries were relatively uncommon. However, when they did

occur, they were of focal type in nature, and based on their own observations and results

from other researchers it was speculated that inertial lag of the brain caused a “momentary

vacuum” in the opposite region of the head to the striking point. It was also noted that
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contracoup injuries were not present when the head was fixed therefore not allowed to move.

This aspect will be discussed in rotational theories. Gross suggested that both contracoup and

coup lesions could be explained by the cavitation theory. In this theory the contracoup

lesions, particularly the petechial hemorrhages or conic-shaped contusion, were caused by

cavitation in the fluid when the negative (tensile) pressure in the fluid due to acceleration was

sufficient to produce tensile failure of the fluid. Gross believed that violent impacting forces

could cause those lesions as the cavities collapsed. The formation on cavities due to low

pressure in fluids and their effects as they collapse are well known in hydromachinary such

as ships’ propellers where low pressure, accompanying cavities and their collapse in the

trailing edge cause the metal propellers to erode; the process known as cavitation erosion.

The following hypothesis was added for relatively infrequent occurrences of the contracoup

lesions in the posterior region when the head was struck in the front; right before the frontal

region of the head was struck, it might be possible that the head was tilted forward slightly,

lowering the contracoup region to near the foramen magnum. Then the flow of the

cerebrospinal fluid (CSF) through the foramen magnum into the contracoup region might

attenuate the tensile pressure, thus preventing cavitation from forming. A similar theory was

postulated for the coup lesions, in which the elasticity of the skull presumably caused a

temporarily depressed area to recover rapidly to the original shape, thus creating a local low

pressure area. In addition to those focal types of injuries, the theory was further expanded to

explain diffuse brain damage by considering the resonance effect. In this hypothesis the

resonance caused in the brain (in experiments, a flask or tube) produced volumetric

pulsation. If the magnitude of oscillation was sufficiently high, disperse cavitation occurred

on the expanding phase of the cycle. In order to explain concussion based on the cavitation

theory, the author suggested another well-known phenomenon in the cavitation research field

called sonoluminescence. This term refers to a phenomenon where liquids exhibit

luminescence associated with electrical discharge when they are under the effect of ultrasonic

wave. It was speculated that this type of weak electrical discharge might be responsible for

concussion.

Lindenburg is probably the most prominent supporter of positive pressure theories. Similarly

to Gross, Lindenburg and Freytag [45] attempted to explain every type of head injuries by

positive pressure theories. Clinical observations indicated that contracoup injuries were rare

and the dominant lesions were in the coup region in cases where a blow was applied to a

stationary, but movable head, and that the opposite happened in cases where a moving head



Toru Aida Chapter 1  Introduction 14

hit a stationary target as in a fall; that is, the contracoup injuries were dominant and coup

injuries were rare. In case of a blow to a stationary movable head, they postulated that the

skull deformation due to the blow introduced compressive pressure at the site of impact, in

conjunction with compression pressure on the coup site caused by the brain lagging the

motion of the skull. In the same situation compressive pressure transferred to the contracoup

side was sometimes responsible for rare contracoup injuries, but for most part this

compressive pressure was canceled by negative pressure caused by the same lagging effect of

the brain with respect to the skull as the head moved. Their postulation on falls was that in

such situations the brain lagged the skull, generating negative pressure in the soon-to-be coup

site, and due to a relatively long duration of falls, the cerebrospinal fluid accumulated on that

side of the head, thus creating a thicker buffer against impact. On the other hand, on the

soon-to-be contracoup side the CSF layer was thinner due to the brain’s inertia. Similarly to

the case of a blow, impact of the head against a target depressed the skull and increased

intracranial pressure; this compressive pressure was, as it was implied, instantaneously

transferred to the contracoup side where the CSF buffer was thinner, thus causing injuries on

this particular region. The brain lag in a fall was discussed in details by Dawson et al. [9]

who also suggested that compressive pressure was responsible for contracoup injuries in a

fall and coup injuries from a blow to the head. However, Dawson et al.’s conclusion was that

compressive pressure on the thin protective CSF layer produced a nonuniform pressure

distribution on the brain, thus generating shear strain which ultimately caused damages.

The next two groups of theories seem to share the same fundamental mechanism; shear

strains. Gurdjian et al. [28] made a statement that concussion involved the upper brain stem,

and that the increase in intracranial pressure which in turn produced pressure gradients at the

craniospinal junction where the brainstem was located, could be one of the main causes.

Later, Gurdjian and Lissner [27] performed experiments using a photoelastic method where a

one-inch thick plastic sagittal section of the head with a foramen magnum opening through

which the content was allowed to escape. The model was filled with a milling yellow

solution which would change refractivity under shear strain. In their study a pressure pulse

applied to the walls of the model induced shear strains in the craniospinal junction. Their

conclusion was that those shear strains were caused by pressure gradients in that region as a

result of increased simulated intracranial pressure, supporting their previous statement.

However, finite element models with the simulated foramen magnum such as the ones

developed by Chou et al. [8] and Ruan et al. [71] failed to show significant pressure gradient
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around the craniospinal junction, even though high shear strains in that region were observed

in Chou et al.’s model.

The rotation theory was discussed in details by Holbourn [33], who suggested that, owing to

the brain’s high bulk modulus and low modulus of rigidity, the brain could only be injured by

the presence of shear strain. Based on this observation, he concluded that only rotational

motion could produce substantial shear strain in the brain to cause “injuries”. He developed a

simulated physical model of a brain with gelatin and confirmed the presence of high shear

strain in areas where hemorrhages were observed, though he disclaimed that there was no

indication what type of injuries could be induced in high-shear strain areas. The concept that

rotational motion causing brain injuries was supported in the case of concussions by a series

of impact experiments on cats, dogs and monkeys which had been performed by Denny-

Brown and Russell in 1941 [10] who found that it was easier to induce concussion when the

head was free to move (that is, rotate). This finding has been supported by [64]. Denny-

Brown and Russell also found that velocity of the striking object was not relevant since

similar levels of striking velocities were required to induce concussion to animals with

greatly different head sizes. Instead, they postulated that the rate of change in velocity, i.e.

acceleration was the crucial factor. The authors made a clear distinction between acceleration

concussion and compression concussion, the former of which was caused when a sufficiently

high acceleration was applied to the head, while the latter referred to cases where the head

was supported by a hard surface thus not allowed to rotate while the head was struck.

Acceleration concussion was not accompanied by significant intracranial pressure increase.

On the other hand, a great increase in intracranial pressure was observed when compression

concussion was induced. Though not one of the main focuses of the study, they also found

that the contracoup injury could only be induced when the head was allowed to rotate (see

the negative pressure theory paragraph above).

Concentrating mainly on concussion, Ommaya [64] introduced the centripetal theory which

stated that the more severe degrees of concussion were produced as shear strains which

would cause functional and structural disturbance on the neural tissues, progressed from the

outer surface of the brain towards the center. Even though no particular loading conditions

were explicitly specified in the theory, in their previous works [63] it was speculated that

rotational motion was the primary cause of diffuse injuries with other secondary factors such

as the nature of loading (impact versus impulsive) affecting the outcome. They also indicated
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that in their translation-only, non-impact (impulsive) experiments, diffuse type of injuries

could not be obtained unless rotational components have been added. Only the focal type of

injuries were produced in such experiments, and the authors further noted that those focal

type injuries differed from those observed in their impact experiments, which suggested

cavitation as the cause of injuries.

Rotational, or shear strain as the subsequent event, theories were implied and applied for

experimentally-induced acute subdural hematomas (ASDH) by Gennarelli and Thibault [22]

and numerical analyses were performed to support the theories by Lee et al. [44]. Since the

most common source of ASDH is the rupture of bridging veins as it connects the brain

surface and dural sinuses in the subdural space [22], Lee et al. focused their analysis on

tearing of such veins due to the relative motion between the brain and rigid skull during

rotational acceleration and deceleration phases. Similarly Chou et al. [8] performed

numerical analyses on cerebral contusions. Their model is a parasagittal plane-strain model

subjected to rotation by an imposed displacement history. By comparing their numerical

results and clinical observation, they concluded that cerebral contusions were caused by

shear strain.



Toru Aida Chapter 1  Introduction 17

Table 1.2  Types of Injuries and Postulated Injury Mechanisms

Investigators Postulated cause of injuries/injury mechanisms
_________________________________________________________________________________________
Denny-Brown and Russell [10] • Rotational acceleration (acceleration concussion).

• Intracranial pressure irrelevant for this type of concussion.
• Contracoup injury due to negative pressure (“momentary vacuum”).

_________________________________________________________________________________________
Holbourn [33] • Shear strain caused by rotation of the head (shear strain due to

rotational acceleration).
_________________________________________________________________________________________
Gurdjian et al. [28, 29] • Concussion involves upper brain stem—due to intracranial pressure

gradient and resulting shear strain in the area.
• Intracranial pressure could be relevant—with pressure gradient

around the brainstem producing shear strain.
• Acceleration alone not indicative.

_________________________________________________________________________________________
Gross [26] • Cavitation due to high tensile stress, sonoluminescence.

_________________________________________________________________________________________
Ommaya and Gennarelli [63] • Focal lesion due to pure translation, no concussion.

• Diffuse type of injury only inducible with the addition of rotation;
added rotation to induce the same tangential acceleration as the pure
translation easily producing concussion.

_________________________________________________________________________________________
Lindenburg and Freytag [45] • Positive pressure—both coup and contracoup.

_________________________________________________________________________________________
Dawson et al. [9] • Shear stress (though based on compressive pressure).

_________________________________________________________________________________________
Ommaya [64] • Contusions due to translational acceleration (no contact) may be

caused by cavitation.
• Centripetal theory on concussion.

_________________________________________________________________________________________

1.3.5  Head Injury Criteria

Goldsmith and Ommaya [24] cites the EEC (European Economic Community) Biomechanics

program for the definition of injury criteria. That is, “(The term ‘injury criterion’ or ‘injury

criteria’) denotes a physical parameter which correlates well with the injury severity of the

body region under consideration.” Therefore, the term “head injury criteria” refers to

physical parameters that correlate with the injury severity in the head. As seen in the previous

section, those physical parameters that are proposed for this purpose include shear strain,

pressure (both positive and negative) and acceleration. The Head Injury Criterion (HIC)

which is derived from the resultant acceleration history at the center of the gravity of the

head, is the most widely used criterion for head injuries.
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The evolution of HIC is well documented [24, 32, 55], and its history is summarized from

these references. HIC’s origin traces to the Wayne State Tolerance Curve (WSTC) which

was a curve initially generated by six data points relating acceleration level and duration that

produced linear skull fracture in embalmed cadaver heads. This concept was expanded and

refined in 1966 by Gadd to form the Gadd Severity Index (GSI or SI). Versace in 1971

critiqued SI and proposed what would turn out to be the current mathematical form of HIC

with the following expression:

HIC = −( )
−( ) ( )






















∫max

,

.

t t t

t
t t

t t
a t dt

1 2 1

2

2 1
2 1

2 5

1

where a t( )  is the resultant acceleration history and t1  and t2  are two points in time which

would maximize the HIC value. The threshold value of HIC (currently 1000) for head

injuries, the maximum time interval t t2 1−( ) (currently 36 milliseconds) and even the

applicability of HIC itself as a head injury indicator are being questioned.

However, as mentioned previously, Ward et al. [87] found a relatively good agreement

between their brain pressure tolerance (BPT) and HIC. In addition, Ruan et al. [70]’s

parametric study with a finite element model of a head where loading conditions were

changed by altering the mass and velocity of the impactor, showed that HIC corresponded

with maximum shear strain, coup and contracoup pressure and head acceleration, thus

suggesting the suitability of HIC as a general head injury indicator.

Prasad and Mertz [68], under the assumption that there is a correlation between HIC and

observed head injuries, used data from cadaver experiments to generate a risk factor curve

based on HIC. “Head injuries” were defined as either the presence of skull fracture or artery

rupture in the brain. They employed the Mertz/Weber method of constructing a cumulative

head injury distribution curve to use HIC as a head injury potential indicator. Using this

method, HIC value of 1500 was found to correspond to 56% chance of head injury,

compared with 16% at HIC of 1000. This method of using HIC as a risk indicator was further

expanded in [53] and it was used for airbag effectiveness assessment in [67].

On the other hand, other researchers are pursuing other injury criteria based on the arguments

that HIC was not injury-specific and that it did not correlate to injury severity. This trend is
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represented recently by Margulies and Thibault [47], who conducted a wide range of

experimental and analytical studies on diffuse axonal injury (DAI) using both the baboon and

human forms. They proposed a new criterion and tolerance for DAI in terms of the peak

angular acceleration and the peak change in angular velocity of the head. Shear strains were

assumed to be a measure of tissue response and thus injuries, and used to predict DAI in

humans based on the baboon experiments.



Chapter 2

Engineering Background

2.1  Linear Viscoelasticity

The term viscoelasticity originates from simple mechanical models consisting of springs and

dashpots which characterize elasticity and viscosity, respectively, to define the load-

deflection relationship of a certain group of materials. Such materials are known to exhibit

responses that are time-dependent, unlike the simple linear elastic material whose stresses

depend only on the instantaneous state of strain, or vice versa. There are a number of simple

spring-dashpot (linear elastic and linear viscous units, respectively) models such as the

Maxwell fluid (a spring and a dashpot in series), the Kelvin or Voigt solid (a spring and a

dashpot in parallel) and any combinations of such models. In this study, the three-parameter

solid constitutive model is employed because it is relatively simple, but provides a finite,

non-zero relaxation modulus at equilibrium. This characteristic is essential for fitting the data

reported by Galford and McElhaney [19].

The three-parameter solid viscoelastic model can be represented as a combination of a Kelvin

solid unit and a linear elastic unit in series (see Figure 2.1).

