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ABSTRACT

This report discusses two aspects of research on bulk metallic glasses The first is
an effort to increase their toughness by combining them with reinforcement to form a
composite. The second is the first direct measurement of plane strain fracture toughness
of bulk metallic glass.

Particulate and continuous fiber reinforced composite materials were fabricated
using bulk metallic glass as the matrix. The particulate composites combined W, WC, SiC
and Ta reinforcements in a matrix with the composition Zrs;NbsAl;0Cu;s.sNijz6.
Continuous fiber composites were fabricated using W and 1080 carbon steel (music) wire
reinforcement in a Zry; 55Ti13.75Cuy2 sNijoBex s matrix. In both cases the metallic glass
remained amorphous during processing.

Compressive strain to failure was greatly enhanced in both particulate and
continuous fiber composites by the formation of multiple shear bands. Tungsten
reinforcement provided the greatest improvement. The tungsten is wet well by the
metallic glass, and forms a strong interface.

Both particulate and fiber reinforced composite showed improved tensile
properties. Energy (per unit volume) to break increased 52% for 5% V¢, 150 um W
reinforced Zrs7NbsAl ¢Cu,s.sNij2¢ and 18% for 60% V¢ music wire reinforced
Zr4) 25Tii3.75Cui2.sNioBey s. Tightly bonded ductile particles and weakly bonded
continuous fibers proved best for enhancing the tensile properties of bulk metallic glass.

Fracture toughness of the unreinforced Zry; 25Tij3.75Cui2.sNijoBesz2 s bulk metallic

glass was determined using 3-point bend measurements and coherent gradient sensing



vii
(CGS). The measured fracture toughness is nominally 55 MPaVm. Once initiated, cracks
in the unreinforced metallic glass propagated in an unstable manner. Continuous fiber
reinforcement was demonstrated to arrest crack propagation in 3-point bend fracture tests

of bulk metallic glass matrix composites.
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CHAPTERI1
INTRODUCTION
1.1 Motivation and Objectives

Metallic glasses were discovered by Klement, Willens, and Duwez at the California
Institute of Technology in 1960'. Rapidly quenching a Au-Si alloy, using “splat-cooling”
to produce a cooling rate on the order of 10° Ks™, suppressed crystallization and produced
thin wafers of glassy metal. Over the next two decades glass forming systems based on
Fe, Pd and Ni were discovered™. Cooling rates of 10° to 10° Ks™ were required for all of
the glass forming alloys. The high cooling rates required samples to be thin, typically
about 50 um.

The thin samples limited the types of mechanical tests that could be performed on
these early glasses. However, the metallic glass exhibited remarkable behavior in the tests
that were performed. Tensile tests on ribbons revealed strength approaching theoretical
values, with o ~ E/50 *. Fracture toughness measurements of Fe and Ni based glasses
showed Kic values from 10 to 50 MPaVm (although, because of the thin sections, this was
not plane strain fracture toughness)™’. The elastic modulus of a Pd-Si glass was
determined to be 50 GPa*. These mechanical properties of the metallic glass, combined
with its low density, promised high specific strength and good specific stiffness.
Unfortunately, the material showed no room temperature ductility and failed due to shear
localization. Chemically etching cold rolled metallic glass ribbons revealed that the
material deformed from localized plastic deformation in a diffuse network of shear

bands®’.



In 1969 Chen and Turnbull made a PdsCusSis metallic glass with a critical
cooling rate of 10° Ks™ . This glass could be cast into 2 mm rods, which allowed more
extensive mechanical testing to be performed. Uniaxial compression tests revealed that
the glass behaved in an elastic-perfectly plastic manner. The material showed significant
compressive ductility prior to catastrophic failure due to fracture along shear bands’.
Kimura and Masumoto, attempting to complete the quasi-static constitutive
characterization of this alloy, determined that the material obeyed a von Mises yield
condition'®. There is, however, some contention over this. In 1989 Donovan performed
experiments on a PdyNisoP2o glass and found it to obey a pressure sensitive Mohr-
Coulomb yield criterion''.

In 1993 Peker and Johnson, at the California Institute of Technology, discovered a
metallic glass with a critical cooling rate of 1 Ks™ '2. This glass, which has a nominal
composition of Zry; 2sTiy3 7sCu12.sNijeBez s and goes by the trade name Vitreloy™ 1, could
be cast in evacuated quartz tubes with a diameter of up to 16 mm. This discovery was
followed by the work of Bruck, et al., who determined the quasi-static constitutive
behavior of this glass”. Bruck found the glass to obey a von Mises yield criterion.
Ductility, though still limited, varied slightly with the addition of up to a small percentage
of Boron and also with quench rate. Study of quasi-static and dynamic compression
showed that the glass was insensitive to strain rate'*. The mechanical properties of this
glass are listed in Table 1.1 "',

This bulk glass forming alloy shares a property with all other metallic glasses:

catastrophic failure occurs with the formation of shear bands, or narrow regions of intense
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Property Value
Young’s Modulus 96 GPa
Shear Modulus 34.3 GPa
Poisson’s ratio 0.36
Tensile yield strength 1.9 GPa
Strain to failure 2%
Plane Strain Fracture Toughness, Kic 55 MPa m'?
Hardness (Vickers) 534 kg/mm’
Coefficient of thermal expansion 10.1 x 10-6/°C
Density 6.11 g/cm’

Table 1.1 Mechanical Properties of Zrs 25T1;3.75Cu 2 sNijcBez, s Metallic Glass

plastic deformation. In tension, the metallic glass shows no inelastic deformation

prior to failure, while in compression it does show limited plastic deformation for some
geometries. Unfortunately, useful structural applications rarely afford the luxury of being
loaded only in compression.

This leads to the purpose of the work reported here. In an effort to increase the
toughness of the bulk metallic glass (or, at least to reduce the inclination of catastrophic
failure), composite maternials were fabricated using ductile metal wires and particles to
reinforce a bulk metallic glass forming matrix. The quasi-static mechanical properties of
the composite were then measured using compression, tension and 3-point bend tests.
1.2 Brittle Matrix Composites

The McGraw-Hill Dictionary of Scientific and Technical Terms (4" ed.) defines a
composite as “a structural material composed of combinations of metal alloys or plastics,
usually with the addition of strengthening agents.” The strengthening agents may be
ductile or brittle materials in the form of particles, short fibers (whiskers) or continuous

fibers, which are embedded in a polymer, metal or ceramic matrix.
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Composite materials are desirable because by combining materials one can obtain
properties that no single material can provide. For example, the most common composite,
glass reinforced plastic (or fiberglass), is ubiquitous because it is relatively inexpensive and
easily formed into complex shapes. Other types of composites exploit other properties;
for example, tungsten-reinforced copper is a metal matrix composite that combines low
thermal expansion with high thermal conductivity. Many engineering applications require
materials with high specific strength and stiffness, stability at high temperatures, high
energy absorption, e.g., bullet proof vests, and so on. While no single material can deliver
the desired properties, many composite materials can.

Ceramic materials have excellent resistance to harsh environments and high
temperatures, but, unfortunately, are brittle. This lack of toughness limits their use in
many applications. This motivates the fabrication of ceramic matrix composites; the
ceramic matrix contributing the high temperature properties, with the reinforcement
improving the toughness by providing resistance to crack growth.

Increases in crack resistance for a metal-reinforced brittle matrix material was
shown by Forwood and Forty'’ with sodium chloride c&stds reinforced by metallic gold
particles. Since then, numerous studies have shown that brittle materials (particularly
glass) can achieve increased strength, fracture toughness and elastic modulus when
combined with ductile reinforcements'®.

Most ductile-metal glass-matrix composite studies employed spherical particles.
Troczynski, Nicholson and Rucker demonstrated that strength enhancement depends upon

reinforcement volume fraction, rather than particle size”’. Their study showed



monotonically increasing strength with particle volume fraction (Vy), with a 2-fold increase
in strength in a silicate glass reinforced with 40% V¢ aluminum alloy particles. Benefits
diminished with V¢ > 50%. Similar strength improvements were reported in tungsten-
reinforced silica-glass”, vanadium-reinforced borosilicate glass®*, and tungsten-reinforced
sodium borosilicate glass®.

Most favorable strength enhancement occurs when the thermal expansion
coefficients of the reinforcement and matrix are equal’'**. Residual stresses imposed as a
result of differential thermal expansion caused asymmetrical behavior in tensile and
compressive strength”.

Toughness is also improved in glass reinforced \;«rith ductile particles. Jessen,
Mecholsky and Moore produced a 6-fold increase in fracture toughness of a 60% V¢ Fe-
Ni-Co reinforced borosilicate glass“. Krstic, et al., reported a 60x increase in toughness
for a sodium-silicate glass reinforced with partially oxidized aluminum particles®. The
increases in toughness apparently come from the cracks being guided to the particles (as a
result of residual stresses from thermal mismatch) then dissipating energy by plastically
deforming the particle. The most ductile particles provide the largest increase in
toughness®.

Krstic claimed that the largest increase in toughness occurs when thermal
expansion between glass and particle (a., and o, respectively) are matched, resulting in
low residual stress*’. When o, > o, the matrix is placed in compression and cracks bypass
particles. If a,<a. the cracks are attracted to the particle due to residual tensile stresses

in the matrix; however, the presence of tensile stress in the matrix lowers the load at which



it fails. This disagrees with the work of Donald, Metcalf and Bradly, who found best

improvements in strength when a matched, and largest increases in toughness when o, >

%18

Toughness is also affected by the bond between the matrix and reinforcement. In
brittle matrix composites reinforced with a brittle fiber, e.g., SiC in a ceramic matrix, an
increase in toughness results from the weakly bonded fiber being pulled away from the
matrix as the crack advances'. In a composite with ductile particle reinforcement,
however, a tightly bonded particle applies a closure traction to the advancing crack.
Energy is then absorbed by the particle as it plastically deforms, as illustrated in Figure
1.1. Several studies have demonstrated that tightly bonded ductile metal particles increase

19212425 [ arge increases in toughness may be available if the two

the toughness of glass
mechanisms (pull-out and plastic deformation) can be combined.
1.2.1 Metallic Glass Composites

As noted previously, metallic glasses fail catastrophically in a narrow band of large
shear strain and have no noticeable macroscopic inelastic deformation. If numerous shear
bands, rather than one, can be generated then the metallic glass may be able to undergo
significant deformation prior to failure. This motivates the fabrication of composites of
metallic glass. Metallic glass ribbon has been used as reinforcement in oxide glass/metallic
glass laminates®®, and also as the reinforced phase in ductile metal/metallic glass

composites™ >'>* To date no one has reported using a metallic glass as the matrix phase

in a composite.



The first metallic glass/ductile metal composites were reported by Cytron in

1982°'. He vacuum hot pressed short NigNbso metallic glass ribbons between wafers of

Figure 1.1 A crack in a brittle matrix, intersected by ductile particles. The
particles stretch and fail as the crack opens. The work of stretching contributes to
the toughness of the composite. The force-distance curve for the stretching of one
particle is shown inset (from Bannister, et al.)**.
superplastic aluminum at 450-500 °C. The reinforcement retained its glassy nature
through the processing. No mechanical tests were reported.

