

THERMODYNAMICS OF MATERIALS AND PHASE EQUILIBRIA

COURSE PROJECT

Thermodynamics Aspects of Ti & Ti Alloys Nitriding

Professor Mamoun Medraj Presented by Mohammad Sadegh Mahdipoor

OUTLINE

- Surface Engineering
- Diffusion Coatings
- Thermodynamic aspects of nitriding
 - Potential chemical reactions
 - Phase Diagrams analysis
 - Binary (Ti-N)
 - Ternary (Ti-N-Al & Ti-N-V)
- Diffusion kinetics of nitriding

SURFACE ENGINEERING

Sub-discipline of materials science dealing with the surface of solid matters

DIFFUSION COATINGS

- Diffusing various elements on surface of sample to have better properties due to new formed compounds and phases
 - Nitriding, Carburizing, Oxidation, Boriding

Different substrates: Steels, Cermets, Ti & Ti alloys (TiAl6V4)

Ti-N Binary system

• hexagonal close-packed (HCP) solid solution (αTi), with a wide range of compositions;

• the terminal **body-centered cubic** (BCC) solid solution (βTi), with a wide range of compositions;

• the **tetragonal** Ti₂N phase (ε);

• the **face-centered cubic** (FCC) TiN phase (δ), with a wide range of

✓ One peritectoid equilibrium: $\alpha(Ti) + TiN + Ti_2N$ \checkmark Two peritectic equilibria: L+ α (Ti)+ β (Ti) L+TiN+ α (Ti)

Weight Percent Nitrogen

Ti & N

The most probable reactions:

✓ Vanadium & Nitrogen

- ✓ Availability of reaction elements
- \checkmark Possibility of the reactions (thermodynamics, ΔG)
- ✓ Speed of the reactions (Kinetics)

✓ Effect of alloying elements on the Ti-N phase diagram

✓ Ternary phase diagrams Ti-Al-N

 $\tau_1 = Ti_3 AIN_{0.56}$ •Binary compounds: AlN (hexagonal), TiAl₃ (tetragonal), T2 = Ti2AIN0 82 $Ti_{5}Al_{11}$ (tetragonal), $TiAl_{2}$ (tetragonal), $Ti_{1-x}Al_{1+x}$ (tetragonal), Atomic Parant uninun Auomic Percent Mitrogen Ti_3AI_5 (tetragonal), TiAl (γ) (tetragonal), and Ti_3AI (α_2) (hexagonal), N-deficient mononitride $TiN_{1-x}(\delta)$ (cubic), Ti_2N TIÁ + AIN+TI (C4-type tetragonal) and δ' (ThSi₂-type tetragonal) Water TINA •Ternary compounds: $Ti_3AIN_{0.56}$ (τ_1) (CaTiO₃), $Ti_2AIN_{0.82}$ (τ_2), $Ti_4AIN_{0.29}$ (Cr₂AIC) L+AIN+TIAI3 Al-N-Ti isothermal (αTi) section at 900 °C TIÁI3 AS TIÁI2 S TiÁI(Y) S 0 ŝ S S ~ ŝ N. Durlu, USA, 1997 Atomic Percent Titanium $\tau_1 = Ti_3AIN$ $\tau_2 = Ti_2 AIN$ Al-N-Ti isothermal AIN+12+TIN1-x section at 1000 °C Monic Pecent Aunimum Monnic Percent Nillogen V. Raghavan, India, 2006 Hile TiAl3 +AIN+52 ゲナてィナてっ L÷AIN+TIAI-10 4+DAT-1 NIN. TINISTTINZ $\alpha_2 + \tau_1$ $\gamma + \tau_2$ aTi) 80 0 ŝ NO TIAI2 ည့ TiÁl(Y) သူ TiÁl3 %Ti3Al(α2) S (βŤi)

Atomic Percent Titanium

10

(βTi)^{Ti}

✓ The computed stability diagram at 1000 °C the partial pressure of N₂ against the mole fraction $X_{Ti}/(X_{Ti} + X_{AI})$

✓ At the left end (Al rich), nitrogen remains dissolved in liquid Al at low pressures. As the pressure increases,
AIN becomes stable.

✓ At the right end (Ti rich), nitrogen remains dissolved in (Ti) initially. As the nitrogen pressure increases, Ti_2N and TiN_{1-x} progressively become stable. The formation of τ_1 is very sluggish, and in real-time process applications, τ_1 may not form at all.

R. SCHMID-FETZER, 1994

✓ Ternary phase diagrams Ti-V-N

• Only a few studies of the phase constitution in the N-Ti-V system are available. The alloys were prepared under argon by arc melting the nitrified vanadium alloys.

DIFFUSION KINETICS OF NITRIDING

✓ Effect of alloying elements on nitrogen diffusion

• Nitrogen contents increase, get to highest value and then steep decrease is observed along the matrix. CpTi shows gentle decrease, but Ti alloys shows sudden decrease. Wide α shell region formed around TiN/ α Ti region plays a role of a diffusion barrier.

• The diffusion of nitrogen is retarded by composite effects of alloy elements, particularly due to some α stabilizing elements contained in alloys.

DIFFUSION KINETICS OF NITRIDING

✓ Nitrogen diffusion at Ti alloys (atmosphere pressure)

Although in general the kinetics of impregnation of titanium alloys with nitrogen are described by a parabolic rule, the rate of growth of the nitride case is **linear**, for a short distance.

CONCLUSION

- 1. By using thermodynamic parameters and equilibrium phase diagrams for a system (like $TiAl_6V_4$ nitriding), investigation of the equilibrium phases at different temperatures and different chemical compositions is possible.
- 2. According to binary and ternary phase diagrams of Ti, Al, V and N, it seems there isn't a lot of differences between equilibrium phases of pure Ti nitrided and Ti64 nitrided.
- 3. According to diffusion kinetics of nitrogen, the thickness of layersformed as a result of nitriding are different for pure Ti and Ti64.
- 4. Predicting the thickness of diffused layers is possible by using complicated modeling of nitrogen diffusion.

THANK YOU