In order to obtain the stress-strain relationship, the derivation is an extension of what is found

in Flügge [15]; first apply stress σ  on both ends, and the total strain across the model ε  is

ε ε ε= +1 2 (2-1)

20

where ε1 and ε2  are strains in the spring and the Kelvin unit, respectively.
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η2

σ σ

σ 2
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Figure 2.1   Three-Parameter Viscoelastic Solid Model

It follows that

σ ε= E1 1. (2-2)

Within the Kelvin unit,

σ ε1 2 2= E (2-3)

and

σ η ε
2 2

2= d

dt
(2-4)

which are related by

σ σ σ= +1 2

or
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σ ε η ε= +E
d

dt2 2 2
2 (2-5)

where σ1 and σ 2 are stresses in the spring and dashpot of the Kelvin unit, respectively.

Differentiate (2-2) once and substitute along with (2-5) into the first temporal-derivative of

(2-1) to form

d

dt E

d

dt

Eε σ σ ε
η

= + −1

1

2 2

2

. (2-6)

From (2-1), combined with (2-2), ε2  can be written as

ε ε σ
2

1

= −
E

. (2-7)

Substituting this into (2-6),

d

dt E

d

dt
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Collecting terms,

σ η σ ε η ε+
+

=
+

+
+

2

1 2

1 2

1 2

1 2

1 2E E

d

dt

E E

E E

E

E E

d
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. (2-9)

Equation (2-9) has the form

σ σ ε ε+ = +p
d

dt
q q

d

dt1 0 1 (2-10)
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where

p
E E1
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1 2
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(2-11a)
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E E0
1 2

1 2

=
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(2-11b)

q
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1 2

=
+
η

(2-11c)

or rearrange to express E1, E2  and η2  in terms of p1, q0  and q1

E
q

p1
1

1

= (2-12a)

E
q q

q p q2
0 1

1 1 0

=
−

(2-12b)

η2
1

2

1 1 0

=
−
q

q p q
. (2-12c)

The coefficients p1, q0  and q1 in (2-10) describe the one-dimensional stress-strain

relationship of the three-parameter viscoelastic model. Now it is necessary to expand the

discussion to three dimensions. The following derivation is an extension of an example found

in Flügge [15].

When the momentum equilibrium is maintained, the stress tensor is symmetric and expressed

by;
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and can be split into the spherical or hydrostatic and deviatoric parts, so that
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where the mean normal stress is defined by

σ σ σ σM xx yy zz= + +( )1
3 (2-15)

hence

S S Sxx yy zz+ + = 0 . (2-16)

The spherical stresses represent only the volumetric change or dilatation while the deviatoric

stresses, shear deformation. The latter statement can be clarified by decomposing the second

matrix of equation (2-14)

S S S

S S S

S S S

S

S S

S

S

S

S

S

xx xy xz

xy yy yz

xz yz zz

xy

xy yz

yz

xz

xz

xx

xx

















=
















+
















+
















+ −















0 0

0 0

0 0 0

0 0 0

0 0

0 0

0 0

0 0 0

0 0

0 0

0 0

0 0 0
+ −

















0 0 0

0 0

0 0

S

S
zz

zz

(2-17)
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The forth term (and fifth in a similar fashion) represents a state of stresses that can be

represented as a pure shear state in a rotated reference plane, which is easily shown using the

Mohr’s circle.

A similar decomposition can be made for strains by using the tensorial notation of strains,

ε ε ε
ε ε ε
ε ε ε

ε
ε

ε

η η η
η η η
η η η

xx xy xz

xy yy yz

xz yz zz

M

M

M

xx xy xz

xy yy yz

xz yz zz

















=
















+
















0 0

0 0

0 0

(2-18)

where the mean normal strain is defined by

ε ε ε εM xx yy zz= + +( )1
3  (2-19)

hence

η η ηxx yy zz+ + = 0. (2-20)

In isotropic materials hydrostatic stresses produce only a dilatation and no distortion.

Therefore hydrostatic stresses and hydrostatic strains in viscoelastic materials are related by

the standard viscoelastic law, which is a general form of (2-10),

′′ = ′′
=

′′

=

′′

∑ ∑p
t

q
tk

k
M

k
k

m

k

k
M

k
k

n∂ σ
∂

∂ ε
∂0 0

(2-21)

or ′′ = ′′P Qσ εM M (2-22)

where ′′P  and ′′Q  are differential operators.

Similarly shear stresses produce only shear deformations, and the same relation must apply

for all five components in equation (2-17) to ensure isotropy. This relationship is represented
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by

′ = ′
=

′′

=

′′

∑ ∑p
S

t
q

tk

k

k
k

m

k

k

k
k

n∂
∂

∂ η
∂0 0

(2-23)

or ′ = ′P QS η (2-24)

where ′P  and ′Q  are different sets of differential operators.

The differential operators ′′P , ′′Q , ′P  and ′Q  are independent, and it is customary to set

′′ = ′ =p p0 0 1.

The elastic solid is a special case of viscoelastic materials. The hydrostatic relationship for

this material can be derived from equation (2-21) as

σ εM Mq= ′′0 . (2-25)

In elastic materials a normal stress produced by a hydrostatic pressure p  is proportional to

the cubic dilatation or volume expansion, ε ε εxx yy zz+ + , and the proportional constant, the

bulk modulus K , relates both by

p K xx yy zz= − + +( )ε ε ε (2-26)

since in such a situation σ σ σxx yy zz p= = = − . From equation (2-15) it can be seen that

σ σ σ σM xx yy zz p= + +( ) = −1
3 . (2-27)

Therefore from (2-19) and (2-26),

σ εM MK= 3 (2-28)
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which leads to

′′ =q K0 3 . (2-29)

In the shear direction,

S q= ′0η . (2-30)

Comparing this with the isotropic elastic shear stress-strain relationship

τ γ= G (2-31)

and substituting with the tensorial notation of the strain ε γ= 1
2

, the other coefficient is

determined

′ =q G0 2 . (2-32)

Therefore, for the isotropic elastic material the differential operators are constants,

′′ =P 1, ′′ =Q 3K , ′ =P 1 and ′ =Q 2G . (2-33)

When an isotropic material is subjected to simple tension, the only stress present in the

material is the normal stress in the direction of the load, which is assumed to be x  for now.

From equation (2-15), the mean normal stress is

σ σM xx= 1
3 (2-34)

since σ σyy zz= = 0 . Substitute this in the corresponding components in equation (2-14),

σ σxx M xxS= + . (2-35)
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Therefore, the deviatoric portion is

Sxx xx= 2
3 σ (2-36)

which leads to

S Syy zz xx= = − 1
3 σ . (2-37)

The corresponding state of strains has three components; the longitudinal strain ε xx  and

transverse contractions ε εyy zz= . From equation (2-19), the mean normal strain is

ε ε εM xx yy= +( )1
3 2  or ε ε εM xx zz= +( )1

3 2 . (2-38)

From (2-18), the deviatoric portion is

η ε εxx xx M= − (2-39)

or η ε εxx xx yy= −( )2
3 (2-40)

and it follows that

η η ε εyy zz xx yy= = − −( )1
3 . (2-41)

Therefore the spherical components of stress and strain are related by (2-22), and using

(2-34) and (2-38),

′′( ) = ′′ +( )[ ]P Q1
3

1
3 2σ ε εxx xx yy (2-42a)
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and the deviatoric components, from (2-24), (2-36) and (2-40),

′( ) = ′ −( )[ ]P Q2
3

2
3σ ε εxx xx yy . (2-42b)

Equations (2-42) can be expanded to form

′′ = ′′ + ′′P Q Qσ ε εxx xx yy2 (2-43a)

and ′ = ′ − ′P Q Qσ ε εxx xx yy . (2-43b)

Apply ′Q  to (2-43a) and 2 ′′Q  to (2-43b) and add,

′ ′′ + ′′ ′( ) = ′ ′′ + ′′ ′( ) + ′ ′′ − ′′ ′( )Q P Q P Q Q Q Q Q Q Q Q2 2 2σ ε εxx xx yy. (2-44)

Since the differential operators are communicative, i.e. ′ ′′ = ′′ ′Q Q Q Qε εyy yy , (2-44) becomes

′′ ′ + ′′ ′( ) = ′′ ′P Q Q P Q Q2 3σ εxx xx . (2-45)

One approximation here is to assume that the response in dilatation is elastic, thus from

(2-33), ′′ =P 1, ′′ =Q 3K , and the equation (2-45) can be reduced to

′ + ′( ) = ′Q P Q6 9K Kxx xxσ ε . (2-46)

If the deviatoric response is assumed to follow the governing equation for the three-

parameter solid, (2-46) must have the form of (2-10). Therefore,
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′ = + ′P 1 1p
t

∂
∂

(2-47a)

′ = ′ + ′Q q q
t0 1

∂
∂

. (2-47b)

Using (2-47), equation (2-46) can be rewritten as

′ +( ) + ′ + ′( ) = ′ + ′q K q Kp
t

Kq Kq
txx

xx
xx

xx
0 1 1 0 16 6 9 9σ ∂σ

∂
ε ∂ε

∂
. (2-48)

Divide (2-48) by ′ +( )q K0 6  to get

σ ∂σ
∂

ε ∂ε
∂xx

xx
xx

xxq Kp

q K t

Kq

q K

Kq

q K t
+ ′ + ′

′ +






= ′
′ +







+ ′
′ +







1 1

0

0

0

1

0

6
6

9
6

9
6

(2-49)

Equation (2-49) must correspond to the one-dimensional governing equation (2-10).

Therefore,

p0 1=

p
q Kp

q K1
1 1

0

6
6

= ′ + ′
′ +

(2-50a)

q
Kq

q K0
0

0

9
6

= ′
′ +

(2-50b)

q
Kq

q K1
1

0

9
6

= ′
′ +

(2-50c)
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or,

′ = −
−

p
Kp q

K q1
1 1

0

9
9

(2-51a)

′ =
−

q
q K

K q0
0

0

6
9

(2-51b)

′ =
−

q
q K

K q1
1

0

6
9

. (2-51c)

Combined with (2-12),

′ = −
+( ) −

p
K E

K E E E E1
2 1 2

1 2 1 2

9
9

η η
(2-52a)

′ =
+( ) −

q
KE E

K E E E E0
1 2

1 2 1 2

6
9

(2-52b)

′ =
+( ) −

q
KE

K E E E E1
1 2

1 2 1 2

6
9

η
. (2-52c)

Now the coefficients ′ =( )p0 1 , ′p1 , ′q0  and ′q1  define the differential operators in the deviatoric

governing equation for the three-parameter solid, the deviatoric or shear relaxation modulus

can be found.

The stress relaxation modulus is found experimentally by applying a constant strain and

observe the resulting stress as a function of time. This is expressed mathematically by the

application of strain ε ε= ( )0∆ t  where ∆ t( ) is the unit step function,
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∆ t( ) = 0 for t < 0,
∆ t( ) = 1 for t > 0.

Then the stress is proportional to ε0;

σ εt Y t( ) = ( )0 (2-53)

and the proportional function Y t( ) is the relaxation modulus.

Now a standard governing equation for a viscoelastic material

p
t

q
tk

k

k
k

m

k

k

k
k

n∂ σ
∂

∂ ε
∂= =

∑ ∑=
0 0

(2-54)

can be transformed in the Laplace plane to form

p s q sk
k

k

m

k
k

k

n

= =
∑ ∑=

0 0

σ ε (2-55)

or   P Qs s( ) = ( )σ ε (2-56)

where   P s( ) and   Q s( ) are polynomials in s, and the bar denotes the Laplace transform.

Though the Laplace transform of a derivative of a function is

d f t

dt
e s f s s

d f

dt

k

k
st k n

n

n
n

k( ) = ( ) − ( )−∞ −
−

−
=

∫ ∑
0

1
1

1
1

0 (2-57)

all f  terms in the equation (2-57) vanish if f  vanishes for t < 0 and the base is taken from

0− .

Substitute the Laplace transforms of ε ε= ( )0∆ t  with ε0 1=  and (2-53) into (2-56), then
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Y s

s

s s
( ) = ( )

( )
Q
P . (2-58)

For the three-parameter solid

  Q s q sq( ) = +0 1

  P s sp( ) = +1 1.

Now the deviatoric stress relaxation modulus can be found by replacing   Q s( ) and   P s( ) by

  ′( )Q s  and   ′( )P s  where

  ′( ) = ′ + ′Q s q sq0 1 (2-59)

  ′( ) = + ′P s sp1 1 . (2-60)

From equation (2-58), the Laplace transform of the deviatoric relaxation modulus ′( )G s  can

be expressed as

′( ) = ′ + ′
+ ′( )G s

q sq

s sp
0 1

11
(2-61)

which can be split into partial fractions

′( ) =
′

′ ′ + ′ − ′ ′

′
+

























G s
p

p q

s

q p q

p
s

1

11

1 0 1 1 0

1

. (2-62)
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Now transform (2-62) back to the physical plane,

′( ) = ′ + ′ − ′ ′
′







− ′( )G t q t
q p q

p
e t p

0
1 1 0

1

1∆ / (2-63)

where ∆t  is a unit step function

∆t = 0 for t < 0
∆t = 1 for t > 0.

Here only the time t > 0 is of concern, therefore ∆t = 1. Then the stress relaxation modulus

is

′( ) = ′ + ′
′

− ′






− ′( )G t q
q

p
q e t p

0
1

1
0

1/ , (2-64)

as it is found in Flügge [15].

The constitutive relation between stress and strain in a viscoelastic material can also be

expressed in terms of frequency in the complex plane, that is,

σ ω= Σei t

ε ω= Εei t .

The following derivation is analogous to what is found in Fung [17]. Then the differentiation

with respect to time is equivalent to multiplication by iω . Therefore the equation (2-10) can

be rewritten as

1 1 0 1+( ) = +( )p i q q iω ωΣ Ε
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or Σ Ε= +
+

q q i

p i
0 1

11
ω
ω

where

E i
q q i

p i
ω ω

ω
( ) = +

+
0 1

11
(2-65)

is the complex modulus for the three-parameter viscoelastic solid model. Equation (2-65) can

be decomposed into the real and imaginary parts,

E i
q p q

p

q p q

p
iω ω

ω
ω ω

ω
( ) = +

+
+ −

+
0 1 1

2

1
2 2

1 1 0

1
2 21 1

(2-66)

or E i E E iω( ) = +1 2

where

E
q p q

p1
0 1 1

2

1
2 21

= +
+

ω
ω

(2-67a)

E
q q q

p2
1 1 0

1
2 21

= −
+

ω ω
ω

. (2-67b)

E1 is the storage modulus, and E2  is the loss modulus.