Vaidya and Subramanian fabricated a laminate consisting of a 25 um Fe-B-Si
(Metglas® 2605S-2) ribbon sandwiched between two 0.5 mm plates of Corning 7572
(PbO-Zn0-B,05-Si0,-Al,0;) glass®. This corresponds to a reinforcement volume
fraction of 2.5%. The edge notched specimen was tested in bending. They found up to a
6-fold increase in Kic, depending upon the metallic glass/glass bond strength. Weak

bonding provided the largest increase in toughness as a result of debonding and fiber pull

out.
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Leng and Courtney constructed brass (70% Cu,-30% Zn)/metallic glass (MBF-35,
Nig;B,Si7) laminates (V¢ = 7%) which were tested in tension and as edge-notched
specimens in bending”~***. The metal reinforcement allowed for multiple shear band
generation, resulting in enhanced strain to failure (from 1.3% for the glass alone to ~2%
for the composite), while suppressing catastrophic failure. Stable crack growth in the
bend specimens was combined with multiple shear bands forming at the crack tip to
provide enhanced deformation of the metallic glass. Similar results were found in tensile
and rolling tests performed by Alpas and Embury on a composite of NisSi;oB:12 diffusion
bonded to copper’.

1.3  Composite Models

Composite materials are composed of two (or more) phases with differing
properties. In a metal matrix composite, the difference in the constituents' respective
thermal expansion coefficients will cause residual internal stresses to form upon cooling
from the processing temperature. The combination of the mechanical properties of each
component, i.e., elastic modulus and Poisson's ratio, and the relative amount of each phase
present, determines the physical properties of the finished composite and the distribution
of stresses within the composite when a load is applied. Several models have been
developed to predict the composite properties based on the properties of each component.
Four models will be reviewed here: the slab model (or rule of mixtures)®”; the shear-lag
model***®, the coaxial cylinder model***”**, and the Eshelby equivalent inclusion
model*>****_ Each model has a regime of fiber length over which it is most applicable.

The slab and coaxial cylinder models are most effective for continuous fiber composites.



The Eshelby method is particularly applicable to particulate and short fiber composites.
The shear-lag model is useful on long fiber composites (or high aspect ratio whiskers)
when fiber-matrix bond strength and load transfer are taken into consideration. Finite
element analysis may also be used to calculate composife stresses as a result of load or
thermal strain, although this is not strictly in the realm of a physical model.
1.3.1 The Slab Model
The slab model is used to calculate physical properties of a composite made up of
continuous, aligned fibers (Figure 1.2). The model assumes that, for loads applied in the
axial (3) direction, the strain of the composite (&) is the same as the strain of the fibers (gr)
the matrix (€m): £ S &3, = &5, (1.1)
The applied axial force, F, is shared by the fibers and the matrix:
F,. =F, +F,, (1.2)

which may be expressed in terms of stress:

0;, 4. =0,,A, +0;,4, (1.3)
Dividing through by the composite area, A. and converting area fractions to volume
fractions (by multiplying each area by the length, /), gives the relationship for the axial
stress:

o = fos;, +(1-f)o,, (1.4)
where f represents the volume fraction of the reinforcement phase. The elastic modulus

may be obtained from 1.4 using Hooke's law:
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E, = ‘:k = f:” + (l'f)"sm =fE, +(1- )E, (1.5)
I m

This is the "rule of mixtures," and illustrates that the composite properties are simply the
weighted mean of the matrix and reinforcement properties, and will vary linearly with fiber
volume fraction.

The transverse properties are obtained in a similar manner, except that stress, not
strain, is assumed equal in both the reinforcement and the matrix. The composite strain is
then expressed as a weighted average:

£2c=f82f+(l—f)£2m (1.6)

and the transverse composite modulus is given by:

rs . a-nT
EZC —IVEI + E -l (17)

mo

While the axial model, under the equal strain assumption, gives results in good
agreement with experiment, the equal stress assumption in this transverse case is not as
reliable. Various other models have been developed to improve the accuracy, including
the Halpin-Tsai model*’, the Spencer model*® and the Eshelby model*’.

The slab model may also be used to predict shea-r moduli and Poisson contractions.
Shear modulus (G) is related to shear stress (7) and shear strain () in a manner similar to
Hooke's law:

7, =Gy, (1.8)
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ACTUAL 3 —L SLAB MODEL
1

l‘ : | \ 1 1 \\ .
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G31= Gy3 ‘/=/" | _GZl _GIZ
=Gy3 =G32 Va , =Gy3 = Gx
Mixed — : Equal Stress
G21=Gp2 J/' ‘/, ' Gs3)= Gl3.
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Figure 1.2 Comparison between real uniaxial, continuous fiber composite and
slab model (from Clyne and Withers)*’.

A shear stress, 7, (i = j) . refers to a stress acting in the / direction on the plane with a

normal in the j direction. A shear strain, ; is a rotation of the j axis toward the i

direction. In a continuous fiber composite the 1 and 2 directions are equivalent to each
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other, but not to the 3 direction, which leads to two shear moduli: G;:c = Gase = Grsc =

Gsic# Gae = Gize. The relationships for shear moduli are derived in a similar way those of

Young's modulus and transverse modulus:

-t
Gy, =| L+ =) (1.9)
- G, G,
and
G31c=./Gf+(l_f)Gm (1.10)
Poisson's ratio, v, is defined as the contraction in the j direction as a result of a
.. . . &€
strain in the i/ direction: v, =—-—" (1.11)
£

Under the equal strain assumption of axial loading, the contractions in the 1 and 2

direction follow a rule of mixtures model:

Vip = V3, = -j—z = fv, +(-f)v, (1.12)
From the interrelationship of elastic constants provided .by Nye*!, Z_;; = Z:z , which may
applied to find the Poisson contractions of a transversely loaded material:
Vae =Y, +(1_f)vm]% (1.13)

This will be inaccurate to the degree of error in calculating E£... It will be lower
than v;.. because, when loaded transversely, the fibers will strongly resist axial

contraction. This resistance to contraction will cause a substantial contraction in the



other transverse direction, so that v, will be high. An expression for v;;. is obtained by

considering the overall volume change experienced by the material* leading to:

E. (1.14)

3K

-4

Vae = 1= Va3 —

where K. is the bulk modulus of the composite, which may be estimated using the equal

K, K

m

S +MJ (1.15)

stress assumption: K, = [—

The bulk moduli of the fiber and matrix components may be calculated from their

respective elastic constants through the expression:

Kk=_E
3(1-2v)

(1.16)
The slab model provides good estimates of the elastic properties and component
stresses when loaded in the axial direction. The predictions are generally worse when
considering transverse loading. Its use becomes limited when applied to discontinuously
reinforced composites.
1.3.2 The Shear Lag Model
The shear lag model was developed to describe the behavior of composites with
aligned discontinuous fibers, and also to include the effects of matrix/fiber interfacial
strength on load transfer between the fiber and the matrix. Referring to figure 1.3,
balancing the force that comes from the shear stress acting on the fiber surface with the

force as a result of axial stress in the fiber leads to:

o.nri=t 2rrz (1.17)
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where o= = axial stress along the fiber length
7. = shear stress acting along the fiber-matrix interface at the ends of the fiber
r = fiber radius

z = shear stress transfer length (distance from each fiber end)

Rearranging (1.17) gives: o, = =222 (1.18)
r

As depicted in figure 1.4, when z = 0 there is no stress in the fiber; the stress gradually
builds up along the fiber length, reaching a maximum at z =/, /2, where [ is defined as
the critical length of the fiber. At this point, the fiber will either begin to deform plastically
or break. Replacing z with /.2 and d = 2r in equation (1.18) and rearranging gives a

critical aspect ratio for the fiber:

l O re
< = . = 1.19
d > 27 . ( )

~

This equation provides a measure of the bond strength between the fiber and the matrix.
For a given fiber strength, s- (at failure) will increase as the load transfer between the
matrix and the fiber (i.e. 1) decreases. Also, as the reinforcement aspect ratio decreases

the composite will reach a point at which it can no longer reach the strength predicted by

equation (1.18). Figure 1.4 illustrates that when ! = [. the average stress in the fiber (a f>

is: (af>=ff—(1[i£)—=a,./2 (1.20)

<
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Z Z+dZ

Figure 1.3 Schematic representation of shear lag model, showing variation of
stresses with radial position (from Clyne and Withers)®.

If / > [. the average fiber stress increases:

- /2 l
<Uj>=af o;f(c‘ )=O.f(1_4) (1.21)

Substituting (1.21) into (1.4) provides an expression for the strength of a composite
. . l ,
containing short fibers: o, = fcrf(l —E‘-I-) +(1- f)o,, (1.22)

where o, is the stress acting on the matrix phase when the fibers begin to either
plastically deform or fail.
As the weaker fibers fracture load is transferred to the broken fiber segments and the

unbroken fibers. As the fibers break the effective aspect ratio (s) decreases, resulting in a
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noticeable change in the composite stiffness, which can be noted by the change in slope of

the stress-strain curve.

151,

Y

=l —

Figure 1.4  Auxial stress distribution along ﬁber length when fiber length is (a)
equal to and (b) greater than critical length for reinforcement (from Hertzberg)*®.

The shear lag model has also been modified to include the effect of load transfer

on the ends of the fibers®. In the modified model, the fiber stress is given by:

[03)
-

o, = 55[5, -(E, - E. )cosh( )sech(ns)} (1.2

[ 2E, "
where n= [Ef (l " V,,,)ln(l/f)] (1.24)
and £ - Efll—sec;r(ns)]+Em (1.25)

The fiber radius is 7., and £_ is the axial composite strain.
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Substituting equation (1.25) into the rule of mixtures estimate for average

composite strength (eqn. (1.4)) gives an average fiber stress:

E . - E_ )tanh(ns
(0,)= E,ac[l—( /= E,)tank( )} (1.26)
E ns
which may then be used to estimate elastic modulus of the composite:
(E, - E)tanh(ns)
E, = -—L = 1- f)E 27
3¢ {fEfI: E,ns l"'( f) m} (1.27)

As the aspect ratio s becomes large, tanh(ns)/ns becomes small and the elastic
modulus approaches that for the continuous fiber composite. An aspect ratio s = 10/n
provides a reasonably small value of tanh(ns). For most metal matrix composites #~0.4,
so the aspect ratio necessary to maximize composite strength and stiffness is s ~ 25.

Composite failure begins with matrix (or fiber) plasticity or interfacial sliding.
Assuming a critical shear stress t;- and length z = L it can be shown that failure begins at a

composite strain of

_ 27, coth(ns)

1.28
Eer nk, (1.28)
which gives an axial composite stress of:
A _ 211‘ J
ch= ;ET{[ JE, +(1- £)E, |coth(ns -——Jns (1.29)

At this stress either interfacial sliding, fiber fracture or (fiber or matrix) plasticity should

begin, with a corresponding change in the slope of the stress-strain curve. This analysis
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does not include the effect of residual stresses imposed by the thermal contraction that
occurs when the composite is fabricated.

Figure 1.5 illustrates peak fiber stresses versus interfacial shear stress, and provides
an indication of the expected values of ...

The rule of mixtures and shear lag models both have utility in predicting composite
behavior. The iule of mixtures model is best applied to continuous fiber composites with
uniaxial loading, and the shear lag model preferred when used with discontinuous aligned
fiber composites. While the shear lag model may provide information on matrix-fiber
interface strength when combined with experimental evidence (i.e. fiber length as revealed
through microscopy), neither model reveals the nature of the residual stress that occur
upon cooling. Two models that do provide insight as to the nature of the residual stresses
are the coaxial cylinder model for continuous fibers, and the Eshelby method for short
fibers.

1.3.3 The Coaxial Cylinder Model

For continuous fiber materials with transverse isotropy, analytical solutions for the
elastic stress state may be obtained by treating the composite as a series of coaxial
cylinders. It may be used to calculate the stresses resulting from radial and axial loads and
temperature change (or both). The method uses the equations of elasticity which are
satisfied for the particular boundary conditions; papers ﬁave been published with solutions
for a four-layer structure with infinite surroundings’’, and for a composite with any

number of layers and a free outer surface®®, among others.
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Figure 1.5  Plots of the dependence of peak fiber stress as a function of critical
shear stress for the onset of interfacial sliding or (matrix or fiber) yielding (from

Clyne and Withers)®™.

Figure 1.6 is a plot of the stress distribution in 3_0% V¢ tungsten fiber composite
with a Vitreloy® I matrix. The radius of the fiber and matrix are chosen to obtain the
proper volume fraction. This figure shows the radial, hoop and axial stress developing in
the fiber and matrix resulting from a temperature decrease of 350°C.

The stresses predicted by the model will vary from the actual stresses because the
free-surface boundary condition is incorrect for a real composite.. However, the model
does provide insight as to the stress state in the composite; there are high shear stresses at
the interface in both the axial and hoop components. Also, in this case, the matrix is left
with a residual axial stress which will decrease the maximum load which can be sustained.
Although Vitreloy®™ 1 shows no inelastic behavior, other more typical matrix materials,

e.g., aluminum and titanium, would likely show plastic flow in these areas first.
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Figure 1.6  Fiber and matrix stress predicted as a result of cooling a 30% V¢
tungsten wire/Vitreloy® 1 matrix composite through 350° C. Solid lines represent
coaxial cylinder results; dashed lines apply to the Eshelby model.
1.3.4 The Eshelby Model
The Eshelby method is an elegant approach for analyzing the stresses in
composites. The technique investigates the internal stresses arising from misfit between
reinforcement ( particle, fiber, whisker) and the matrix. Although the method may be
solved analytically for ellipsoid-shaped particles, numerical solution can be used for other

reinforcement shapes. In this method, one imagines that the (ellipsoid) particle is removed

from the matrix, and replaced with an (oversized) elliptical particle made of the matrix
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material that, when inserted into the matrix, gives the same stress fields as did the original

particle.

The internal stresses (and strains) generated within a single inclusion as a result of

thermal mismatch may be calculated from:
-1 N
o, = c,,(s-l)[(c, ~C,)S+ c,] C,é' (1.30)

where &= thermal mismatch strain = (o - 0tm)AT

Cnand Cg are the stiffness matrices of the matrix and fiber, respectively

S is the Eshelby 'S’ tensor

The preceding equation applies to thermal mismatch with respect to a single fiber.
For modeling a nondilute system allowance must be made for a range of fiber volume
fractions, as provided by the following equation, in which thermal mismatch strain is

converted to a total transformation strain, £
¢ =—{(Ca-C,YS-7(5-1)]-Cm} " C e (1.31)

A similar expression is used to describe the total transformation strain when a load is

applied, which produces a corresponding applied strain, &*:
¢ =—{(Ca-C/)5-F(S-D]-Cm} (C.-C,)e*  (132)

In the elastic region, equations (1.31) and (1.32) may be summed to obtain the total

transformation strain.

Once the total transformation strain is determined, the mean stresses may be

calculated:
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(6), =-fC(S-1)¢ (1.33)
(6), =(1- f)C(S-1)¢’ (1.34)
The mean stress in the matrix and fiber are (o), and (o) ,, respectively. The mean

internal stress is defined as the difference between the average phase stress and the
external stress. When no external stress is applied, e.g., upon cooling, the mean and
average internal stress are the same.

Although the Eshelby method was originally developed for elliptical fibers, it has
been extended to include particles and long fibers through modifications to the 'S’ tensor.
Figure 1.6 includes stresses calculated for a 30% V¢ tungsten/V itreloy® 1 composite using
this method, for comparison to those calculated using the coaxial cylinder model. The
agreement between the models is quite good, particularly in describing the compressive or
tensile nature of the stress. It is this quality of the residual stresses that controls the path

of crack propagation and the resulting failure behavior of the composite.
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CHAPTER 2
PARTICULATE MATRIX COMPOSITES

2.1 Introduction

One of the bulk amorphous alloys developed at Caltech has the nominal
composition Zrs;NbsAl oCuys 4Nij26; the trade name is Vitreloy® 106. It has mechanical
properties common to other metallic glasses, such as high strength (~ 1.8 GPa), high
elastic limit (~ 2%), moderate stiffness (85 GPa), and a tendency to fail catastrophically
along narrow shear bands. In an effort to increase the toughness of this metallic glass
while (hopefully) retaining its desirable mechanical properties, it was combined with
particulate reinforcements to make metallic glass matrix/particulate composites. The
particles were imagined to interact with the propagating shear band, causing it to slow (or
stop) and deflect, thus delaying failure and improving toughness. Ductile metals have
been shown to improve the toughness in traditional oxide glasses'™.

The properties of Vitreloy® 106 and the various ceramic particles and refractory
metals used as reinforcement are listed in Table 2.1.
2.2 Experimental Procedure

Ingots of metallic glass, with a nominal composition of Zrs;NbsAl0Cuis.4Nii2s,
were prepared by arc melting elemental metals in a Ti-gettered argon atmosphere. Metals
of the highest available purity were used; the purity ranged from 99.7% for zirconium to
99.999% for copper (metals basis). These metallic glass ingots were combined with the
second phase particles by induction melting and mixing on a water cooled copper crucible

in a Ti-gettered argon atmosphere. The composite ingots were then induction melted in a
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Young's Shear Poisson's Thermal Nominal
Modulus (E) | Modulus (G) | Ratio (v) | Expansion (a) | Strength
(GPa) (GPa) (10°/°C) MPa _
Vitreloy® 84.7 30.8 0.376 8.7 18007
106 1200°
Tungsten"’ 411 160 0.280 4.6 6,~ 725
o, ~ 1000
Tantalum'® 186 69 0.342 6.5 G, ~ 350
Tungsten 690 278 0.24 442 345
carbide'®
Silicon 411 174 0.185' 6.5 35- 138 at
Carbide'® 25°C

'Self-bonded *Uniaxial Compression

Table 2.1

Uniaxial Tension

Properties of Vitreloy” 106 and selected reinforcing particles

quartz crucible and injected into a copper mold using argon at 1 atmosphere pressure.

Figure 2.1 is a schematic of the casting apparatus.

The castings were rods 3 mm in diameter and 25 mm long, and dogbone-shaped

ingots with the shape and dimensions shown in Figure 2.2. The rods, which were to be

used in compression tests, were cut to a nominal length of 6 mm using an Isomet saw

equipped with a diamond blade. The cut rods were mounted in a collet holder which was
clamped in a V-block, and the ends were lapped flat and square to the axis on SiC wet-dry
sand paper, with a final polish using 600 grit. The flatness and perpendicularity of the
faces was checked by clamping the polished rod in a micrometer and examining the gap at
40x magnification using a binocular microscope. The dogbone-shaped tensile test ingots
were ground in the gage length to the nominal thickness shown in Figure 2.2.

Quasi-static compression and tension tests were performed on an Instron 4204
load frame, at a cross head speed of 0.02 inches per minute. A compression test fixture,

as shown in Figure 2.3, was used to insure axial loading. The test specimens were
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compressed between tungsten carbide platens, the faces of which were lubricated to
reduce friction at the ends and prevent the sample from "barreling”. The flared ends of
the tensile test specimens fit into matching recesses in the tensile grips, which are attached
to the Instron machine via universal joints to guarantee axial loading. A calibrated

extensometer was used to measure strain in both compression and tensile samples.

clap

pump
'

Figure 2.1 Schematic of the mold-casting apparatus.
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Figure 2.2  Dogbone specimen used for tensile tests

Figure 2.3  Compression test fixture.
The fracture surfaces of the tested samples were examined using scanning electron

microscopy (SEM). Light microscopy was used to view general particulate distribution.
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The thermal expansion coefficient of Vitreloy® 106 was measured using a Perkin-
Elmer Series 7 thermomechanical analyzer. Elastic constants were measured using a
Parametrics Model 5052UA ultrasonic analyzer connected to an oscilloscope for data
analysis. Density was measured using the hydrostatic weighing technique’.
23 Results and Discussion

2.3.1 Processing

Many particle sizes and volume fractions were fabricated, as shown in Table 2.2.
Large particle sizes were more amenable to making high volume fraction (V¢) composites.
Fine particles tended to agglomerate and proved to be difficult to wet, thus composites
using these reinforcements typically had V¢ < 15%.

Figures 2.4a and 2.4b are optical micrographs of a 3 mm Vitreloy® 106/15% Vi
WC composite rod, taken at 50X and 400X magnification, respectively. Photograph
2.4a shows an even distribution of the WC phase. This kind of even distribution is typical
of that of all the composite samples. More details are visible in Figure 2.4b. There are a
few very small pits visible, particularly next to WC particles, although the total porosity in
the sample is minimal. The glass phase appears to be uniform, with no obvious crystals.
The matrix/particle interface is smooth, indicating a shallow interface layer.

Figure 2.5a is a X-ray diffraction pattern of Vitreloy® 106. It shows the features
typical of glass: one large, relatively broad diffraction peak, followed by shallower yet
broader second peak. Figure 2.5b is the diffraction pattern of a 5% V¢ WC/V itreloy® 106
matrix composite, with the diffraction pattern of WC superimposed on the same graph.

Note that the composite has diffraction peaks in the locations of the WC peaks; outside of
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Figure 2.4b  Optical micrograph of 15% WC/ Vitreloy® 106 composite. A few
small pits are visible, though there is no noticeable reaction layer (400X).
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Figure 2.5a  X-ray diffraction pattern of Vitreloy® 106.
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Figure 2.5b  X-ray diffraction pattern of WC particles and WC/Vitreloy® 106
composite.
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these areas it retains the expected glass diffraction pattern. This indicates that the matrix
remains amorphous during processing. X-ray analysis showed that all of the composites
tested retained an amorphous matrix.
2.3.2 Elastic Modulus

Elastic modulus of unreinforced Vitreloy® 106 was measured from the slope of the
stress-strain curve, Figure 2.6, and also by ultrasonics. The elastic moduli in tension and

compression are 83 GPa and 85 GPa, respectively.
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« == -Campresnion
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Figure 2.6  Compression and tension stress-strain curves from which the elastic
moduli of Vitreloy® 106 were obtained.

In the ultrasonic method dilatation and shear waves (¢, and cs, respectively) are
generated by attaching two tranducers to the surface of the sample. The time required for
the wave to travel across the specimen and return was recorded on the oscilloscope.

Dividing the sample thickness by 1/2 the time gives the corresponding wave speed.
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The elastic properties can be calculated from the measured wave speeds and

density using the following equations®:

¢ = 2
Yo,

¢, = A+2u
V P

where u is the shear modulus (G), 4 is Lame's constant, and p is the density. The elastic

u(34 +2u)

, and Poisson's
A+u

properties are then used to calculate Young's modulus, .£ =

A

ratio, v = m .

For Vitreloy® 106 metallic glass, cs= 2128 m/s, ¢, = 4769 m/s, and p = 6.8 g/cm’.