Its magnitude is the “apparent” stiffness which is expressed as

E i
q q

p
ω ω

ω
( ) = +

+
0

2
1

2 2

1
2 21

.
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The ratio of the loss modulus (the imaginary part) and the storage modulus (the real part) is

the measure of the internal friction. This value, shown in the Argand diagram (the complex

plane), is the tangent of the complex modulus “vector” and sometimes referred to as the loss

tangent. This value is shown to be

tanδ ω ω
ω

= −
+

q p q

q p q
1 1 0

0 1 1
2

where δ  is the phase angle. By plotting E iω( )  and tanδ  against frequency, the frequency-

dependence of the three-parameter viscoelastic solid is shown in Figure 2.2. It must be noted

that the abscissa is in the log scale. As illustrated, at lower frequency the magnitude of the

complex modulus stays virtually constant and the loss tangent is nearly zero, indicating that

at this range internal friction is practically non-existent. The same can be observed at high

frequency ranges. In between the magnitude of the complex modulus changes and the

internal friction shows an increase. Within this frequency window the viscous effect is more

prominent and outside of this window, the linear elastic units dominate the response. At

lower frequency, the three-parameter viscoelastic model can be considered as two linear

elastic units in series (E1 and E2  in Figure 2.1) and at higher frequency, only one linear

elastic unit (E1 in Figure 2.1).
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.

Frequency

Magnitude

Loss Tangent

Figure 2.2   Frequency-Dependency of Three-Parameter Viscoelastic Solid: Magnitude and Loss Tangent of
Complex Modulus
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2.2  Wave Propagation

2.2.1  Elastic Wave

x

y

z

σ ∂σ
∂

δxx
xx

x
x+

σ
∂σ
∂

δxy
xy

y
y+

σ ∂σ
∂

δxz
xz

z
z+

σ

δ

xz

z

σ

δ

xx

x

σ

δ

xy

y

Figure 2.3   Three Dimensional State of Stress in an Infinitesimally Small Parallelepiped Segment

The derivations of wave propagation speed and particle velocity are based on Kolskey [42]

and Timoshenko and Goodier [84]. For an infinitesimally small parallelepiped segment with

stresses, take the resultant in the x  direction,
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σ ∂σ
∂

δ δ δ σ δ δ

τ
∂σ
∂

δ δ δ σ δ δ

τ ∂σ
∂

δ δ δ σ δ δ ρδ δ δ ∂
∂

xx
xx

xx

xy
xy

xy

zx
xz

zx

x
x y z y z

y
y x z x z

z
z x y x y x y z

u

t

+



 − +

+





− +

+



 − =

2

2

or
∂σ
∂

∂σ
∂

∂σ
∂

δ δ δ ρδ δ δ ∂
∂

xx xy xz

x y z
x y z x y z

u

t
+ +





=
2

2 . (2-68)

Therefore,

∂σ
∂

∂σ
∂

∂σ
∂

ρ ∂
∂

x xy xz

x y z

u

t
+ + =

2

2 . (2-69a)

Similarly in other directions, the equations

∂σ
∂

∂σ
∂

∂σ
∂

ρ ∂
∂

yx yy yz

x y z

v

t
+ + =

2

2 (2-69b)

and
∂σ
∂

∂σ
∂

∂σ
∂

ρ ∂
∂

zx zy zz

x y z

w

t
+ + =

2

2 (2-69c)

are obtained.

The elastic material is assumed to follow the Hooke’s law, which can be described as
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σ
σ
σ
σ
σ
σ

xx

yy

zz

yz

zx

xy
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
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































ε
ε
ε
γ
γ
γ

xx

yy

zz

yz

zx

xy

. (2-70)

For isotropic materials, there are only two independent constants;

c c c c c c12 13 21 23 31 32= = = = = = λ

c c c44 55 66= = = µ

c c c11 22 33 2= = = +λ µ

where λ  and µ  are Lame’s constants. Using these two constants, stress components can be

expressed as:

σ λ µεxx xx= +∆ 2 (2-71a)

σ λ µεyy yy= +∆ 2 (2-71b)

σ λ µεzz zz= +∆ 2 (2-71c)

σ µγyz yz= (2-72a)

σ µγzx zx= (2-72b)
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and σ µγxy xy= (2-72c)

where ∆ = + +ε ε εxx yy zz .

Substitute equations (2-71) and (2-72) into (2-69a) to obtain

ρ ∂
∂

∂
∂

λ µε ∂
∂

µγ ∂
∂

µγ
2

2 2
u

t x y zx xy xz= +( ) + ( ) + ( )∆ . (2-73)

Substituting ε ∂
∂x

u

x
= , γ ∂

∂
∂
∂xz

w

x

u

z
= +  and γ ∂

∂
∂
∂xy

v

x

u

y
= +  into the equation above, the

resulting equation of motion is

ρ ∂
∂

λ µ ∂
∂

µ
2

2
2u

t x
u= +( ) + ∇∆

(2-74a)

where ∇2 is a differential operator 
∂
∂

∂
∂

∂
∂

2

2

2

2

2

2x y z
+ + .

Similarly in other directions,

ρ ∂
∂

λ µ ∂
∂

µ
2

2
2v

t y
v= +( ) + ∇∆

(2-74b)

and ρ ∂
∂

λ µ ∂
∂

µ
2

2
2w

t z
w= +( ) + ∇∆

. (2-74c)

Equations (2-74) are the equations of motion for the elastic isotropic material without body

forces.

Now, differentiate equations (2-74) with respect to x , y  and z , respectively, to get
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ρ ∂
∂

∂
∂

λ µ ∂
∂

µ ∂
∂x

u

t x x
u

2

2

2

2
2





= +( ) + ∇∆
(2-75a)

ρ ∂
∂

∂
∂

λ µ ∂
∂

µ ∂
∂y

v

t y y
v

2

2

2

2
2





= +( ) + ∇∆
(2-75b)

ρ ∂
∂

∂
∂

λ µ ∂
∂

µ ∂
∂z

w

t z z
w

2

2

2

2
2





= +( ) + ∇∆
. (2-75c)

Add (2-75) together to form

ρ ∂
∂

λ µ ∂
∂

∂
∂

∂
∂

µ ∂
∂

∂
∂

∂
∂

2

2

2

2

2

2

2

2
2 2 2∆ ∆ ∆ ∆

t x y z x
u

y
v

z
w= +( ) + +





+ ∇ + ∇ + ∇





(2-76)

or ρ ∂
∂

λ µ
2

2
22

∆ ∆
t

= +( )∇ . (2-77)

This is the wave equation for dilatational or irrotational waves with the propagation wave

speed of

c1

2= +λ µ
ρ

. (2-78)

Now, if dilatation ∆  is zero in equations (2-75), (2-75) become

ρ ∂
∂

∂
∂

µ ∂
∂x

u

t x
u

2

2
2





= ∇ (2-79a)
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ρ ∂
∂

∂
∂

µ ∂
∂y

v

t y
v

2

2
2





= ∇ (2-79b)

ρ ∂
∂

∂
∂

µ ∂
∂z

w

t z
w

2

2
2





= ∇ . (2-79c)

These are the equations of motion for distortional or equivoluminal waves with the

propagation wave speed of

c2 = µ
ρ

. (2-80)

If the one-dimensional dilatational wave propagation is concerned, the wave propagation in

the x  direction is obtained by setting ε εyy zz= = 0 in equation (2-77) as:

ρ ∂
∂

λ µ ∂
∂

2

2

2

22
u

t

u

x
= +( ) . (2-81)

Here the x  direction is selected as the direction of wave travel, but this selection is irrelevant

due to the isotropy of the material.

Assume the solution has the form

u f x c t g x c t= −( ) + +( )1 1 (2-82)

where c1 is the dilatational wave propagation speed (2-78).

The physical interpretation of (2-82) is that the function f  represents the wave propagating

in the negative x  direction, whereas g  the wave propagating in the positive x  direction. It is

assumed for now the wave propagation in the positive x  direction is of concern. Therefore

g ≡ 0 .
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Substituting the argument of f  by ξ = −x c t1 , the particle velocity v can be expressed as

v
u

t c

f= = −∂
∂

∂
∂ξ

1

1

. (2-83)

From (2-71a), (again, ε εyy zz= = 0)

σ λ µ εxx xx= +( )2 . (2-84)

Since now ε xx  can be expressed as

ε ∂
∂

∂
∂ξxx

u

x

f= = (2-85)

which combined with (2-83) becomes

ε xx

v

c
= −

1

. (2-86)

From (2-78) it can be shown that

λ µ ρ+( ) =2 1
2c . (2-87)

Therefore from (2-86), (2-87) and (2-84),

σ ρxx c v= − 1 (2-88)

or
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v
c

xx= − σ
ρ1

(2-89)

which is the particle velocity of the elastic dilatational wave. The minus sign simply indicates

that the particle velocity is in the positive x  direction when the stress is negative, i.e.

compressive.

2.2.2  Viscoelastic Wave

The equations of motion (2-69) are valid here as well. The three-parameter viscoelastic

model is applied to derive a unique solution. Differentiate (2-69a) with respect to t , multiply

it by ′p1 , where ′p1  is a coefficient in the three-parameter solid stress-strain relation

introduced earlier, to get

ρ ∂
∂

∂
∂

∂σ
∂

∂
∂

∂σ
∂

∂
∂

∂σ
∂

′ = ′ 
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



+ ′ 



p

u

t
p

t x
p

t x
p

t x
xx xy xz

1

3

3 1 1 1 . (2-90)

Add this and equation (2-69a) to get
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∂
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∂
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∂
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∂
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∂
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


+ + ′ 



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+ + ′ 





. (2-91)

Decompose the stresses into the spherical and deviatoric components by substituting

σ σxx M xxS= + (2-92a)
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σ xy xyS= (2-92b)

σ xz xzS= , (2-92c)

equation (2-91) can be rewritten as
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∂
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∂
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+ + ′





. (2-93)

If the deviatoric stress-strain relation is assumed to follow the three-parameter viscoelastic

model, it has the form (see the previous Section),

S p
S

t
q q

t
+ ′ = ′ + ′1 0 1

∂
∂

η ∂η
∂

and (2-93) becomes
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(2-94)

where



Toru Aida Chapter 2  Engineering Background 47

η ε ε εxx xx M xx= − = − 1
3 ∆ (2-95a)

η ε ∂
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∂
∂xy xy
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2

(2-95b)
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x
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1
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. (2-95c)

Rewrite (2-94) using above relations to get
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. (2-96a)

Similar operations are performed on (2-69b) and (2-69c) to obtain
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and
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Now differentiate (2-96a) with respect to x , (2-96b), to y  and (2-96c), to z , respectively,

and add, then the left side of the resulting equation is
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The right hand side is
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By substituting 
∂
∂

εu

x xx= , 
∂
∂

εv

y yy=  and 
∂
∂

εw

z zz=  and collecting terms, (2-98) becomes
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Now if the dilatational response is assumed to be elastic, then

 σ εM MK= 3 (2-100)

and
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Therefore, the portion of (2-99) involving σ M  becomes
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which, combined with (2-97), (2-99) and (2-102), leads to the final form of the wave

equation,

ρ ∂
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∂
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3 0
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1 1
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 ∇ . (2-103)

Assume a one-dimensional equation in the x  direction of the same form as (2-103), so that it

becomes
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Assume that the general solution has the harmonic form of

u U i t f x= −( ){ }exp ω 1 (2-104)

where

f f i1 = + α .

Substitute in the wave equation, and with f f i f i f1
2 2 2 22= +( ) = + −α α α ,

U U p i U q K f fi U q Kp f fi iρω ρ ω α α ω α α2
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Equate the real and imaginary parts,

ρω α α ω2
0

2 2
1 1

2
3

2
2
3

0− ′ +



 −( ) + ′ + ′



 =q K f f q Kp (2-105)
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From (2-105)
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Substitute this into (2-106) to get,
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Substitute (2-108) into (2-107), and by collecting terms a forth-order polynomial in f  is

obtained
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Here the only the wave traveling in the positive x  direction is of concern, so f  must be real

and positive. The solution is
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(2-109)

where B  is the coefficient defined above.

The interpretation of the general form of the solution (2-104) becomes clear when it is

expanded and the real part is extracted to form

u Ue t fxx= −( )α ωcos . (2-110)

U  is determined from the initial conditions, α  denotes the exponential decay of the response

as the wave travels (therefore must be negative), ω is the frequency of the response and 
ω
f

 is

the wave propagation speed.

The particle velocity v is expressed by
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v
u

t
Ui i t f x= = −( ){ }∂

∂
ω ωexp 1 (2-111)

and the strain ε xx , the strain in the direction of the wave propagation, is expressed by

ε ∂
∂

ωxx

u

x
Uif i t f x= = − −( ){ }1 1exp . (2-112)

Therefore, ε xx  and v are related by

ε
ωxx

f
v= − 1 (2-113)

Now the stress in the wave propagation direction σ xx  can be decomposed in the spherical and

deviatoric parts by (2-14),

σ σxx M xxS= + . (2-114)

Both the mean normal stress and deviatoric stress can be represented in the complex form,

and related to their respective strains, ε xx  and ηxx , by the complex moduli

σ ω ε ω ηxx M xxE i E i= ′′( ) + ′( ) . (2-115)

Since in the one-dimensional case,

ε εM xx= 1
3

(2-116a)

η ε ε εxx xx M xx= − = 2
3

, (2-116b)
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equation (2-115) can be rewritten, using (2-113), as
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Expand ′′( )E iω , ′( )E iω  and f1 ,

σ
ω

αxx E E i E E i f i v= − ′′+ ′′{ } + ′ + ′{ }[ ] +( )1
3

21 2 1 2 (2-118)

where ′′E1  and ′′E2  are the dilatational storage and loss moduli, and ′E1  and ′E2 , deviatoric

storage and loss moduli, respectively. This is more conveniently written as
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2 22 2
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2
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2
(2-119)

where θ  is the phase shift which is given by

θ
α
α

=
′′+ ′( ) + ′′+ ′( )
′′+ ′( ) − ′′+ ′( )









−tan 1 2 2 1 1

1 1 2 2
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2 2

f E E E E

f E E E E
. (2-120)

2.3  DYNA3D Validation

2.3.1  Elastic Wave Propagation

The speed of dilatational sound wave in an elastic medium (2-78) is rewritten in terms of

elastic constants:
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c
E

1

1
1 2 1

= −( )
−( ) +( )

ν
ρ ν ν

The following properties are selected based on a common linear elastic representation of

brain tissue found in the literature [34, 69 and others];

E = 66 7.  kPa
ν = 0 480.