The elastic properties are:

4 =308 GPa
E =847 GPa
v=0.376

and are listed in Table 2.1. The value for elastic modulus as measured by the ultrasonic
technique is in good agreement with that obtained from‘mechanical tests.

The elastic moduli of the composite samples was taken from the slope of the
stress-strain curves. Figure 2.7 is a graph of the measured elastic moduli versus those
calculated using Eshelby's equivalent inclusion method’, as described in Chapter 1. The

figure shows generally excellent agreement between measurement and theory.
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As a second comparison, the measured elastic moduli for tungsten and silicon
carbide reinforced particulate composites are plotted in Figure 2.8, along with the Voigt
model (or rule of mixtures) as the upper bound, and the Reuss model (for transverse
loading) as the lower bound. Silicon carbide is included because it has the same elastic
modulus as tungsten. Despite the scatter in the results, .the measurements generally fall
within these bounds.

There is some variation in Young's modulus at 5% V; tungsten particles.
However, if elastic modulus is dependent upon particle size, this would imply that the

moduli fall in ascending or descending order with particle size. This is not the case with
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Figure 2.7  Calculated versus measured elastic modulus for Vitreloy® 106
composites



37

180

160 -
§ 140 + -
<]
o
=
S 120 - -
= L
_U!
a0
£ 100 | 4
c
> -

80 @ 150 0n Wparncie -1

& 3umWpwcie
3 ] @ %0 4on SiC pmeuct 4
so ' A 1 e L ) . 1 e
0.0 0.1 02 03 04

Volume Fraction, \'A

Figure 2.8  Measured elastic moduli plotted with the Voigt model (equal strain)
and the Reuss model (equal stress).

the data shown. According to Hasselman and Fulrath, dispersion shape has little or no
effect on Young's modulus in a two phase system (when the modulus of the inclusion is
greater than that of the matrix)®. If one interprets dispersion shape to include size, this is
consistent with the results of the Vitreloy® 106/particulate composite system.
2.3.3 Compression Tests

Compression tests were performed on particulate composites containing tungsten,
tungsten carbide, tantalum and silicon carbide. As illustrated in Figure 2.6, unreinforced
Vitreloy® 106 shows no inelastic deformation in tension, and only ~ 0.5% inelastic
deformation in compression. This is in agreement with the work done by Bruck, et al., on
Vitreloy® 1, a metallic glass with the composition Zrs; 2sTi13.7sCu12 sNijoBess s>, The results

of the compression tests are listed in Table 2.2, along with Aa,, the difference in thermal
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Aa Particle Matrix Failure Plastic
(0p—Qm) | residual residual . stress Strain to
x10°°C | stress (MPa) | stress (MPa) | (GPa) failure

5% WC -4.28 -182 9.6 1.82-1.92 5%

10% WC -4.28 -170 18.9 1.96 2.5%

5% W 4.1 -172 9 1.38 0.5%

(150 pm)

10% W 4.1 -162 18 1.92 8%

(150 pm)

15% W -4.1 -151 26.7 1.86 7%

(150 pm)

5% W 4.1 -172 9 1.75 0

3 um)

10% W 4.1 -162 18 1.92 0

(3 um)

10% Ta 2.2 -80 8.9 1.83 3%

(20<um<40)

10% SiC -2.2 -81 9 0.6 0

(37 um)

10% SiC 2.2 -81 9 1.9 0

(80 um)

20% SiC 2.2 -71 17.8 0.8 0

(80 pm)

Vitreloy”® 106 1.82 ~0-0.5%

Table 2.2 The difference in thermal expansion (ctp-0tm), calculated average particle

and matrix stress, and measured compressive failure stress and plastic strain to failure for
Vitreloy® 106/particulate composites.
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expansion between the particle and the matrix (a;-am), and the average residual stresses,
calculated using the Eshelby equivalent inclusion method. The thermal strain, er = AaAT,
was computed assuming the temperature change, AT = -400 °C. This is approximately the
difference between the measured glass transition temperature', T, = 420 °C and room
temperature, T ~ 20 °C.

The difference in thermal expansion, Ac, is negative in all the composites tested.
This has the effect of placing the particle in compression, and the matrix in tension. Asa
result of the residual tensile matrix stresses, cracks are directed toward the particles. The
particles then act to retard crack (or shear band) propagation.

The strength of the metallic glass composites was essentially the same as that of
the unreinforced metallic glass. The ultimate strength of Vitreloy® 106 in compression
tests is 1.82 GPa, while that of the strongest composite sample was 1.96 GPa, an increase
of just over 7%. The matrix is under a residual tensile stress in the composites; for this
10% WC sample, the residual tensile stress is 18.9 MPa (as calculated using Eshelby's
equivalent inclusion method), or about 1% the compres;ive strength of the unreinforced
metallic glass. This tensile stress would have to be overcome before actual compression
of the matrix would take place, but cannot, in itself, account for the increase in
compressive strength of the composite. Also, theory does not support the contention that
residual stresses cause a difference in tensile and compressive strength in particulate
composites. Whether this small difference is the result of the inclusion, or just scatter in

the experimental results would require more study to determine.
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Substantial inelasticity was shown by samples made from W, WC and Ta. Of
these, W showed the greatest amount of (perfectly) plastic behavior (~ 7%). Tantalum
and WC showed comparable amounts (~ 3%, Figure 2.9). The compression samples
made from SiC particles and 3 um W particles showed no plastic behavior (Figure 2.10).

It is notable that the samples reinforced with W had similar strength regardless of
particle size; 10% V¢ W made with 150 um particles had a (compressive) strength of 1.92
GPa, the same as that of samples with the same volume fraction of W reinforcement made
from 3 um particles. This is consistent with the findings of Troczynski, et al., who found

strength of Al reinforced soda-lime-glass in bending to be independent of inclusion size''.
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Figure 2.9  Quasi-static compression tests on Vitreloy® 106 composites
reinforced with Ta, W, and WC. A 15% V¢ W provided the greatest strain to

failure.
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Figure 2.10 Quasi-static compression of Vitreloy® 106 composites reinforced

with SiC and 3 um W particles. These show no inelastic deformation.

The toughening of brittle materials with the addition of ductile particles is generally
attributed to the particle applying a closure traction to the advancing crack front, or to
crack deflection'?. In compression, however, there is no crack opening. The toughening
in the metallic glass systems in compression is because the particles resist shear loading,
and hence retard shear band propagation in the material. Because the matrix experiences
an average tensile stress when a, <o, cracks (or shear bands) are directed toward the
particles. As the load on the specimen increases, shear bands form and begin to
propagate, until encountering a shear resistant particle. The stresses, which are relieved
during shear band propagation, begin to build up again, generating additional shear bands

in the sample. Multiple shear band formation in a compression sample can be seen in
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Figure 2.11, an SEM photograph of the side of a WC compression sample. Eventually the
particle will fail, and the shear band will continue to propagate.

This behavior of the shear band slowing when encountering a particle, followed by
fast fracture when overcoming the obstacle, is visible in Figure 2.12, an SEM photograph
of a W inclusion surrounded by a metallic glass matrix. Much has been written regarding
the "veinous" pattern in the fracture surface of a metallic glass'’. In the photograph, one
can see clearly that the flow is from upper left to lower right; the particle is partially
covered with the metallic glass, which appears to have flowed as a very viscous liquid
across a portion of the particle when the shear band reinitiated. The area to the upper left,

which is characterized by a the veinous dimples, is the area where the shear band would be

Figure 2.11 Multiple shear band formation in a WC/Vitreloy® 106 composite
compression sample.
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Figure 2.12  Fracture surface of a W/Vitreloy® 106 composite compression
sample. Arrow indicates direction of shear band propagation.

most impeded. The area to the sides and in front of the particle are smooth; this is
interpreted as an area of fast fracture, when the shear band over comes the impediment of
the particle. This is consistent with the findings of Fortwood and Forty, who studied the
interaction of cleavage cracks with inhomogeneities in NaCl crystals™.

Examination of Figure 2.12 also reveals that the W failed in a brittle manner: the
surface shows no microvoids or other evidence of ductile fracture. In the composite the
particle is in a state of residual compression, and highly constrained by the matrix.
Particles tend to fracture rather than deform because of this constraint. As can be seen in
Figure 2.13, the compression samples eventually fail along shear bands oriented at 45

degrees to the axial loading direction.
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Figure 2.13  Vitreloy® 106 compression sample, which shows the 45 degree
shear band failure typical of metallic glass.

2.3.4 Tensile Tests

Tensile tests were performed on dogbone-shaped specimens as shown in Figure
2.2. Strain was measured using a calibrated extensometer. As may be seen in Figure 2.6,
the unreinforced Vitreloy® 106 tested had a tensile strength of 1.2 GPa, which is 33% less
than the compressive strength. This difference indicates that the yield behavior of
Vitreloy® 106 is anisotropic.

Tensile tests were performed on composites of Vitreloy® 106 and tungsten,
tungsten carbide and silicon carbide. The quasi-static tensile stress-strain curves are
shown in Figures 2.14 and 2.15. The stress-strain curves for the W composite samples

show noticeable nonlinearity when compared to the essentially linear behavior of
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unreinforced Vitreloy™ 106. The nonlinearity of the samples reinforced with WC and SiC
is not as pronounced.

The strength of the composites reinforced with W is greater than that of
unreinforced Vitreloy® 106, while the strength of composites containing WC and SiC is
less. However, because there is considerable scatter in the mechanical behavior of metal
matrix composites, it is premature to draw any conclusions. From simple strength models,
e.g., the rule of mixtures,

o, =fo,+(-f)o,
one would expect the strength of composites using WC.and SiC to be less than the

unreinforced matrix. The yield strength of W is substantially higher than that of the
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Figure 2.14 Quasi-static tensile stress curves for Vitreloy® 106 and W/
Vitreloy® 106 composites.
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Figure 2.15 Quasi-static tensile stress curves for Vitreloy® 106 reinforced with
SiC and WC.

ceramic particles, and the constraint imposed by the matrix on the particle due to residual
thermal stress delays the onset of plastic deformation of the particle.
The energy per unit volume required to cause material failure may be determined

by integrating the stress-strain curve:

7 I o(epe

m
Numerical integration of the tensile stress-strain curves gives an specific energy for failure
of Vitreloy® 106 of 873 MJ/m’. The specific energy for failure of the composite
reinforced with 5% W (150 um particles) is 1329 MJ/m’, an increase of 52%. The

ceramic particle reinforcements did not provide any significant increase in toughness.
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Silicon carbide reinforced metallic glass showed an increase in area under the stress/strain
curve of 5%, while the WC composite was substantially less.

Figure 2.16 is an SEM photograph of the unreinforced Vitreloy® 106 tensile test
specimen. Although the fracture surface undulates some, and is not perfectly shear, it
does propagate at the ~ 45 degree angle typical of metallic glass. The fracture surface
along the lower right edge is shown in figure 2.17. It is relatively smooth along the edge,
becoming more veinous as it propagates inward, then followed by another smooth area.
This seems to be the pattern in metallic glass fracture surfaces: areas of fast fracture,
characterized by a relatively smooth surface, connected by areas of slower crack growth,
indicated by a heavier veinous pattern. This fast/slow, smooth/rough pattern repeats itself
across the fracture surface.