ρ = 1040 kg/m3

with the calculated dilatational wave propagation speed of 23.73 m/s.

In order to induce a dilatational wave, a simple model schematically shown in Figure 2.4 is

generated. The finite element model is 0.1-meter (m) long and has 100 elements in the

thickness in order to capture the necessary details of the traveling wave front. Considering

the length of the brain is approximately 0.17 m in the anterior-posterior direction, this length

of the model is reasonable to reveal potential problems that can take place as stress wave

propagates within the brain. Only one element in the transverse direction is required, with the

boundary condition which states that all nodes are allowed to move only in the longitudinal

direction (that is, the direction of the wave propagation).
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Wave Propagation

Pressure Pulse

dx = dy = 0
dz = free

z

x

y

Figure 2.4   Schematic of Finite Element Model for One-Dimensional Wave Propagation Test

The input pressure pulse is a piecewise linear approximation of a sinusoidal function

represented by:

P t
t( ) =
×

+



 +−50

2 0 10
504cos

.
π π , 0 4 0 10 4< < × −t .

which has the peak pressure of 100 Pa (see Figure 2.5). From the wave propagation speed the

calculated arrival time for the wave on the bottom is 0.00421 second, and the peak particle

velocity is calculated from equation (2-89) to be 0.00405 m/s.
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Figure 2.5   Input Pressure Pulse

The time histories of z  stress and z  particle velocity are recorded at eleven uniformly

distributed points along the z  axis, and plotted in the Figures 2.6 and 2.7, respectively. All

eleven histories are superimposed on a single graph, with time zero taken to be the initiation

of the loading pulse. The first valley corresponds to the node at the top, and second, the

second node down along the z  axis, and so forth.

In Figure 2.6, it can be seen that the z  stress faithfully reproduces the sinusoidal pressure

input with the peak value of approximately 100 Pa for the duration of close to 4 0 10 4. × −

second. However, the next valley which corresponds to the second node, and third, and so

forth, show that the peak magnitude decreases and at the same time the pulse form widens.

This is believed to be caused by the application of artificial viscosity, which is confirmed

later. The 11th and very weak valley corresponds to the node at the bottom. From the wave

propagation velocity the estimated arrival time of the wave at the bottom of the plate is

4 21 10 3. × −  second. It can be seen that the 11th valley starts to take form slightly after

4 1 10 3. × −  second. Incidentally, the boundary condition states that this node is supposed to be

stress-free, therefore this non-zero response is caused by numerical error. The same arrival

time of the wave can be seen in Figure 2.7 as well.

In Figure 2.7, the particle velocity in the z direction is plotted. The peak z  particle velocity is
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Figure 2.6   Z Stress History Along the Z Axis in Elastic Medium
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Figure 2.7   Z Particle Velocity History Along the Z Axis in Elastic Medium

4 16 10 3. × −  m/s which is comparable to what is obtained analytically. As is seen in Figure

2.6, the z velocity pulse show that same tendency of decrease of the peak magnitude and

widening of the pulse as the wave travels down the z  axis. The 11th valley which

corresponds to the node at the bottom of the plate, shows the characteristic doubling of
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magnitude as the wave reflects off of a free surface by comparing against the valley directly

preceding it.

The reason for the degradation of the pulse is the default artificial viscosity used in

DYNA3D. DYNA3D was originally designed to analyze situations where shock formation in

materials was of great concern. In reality a discontinuity characterized by a sudden change in

variables (pressure, density and so forth) is formed across a shock front, which numerical

simulation methods like the finite element method have difficulties handling. The artificial

viscosity, which is a fictitious entity, “smears” this discontinuity over several elements so

that it can be handled in a more numerically stable manner. However, the observed results

suggest that the system is unnecessarily and inappropriately damped and therefore produces

less stress than anticipated in areas away from the load. Since at this point the generation of

shock is of no concern, it is decided to “turn off” the artificial viscosity. DYNA3D uses a

quadratic form of artificial bulk viscosity to treat the shock phenomena. This viscosity can be

defined by two coefficients, and the user can practically turn off the artificial viscosity by

giving small coefficient values, since DYNA3D automatically assigns the default values if

those coefficients are exactly zero. In this case an arbitrarily small number, 1 0 10 10. × − , is

assigned for both coefficients.

Figures 2.8 and 2.9 are the results of the second analysis, which show the same phenomena

as in Figures 2.6 and 2.7, but without the decrease in magnitude nor widening of the pulse

form. Therefore it is recommended that the artificial viscosity be turned off unless shock is of

concern.
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Figure 2.8   Z Stress History Along the Z Axis Without Artificial Viscosity in Elastic Medium
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Figure 2.9   Z Particle Velocity History Along the Z Axis Without Artificial Viscosity in Elastic Medium
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2.3.2  Viscoelastic Wave Propagation

From [19], the uniaxial relaxation function is approximated by

Y t e t( ) = + −( ) −( )0 347 0 95 0 347 0 111. . . .  (psi)

which is shown against the experimental results in Figure 2.10.
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Figure 2.10   Relaxation Modulus for Human Brain

This equation is determined by the least square curve fit of the relaxation curve for the

human brain, and short term relaxation modulus reported by the authors (0.95 psi). This

equation is converted into the SI unit

Y t e t( ) = × + × − ×( ) −( )2 39 10 6 55 10 2 39 103 3 3 0 111. . . .  (Pa).

The uniaxial relaxation modulus has the same form shown in (2-64),



Toru Aida Chapter 2  Engineering Background 63

Y t q
q

p
q e t p( ) = + −





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−( )
0

1

1
0

1/ .

From this the values for q0 , q1 and p1 are determined as

q0
32 39 10= ×.

q1
45 90 10= ×.

p1 9 01= . .

Substituting these values in (2-51) the coefficients for the shear relaxation modulus ′p1 , ′q0

and ′q1  can be obtained. The bulk modulus K = 2 07.  GPa reported in McElhaney et al. [50]

is chosen for the calculation.

Therefore,

′ = ×q0
31 59 10.

′ = ×q1
43 93 10.

′ =p1 9 01. .

From equation (2-64), the deviatoric relaxation modulus is

′( ) = × + × − ×( ) −( )G t e t1 59 10 4 37 10 1 59 103 3 3 0 111. . . .  (Pa).

However, ′( )G t  is a relaxation modulus that is defined between the deviatoric stress and

tensorial deviatoric strain, the engineering shear relaxation modulus is

G t e t( ) = × + × − ×( ) −( )7 97 10 2 18 10 7 97 102 3 2 0 111. . . .  (Pa).

This shows that the short terms shear modulus G0  is 2 18 103. ×  Pa, the long term shear

modulus G∞ , 7 97 102. ×  Pa and the decay constant β  is 0.111.

Those values, along with the same density used in the elastic test described above, are used to

define Material Type 6 (Viscoelasticity) in DYNA3D.
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In this case the number of elements along the wave propagation is increased to 500 in order

to accommodate shorter pulse period which is needed for this “stiffer” material. The input

sinusoidal pressure pulse has the same form as the one used in the elastic test, but the period

of 8 0 10 6. × −  second, which corresponds to 125.0 kHz. The frequency ω is expressed in

circular form, therefore, ω  is 785 4 103. ×  rad./s. From (2-109) f  is calculated to be 557.0,

which gives 1410.1 m/s as the wave propagation velocity at this particular frequency, and the

wave arrives at the bottom at 7 09 10 4. × −  second. The decay constant α  is calculated to be

− × −3 52 10 11. , therefore the dissipation is minimal. The phase shift between the particle

velocity and stress is given by (2-120) and calculated to be 6 32 10 14. × − , which indicates that

they are practically synchronized (in phase). The equation (2-119) gives the proportional

constant between the stress and particle velocity magnitudes, which in this case is 1 47 106. × .

From this the peak particle velocity value is calculated to be 6 82 10 5. × −  m/s.

The results of this viscoelastic wave propagation were shown in Figures 2.11 and 2.12 in the

form of stress and the particle velocity histories in the direction of the wave travel.

It is seen from both figures that the arrival of the wave at the bottom, indicated by the start of

the 11th valley, is around 7 1 10 5. × −  second, which matches the analytical solution. In

addition, the stress wave form in Figure 2.11 indicates that the material faithfully responds to

the pressure pulse, as predicted from the traction boundary conditions, and the same pulse

form is maintained throughout, as expected from the very small value of α ..

Figure 2.12 shows the particle velocity in synch with the stress pulse, having the peak value

of 6 79 10 5. × −  m/s, which is within 5% of the predicted value.
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Figure 2.11   Z Stress History Along the Z Axis in Viscoelastic Medium

Time (sec.)

P
ar

tic
le

 V
el

oc
ity

 (
m

/s
)

-1.40E-04

-1.20E-04

-1.00E-04

-8.00E-05

-6.00E-05

-4.00E-05

-2.00E-05

0.00E+00

2.00E-05

0.00E+00 2.00E-05 4.00E-05 6.00E-05 8.00E-05

Figure 2.12   Z Particle Velocity History Along the Z Axis in Viscoelastic Medium



Chapter 3

Simulated Head Model

Before more complex finite element models of the human head are analyzed, a set of

preliminary analyses is performed using a simplified model. The concentric spherical form

has been widely used as the simplest possible three-dimensional alternative to the human

head since the days when numerical methods were far less prevalent than they are today.

Here one such model is constructed to investigate differences in wave propagation effects

caused by the choice of material representations.

3.1  Geometry

The dimensions of the simplified concentric spherical model are based on several

measurements of the actual human head. The average cranium volume is 1400 cubic

centimeters (cc) [25], and the thickness of the cranium is chosen as 9.0 millimeters (mm)

[39] (see the description of the skull material properties later). This leads to the interior

radius of the simulated cranium to be 69.4 mm, and the exterior, 78.4 mm. The average

weight of the brain is 1.36 kg [51], and with the average specific gravity of 1.036 [51], it

occupies 1313 cc in the cranium. This leaves 87 cc of empty space which, in actuality, is

filled with cerebrospinal fluid (CSF). This value is smaller than 140 milliliters (ml) reported

in [25]. If 87 cc is assumed, the thickness of the CSF layer is roughly 1.44 mm (volume

divided by the interior surface of the cranium), and if 140 cc is assumed, the thickness will be

2.31 mm. However, at this stage of the study it is decided not to incorporate such thin feature

since it leads to unnecessarily small time integration steps. For the same reason, the skull is

treated as a one-layer structure.

Through visual inspection in the Visible Human Dataset images the thickness of the falx

66

cerebri ranges from 2 to 4 pixels wide. With 0.33 mm-per-pixel resolution, this corresponds
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to 0.66 to 1.32 mm. The dura that is adhered to the skull is not readily discernible in the

images. Here the dura is assumed to have a uniform thickness of 1.0 mm, and modeled as

membrane elements. The model, which is quarter-symmetric, is shown in Figure 3.1. The

total mass of the quarter-symmetry system, with the density values described below, is 0.601

kg which corresponds to 2.404 kg for the whole sphere. This value is approximately half of

the weight of the standard adult human head, which is generally considered to be 4.5 kg. The

discrepancy is due to missing parts such as facial features and scalp.

Figure 3.1   Quarter-Symmetric Pseudo-Head Model

3.2  Material Constitutive Laws

Two linear viscoelastic and four linear elastic constitutive models are employed to

investigate the effect of tissue properties on stress wave propagation in the brain. These

models are summarized in Table 3.1.
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Table 3.1  Material Properties For Examined Cases

Case Bulk Modulus (Pa) Relaxation Modulus (Pa)
_________________________________________________________________________________________

VE1 2 07 109. × 7 97 10 2 18 10 7 97 102 3 2 0 110. . . .× + × − ×( ) −e t

VE2 1 28 108. × 1 68 10 5 28 10 1 68 105 5 5 35. . .× + × − ×( ) −e t

_________________________________________________________________________________________

Young’s Modulus (Pa) Poisson’s Ratio Shear Modulus (Pa)
_________________________________________________________________________________________

E1 2 07 109. × 66 7 103. × 0.49999462 2 22 104. ×
E2 2 07 109. × 71 7 103. × 0.49999422 2 39 104. ×
E3 2 06 109. × 6 55 103. × 0.49999947 2 18 103. ×
E4 2 10 109. × 2 39 103. × 0.49999981 7 97 102. ×
_________________________________________________________________________________________

The first linear viscoelastic characterization (case VE1) is based on the uniaxial stress

relaxation test performed by [19], and the bulk modulus of K = ×2 068 109.  Pa is from

McElhaney et al. [50]. This model is characterized by the shear relaxation modulus G t( ),

G t e t( ) = × + × − ×( ) −7 97 10 2 18 10 7 97 102 2 2 0 110. . . .  Pa.

This is the same material linear viscoelastic model derived in the previous chapter for wave

propagation validation.

The other viscoelastic model, case VE2, is the one that was employed in actual finite element

applications by Ruan et al. [70]. Since the decay constant β is defined with t in milliseconds,

it is scaled to fit the SI system. For the sake of consistency, the bulk modulus K used by the

same authors (K = ×1 279 108.  Pa, derived from E = ×3 07 105.  Pa and ν = 0 4996. ) is also

used. This case is represented by this bulk modulus and the shear relaxation modulus of

G t e t( ) = × + × − ×( ) −1 68 10 5 28 10 1 68 105 5 5 35. . .  Pa.