Now examine Figure 2.18, an SEM photograph of the fracture surface of a 5% W
reinforced tensile specimen. It is characterized by what appear to be shear lips on both
edges of the sample, where the shear band undergoes a sharp change in direction. Shear
lips are never present on unreinforced metallic glass. The center section on the left hand
side of the sample appears flat and smooth, but the right hand side is very coarse, with
many protrusions. Figure 2.19 is a micrograph of the shear lip at the bottom right of the
specimen, where the crack changes direction. In other (i.e. oxide) glasses, fracture
initiation is characterized by a very smooth, shiny mirror area, which transitions to areas of
increased roughness, called mist and hackle'. If this fracture behavior is assumed in
metallic glass, then the fracture begins in the smooth central region of the composite

tensile sample, with the area in the shear lips being the last to fracture.
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Figure 2.17  Close up of tensile fracture surface of Vitreloy® 106 sample shown
in figure 2.16.
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Figure 2.18 Tensile fracture surface of 5% V¢ W/Vitreloy® 106 composite.

Figure 2.19 SEM photograph of area around shear lip of 5% V¢ W/ Vitreloy®
106 tensile sample in figure 2.18. Note the fractured W particle in the shear lip.
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The crack bisected the W particles. The particles appear to have fractured,
because their fracture surfaces look flat, as if the result of cleavage, rather than ductile
failure by microvoid coalescence. It appears that the particles slowed initial crack
propagation. Figure 2.20 is a SEM micrograph taken from the rough section in the right
center of the sample; Figure 2.21 is the same area at higher magnification. The particles in
this area either pulled out, as can be seen by some of the dimples in Figure 2.20, or were
retained in the matrix and fractured, as is visible in Figure 2.21. The fracture appears to
have progressed from right to left in the photograph, judging by the way the metallic glass
matrix covers some of the particles in the lower right hgnd portion of Figure 2.21.

The toughening in this case is attributed to two factors: the restriction the particles
place on the propagating shear band, causing it to slow and change direction, and also
increase in the surface area over which the fracture occurs. In their paper on the fracture
behavior of laminated metal-metallic glass composites, Leng and Courtney describe two
factors that explain toughening in these systems'*. First, that the critical stress for shear
band formation in the composite is larger than the monolithic glass because the
particle/matrix interaction provides an additional restraint to shear band deformation.
Second, that, if the shear stress remains constant and equal to that of the monolithic glass,
the energy increment required to fracture a composite, due to the additional surface area,
is on the order of 50 percent higher than that of the monolithic glass. This value is

consistent with the results of the tensile experiment.
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Figure 2.20 Rough section of fracture surface in 5% W/ Vitreloy® 106 tensile
sample shown in Figure 18. Note that particles either pull out or fracture.

10 LM e

Figure 2.21 Higher magnification SEM photograph of Figure 2.20. Particles
show no ductile failure behavior.
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2.4 Conclusions

1. Composites using ceramic and refractory (ductile) metal particles and having a metallic
glass matrix can be fabricated successfully.

2. The matrix remains glassy with processing.

3. The elastic modulus of the composites falls within the values predicted by theory.

4. The compressive strength of the composite samples is approximately the same as that
of the unreinforced metallic glass.

S. The addition of ductile particles increases the strain- to failure of compression samples.
The large plastic strain results from the formation of numerous shear bands.

6. The tensile strength of unreinforced Vitreloy® 106 and composites using it as the
matrix material is approximately 2/3 of the compressive strength.

7. Ductile particles increase the toughness of the metallic glass in tension by obstructing
shear band propagation, and by generating additional fracture surface area.
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CHAPTER 3
CONTINUOUS FIBER COMPOSITES
3.1 Introduction

In 1993 a class of bulk glass forming metals was developed at Caltech by Peker
and Johnson'. These alloys may be fabricated with minimum dimensions in centimeters,
which allows valid mechanical tests to be performed on these materials. Some basic
physical and mechanical properties have been measured on a specific beryllium bearing
bulk metallic glass with a nominal composition of Zra125Ti13.75Cui2sNioBex s~ The
properties physical properties of this bulk metallic glass; which has the trademarked name
Vitreloy® 1, are listed in Table 3.1.

Despite the remarkable properties of bulk metallic glasses such as Vitreloy® 1, all
metallic glasses fail by localized shear bands which lead to catastrophic failure. Early
studies on metallic glasses showed that samples which are in a state of plane stress fail on
one dominate shear band* and showed little macroscopic inelastic behavior while those in
constrained geometries fail with multiple shear bands in an elastic-perfectly plastic
manner’.

Various researchers reported the feasibility of making metallic glass reinforced
composites, which would result in improved mechanical properties and high structural
efficiency and cost effectiveness’. Vaidya, et al., demonstrated that metallic glass ribbons
could be incorporated in an oxide glass matrix to improve the toughness of the matrix via
fiber debonding, pullout and fracture’. Leng and Courtney*'® have done extensive work

combining metallic glass ribbons (e.g. Nio;B,Si;) with ductile metals (e.g. brass) in layered
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composites. They have found that the constraint imposed by the ductile metal allowed for
the formation of multiple shear bands in the metallic glass, which promoted stable crack
growth and extended strain to failure of the composite. Thus it was demonstrated that
metallic glass ribbons could be incorporated as the reinforcement in a ductile metal matrix
to obtain a composite with enhanced properties.

This leads to the work reported in this chapter. If the properties of metallic glass
ribbons can be improved by incorporation in ductile metal matrix, can ductile metal fibers
be used to increase the toughness of a bulk metallic glass? In this chapter I report the
result of our efforts to fabricate continuous ductile fibers into a metallic glass matrix of
Vitreloy® 1.

Two kinds of metal fibers were chosen in this effort: tungsten and 1080 steel
(music) wire. Initially a large number of materials were evaluated, including Ni, carbon
fibers, SiC, Ta, Cu, W and steel. Tungsten was chosen because of its high melting
temperature; at the processing temperature it showed no adverse reactivity with the
metallic glass matrix. It also has a coefficient of thermal expansion (CTE) of 4.5 x 10°°C,
significantly lower than that of the glass, which is nominally 8.5 x 10%/°C. Steel was
chosen because it also seemed little affected by the processing and did not promote
extensive crystallization of the matrix. The 13 x 10°/°C CTE of steel provided a nice
contrast to the very low CTE of tungsten. The remaining reinforcement matenials were
not used for one of two reasons: either they reacted significantly with the matrix material,

or they did not wet well enough to make samples with good mechanical integrity.
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Property Vitreloy” 1 | Tungsten | Music Wire
Young's Modulus 96 410 207
GPA
Shear Modulus 343 160.5 77.9
GPA
Poisson's ratio 0.36 0.28 0.29
Tensile yield 1900 1600 2100
strength, MPa
Tensile strain to 2% 2% 1.7
failure
Plane strain fracture S5 12-14 20-28
toughness, Kic,
MPaVvm
Hardness (Vickers) 534 ~650 ~670
kg/mm’
Thermal expansion 85 45 13
coefficient, x 10°/°C
Density (g/cm’) 6.1 19.3 7.9

Table 3.1 Physical properties of Vitreloy® 1 and the selected reinforcements,
tungsten and 1080 steel (music) wire.

3.2 Composite Sample Preparation
The focus of this study was continuous-fiber, ductile-metal reinforced composites.
The wires were 254 um diameter tungsten and 1080 steel (music) wire. The matrix
material was a bulk metallic glass with the composition Zry; 25Ti13.7sCuj2.sNieBe »5; this
alloy has the trade name Vitreloy® 1.
We first prepared ingots of Vitreloy® 1 by combining the constitutive elements in
an induction furnace under a titanium-gettered argon atmosphere. The starting metals

were high-purity (99.5% metals basis or better) research grade material.
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The wire was straightened and cut to 5 cm lengths. The tungsten was
ultrasonically cleaned in acetone, followed by ethanol. A 50/50 solution of phosphoric
acid and water was used to remove surface rust from the music wire, followed by
ultrasonic cleaning.

The composite samples were cast in the apparatus shown by the schematic in
Figure 3.1. The reinforcement material was placed in the sealed end of a 7 mm i.d. quartz-
glass tube. A neck was formed in the tube about 1 cm above the reinforcement, and then
ingots of the matrix material were inserted into the tube. The constriction helped to
minimize premature contact and thus excessive reaction between the melit and the
reinforcement. The open end of the quartz tube was then connected to a three-way
switching valve; the tube could thus be evacuated with a roughing pump or pressurized
with argon.

Prior to processing, the tube was evacuated and then purged with argon,; this cycle
was repeated several (~ 4) times. Following the final purging process, the tube was
evacuated for a minimum of one hour in an effort to remove any trapped gas.

The sample tube was heated in a resistive tube furnace with temperature feedback
control. The initial heating stage was at 1228 K+/- 20 K. The variation in temperature
comes primarily from the temperature profile in the furnace. The sample was held at this
temperature for 15 minutes. The temperature was then lowered to 1078 K +/- 5 K. When
the furnace reached this target temperature, a positive pressure of 207 kPa argon was

applied above the melt. These conditions were held for 30 minutes to allow infiltration of
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the molten matrix material into the reinforcement. Then the sample was quickly removed
from the furnace and quenched in brine (8 wt% NaCl/H,O solution).
Samples were made with volume fractions of fibers of 10, 15, 20, 40, 60, and 80%.

The castings were cut to length (~ 5 cm) then centerless ground to the desired diameter

BMG Ingot _
(matrix material)

Reinforcement |
Vacuum Argon
Pump Supply

0000000000

Figure 3.1  Schematic of the apparatus used to cast Vitreloy® 1 matrix
composites.
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(nominally 6.25 mm). Compression samples were cut to a length that provided an aspect
ratio of 1.5 to 2. Each compression specimen was mounted in a collet holder which was
clamped into a V-block, and the ends were ground flat and perpendicular to the loading
axis. The final lapping was done using 600 grit SiC wet-dry sand paper. A gage length
of ~20 mm length and 3 mm diameter was ground into each tensile specimen, along with
the threads on each end. Figure 3.2 is a photograph of the as prepared compression and

tension samples.
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Figure 3.2  As prepared Vitreloy® 1 composite compression and tension
samples.

In the process of making samples, it was found that a substantial amount of gas
was evolved from the specimens reinforced with music wire. We determined that the gas
was hydrogen that was absorbed in the rust removal process. To remove the hydrogen,

the wires were baked at 973 K for 2 hours prior to fabricating composite specimens.
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Although this baking temperature is less than the 1063 K annealing temperature of
1080 steel'!, it is still 47% of the melting temperature, and recovery, recrystallization and
some grain growth are expected, and should produce changes in the as drawn mechanical
properties of the music wire. In addition, the processing temperatures are in the
austenitizing range for 1080 steel; the elevated temperature followed by quenching
effectively heat treats the steel wire.

By contrast, the properties of the tungsten are not affected by the fabrication
temperature. The peak processing temperature, at 1198 K, is substantially less than the
3683 K melting temperature of pure tungsten, and no significant recrystallization or grain
growth is expected.

3.3 Experimental Procedure

The porosity of the prepared samples was evaluated in two ways. First, it was
found using hydrostatic weighing combined with knowledge of the fiber volume fraction
measured by analyzing backscatter SEM micrographs. It was also ascertained using a
microscopic analysis in which porosity of a sample cross section is measured, then
extrapolated assuming homogeneity as outlined in the Annual book of ASTM standards'?.

The composite samples were sliced normal to the fiber orientation. We obtained
x-ray diffraction patterns of the slices using an Inel diffractometer with a position sensitive
detector and Co Ka radiation (wavelength = 0.1790 nm). The cut surface was then
polished and analyzed with scanning electron microscopy (SEM).

Tensile tests were performed on the as received reinforcing wires using an Instron

4204 load frame and a displacement rate of 0.02 inches per minute. The wires were held
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between soft metal pads which were clamped in tensile test jaws. The tensile test jaws
were attached to the load frame via universal joints to guarantee axial loading. Strain was
measured using a calibrated extensometer.

The temperatures at which the samples were fabricated was high enough to affect
the properties of the steel wire. To evaluate the change in the microstructure of the steel
wire, steel reinforced samples were sectioned perpendicular to the fiber axis, mounted in
an epoxy mount and polished, followed by an etch using Nitol (2% nitric acid/ethanol
solution). The samples were then analyzed using microscopy, and Vickers microhardness
was measured.

An Instron 4204 load frame was used to perform quasi-static tensile tests, and
compression tests were performed on an MTS 319.25 axial-torsional load frame. Both
tensile and compressive strain was measured using a calibrated extensometer. The tensile
strain rate was 0.02 inches per minute, and the compressive strain rate was 0.01 inches per
minute. The compression samples were held between two WC platens in a loading fixture
designed to guarantee axial loading. The ends of the compression samples were lubricated
to prevent "barreling” of the sample. The tensile specimens were held in threaded grips;
the grips are fitted with a universal joint at their point of attachment to insure axial
loading.

Following testing, fractured samples were examined using scanning electron

microscopy (SEM).
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3.4 Experimental Results and Discussion
3.4.1. Wire Tensile Tests

Tensile tests were performed on the as received steel and tungsten wires, and are
shown in Figure 3.3. The wires failed (repeatedly) at the point at which they entered the
grips. As already discussed, the steel undergoes microstructural changes at the processing
temperatures, and the mechanical properties of the music wire following processing
undoubtedly differ from that measured in the tensile tests. The strength of the music wire
prior to processing is 2.5 GPa; following processing it decreases to 1.8 GPa (extrapolated

from hardness data).
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Figure 3.3  Tensile stress-strain curves for 254 um (0.010 in.) tungsten wire
and 1080 steel (music) wire.
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3.4.2 Properties of the As Processed Steel Wire

Vickers hardness tests were performed on the steel wire in the composite. The
Vickers hardness is H,=530, which corresponds to a Rockwell C scale hardness, R.=51.
Using tables in Metals Handbook'', the strength was estimated to be 1825 MPa. Figure
3.4 is an optical micrograph of the steel wire, at 400X. The microstructure was
determined to be predominately bainite, with a small amount of martensite; this is
confirmed by data in Metals Handbook.

3.43 Porosity Measurement
The quality of the composite samples varied with the type and amount of

reinforcement. The tungsten wire wet better than the steel wire, and high fiber volume

Figure 3.4  Micrograph of as processed 1080 steel wire embedded in Vitreloy®
1 matrix. Microstructure is bainite with some martensite. (400X, Nitol etch)
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fractions seemed to infiltrate better than low volume fractions, particularly with respect to
samples reinforced with music wire.

Porosity was measured on tungsten reinforced composites with volume fractions
of 60% and 80%. The apparent porosity determined by SEM micrographs was less than
1%. The porosity obtained by hydrostatic weighing combined with measurement of V¢ by
microscopy was 3% + 1%.

3.4.4 Fiber-Matrix Interface Analysis

X-ray diffraction patterns of the composite samples is shown in Figure 3.5, along
with the pattern from the unreinforced matrix material (Vitreloy® 1). The Vitreloy® 1
shows the broad diffraction peak typical of a fully amorphous structure. At low fiber
volume fractions this amorphous diffraction pattern is superimposed with the bcc peaks of
the reinforcing wire. The amorphous diffraction pattern is obscured by the fiber peaks at
high volume fractions. Some small crystalline peaks are visible at low fiber volume
fractions.

The interfacial region of the tungsten and steel reinforced composites are shown in
Figures 3.6 and 3.7, respectively. Note the presence of small crystals (the angular areas of
dark contrast) next to the wires. There was typically 1% to 5% Vi crystalline material in
the matrix, depending on the sample. Crystals in the steel samples tended to be carbides,
which formed next to the wire. The details of the crystals in the tungsten samples has not
yet been determined. The thickness of the interface layer on both types of reinforcement is

approximately 250 nm.
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Figure 3.5  X-ray diffraction pattern for uniaxially reinforced bulk metallic glass
matrix composites. Co Ka radiation (1 = 0.17902 nm) was used. Percentages are
volume fraction of reinforcement.
3.4.5 Residual Stresses Analysis
Metallic glass metal matrix composites (MMC) are fabricated at a high
temperature (800 °C) then cooled to room temperature. This temperature difference, AT,

isequalto: AT =T¢T;, where T, and T are the initial and final temperatures,

respectively. Vitreloy® 1 becomes too viscous to flow below the glass transition.
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Figure 3.6  SEM micrograph in backscatter mode. Sample is 80% V¢ W wire
in Vitreloy® 1 matrix. Lighter regions are W wire, darker region is matrix. Very
dark crystals are visible in the matrix.

Figure 3.7  SEM micrograph of 60% V steel-wire-reinforced Vitreloy® 1
matrix composite, taken in backscatter mode. Dark circular areas are steel wires.
Small angular dark area next to wire is carbide crystal.
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temperature, T, = 680 °C. Therefore, AT = 300 °C - 680 °C, or -380 °C. The coefficient
of thermal expansion (CTE) of the matrix is denoted a.,, and that of the fiber is a. If Ot
# ay, residual strains (and hence stresses) equal to: € = AaAT build upon cooling.
These residual stresses typically lower tensile yield and ultimate strengths, as well as

reduce fracture toughness'*

The residual stress in the matrix affects the path of crack propagation. If Aais
negative (a0l < 0, €.g., tungsten wire), then the residual hoop and axial stress in the
matrix is tensile, while the radial stresses in the matrix and fiber, and the axial and hoop
stresses in the fiber, are compressive. This tensile matrix hoop stress encourages cracks to
propagate toward the reinforcing fibers'”. On the other hand, if Act is positive, (ale-0tm > 0,
e.g., music wire), the residual hoop and axial stresses in the matrix are compressive, while
the residual hoop and axial stress in the fiber, as well as the radial stresses in the fiber and
the matrix, are tensile. Compressive hoop stress in the matrix deflects cracks away from
the fibers, typically toward the fiber/matrix interface'®. This will encourage delamination
and fiber pull out because the fiber is not as tightly gripped by the matrix as when Aa is
negative. Cracks will propagate perpendicular to the fiber axis in both cases, since the

loading axis is parallel to the fiber.

The coaxial cylinder model was used to calculate the residual stress due to cooling
in a metallic matrix composite. Mathcad® was used to assemble the equations provided in
references'™ '®. The sequence of equations used in the calculations is listed in Appendix I.

Figures 3.8 and 3.9 show the results of the calculations.
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To calculate the stresses due to an applied (compressive or tensile) applied load, in
addition to those from thermal contraction, the Eshelby equivalent inclusion method was
used. The appropriate equations for this method were also assembled on Mathcad®, and
are included in Appendix II.

Unlike other MMC matrix materials (e.g. aluminum), metallic glasses do not have
dislocations, and cannot undergo extensive plastic deformation. The wires, however, have
limited ductility. It is assumed that yielding (in tension or compression) begins when the
von Mises stresses on the wires reached the wire yield strength. The appropriate
equations were included to calculate the von Mises stresses on the wires. The load was
varied and the fiber von Mises stresses were evaluated until the fiber yield stress was
reached. This method was used to determine the load at which inelastic deformation
begins.

3.4.6 Elastic Modulus

The slope of the stress-strain curve provided thé elastic modulus, E, for each
composite. Figures 3.10 and 3.11 show the measured elastic modulus for the tungsten and
music wire composites, along with the modulus calculated using the rule of mixtures. The
rule of mixtures is a simple weighted average of the elastic moduli of each component:

E. = ViEr~ (1-V)E,
where the subscripts ¢, fand m represent the composite, fiber and matrix, respectively, and

Vyis the fiber volume fraction.
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The tungsten composites shows remarkably good agreement with the rule of
mixtures calculations, and the error bars, which represent a standard deviation, are very
narrow. There is more scatter in the results of the music wire composites. The music
wire does not wet quite as well as the tungsten, and as a result, more of the samples have
small voids, which affect the measurement. There is also no way to insure that the fiber
volume fraction of the finish machined samples is the same as the as fabricated ingots,
because the fiber distribution is not always uniform. The 40% V¢ music wire/ Vitreloy® 1
sample has the largest difference between measured and calculated elastic modulus, but
this difference is still less than 10%, which is well within reasonable experimental

variation.
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Figure 3.10  Elastic modulus of music wire/Vitreloy® 1 composites versus fiber
volume fraction. The dashed line is the modulus calculated using the rule of
mixtures method.
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Figure 3.11 Elastic modulus of tungsten/Vitreloy® 1 composites versus fiber
volume fraction. The dashed line is the modulus calculated using the rule of
mixtures method.

3.4.7 Compression Tests

Quasi-static compression tests were performed on all samples. Figures 3.12 and
3.13 are stress-strain curves of tungsten and music-wire reinforced composites in
compression.

All of the tungsten composites show elastic-perfectly plastic stress-strain behavior,
with strains of up to 19%. The maximum strength of the composites covers a narrow
range; increasing fiber volume fraction does not increase the ultimate strength of the
composite. Examination of the stress-strain curve shows a pronounced change in the

slope of the tungsten composites (a noticeable "dog leg"), which varies with fiber volume

fraction. This indicates the point at which the fiber reinforcement first yields.
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Figure 3.12 Compressive stress-strain for tungsten/V itreloy® 1 composite.
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Figure 3.13 Compressive stress-strain curve for music wire/V itreloy® 1
composite.
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The stress at which yield occurs for each fiber volume fraction is listed in table 3.2.
Calculations to determine the macroscopic stress at which the fibers yield were performed
using the Eshelby equivalent inclusion method, as described in section 3.4.5. The
calculated yield strength is also listed in table 3.2. The measured yield stress is in good
agreement with that predicted from calculations.

The stress-strain curves for the music-wire reinforced composite are shown in
figure 3.13. Unlike the tungsten reinforced composite, the music wire composite does not
show a distinct fiber yield point in compression. Nor does it show as much plastic
deformation, with a strain to failure of 6% for the 40% V;sample. Unlike the tungsten
composite, the inelastic portion of the stress-strain curve for the music-wire-reinforced
composite shows some work hardening, rather than perfectly plastic behavior.

Although the strain-to-failure differed between the composites, the ultimate
strength in compression was strikingly similar. Figures 3.14-3.17 are stress-strain curves
for music-wire composites, along with the tungsten reinforced composite of the same
volume fraction. The ultimate strength for all except the 80% V¢ music wire sample are
virtually the same. This indicates that the ultimate strer{gth of the composite is governed
by the strength of the matrix rather than the strength of the fiber.

The failure mode changed with fiber type and volume fraction. Figure 3.18is a
photograph of an unreinforced Vitreloy® 1 sample which was tested in compression.

Although this sample did not fracture in a single plane, as did those of Bruck, et al,, it did



cleave on multiple 45 degree planes, leaving smooth areas that indicate fast fracture, as
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well as the characteristic "veinous" patterns typical of metallic glasses.