The four linear elastic models considered here are presented as potential alternatives for a

viscoelastic model. Each case is based on a different argument as to how to “reduce” a linear

viscoelastic model to a linear elastic model. Cases E1 and E2 are different interpretations of

the vibrational experiments performed by [19], while E3 and E4 are based on the relaxation

experiments by [19], through the relaxation modulus derived in the previous chapter. For all
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linear elastic cases the same bulk modulus, K = 2 07.  GPa, is used to calculate Poisson’s

ratios. As those Poisson’s ratios are used in the standard linear elastic model in DYNA3D,

the actual bulk moduli used by DYNA3D internally are slightly different due to an

insufficient number of significant digits.

The real part of the complex modulus (storage modulus) reported in [19] is used as the

Young’s modulus in the first linear elastic model (case E1). This approximation was also

used by [34], [69] and others. The second linear elastic case, E2, uses the magnitude of the

complex modulus reported in [19]. This value defines the stress-strain relation in amplitudes

in a vibration test [35].

The Young’s moduli for the third and fourth linear elastic representations (cases E3 and E4)

use the short-term and long-term moduli, respectively, of the uniaxial relaxation modulus

from [19]. In essence these models are “reduced” cases from VE1. Note that VE1 above is

represented as the shear relaxation modulus, while E3 and E4 are derived from uniaxial

relaxation modulus. The Young’s modulus used in case E3 is the stiffness of the linear elastic

unit that is in series with the Kelvin unit in the linear three-parameter viscoelastic solid, while

case E4 is equivalent to removing the viscous unit.

The density of the brain reported in the literature ranges from 1010 [19], 1036 [35,19], 1040

[87 and others] to 1081 [3] kg/m3. Here 1036 kg/m3 is selected.

The density of the skull as a whole ranges from 1411.7 [50], 1610 [12] 1807 [3] to 2030.7

[39] kg/m3. Khalil and Hubbard [39] used 2940 and 1710 kg/m3 for the cortical (compact)

and trabecular (cancellous) bones, respectively. Duck [12] lists 1990 and 1080 kg/m3 for the

compact and cancellous bones with bone marrow, respectively. If the skull is modeled as a

three-layered system, the values from [12] are chosen since the data from [39] appear to be

on the high side. If the skull is modeled as a whole (i.e. one-layer system), as it is the case for

now, the value from the same source is used (1610 kg/m3).

According to Khalil and Hubbard [39], the Young’s modulus E = ×65 0 108.  Pa and

Poisson’s ratio ν = 0 2.  are given for the whole skull which, along with thicker-than-usual

thickness, are representative of the three-layered counterpart in terms of bending and

membrane stiffness.

The density of the dura is given by Barber et al. [3] as 1133 kg/m3. There has not been a
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particular mention of Poisson’s ratio; here the value reported in Hosey and Liu

[34]—0.45—is used.

Galford and McElhaney [19] report that the complex modulus for the dura at 20 Hz is

E i iω( ) = × + ×31 51 10 3 45 106 6. .  Pa,

of which the storage modulus (the real part) is used as the elastic modulus by Hosey and Liu

[34]. McElhaney et al. [50] has the elastic moduli of E = ×41 55 106.  Pa at 0.0666 s-1,

E = ×44 33 106.  Pa at 0.666 s-1 and E = ×60 67 106.  Pa at 6.66 s-1. Even though it is clear that

the dura exhibits high strain-rate sensitivity, the elastic representation with the highest

recorded elastic modulus (60 67 106. ×  Pa) is selected for now.

3.3  Boundary, Initial and Special Conditions

The simplified head system is given an initial velocity of 15.0 meters per second (m/s), and

impacted into a stationary rigid wall. This initial velocity is arbitrarily selected as an

estimated upper limit of what one might encounter in auto accidents. Appropriate symmetry

boundary conditions are applied to ensure the quarter-section response is representative of

the entire structure. Otherwise the system is unconstrained. In addition, as indicated in the

previous chapter, the artificial viscosity is, for all practical purposes, turned off since shock

formation is not expected to occur at the low impact speed considered.

3.4  Results

Three parameters, pressure, maximum shear strain and normal stress in the direction of

travel, at three different locations are recorded to observe the differences caused by the

selection of material constitutive relations. The three locations selected are; 1) coup site

(outermost node on the brain under the impact site), 2) contracoup site (the opposite location

from the impact) and 3) pole site (90 degree away from the coup site). Those locations are

depicted in Figure 3.2
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Figure 3.2   Output Locations of Pseudo Head Model

First, some observations are made on the differences between two viscoelastic

characterizations. Figure 3.3 shows the pressure history at the coup site. At the first valley,

the two responses which may be dominated by the simulated skull, appear almost identical.
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Figure 3.3   Pressure History at Coup Site: Viscoelastic Materials, Vi = 15 m/s
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Figure 3.4   Pressure History at Coup Site: Viscoelastic Materials, Vi = 7 5.  m/s

However, the rebound exhibited by VE2 is far more pronounced than that by VE1, and their

responses are markedly different for the remainder of the duration, VE1 returns to positive

pressure much later than VE2, and VE2 stays in the negative range after the rebound.

When the same system is analyzed with a different initial velocity (7.5 m/s), the rebound

peak from VE2 occurs later than that from VE1. The pressure histories at the contracoup site

(Figures 3.5 and 3.6) do not appear to show that trend, however. While VE2’s peak

magnitude is significantly less and occurs slightly later than VE1 under both initial velocities,

VE2 does not rebound any more than VE1.
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Figure 3.5   Pressure History at Contracoup Site: Viscoelastic Materials, Vi = 15 m/s
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Figure 3.6   Pressure History at Contracoup Site: Viscoelastic Materials, Vi = 7 5.  m/s

More pronounced differences are observed in the maximum shear strain at the pole site, as

shown in Figures 3.7 and 3.8. While VE1 exhibits a very distinctive maximum shear strain

peak, VE2’s maximum is far less pronounced.
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Figure 3.7   Maximum Shear Strain History at Pole Site: Viscoelastic Materials, Vi = 15 m/s
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Figure 3.8   Maximum Shear Strain History at Pole Site: Viscoelastic Materials, Vi = 7 5.  m/s

When the four linear elastic models are compared with VE1, it is found that their responses

are nearly identical. It is apparent that in a system where volumetric changes dominate the

deformation, as they do in the case under consideration, and the bulk moduli of all

constitutive models considered are essentially the same, the results produced are nearly
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identical (see Figures 3.9 through 3.12).
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Figure 3.9   Pressure History at Coup Site: Elastic versus Viscoelastic Materials, Vi = 15 m/s
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Figure 3.10   Pressure History at Coup Site: Elastic versus Viscoelastic Materials, Vi = 7 5.  m/s
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Figure 3.11   Pressure History at Contracoup Site: Elastic versus Viscoelastic Materials, Vi = 15 m/s
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Figure 3.12   Pressure History at Contracoup Site: Elastic versus Viscoelastic Materials, Vi = 7 5.  m/s

Due to the boundary and initial conditions, large distortion, instead of deformation, is

expected at the pole site. Figures 3.13 and 3.14 give the maximum shear strain histories at the

pole. It can be observed that E1 and E2 deviate from the viscoelastic solution after the initial

rise, and underpredict the peak maximum shear strain by 15 to 30 percent relative to the
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viscoelastic solution. In addition, both the E1 and E2 solutions exhibit a second strong peak

which is not observed from VE1. E4, on the other hand, slightly overshoots the peak

produced by VE1, but nonetheless produces similar results.
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Figure 3.13   Maximum Shear Strain at Pole Site: Elastic versus Viscoelastic Materials, Vi = 15 m/s
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Figure 3.14   Maximum Shear Strain at Pole Site: Elastic versus Viscoelastic Materials, Vi = 7 5.  m/s
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One important finding here is that the E3 solution very nearly matches the VE1 solution

(they are almost indistinguishable in the figures). E3 is an elastic model with a Young’s

modulus equal to the short-term modulus from [19] and a Poisson’s ratio that was chosen to

give a bulk modulus nearly identical to that used in VE1. It is clear that E3 and VE1 (or any

of the other elastic materials with similar bulk moduli) produce identical results in the

spherical components. The closeness of the solutions in the deviatoric components (which,

combined with the spherical components produces the overall response) is due to the fact that

VE1 exhibits a shear (deviatoric) response that can be approximated with a linear elastic

model having a shear modulus about equal to the instantaneous shear modulus of the

viscoelastic material.

In order to clarify this, the shear properties of those materials are compared graphically. The

complex shear modulus of the three-parameter linear viscoelastic solid has the same form as

the uniaxial counterpart as shown in the previous chapter;

Γ i
q p q

p

q p q

p
iω ω

ω
ω ω

ω
( ) = ′ + ′ ′

+ ′
+ ′ − ′ ′

+ ′
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2 21 1

, (3.1)

and the magnitude of this complex modulus is

Γ i
q q

p
ω ω

ω
( ) = ′ + ′

+ ′
0

2
1

2 2

1
2 21

. (3.2)

This magnitude of the complex modulus, defined by the deviatoric parameters ′q0 , ′q1  and ′p1 ,

relates the magnitudes of tensorial shear strain and stress. When the engineering notation is

called for, this value is multiplied by 0.5. When 1
2 Γ iω( )  and G calculated from the given E

and ν are plotted against frequency, the result is shown in Figure 3.15. Naturally all linear

elastic models have no frequency or strain rate sensitivity , thus appear as straight lines.
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Figure 3.15   Magnitudes of Complex and Shear Moduli against Frequency

As can be seen, in high frequency ranges, which represent high strain-rate as encountered in

this series of runs, it is clear that both cases VE1 and E3 exhibit the same shear

characteristics.

In conclusion for this series of analyses using the pseudo-head model, the following points

are deduced. First, the three-parameter linear viscoelastic model derived for this study is

substantially different from what has been used in the literature. This is clear from somewhat

“theoretical” point of view, such as shown in Figure 3.15, but also from “application” side, as

demonstrated by the pseudo-head test.

Secondly, under certain conditions, it is possible to substitute a three-parameter linear

viscoelastic material with a linear elastic model. However, clear understanding must be made

regarding the specific viscoelastic characteristics and situation being analyzed in order to

accomplish this. More explicitly, it must be known at which frequency range the three-

parameter model can be approximated as pseudo-linear elastic, and whether or not the

scenario to be analyzed falls into this frequency range. Reviewing the subject on the

frequency-dependency of the three-parameter model in the previous chapter, this assumption

can only be made with the short-term modulus in high frequency ranges, and long-term

modulus in low frequency ranges. Given the amount of preplanning required to examine

these conditions, however, using a linear elastic model as a substitute for a three-parameter
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viscoelastic solid hardly constitutes as “simplification.”

Lastly, this characterization derived for this study may not be suitable for high-strain rate

scenarios, as encountered in automobile accidents. Galford and McElhaney’s relaxation

experiments may be a good starting point, but experiments which span up to 60 seconds will

not provide meaningful information when the constitutive laws derived from them are used

in much shorter time periods.

One note that must be made at this end of this chapter is that when a linear elastic material is

chosen to simulate near incompressibility, the selection of the value of Poisson’s ratio must

be made extremely carefully. From a simple relation between elastic constants it can be

shown that Poisson’s ratio for the isotropic linear elastic material must be less than 0.5.

When the bulk modulus is obtained from Young’s modulus and Poisson’s ratio, as Poisson’s

ratio approaches its upper limit the bulk modulus becomes highly sensitive to a small change

in Poisson’s ratio (this can be shown by plotting a dimensionless parameter 
K

E
 against

Poisson’s ratio). For example, even if Poisson’s ratio of 0.49999 is selected, which may be

conventionally considered incompressible, the results will deviate from what are observed

with more “accurate” Poisson’s ratios. Those results are shown in Figures 3.16 and 3.17.

DYNA3D treats all non-integer variables as double precision, and is fully capable of

handling as many digits as provided in the material property fields. However, considering the

sensitivity of the bulk modulus on Poisson’s ratio in the vicinity of its upper limit, using the

simple linear elastic model, for which the Young’s modulus and Poisson’s ratio are defined,

does not appear to be a sensible method. Another linear elastic model is available in

DYNA3D where both bulk and shear moduli are directly entered, and use of this model is

recommended.
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Figure 3.16   Pressure History at Coup Site: Elastic versus Viscoelastic Materials, with Poisson’s Ratio =
0.49999, Vi = 15 m/s
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Chapter 4

Injury Theory Assessment

4.1  Purposes

As described in the literature review, a number of finite element models of the human head

have been developed for the purpose of analyzing its dynamics under impact or impulse

loading. Normally certain engineering parameters such as acceleration, pressure and shear

strain histories are examined as head injury criteria. In particular, resultant acceleration

history measured at the center of gravity (CG) of the occupant’s head is used to compute the

Head Injury Criterion (HIC), one of the criteria employed by the United States Government

to assess passenger vehicle safety.

The problem of using a finite element model of the human head in such application is

two-fold; first, although the finite element models’ geometry has been improved over the

years, the material constitutive models of the components in the head, especially of the brain,

have been somewhat neglected. When these finite element models are used as a injury-

prediction tool, this negligence nearly invalidates the results since different brain material

constitutive models are likely to produce different engineering parameters.

Therefore, it is important to understand how those parameters can be affected when different

material representations for the brain are used. This will illustrate the significance of brain

material characterization, and reveal the sensitivity of certain parameters, including HIC,

with respect to the differences in brain material properties. At the same time, it will clarify to

what extent today’s finite element models can be used for this purpose. It is important to

understand the limitation of those models imposed by the level of uncertainty in the

82

knowledge of material constitutive relations.
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The second problem is that it is not altogether clear as to how HIC relates to the actual

dynamics inside the head. The official protocol for assessing a passenger vehicle’s safety

requires HIC be calculated from the resultant acceleration history measured at the CG of a

dummy’s head. However, when physical surrogates such as cadavers or volunteers are

employed for acceleration/deceleration experiments, their head acceleration histories are

usually measured on the side of the head, approximately at the lateral projection of the head

CG [57] (assuming that the dominant head motion is in the sagittal plane). Then when a finite

element model of a human head, as opposed to that of a dummy, is used to obtain HIC, it is

naturally calculated from the acceleration history measured at the head CG [70], owing to the

manipulability of the mathematical method. Consequently, there is a need to investigate how

those different methods of measuring acceleration history affect HIC, and how they relate to

the internal dynamics of the head.

4.2  Finite Element Model

4.2.1  Geometry

The finite element model used in this study is based on the Visible Human Dataset™ (VHD)

made available by the National Library of Medicine. The VHD is a result of the collaboration

between the National Library of Medicine and the University of Colorado School of

Medicine, which was to produce a complete library of digital volumetric image data of a

normal human [70]. So far two sets of data have been produced; the Visible Human Male and

the Visible Human Female. The Male dataset was completed first in 1994, and the images

from this dataset is used for this study. For a brief description of how the images are

transformed into a three-dimensional computer model, see Appendix.

Since this study is focused on material constitutive laws, further simplification on the model

is performed so that iterative calculations are feasible. First, the facial features are eliminated.

Thus the main framework of the model is to have the cranial content itself and a shell-like

structure which represents a modified skull, to enclose cranial content. In addition, the

cerebrospinal fluid (CSF) layer has been eliminated. While it is generally believed that CSF
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functions as a protective buffer [8], it is feared that its inclusion in the model will

unnecessarily increase computational cost. Since the model does not contain the skin layer,

another potential protective layer, it is noted that this model may lack realistic protective

faculty.

The resulting brain, which fills the cranial cavity completely, is 1375 cc in volume. The

average weight of the human brain is 1.36 kg [51] and using the density of 1036 kg/m3 [12],

the model’s volume which includes the CSF, is quite reasonable.

The model’s simplicity also means that it is significantly lighter than the real head. In order

to compensate for the loss, two sets of discrete masses are added to the bottom of the model

to approximate the facial features and neck. The amount of mass is described in the following

section.

The impactor’s shape and size are arbitrarily defined; it is a right cylinder with a diameter of

40 mm by length of 70 mm.

The head model and impactor are shown in Figure 4.1.

Figure 4.1   Finite Element Head Model and Impactor
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4.2.2  Material Constitutive Laws

The skull in this case, once again, is treated as a one-layer system, and is assumed to be

linear elastic. The mechanical properties for the skull are adopted from McElhaney et al.

[50]. Isotropy is also assumed even though it appears that the skull may be transversely

isotropic, having different material properties in the tangential and radial directions. The

Young’s modulus is assumed to be the average of three values—compressive tangential and

radial, and tensile tangential moduli. The density for the whole skull from [50] is used.

Both linear viscoelastic and linear elastic representations are used for the brain. In addition to

the two linear viscoelastic models examined in the previous Chapter (VE1 and VE2), three

more models are studied. The first additional model (labeled as VE3) was reported in Estes

[57]. Through compression tests on brain specimens his interpretation of the results is

represented by,

E1 4 00= .  psi

E2 1 89= .  psi

η2 0 315= .  lb-sec./in2.

In the SI unit,

E1
327 58 10= ×.  Pa

E2
313 03 10= ×.  Pa

η2
32 17 10= ×.  Pa-sec.

which lead to
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p1 0 0535= .

q0
38 85 10= ×.

q1
31 475 10= ×. .

Even though Estes assumed the brain to be incompressible, in order to calculate deviatoric

parameters, a bulk modulus of K = ×2 068 109.  Pa [51] is used. This results in

′ =p1 0 0535.

′ = ×q0
35 90 10.

′ = ×q1
29 83 10. .

Another three-parameter linear viscoelastic solid model (labeled as VE4) is reported by

Donnelly and Medige [12]. They performed dynamic shear experiments using a parallel-plate

apparatus. Though their results are fitted with a non-linear derivative of the three-parameter

viscoelastic solid model, here the core three-parameter model is used, whose characteristics

are represented by

′ =p1 0 0112.

′ =q0 381

′ =q1 12 32. .
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The last additional viscoelastic model (labeled VE5) is derived from Galford and

McElhaney’s axial free vibration experiments [19]. Since there are only two quantities

(storage and loss moduli) reported at one frequency value, three necessary parameters cannot

be uniquely defined. Therefore, a computer program is used to simply scan a range of

possible values to find the best combination to match their experimental results. From the

storage and loss moduli of 9.68 psi and 3.8 psi (66 7 103. ×  Pa and 26 2 103. ×  Pa) respectively

at 34 Hz, the following uniaxial parameters are obtained;

p1 0 01= .

q0
41 076 10= ×.

q1
27 9 10= ×. .

Assuming again K = ×2 068 109.  Pa, the deviatoric parameters are;

′ =p1 0 01.

′ = ×q0
37 17 10.

′ = ×q1
25 27 10. .

Once again, those values are not necessarily unique. However, they will be used in this study

as a representation from the free vibration test.

These viscoelastic models are listed in Table 4.1, but a comparison among these models can

be seen graphically as done in the previous Chapter. The ratio of the loss modulus (the

imaginary part of the complex modulus) and the storage modulus (the real part) is the

measure of internal friction. This value, shown in the Argand diagram (the complex plane), is



Toru Aida Chapter 4  Head Injury Criteria Assessment 88

the tangent of the complex modulus “vector” and sometimes referred to as the loss tangent.

This value is shown to be

tanδ ω ω
ω

= ′ − ′ ′
′ + ′ ′

q p q

q p q
1 1 0

0 1 1
2

where δ is the phase angle The magnitudes of the complex moduli Γ iω( )  and tanδ  plotted

against frequency are shown in Figures 4.2 and 4.3, respectively.
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Figure 4.2   Magnitudes of Complex Moduli against Frequency
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Figure 4.3   Loss Tangents of Complex Moduli against Frequency

It is noted that the scale is log-log for Figure 4.2 and semi-log for Figure 4.3. What appear

close may be a factor of one or two apart.

As discovered in the previous Chapter, if a linear elastic model is substituted for a three-

parameter viscoelastic model in high strain rate situations, it is best advised to use a shear

modulus that is equal to the deviatoric short-term modulus. In this study, five linear elastic

models with shear moduli thus derived from their corresponding viscoelastic models (labeled

as elastic alternatives, EA1 through 5) are also analyzed. These elastic models, along with

their viscoelastic counterparts in the engineering notation are summarized in Table 4.1.
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Table 4.1  Brain Material Models for Examined Cases

Case Bulk Modulus (Pa) Relaxation Modulus (Pa)
_________________________________________________________________________________________

VE1 2 07 109. × 7 97 10 2 18 10 7 97 102 3 2 0 110. . . .× + × − ×( ) −e t

VE2 1 28 108. × 1 68 10 5 28 10 1 68 105 5 5 35. . .× + × − ×( ) −e t

VE3 2 07 109. × 2 95 10 9 19 10 2 95 103 3 3 18 7. . . .× + × − ×( ) −e t

VE4 2 07 109. × 190 5 551 3 190 5 89 5. . . .+ −( ) −e t *

VE5 2 07 109. × 3 59 10 2 63 10 3 59 103 4 3 100. . .× + × − ×( ) −e t

_________________________________________________________________________________________

Shear Modulus (Pa)
_________________________________________________________________________________________

EA1 2 07 109. × 2 18 103. ×
EA2 1 28 108. × 5 28 105. ×
EA3 2 07 109. × 9 19 103. ×
EA4 2 07 109. × 551 3.

EA5 2 07 109. × 2 63 104. ×
_________________________________________________________________________________________

* Reported as a non-linear model

In this phase of the study it is decided to make use of another linear elastic material type in

DYNA3D (Material Type 12) where material properties are directly entered as shear and

bulk moduli. The same stress wave propagation test in Chapter 2 is performed using the same

property values, E = ×66 7 103.  Pa and ν = 0 48. , which are converted to G = ×22 534 103.  Pa

and K = ×555 83 103.  Pa. The results, in the form of stress and particle velocity in the wave

propagation direction, are identical to those observed in Chapter 2, thus confirming

suitability of this material representation.

The impactor is simply assumed to be a rigid body, and the material properties for carbon

steel taken from [74] are used for contact calculations. The density of the impactor is

artificially modified to increase its mass to 2.6 kg, roughly half of the weight used in Nahum

et al.’s cadaver impact experiments [57]. This weight is chosen since the current model lacks

the skin layer and padding materials supposedly used in Nahum et al.’s experiments.

The amount of discrete masses added to compensate for the lack of the facial features and

neck is determined to match the numbers reported in Walker et al. [57]. A set of discrete

masses is added to the front half of the bottom of the model to match the weight of the head

without the neck, which is 4.38 kg. Another set of discrete masses is added to the back half

of the same region to simulate the neck. The total weight is 6.00 kg.
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4.2.3  Scenarios

The model is used to simulate frontal impact. The impact location on the head is arbitrarily

determined; no attempt is made to align the head and impactor using some anatomical

reference planes such as the Frankfort plane. The models are tested at two different impactor

velocities; one at 15 miles per hour (mph) (one half of the standard crash test speed used by

National Highway Traffic Safety Administration) and the other at 7.5 mph.

4.3  Results and Discussions

The results are extracted from the model in the form of maximum shear strain, pressure, and

resultant acceleration. Pressure is measured at the coup, contracoup sites. Maximum shear

strain is measured at the same locations as pressure, and at two additional locations; one is at

the bottom of the frontal lobe, and the other, an arbitrarily selected point furtherers from any

skull interior surface. The resultant acceleration is measured at the CG of the head and points

on the both sides of the skull, which are projected laterally from the CG of the head.

The additional points of interest for maximum shear strain are selected; one is the bottom of

the frontal lobe and the other an arbitrarily selected interior point, since the former happens

to be where the maximum shear strain is likely to occur in this model. Once again, it must be

noted that this model does not contain some important anatomical structures such as the

tentorium or falx. Therefore, it does not meant to predict specific locations of injuries. The

latter location is selected since this is away from the surface of the brain which is adhered to

the skull. This location avoids the boundary effect between the brain and the skull.

From the acceleration histories measured at those locations, HIC is calculated using a

FORTRAN subroutine provided by the National Highway Traffic Safety Administration

(NHTSA). This subroutine uses an algorithm that efficiently finds a time interval, or time

window, that gives the maximum value of HIC. A driver and other supporting routines are

written to read an output file generated by GRIZ, a post-processor for DYNA3D. These

routines assume the acceleration histories are in m/sec2, and covert them in terms of

acceleration of gravity (G).

One approximation that must be taken into account is that the provided subroutine assumes a
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uniform time step size. An acceleration history is read as a series of discrete acceleration

values at this interval. Output files from GRIZ, however, are written at intervals that

generally change from time step to time step, since DYNA3D determines time step size

based on the minimum effective element size which can change due to deformation and

distortion. Therefore, an average time step size is determined for the entire history, and this

value is used as the time step size used in the subroutine. At this point, it is assumed that

excessive deformation does not cause drastic changes in time step sizes. A standard deviation

is calculated for time step sizes to check this assumption.

A fictitious acceleration history, shown in Figure 4.4, is used to test the validity of the code.

Using the formula for the HIC,

HIC = −( )
−( ) ( )






















∫max

,

.

t t t

t
t t

t t
a t dt

1 2 1

2

2 1
2 1

2 5

1

the provided acceleration history should give the HIC value of 819.9 with a proper time

window of 20 milliseconds or more. The FORTRAN code gives 817.2, which is within less

than 0.35% of the theoretical value. This accuracy is deemed acceptable.

5.0 ms 25.0 ms

70 G

Acceleration

Time

Figure 4.4   Test Acceleration History

Before the results from the material models listed in Table 4.1 are examined, a fictitious

“average” viscoelastic model is created to perform a parametric study. Even though doing so

is not the main purpose of this study, a parametric study helps confirm speculations observed
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from the existing brain constitutive models. Parametric studies are performed only at 15 mph.

This “average” model is created by simply taking the arithmetic averages of the short term

moduli, long term moduli and time constants from VE1, VE3, VE4 and VE5. VE2 is dropped

since it does not have a clear experimental foundation. It must be noted such averaging itself

from different experiments is purely academic and has no basis for representing the brain

material. The model thus created (referred to as VEA) is represented by:

G t e t( ) = × + × − ×( ) −1 88 10 9 56 10 1 88 103 3 3 52 08. . . .

First, the comparisons are made between the results from the linear viscoelastic models and

their linear elastic counterparts. As pointed out in the previous Chapter, this substitution only

works only if the material characteristics and dynamic conditions are such that strain rate is

high enough so that a linear viscoelastic model’s behavior can be simulated by a linear elastic

model whose Young’s modulus is the same as the short term modulus.

As expected, most viscoelastic-elastic pairs produce identical results at both speeds, in terms

of pressure and maximum shear strain. Representative plots from VE1 and EA1 at both

speeds are shown in Figures 4.5 through 4.12.
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Figure 4.5   Maximum Shear Strain History at Coup Site, Models VE1 and EA1 at 15 mph
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Figure 4.7   Maximum Shear Strain History at Coup Site, Models VE1 and EA1 at 7.5 mph
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Figure 4.8   Maximum Shear Strain History at Bottom of Frontal Lobe, Models VE1 and EA1 at 7.5 mph
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Figure 4.9   Pressure History at Coup Site, Models VE1 and EA1 at 15 mph
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Toru Aida Chapter 4  Head Injury Criteria Assessment 97

Time (sec.)

P
re

ss
ur

e 
(P

a)

-2.00E+05

-1.00E+05

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

0.00E+00 2.00E-03 4.00E-03 6.00E-03 8.00E-03 1.00E-02

VE1

EA1

Figure 4.11   Pressure History at Coup Site, Models VE1 and EA1 at 7.5 mph
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Figure 4.12   Pressure History at Contracoup Site, Models VE1 and EA1 at 7.5 mph

However, VE5 and EA5, while their pressure responses are identical, produce noticeably

different results in terms of maximum shear strain, as shown in Figures 4.13 though 4.18.
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Figure 4.13   Maximum Shear Strain History at Coup Site, Models VE5 and EA5 at 15 mph

Time (sec.)

M
ax

im
um

 S
he

ar
 S

tr
ai

n

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

7.00E-02

8.00E-02

9.00E-02

0.00E+00 2.00E-03 4.00E-03 6.00E-03 8.00E-03 1.00E-02

VE5

EA5

Figure 4.14   Maximum Shear Strain History at Contracoup Site, Models VE5 and EA5 at 15 mph



Toru Aida Chapter 4  Head Injury Criteria Assessment 99

Time (sec.)