Volume Measured Yield | Calculated Yield
Fraction, V¢ Stress, Gy Stress, oy
% MPa MPa
20 775 708
40 1050 974
60 1300 1240
80 1400 1500

Table 3.2

2000

Figure 3.14 Compressive stress-strain for 20% V;tungsten and music wire

composites.
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Figure 3.15 Compressive stress-strain for 40% V¢ tungsten and music wire
composites.
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Figure 3.16 Compressive stress-strain for 60% Vy tungsten and music wire
composites.
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Figure 3.17 Compressive stress-strain for 80% V¢ tungsten and music wire
composites.

Figure 3.18 Profile of Vitreloy® 1 compression sample. Note the 45 degree
angle characteristic of shear band failure in metallic glass.



78

A tungsten reinforced Vitreloy® 1 composite compression sample is shown in
figure 3.19. The failure mode changes from the 45 degree shear bands as illustrated in
figure 3.18 to localized fiber buckling and tilting.

Figure 3.20 is a fracture surface of a 20% music-wire reinforced composite. Low
fiber volume fractions show a mixed mode of failure, with areas that sheared at ~45

degrees, along with areas of vertical delamination. As the fiber volume fraction increased,

Figure 3.19 60% V Tungsten wire/Vitreloy® 1 composite compression
sample. Failure mode changed from shear bands (Fig. 3.18) to fiber
buckling and tilting.

failure mode shifted from shear to vertical splitting and buckling. An 80% Vi
tungsten compression specimen is illustrated in figure 3.21. Note that the cracks

on the compression face run toward and through the tungsten wires, as would be

expected with the tungsten composite, because cooling leaves the matrix in a state
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1000 im ee——

Figure 3.20 Compressive fracture surface of 20% V¢ music wire/V itreloy® 1
composite.

Figure 3.21 Compressive failure of 80% tungsten/Vitreloy® 1 composite. Note
that at the top cracks run from fiber to fiber, and longitudinal splitting and buckling
occurs in fibers.
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of residual tension. The side view shows clearly that the fibers split longitudinally and
buckled. It is proposed that the fibers first yield, followed by axial shear cracking, which
makes the fibers unstable and unable to prevent buckling in the composite. This failure
mode is consistent with work on titanium reinforced with monofilament SiC performed by
Spowart and Clyne '°. The onset of buckling may be seen on the compression stress-
strain curve (figure 3.17), as the point when the 80% Vi tungsten sample work-softens.
Between the first compression failure event, when the fibers yield, and the last,
when the sample fails by either mixed mode or longitudinal fiber tearing and buckling, is a
region of perfectly-plastic deformation. In this region multiple shear bands are generated
throughout the sample. Elastic-perfectly plastic behavior has been seen in metallic glasses
with aspect ratios less than 1.5, as in the work by Bruck, et.al., > and Pampillo and Chen %
The low aspect ratio results in a plane strain state in the compression sample, which acts
as a constraint to shear crack propagation. Multiple shear bands in these samples are
revealed in microscopy. Leng and Courtney found multiple shear band formation in
ductile metal matrix composites laminated with metallic glass'®. According to their work,
multiple shear bands may be localized or uniformly distributed. Localized shear banding is
predicted when initial slip displacements are large (as, for example, when V¢ is low), while
uniform banding is expected when the initial slip displacement is small. When the fiber
volume fraction is high, the matrix is highly constrained, and slip displacement is small.
Stress concentrations build up at the tip of a propagating shear band; when the shear band
meets an obstacle, this stress concentration triggers another shear band to form, typically

at right angles to the first.
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The nature of multiple shear band formation may be seen in figure 3.22, an SEM
photograph of the side of a 60% V¢ composite compression sample. The shear bands are
plainly visible, making a chevron pattern on the side of the sample. There are several
interesting aspects of shear band propagation revealed by this photograph. Using the rule
that propagating cracks will stop when reaching an existing crack (as outlined in Metals

Handbook), one may see the order in which shear bands formed.

=
e o0

T

Figure 3.22 Multiple shear bands form a chevron pattern in a 60% V¢ tungsten/

Vitreloy® 1 composite. Note that shear bands with a particular +/-45 degree

orientation form in clusters.

By examining the photograph, it appears that the first group of shear bands formed
in the top right quadrant, with an orientation of -45 degrees. The next dominate shear
bands appear in the left side of the photograph. These have a +45 degree orientation and

terminate upon reaching the first set. This is followed by a third set of shear bands, which

have smaller dimensions and a -45 degree orientation. The pattern then repeats itself.
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Thus multiple shear bands with a +45 degree orientation form over one area, followed by
formation of shear bands with a -45 degree orientation in an adjacent area. The large
region of perfectly plastic deformation shown in the tungsten composite stress strain curve
reflects the stage during which multiple shear bands are being formed in the sample. The
shear bands in the photograph are uniformly spaced; presumably, the spacing would
decrease as the fiber volume fraction increases, up to the point at which the failure mode
changes to longitudinal shear cracking. This assumption is reinforced by the fact that
strain to failure increased as fiber volume fraction increased, up to 60% V;. If the shear
band spacing is closer, then more shear bands can be accommodated, which will allow
greater strain before failure.

The compression samples reinforced with steel did not sustain as much inelastic
deformation as those reinforced with tungsten, and did not fail in as gentle a manner: they
literally burst apart; the only pieces that could be found were shards of wire with bits of
matrix material attached. This may be understood as follows. The tensile radial stress
which forms upon processing, combined with the reaction products at the fiber-matrix
interface, results in a weak interfacial bond between the steel wire and the matrix.. By
comparison, the compressive radial stress in the tungsten composite serves to enhance the
fiber-matrix bond strength. Although the interface bond strength between the
tungsten/Vitreloy® 1 composite differs from that of the music wire/V itreloy® 1 composite,
even if it were equal, the tungsten would be more tightly bound to the matrix because it is
in compression. The compressive normal force acts to hold the tungsten in place through

friction, which is not present in the music wire composite. The magnitude of these normal
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forces are illustrated in figures 3.8 and 3.9. The steel also has a much higher yield strength
than the tungsten. While the calculated load necessary to produce yield in the 40% V¢
tungsten composite (in compression) is 974 MPa, the calculated load necessary to reach
the 2.2 GPa stress required for music wire yielding is 1560 GPa, which is 60% greater
than that of the tungsten. This high load is why an isolated yield event was not visible on
compression tests of the music wire reinforced samples. This higher load means a
substantial amount of energy is stored in the wires, which is released as shear bands begin
to propagate in the sample. The wires, rather than acting to constrain the shear bands,
drive their propagation, resulting in the disintegration of the sample.

Figure 3.23 is an SEM photograph of the fracture surface of a tungsten/V itreloy® 1
composite which failed in shear. There are several interesting surface features in this
photograph. There are areas which are very smooth, areas which show the veinous
pattern typical of unreinforced metallic glasses, and areas that resemble microvoid
coalescence. The smooth areas are understood to be areas of fast fracture, while rough
areas indicate a slower, more ductile failure. The shear event propagated from the upper
left to the lower right; evidence for this comes from at least two places. First, the matrix
material is spread across the wires in this direction. It seems that the temperatures in the
shear band become high enough for the matrix to experience some viscous flow. Matrix
material becoming viscous and flowing within the shear band has been proposed in the
past as a possible explanation of the veinous pattern of metallic glass fracture surfaces®.
Second, the orientation of the microvoids, with the closed end pointing toward the source

of the fracture, as it is with fracture of ductile metals. By calling these features
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microvoids, I am merely describing their appearance, and not implying that their formation
is the same as microvoid formation in ductile metals. It is suggested that fracture does not
begin at an isolated point and proceed in a linear fashion; rather, it could occur in several
isolated points in the interior of the sample, as depicted by the areas of fast fracture, which
releases heat, softening the adjacent metal, which ruptures in a slower, more ductile
manner. This would be in rough agreement with other glasses (e.g. oxide glass) have
shiny, smooth areas surrounding points of crack initiation, called mirror regions, which

transition to mist and hackle regions, where surface roughness increases®.

Figure 3.23 Compressive fracture surface of 60% V¢ tungsten/ Vitreloy® 1
composite. The shear band propagated from top to bottom, as shown by the way
the matrix flowed over the wire, and the alignment of what appear to be
microvoids adjacent to the wires.
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3.4.8 Tensile Tests

Tensile experiments were performed on at least four samples of tungsten and
music wire reinforced metallic glass with fiber volume fractions of 20, 40, 60, and 80%, as
well as one experiment of each at V¢of 10 and 15%. The stress-strain curves are shown in
Figures 3.24 and 3.25. There was substantial scatter in the data; many of the samples,
those with low fiber volume fractions and particularly those reinforced with music wire
contained voids, and fiber distribution was often uneven. However, enough tensile tests

were performed on each type of composite to give confidence in the test results.
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Figure 3.24  Tensile stress-strain curves for tungsten reinforced Vitreloy® 1
composites.
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Figure 3.25 Tensile stress-strain curves for music wire reinforced Vitreloy® 1
composites.

The maximum strength of each of the composites was lower than that of
unreinforced Vitreloy® 1 and, in every case except one, the strain to failure was also
significantly lower. The most favorable results of each reinforcement, in terms of
maximum strength and strain to failure, are plotted in Figure 3.26 along with the stress-
strain curve for unreinforced Vitreloy® 1 . Numerical integration of the area under the

stress-strain curve gives the energy per unit volume (J/m’) to break the material:
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Performing this calculation for the Vitreloy® 1 and 60% music wire/Vitreloy® 1 composite
reveals the composite needs 18% more energy to reach failure, while the 20% tungsten
reinforced composite requires 49% less.

Both of the above samples show an elastic range (in which the modulus is in
excellent agreement with the rule of mixtures) followed by a yielding event, and a work
hardening range, in which the matrix remains elastic while the reinforcing fibers undergo
plastic deformation. These regions are described in the literature” as stage I and stage II,
respectively. The metallic glass composites do not display a stage III region, which is
described as plastic deformation of both matrix and fiber, because the metallic glass matrix

remains elastic until failure. The superposition of tungsten wire and Vitreloy® 1 stress-

Tensile Stress, MPa
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Figure 3.26 Tensile stress-strain curves of the music wire and tungsten
reinforced Vitreloy® 1 composites that showed the most favorable results, in terms
of ultimate strength and strain to failure, along with unreinforced

Vitreloy® 1.
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Figure 3.27 Tensile stress-strain curves for tungsten and music wire reinforced
composites. Dashed lines are the curves predicted by the rule of mixtures.

strain curves using the rule of mixtures is in remarkably good agreement with that
measured in tensile tests, as illustrated in figure 3.27. The music wire reinforced
composite, however, yields substantially before the point predicted by calculation.

This kind of yield behavior, in which the tungsten reinforced samples agree well
with predictions and the steel reinforced samples do not, occurs independent of fiber
volume fraction. The tensile yield strength was calculated using the Eshelby equivalent
inclusion method for each reinforcement, and these results are listed in Table 3.3, along
with the measured yield strength of each. The measured yield strength was taken to be the
stress at which the sample transitioned from stage I to stage II, and not at 0.2% offset
strain. The yield point for the 80% V; tungsten/Vitreloy™ 1 composite is substantially

below the predicted stress because the tungsten fails in tension prior to reaching this value.
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Vi, % Tungsten Music Wire
Caiculated Measured | Calculated Measured
c,, MPa oy, MPa G, MPa G,, MPa
20 856 800 1238 657
40 975 1000 1455 582
60 1230 1225 1672 875
80 1480 1200 1887 800

Table 3.3 Measured and calculated yield strengths of Vitreloy® 1 composites
reinforced with tungsten and music wire.