M
ax

im
um

 S
he

ar
 S

tr
ai

n

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

0.00E+00 2.00E-03 4.00E-03 6.00E-03 8.00E-03 1.00E-02

VE5

EA5

Figure 4.15   Maximum Shear Strain History at Middle of Brain, Models VE5 and EA5 at 15 mph
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Figure 4.16   Maximum Shear Strain History at Coup Site, Models VE5 and EA5 at 7.5 mph
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Figure 4.17   Maximum Shear Strain History at Contracoup Site, Models VE5 and EA5 at 7.5 mph
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Figure 4.18   Maximum Shear Strain History at Middle of Brain Site, Models VE5 and EA5 at 7.5 mph

For this pair at 15 mph, after reaching the same maximum value around 3.6 milliseconds

(msec.), the unloading for VE5 is more slowly than that for E5. It is suspected that in this

unloading phase, VE5’s high decay constant value (100) causes the discrepancy. In order to

confirm this, a parametric study using VEA is shown in Figures 4.19 through 4.21. In this
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series of runs, the decay constant is increased by 10 and 100 to demonstrate that increasing

the decay constant slows down the unloading after the peak.
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Figure 4.19   Maximum Shear Strain History at Coup Site, Model VEA with Varying Decay Constant
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Figure 4.20   Maximum Shear Strain History at Contracoup Site, Model VEA with Varying Decay Constant
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Figure 4.21   Maximum Shear Strain History at Middle of Brain, Model VEA with Varying Decay Constant

A high decay constant means there is more viscous effect in a shorter time scale. In this

scenario, this viscous effect separates a viscoelastic model from a linear elastic model. As it

can be seen from the Figures above, the more viscous effect is present (i.e. the higher the

decay constant), the less pronounced the unloading phase is; which is what is observed in the

VE5/EA5 case. Therefore, from this point on the focus is concentrated on viscoelastic

models, and linear elastic models are, for the most part, dismissed.

As discovered in the previous phase, the bulk modulus controls pressure response. Therefore,

VE1, VE3, VE4 and VE5, that share the same bulk modulus, yield an identical coup and

contracoup pressure history. On the other hand, VE2, whose bulk modulus is less than those

from the other models, produces a different pressure response (see Figures 4.22 and 4.23)

than those from other model (response from VE1 is superimposed to show the difference). In

general, the softer the bulk modulus is, the less the peak pressure value at either location.

This trend is verified in a parametric study using VEA where its bulk modulus is changed

(Figures 4.24 and 4.25)
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Figure 4.22   Pressure History at Coup Site, Models VE2 and EA2 Compared with VE1, at 15 mph
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Figure 4.23   Pressure History at Contracoup Site, Models VE2 and EA2 Compared with VE1, at 15 mph
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Figure 4.24   Pressure History at Coup Site, Model VEA with Varying Bulk Modulus
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Figure 4.25   Pressure History at Contracoup Site, Model VEA with Varying Bulk Modulus

The most intriguing finding from all the models analyzed in study is shown in Table 4.2.
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Table 4.2  HIC from Examined Cases, at Head CG

15 mph HIC from VE HIC from EA 7.5  mph HIC from VE HIC from EA_________________________________________________________________________________________

1 3894.8 3894.8 248.8 248.8

2 8733.8 8769.2 481.5 483.6

3 3885.8 3885.9 248.0 248.0

4 3896.9 3896.7 249.0 249.0

5 3864.6 3864.2 246.0 246.0_________________________________________________________________________________________

As seen in this table, HIC values calculated at head CG from all models, except for the

VE2/EA2 pair, are nearly identical. Excluding VE2, all HICs are within less than 1% of one

another for the 15 mph cases, and roughly 1.2% for 7.5 mph cases. Excluding VE2, it

appears that HIC is inversely proportional to the apparent stiffness of the viscoelastic model.

The softest viscoelastic model, VE4, gives the highest HIC while the firmest (VE5), the

lowest HIC. This seems to be true from a parametric study at 15 mph where both short term

and long term moduli are varied together, another where the short term modulus is varied

independently, and another where the decay constant is varied (Table 4.3).

Table 4.3  HIC Under Varying Parameters of Viscoelastic Model

Parametres changed HIC_________________________________________________________________________________________

VEA 3885.4

Decay constant x 10 3885.8

Decay constant x 100 3889.4

Short term modulus x 10 3782.0

Short term modulus x 100 3860.0

Short term/long term moduli x 10 3781.8

Short term/long term moduli x 100 3865.3_________________________________________________________________________________________

It is clear that the decay constant has little effect on HIC. Multiplying either short term

modulus only or both short term and long term moduli together by 10, it is observed that HIC

decreases, albeit slightly (2.7%). However, when the moduli are multiplied by 100, HIC

shows an increase from the preceding case, even though the magnitude is still less than the

original. Therefore, it appears that the relation between HIC and short term modulus or

combination of short term and long term moduli is nonlinear. Nonetheless, the overall

variation in HIC is so minute (the discrepancy between the highest HIC measured from VE4

and the lowest from the parametric study is 3%) that the effect of the change in deviatoric
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material constitutive models on HIC is considered insignificant.

The only unique feature about VE2 is its bulk modulus which is lower than the rest. The

disparity exhibited by VE2 can be explained, once again, by decreasing the bulk modulus in

VEA to show the effect on HIC as the bulk modulus is reduced by 10 and 100 at 15 mph.

The results of this parametric study is shown in Table 4.4.

Table 4.4  HIC Under Varying Bulk Modulus, at Head CG

Parameters changed HIC_________________________________________________________________________________________

VEA 3885.4

Bulk Modulus x 0.1 6495.9

Bulk Modulus x 0.01 72938.4_________________________________________________________________________________________

The HIC value increases by 67% with one tenth of the original bulk modulus, and when the

bulk modulus by reduced by 100, HIC increases 19 times. Therefore, two major conclusions

are drawn from this part of the exercise. One is that HIC is highly sensitive to the bulk

modulus of the brain, and the other is that it is nearly insusceptible to the change in the

brain’s deviatoric constitutive characteristics.

It must be mentioned that the brain is normally considered just as incompressible as water

[33, 46, 50], and reducing the bulk modulus was done by Ruan et al. [69] to match their finite

element model’s results to those from experiments. This is undoubtedly implemented to

accommodate internal structures or functions that are not modeled, such as the ventricles or

the communication of the cerebrospinal fluid between surrounding structures. In other words,

alteration in the bulk modulus of the brain may be based on the degree of simplification of

the finite element model, and caution must be exercised when such a change is incorporated.

The fact that they produce similar HICs does not mean that the internal dynamics are the

same for all models. As shown in Figures 4.26 through 4.31, in terms of maximum shear

strain, these viscoelastic models behave drastically differently from one another.
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Figure 4.26   Maximum Shear Strain History at Coup Site, Viscoelastic Models at 15 mph
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Figure 4.27   Maximum Shear Strain History at Contracoup Site, Viscoelastic Models at 15 mph
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Figure 4.28   Maximum Shear Strain History at Middle of Brain, Viscoelastic Models at 15 mph
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Figure 4.29   Maximum Shear Strain History at Coup Site, Viscoelastic Models at 7.5 mph
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Figure 4.30   Maximum Shear Strain History at Contracoup Site, Viscoelastic Models at 7.5 mph
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Figure 4.31   Maximum Shear Strain History at Middle of Brain, Viscoelastic Models at 7.5 mph

In Figures above, after following similar initial loading patterns, some models (VE1, VE4)

continue to be loaded, while others (VE3, VE5) either roughly maintain their strain values or

unload. This is significant since these models differ in general response pattern, not just in

overall maximum magnitudes. This behavior can be explained by another parametric study
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on the short term modulus (Figures 4.32 through 4.34), which shows that the shear strain

response decreases as the short term modulus is increased.
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Figure 4.32   Maximum Shear Strain History at Coup Site, Model VEA with Varying Short Term Modulus
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Figure 4.33   Maximum Shear Strain History at Contracoup Site, Model VEA with Varying Short Term
Modulus
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Figure 4.34   Maximum Shear Strain History at Middle of Brain, Model VEA with Varying Short Term
Modulus

VE2’s idiosyncratic behavior is attributed to the combination of its generally high shear

modulus and low bulk modulus. As Figure 4.35 indicates, lowering the bulk modulus causes

the loading pattern to shift dramatically, and in general, increases the shear strain response. It

is suggested that the particular response exhibited by VE2, which shows higher shear strain

around 2.5 msec., is dominated initially by the low bulk modulus (as it produces higher

response), then by the higher short term modulus (which suppresses shear responses).
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Figure 4.35   Maximum Shear Strain History at Contracoup Site, Model VEA with Varying Bulk Modulus

More dramatic effect is shown in Table 4.5, which shows the percentage of elements within

the brain that supposedly “failed” during the dynamic event. Since there is no established

general failure criterion for the brain tissue, a threshold shear strain value is arbitrarily

assigned as 0.101. This value is taken from Margulies and Thibault [47] who determined this

value in a dimensionless analytical model for diffuse axonal injury (DAI). Each element in

the brain is checked at each time step for its maximum shear strain. At any time the

maximum shear strain exceeds this threshold value, the element is marked as, “failed.”

Table 4.5  Failure Percentages for Examined Cases

15 mph VE (%) EA (%) 7.5  mph VE (%) EA (%)_________________________________________________________________________________________

1 21.8 21.8 0.68 0.68

2 0.78 0.78 0.03 0.03

3 14.4 14.4 0.24 0.24

4 26.6 26.2 1.39 1.25

5 9.23 8.96 0.20 0.20_________________________________________________________________________________________

As seen in this table, the failure rates range from less than 1% (VE2) to around 27% (VE4) at

15 mph. The rates are, logically, inversely proportional to the apparent stuffiness of the

models, with stiffer materials producing less failure, and softer materials producing more.
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This is significant since if only the absolute maximum shear strain values are examined

(Table 4.6), it can be seen that the differences among the models are not dramatic. Those

maximum values are observed at the bottom of the frontal lobe, with the exception of VE4,

whose maximum shear strain value is found a point towards the rear of the brain.

Table 4.6  Absolute Maximum Shear Strain for Examined Cases

15 mph VE EA 7.5  mph VE EA_________________________________________________________________________________________

1 2 76 10 1. × − 2 76 10 1. × − 1 53 10 1. × − 1 53 10 1. × −

2 2 25 10 1. × − 2 24 10 1. × − 1 33 10 1. × − 1 32 10 1. × −

3 2 75 10 1. × − 2 75 10 1. × − 1 53 10 1. × − 1 53 10 1. × −

4 3 05 10 1. × − * 3 02 10 1. × − * 1 53 10 1. × − 1 53 10 1. × −

5 2 71 10 1. × − 2 71 10 1. × − 1 51 10 1. × − 1 51 10 1. × −
_________________________________________________________________________________________

* Different location

The bulk modulus, which is lower for VE2 than others, does make a significant difference in

failure rates as shown in Table 4.7.

Table 4.7  Failure Percentages for VEA with Varying Bulk Modulus

Parameters changed Failure (%)_________________________________________________________________________________________

VEA 14.4

Bulk Modulus x 0.1 72.8

Bulk Modulus x 0.01 96.0_________________________________________________________________________________________

As the bulk modulus is lowered, there is a drastic increase in failure rates. However, VE2,

whose shear short term modulus is considerably higher than those of others, does not appear

to be affected by its lower-than-others bulk modulus. In other words, while the choice of bulk

modulus makes a difference in failure rates, it appears that the shear characteristics play a

larger role, even though absolute numbers do not reflect it (see Table 4.8). As it can be seen,

in general the failure rate follows the same trend; the stiffer the material, the less failure

occurs. The decay constant is a measure of how quickly the material shifts from the short

term modulus to long term modulus (see the relaxation curve in Chapter 2). A higher decay

constant indicates that the material reaches its long term modulus more quickly, therefore it

is effectively “softer.”
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Table 4.8  Failure Percentages for VEA with Varying Short Term and Short/Long Term Moduli

Parameters changed Failure (%)_________________________________________________________________________________________

VEA 14.4

Decay constant x 10 17.0

Decay constant x 100 21.8

Short term modulus x 10 3.07

Short term modulus x 100 0.47

Short term/long term moduli x 10 3.08

Short term/long term moduli x 100 0.47_________________________________________________________________________________________

Even though this model is not intended to produce realistic HIC to make assessment on head

injuries, it is possible to examine the consequence of measuring HIC at different locations on

the head. Table 4.9 shows the HIC values calculated from the acceleration histories measured

at points on the sides of the head, at the lateral projections of the head CG. As it was done by

Nahum and Smith [56], only the acceleration histories in the sagittal plane (Y-Z plane in this

case) are taken at those two points thus selected. The Y accelerations from those locations are

averaged, and the same is done to the Z acceleration histories. These two averaged

acceleration histories are used to determine the resultant acceleration history of the head, and

to calculate HIC.

Table 4.9  HIC from Examined Cases, at Side of Head

15 mph HIC from VE HIC from EA 7.5  mph HIC from VE HIC from EA_________________________________________________________________________________________

1 2045.5 2045.5 219.8 219.8

2 1657.5 1657.7 180.1 180.1

3 2045.9 2045.9 219.9 219.9

4 2045.5 2045.4 219.8 219.8

5 2046.8 2046.8 219.6 219.6_________________________________________________________________________________________

Those values show a significant reduction (roughly 47%) in HIC from those measured at the

head CG. Contrary to the HIC measured at the head CG, VE2 produces a lower HIC value

than the others, owing to its low bulk modulus (see Table 4.10), while the HICs from the rest

of the viscoelastic models are nearly identical, falling within less than 0.1% of each other.
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Table 4.10  HIC Under Varying Bulk Modulus, at Side of Head

Parameters changed HIC_________________________________________________________________________________________

VEA 2045.9

Bulk Modulus x 0.1 1712.6

Bulk Modulus x 0.01 1782.5_________________________________________________________________________________________

The difference between these HIC values at the sides of the head and those from the head CG

are not simply a matter of locations. Table 4.10 shows the results of the parametric studies

using VEA to demonstrate that the internal (brain) constitutive models influence HIC values.

Similarly to the HIC measured at the head CG, the bulk modulus of the brain has a noticeable

effect on HIC, but in the opposite direction, as it decreases by nearly 16% as the brain bulk

modulus is decreased by 10. The correlation appears to be non-linear, as it shows a slight

increase when the bulk modulus is reduced by 100. Resembling the HIC at the head CG, the

effect is more subtle (up to 2.3%) when the brain deviatoric parameters are varied (Table

4.11).

Table 4.11  HIC Under Varying Short Term Modulus, at Side of Head

Parameters changed HIC_________________________________________________________________________________________

VEA 2045.9

Short Term Modulus x 10 2050.3

Short Term Modulus x 100 2092.0_________________________________________________________________________________________

This poses a question as to how HIC should be measured and treated. As mentioned earlier,

occupant safety in a passenger vehicle is assessed by HIC measured at the CG of a dummy’s

head. If the biofidelity of the dummy’s head is sound, this HIC value should be the same as

the one that would be measured at the CG of a real human head. However, physical

experiments using cadavers, which can be used to validate mathematical models and

mechanical surrogates, often measure acceleration history on the skull, at the lateral

projection of the head CG. As suggested by this model, HIC values are different depending

on where they are measured, and although it may be unrealistic to change the bulk modulus
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of the brain, this series of simulations shows that the difference in internal material

constitutive models indeed affect not only the HIC measured at the head CG, but also that

measured at the outside of the head.

One exercise is intentionally omitted in this study; a validation of this model is not

performed. The reason for this omission is that this study deals with the comparison of yet

unknown aspect of the finite element model of a human brain—namely the constitutive

characteristics. There have been studies where “validations” of finite element models were

made [8, 56, 70] against cadaver experiments performed by Nahum et al. [57]. However,

without conclusive evidence of the accuracy and truthfulness of the brain rheological

characterization, and the lack of certain information in Nahum et al.’s experiments such as

the type and thickness of padding used between the cadaver heads and the impactor, it is

doubtful that any level of validation can be performed satisfactorily.

Therefore, the model is only certified to be as “accurate” as the geometry and available

material models allow it to be. It must be noted that the model used in this study lacks many

features that have been suggested to play large roles in affecting dynamics of the brain under

impact or impulsive loading—such as the falx and tentorium. Without those features the

model is expected to exhibit different dynamic characteristics from those observed in a real

head. However, the purpose of this model is not to predict actual head injury potential, type

or severity. Rather, it is being employed to assess the effects of material model selection on

certain parameters used as indicators for head injury, such as HIC, shear strain and pressure.



Chapter 5

Conclusions and Recommendations

5.1  Conclusions

In this study the effects of brain material constitutive relations on head injury criteria are

analyzed. The brain tissue is generally considered viscoelastic, even though many finite

element models in the literature employ simple linear elastic models for the brain. Therefore,

in order to clarify those models, a review on viscoelasticity is conducted first. A three-

parameter viscoelastic solid model in the transient dynamics finite element code, DYNA3D,

is validated against the theoretical derivations in terms of stress wave propagation.

Next, a simple spherical model simulating a human head is analyzed to examine the

adequacy of linear elastic models and differences in viscoelastic models for the brain. From

this phase of the study, it is concluded that different viscoelastic models do produce different

results in the shear response, and a certain linear elastic model can be substituted for a

three-parameter viscoelastic solid model under specific conditions: the Young’s modulus of

such a model must be equal to the short term modulus of the three-parameter viscoelastic

solid model, and shear strain rate is high enough in the scenario under consideration.

Finally, a slightly more realistic head model in terms of geometry is examined to scrutinize

head injury criteria. Five viscoelastic models found in the literature, four of which are based

on published experiments, are studied. The finding in the previous phase, which suggests a

possibility of replacing a three-parameter viscoelastic model with a linear elastic one, is

proven to be inapplicable for viscoelastic brain models with high decay constants.

The most revealing finding in this second phase of the study is that regardless of the material
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constitutive relations used for the brain, HIC is shown to be insusceptible. HIC is found to be
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sensitive to the change in bulk modulus of the brain, with a lower bulk modulus producing

higher HIC. A further comment on this phenomenon is made later.

As expected, different viscoelastic brain models produce different shear outcomes, even

though HIC values are nearly identical for all models. They are different not only in absolute

magnitudes at peaks, but also in general patterns; some models continue to be loaded when

others start to be unloaded. The short term moduli of the viscoelastic models have a strong

effect on the shear response, with “stiffer” models producing less strain and “softer” models,

more strain. It is also found that, though a parametric study, the bulk modulus of the brain

has a noticeable influence on the shear response as well.

Instead of focusing on particular locations in the brain, the entire brain is examined with an

arbitrary shear strain value as a threshold for injury. When such a threshold is assigned and it

is assumed that any elements that exceed that value are deemed “failed,” the percentages of

“failed” elements also differ greatly from model to model.

Pressure responses, as discovered in the previous phase with the spherical model, are

dominated by the bulk modulus of the brain. It is shown by a parametric study that lower

bulk modulus produces lower peak pressure values at both coup and contracoup sites.

As seen above, the bulk modulus of the brain has a profound effect on pressure, HIC and

even shear strain responses. However, modifying the bulk modulus of the brain appears to

contradict with a widely-accepted notion that the brain is just as incompressible as water. It is

recommended that such a change should only be done to accommodate internal structures

such as the ventricles which make the brain as a whole appear compressible. Therefore,

depending of the degree of simplification of the finite element model, any response

sensitivity, including the coup and contracoup pressure, to this property may simply be

theoretical.

Another finding regarding HIC is that hypothetical HIC values taken at different locations,

namely the center of gravity of the head and lateral projection of the center of gravity at the

side of the head, are different. The former location is normally used for dummies and

mathematical models, and the latter, for physical surrogates such as cadavers. Their effect is

undoubtedly caused by the differences in their physical locations, but it is shown that even

the internal constitutive properties, particularly the bulk modulus of the brain, have effects on
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their values. Even though, once again, alteration of the bulk modulus of the brain may be

fictitious, it still has a place in finite element analysis when simple head models are called

for. In such cases, its consequences should not be ignored altogether.

In short, if the bulk modulus of the brain is kept constant and different shear characteristics

are assigned, shear responses in the brain are dramatically affected while HIC values

calculated from those models are nearly identical. This appears to indicate that HIC may not

be strongly correlated to the shear strain injury theory. As the bulk modulus of the brain is

reduced in a parametric study, HIC is increased while the pressure peaks at coup and

contracoup are decreased; thus suggesting that HIC is not a good indicator of the pressure

theory, either.

This exposes the limitation of HIC as a general criterion for head injuries: it does not account

for the internal dynamics of the brain. In order to compensate for this deficiency, analysis

methods such as the finite element method must be used to gain better insights of the

dynamic events that take place within the brain.

5.2  Recommendations

The three-parameter viscoelastic solids examined in this study are derived from experiments

that span a wide range of strain rates, from a near-static experiments [19] to a relatively

high-rate experiments [11]. There is a good reason to believe that each of those models is

correct in its own domain, and probably only applicable in that particular realm of

experiments from which it is derived. A natural tendency is to assume that models derived

from experiments performed at higher strain rates are more suitable for analyses like the ones

conducted in this study, but it is obvious that more experiments are needed in order to gain

confidence.

The arithmetic average of those viscoelastic models introduced in the previous Chapter is

probably purely academic, and it is definitely not recommended to be used as the brain tissue

model for real simulations. The true brain tissue’s rheological behavior is most likely to

resemble a relaxation spectrum chart shown in Fung [17]. This chart indicates that there are

multiple peaks in an internal friction versus frequency plot for a metal, instead of one in the
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case for a three-parameter viscoelastic solid. Those multiple peaks correspond to internal

friction associated with internal structures of various scales. If brain tissue is assumed to

exhibit such characteristics, it may be represented by a chart shown in Figure 5.1.
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Figure 5.1   Superposition of Viscoelastic Models, Internal Friction and Magnitude of Complex Modulus
Versus Frequency

This figure is generated by taking arithmetic averages of loss tangents and magnitudes of

complex moduli from four of the viscoelastic models which have actual experimental basis.

Two peaks of internal friction that are supposed to be present between 10 and 100 rad./sec.

are overshadowed by one large peak due to VE5, but it is clear that this curve has a similar

characteristic to the one seen in Fung’s book. The magnitude of complex modulus also goes

through a transformation and now has multiple transition stages, instead of one for the case

of a three-parameter viscoelastic solid. In the Figure above, the first transition, albeit slight, is

seen around 0.1 rad./sec. followed by a large shift in magnitude around 10 rad./sec. If the

brain tissue is indeed such a material, those peaks should correspond to internal structures of

various scales such as cells, groups of cells or tissues. Mathematically, a material that

produces such characteristics can be constructed by a combination of three-parameter

viscoelastic solids, and perhaps it is more appropriate for the brain tissue than a single linear

three-parameter viscoelastic solid. It is suggested that such a material model for the brain be

constructed.
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Even though this study is mainly focused on the material constitutive relation of the brain

tissue, the geometry of the model is still expected to play a large role in influencing the

dynamics responses of the head. This model lacks such internal structures as the falx and

tentorium, which may exaggerate the internal movement of the head thus affecting the

discrepancy between HIC values measured at the center of gravity or even the side of the

head. It is desirable that, in conjunction with research on brain material characterization,

more effort should be placed in this area as well.

Finally, the limitation of HIC as a head injury indicator should be made clear. First, it is

suggested that the measuring methods of HIC be reviewed. This study shows that there are

differences between HIC values measured at the center of gravity of the head and its side.

The former location is used for a dummy and (frequently) mathematical models such as finite

element models, and the latter, even though it is hypothetical, for other physical surrogates

such as cadavers. The Federal Motor Vehicle Safety Standard 208 only specifies HIC

measured from the Hybrid III dummy, a protocol must be established when other types of

surrogates, either physical or mathematical, are used. Once such a protocol is instituted, then

a more objective comparison among all those types of subjects (dummies, cadavers and

mathematical models of both), and a more thorough examination of HIC and its relevance to

other injury criteria can be performed.

In addition, it is suggested that HIC is limited in terms of representing the internal dynamics

of the head. The finite element method can provide the information on dynamic events within

the brain since it appears that it is the only viable technique that is readily available and

capable in doing so. However, once again, firm knowledge the brain properties is crucial in

analyzing the engineering parameters that constitute various head injury criteria including

HIC.

When these recommendations are implemented, they eventually can lead to an improved HIC

or entirely new and better head injury criteria which are then used to design safer passenger

vehicles and protection devices.
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Appendix

VHD to I-DEAS Model

The images in the dataset were generated by placing the body in a mold into which a blue-

colored gelatin solution was injected and frozen to provide a supporting medium during the

cryomacrotome procedure. Cryomacrotoming is a system developed at the University of

Colorado Medical School, which is designed to mill the surface of a frozen specimen at a

precisely controlled increment. This system was capable of milling a frozen specimen

containing tissues at a 0.1 mm increment. For the Visible Human Male an increment of 1 mm

was selected. After each slice the newly-exposed surface was cleaned and retouched, and

digital and film images were captured. The resulting digital images were 2048 by 1216 pixels

(lateral and anterior-posterior directions, respectively) in 24-bit color. Each pixel corresponds

to 0.33 mm in the transverse plane, and each image is separated by the milling increment of 1

mm in the axial direction.

With a formal agreement with the National Library of Medicine, the images corresponding to

the head/neck region (approximately 230 images) are obtained.

The images are processed using Adobe Photoshop®, which can convert the raw image

format used in the original VHD images into its native graphics format. Since none of the

software packages available can distinguish different anatomical components without being

overwhelmed by details in the images, it is decided to trace the contours of major anatomical

components manually by erasing parts of the images, thus establishing clear boundaries

between various components.

Care is taken to ensure that the erased parts have no relevant internal structure (for example,

sinus cavities), and that no two juxtaposed components are erased unless they can be

considered one component. Some components, such as the subarachnoidal space, are

artificially enhanced by erasing or leaving slightly more area than what they appear to

131

occupy on the images. Specifically, the subarachnoidal space which surrounds the brain, is
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erased but the thinnest portions are expanded to at least 2 pixels wide even though they do

not appear clearly on the images (the brain appeared firmly pressed against the interior

surface of the cranium). Other sources such as CT scan images are referred to when certain

boundaries are not clear on the cross sectional images.

The converted images are traced using Adobe Streamline®, which scans bit-mapped images

such as ones produced by Photoshop, detects contours at a specified tolerance in terms of

colors and/or gray levels (darkness) and size (it can ignore features of certain size) and

generates vector images for Adobe Illustrator® where editing and final touching of contour

lines is performed. Photoshop images used to trace contours of anatomical components are

used as templates for adjustments. Using the templates vector lines and curves are edited to

faithfully represent the outlines of the anatomical components.

Completed vector images are imported into another graphics application Canvas from

Deneva, whose sole purpose here is to convert the vector images into IGES format. The

IGES (Initial Graphics Exchange Standard) is a file format developed for the interchange of

two-dimensional and three-dimensional drawings, widely used in various computer-aided

design programs.

Finally, those IGES files are imported into I-DEAS from Structural Dynamics Research

Corporation, a general-purpose computer-aided design software for three-dimensional model

and finite element mesh generation. After the files are read in, the alignment markers are

used to adjust the locations of the each cross section. After numerous image conversions, the

size of the alignment marker turns out to be 2.96 mm by 2.96 mm, which is approximately 10

% smaller than the original. However, it is decided to make a final judgment as to whether or

not the model should be scaled when the final volumetric and finite element models are

created.

From those cross sectional images, now represented as collections of curves in I-DEAS, five

major volumes are generated. Those are: Soft Tissues (exterior boundary of soft tissues),

Outer Skull (exterior boundary of the skull), Inner Skull (any interior cavities, including the

cranial cavity, in the skull), Brain (exterior boundary of the brain) and Brain Cavities (mainly

the ventricles).
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