Yield strength increases with fiber volume fraction in both the tungsten and music
wire reinforced samples, as shown in Figure 3.28, a graph of tungsten yield strength
versus fiber volume fraction.

The difference in yield behavior between the samples reinforced with tungsten and
steel wires is due to the relative strength of the fiber-matrix interface, the residual thermal
stresses, and the effect of Poisson contractions between the fiber and the matrix.

As has been illustrated, the tungsten wire is in a state of residual compression,
while the steel wire is in state of tension. When the tensile load is applied, the matrix
material, which has a higher Poisson ratio than the reinforcement, contracts around the
wires, holding them more tightly. This adds to the compressed state of the tungsten; there
is no slip between the wire and matrix at the interface, and the strains on the wire and
matrix are truly identical. Tensile loads also serve to relieve the compressive axial stress

on the tungsten, at least initially, which contributes to the wires flowing with the matrix
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Figure 3.28 Average tungsten/V itreloy® 1 composite tensile yield stress versus

fiber volume fraction.
material. The music wire, on the other hand, is in a state of radial and axial tensile stress.
Its resistance to axial strain builds quickly, and the radial tensile stress does not allow the
matrix to as tightly grip the wire, even with the addition of the Poisson contractions.
Figure 3.29 is a graph of a the stresses present in a 40% steel/Vitreloy® 1 composite which
includes the residual thermal stress and a 1000 MPa axial load. From this graph one can
see that there is still a 66 MPa tensile radial stress at the fiber/matrix interface. By

contrast, Figure 3.30 is a 40% tungsten/Vitreloy® 1 composite with the same applied axial
y p P
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load. In this case the radial stress at the fiber matrix interface is -97 MPa in compression.
Referring to figures 3.8 and 3.9 in section 3.4.5, one can see that the thermal radial stress
at the fiber/matrix interface is 72 MPa and -70 MPa for the steel and tungsten composites,
respectively. The lack of interface strength in the steel samples allows the fibers to

debond and slide within the matrix, hence the apparent yield strength is substantially below
that predicted by theory.

How strong is the interface? A standard method for determining interface strength
is a fiber push-out test; these tests are well documented in the literature®**®. Push-out
tests were not performed on the composite samples, but a fortunate event allowed for
estimation of the interface strength of the music wire reinforced samples. Examining
figure 3.25, the stress-strain curves for the music wire reinforced composite, one can see
an erratic roughness in the curve for the 80% V¢ sample at a stress of approximately 1100
MPa. This jump, and the subsequent jumps, are of the wire being pulled free of the matrix
material. Figure 3.31 is a photograph of an 80% V¢ music wire sample. The threaded end
of the test specimen has a change in cross section, from the nominal thread size to the
gage size of the test specimen. At 80% V;the wires are essentially close packed. As one
can see from the photograph, at a load below the failure load for the fibers the matrix and
fibers debonded, and the core of fibers the diameter of the gage section pulled out of the
threaded end. The fibers pulled out in a hexagon bundle which was 14.5 mm long with
2.5 mm across each flat, for a surface area of 217.5 mm®. The load at initial failure

(delamination) for this sample was 9820 N; the corresponding shear stress at the interface
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Figure 3.29 Matrix and fiber stress distributions for a 40% V¢ music
wire/Vitreloy® 1 composite, including thermal residual stresses and a 1000 MPa
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Figure 3.31 Fiber pullout of 80% music wire/Vitreloy® 1 composite tensile

sample. Center portion of tensile test sample (top) was pulled away from threaded

end (bottom).
was T = 45.1 MPa. All of the tensile samples reinforced with 80% music wire failed in this
manner at a comparable shear stress.

The tensile strength of the composites increased with volume fraction, up to 60%
Vs, then dropped. Graphs of the tensile strength versus volume fraction are shown in
figures 3.32 and 3.33. As has been discussed, the sample reinforced with 80% music wire
failed by fiber pull out from the threaded section. The §0% tungsten reinforced samples
did not fail by pull out; as with all of the tungsten samples, it failed in a brittle manner.

Figure 3.34 is an SEM photograph of the fracture surface of a 40% V; tungsten/Vitreloy®

1 composite. The wires are highly constrained and in a triaxial stress state. The plane
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Figure 3.32  Average music wire/V itreloy® 1 composite tensile strength versus
fiber volume fraction.
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Figure 3.34 Tensile fracture surface of a 40% V¢ tungsten/ Vitreloy® 1

composite. Fibers failed in brittle mode. Fracture surface was perpendicular to

axis, with virtually no fiber pull out. Jelly bean shaped pit is visible in ~ 4 o'clock

position.
strain fracture toughness of tungsten is 12-14 MPaVm®’. Ashby, et al., have shown that
highly constrained wires provided the least amount of toughening for a brittle matrix
composite’®. What is needed is interface debonding and ductile fiber rupture. As can be
seen from the photograph, the tungsten wires failed in an entirely brittle manner, with
smooth areas of fast fracture in the adjacent matrix. The fracture surface in all the
tungsten composites tested was perpendicular to the axis of load.

The steel samples did not show the same failure behavior. Voids caused
considerable scatter in samples with low fiber volume fractions, and fiber pull out resulted

in the failure of the 80% V¢ specimens. However, the samples reinforced with 60% V¢

music wire fibers showed promising results, in terms of strength and strain to failure.
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There was relatively little scatter in the experimental results. A martensitic high carbon
steel (0.78-0.88 %C) has a plane strain fracture toughness, Kic, of 20-28 MPaVm®.
However, unlike the tungsten, these wires were not severely constrained by the matrix.
Initially, the wires are in tension and the matrix is in compression due to residual stresses.
As the sample is loaded the wires begin to debond, allowing some slippage of the matrix.
When the wires begin to break they are not confined to a single plane, but break at various
lengths, as shown in Figure 3.35, an SEM photograph of the fracture surface of a 60% V¢
music wire/Vitreloy® 1 tensile sample. Cracks through the matrix do not proceed across a
flat surface; rather there is also mode II cracking at the fiber/matrix interface and fiber pull
out. All of these additional failure mechanisms contribute to energy dissipation and

enhancing the toughness of the composite.

Figure 3.35 Backscatter SEM photograph of 60% music wire/V itreloy® 1
composite tensile fracture surface. Note that the sample contains large variation in
fiber length, and vertical delamination of fiber and matrix.
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35 Conclusions

1. Continuous fiber metallic glass matrix composites n;ay be successfully fabricated.

2. The rule of mixtures model accurately predicts elastic behavior.

3. Compressive failure is controlled by the matrix material.

4. Tightly bonded ductile fibers provide the largest increase in compressive strain to
failure.

5. Tightly bonded ductile fiber reinforcement changes the compressive failure mode from
the 45 degree shear bands to localized fiber buckling and tilting.

6. Tensile failure is controiled by the reinforcement.

7. Weakly bonded ductile fibers provide the largest increase in tensile strain to failure.

8. Tungsten forms a strong bond with Vitreloy® 1 metallic glass.

9. Shear strength of the steel wire/ Vitreloy® 1 metallic glass bond is ~45 MPa.

10. Viscous flow of the metallic glass matrix material occurs in shear bands.
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CHAPTER 4
FRACTURE TOUGHNESS DETERMINATION FOR A BERYLLIUM BEARING
BULK METALLIC GLASS AND TUNGSTEN WIRE REINFORCED METALLIC
GLASS COMPOSITE
4.1 Introduction

A class of beryllium bearing bulk metallic glass alloys has recently been developed
at the California Institute of Technology (1993)'. These alloys can be fabricated in the
form of large ingots with minimum dimensions on the order of centimeters, which allows
valid mechanical tests to be performed on these materials. Such tests were not formerly
possible given the small dimensions of earlier metallic glass specimens. Some basic
physical and mechanical properties have been measured on a specific beryllium bearing
bulk metallic glass with a nominal composition of Zrs; 2sTi15.75Cu12.sNijcBez s 2 The
results of these measurements are listed in Table 3.1. Though possessing remarkably high
strength and large elastic strain, this bulk metallic glass (as all metallic glasses) fails in a
sudden and catastrophic manner by the propagation of localized shear bands.

Fracture toughness measurements have been performed on Fe and Ni base metallic
glass®. Ribbons of these as-quenched glasses exhibit plane strain fracture toughness
(Kic) of about 10 MPaVm. Thickness of these ribbons is limited to ~25 um, which
restricts the type of mechanical tests which may be performed.

In 1995 a concerted effort began at Caltech to fabricate composites using bulk
metallic glass as the matrix material. Research has shown that the toughness of brittle

materials can be improved through the incorporation of ductile materials’® . The inclusion
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of ductile metal fibers in metallic glass is hoped to allow the metallic glass to fail in a more
predictable and less unfavorable manner.

The purpose of this chapter is twofold: first, to report on the first ever direct
measurement of the fracture toughness of any bulk metallic glass system, and second, to
describe the preliminary results of fracture toughness measurements of a tungsten
reinforced bulk metallic glass composite.

4.2  Sample Preparation

Metallic glass ingots of Vitreloy® 1, the tradema.rk name of the commercial grade
beryllium bearing metallic glass with the composition of Zra; 2sTii3.75Cu12sNieBezn s, were
obtained from Amorphous Technologies International, located in Laguna Niguel,
California. The Vitreloy® is not made with laboratory grade materials, and, as a result,
contains a higher percentage of impurities than the metallic glass prepared using
laboratory grade materials. It is believed that the impurities, particularly the oxides, act as
nucleation sites for a small fraction of crystalline phase to form in the glass. The effect of
the small percentage of crystalline phase on the toughness of the metallic glass is
unknown. The specimens were machined to the dimensions shown in Table 4.1.

The tungsten reinforced Vitreloy” 1 matrix composite was fabricated using the
infiltration casting technique described in Chapter 3. A 50% volume fraction (Vy) of
cleaned and straightened tungsten wire was placed in a 25 mm diameter quartz tube. A
neck was formed in the tube above the wires, and commercial Vitreloy® 1 ingots were
added. The remaining casting procedure was as previously described. Following casting,

the ingot was sliced using electrical discharge machining to provide 3-point bend test
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specimens with the dimensions shown in table 4.1. The. tungsten wires were oriented
along the length of the sample, perpendicular to the notch.

4.3 Experimental Procedure

The Mode-I fracture toughness of the unreinforced metallic glass was measured by
simultaneous use of two independent techniques. The optical method of CGS® and
boundary value measurement. The sample used in conjunction with CGS measurement
was ground optically flat and polished to a highly reflective finish.

The Mode-I fracture toughness of the 50% V¢ tungsten/V' itreloy® 1 matrix
composite was taken using boundary value measurement in 3-point bend configuration. It
is recognized that, because this is a composite material, the method of calculating Kic
differs from that used for an isotropic material, and the .value reported here is in error.
However, the result of interest here is the change in the mode of failure, rather than the
value of Kic. Further experiments will be performed to refine the measured fracture
toughness.

43.1 Boundary Value Measurements

Mode 1 fracture toughness, Kic, was determined using boundary measurements

taken from specimen loading in 3-point bending configuration. Specimens were loaded

until failure, and the corresponding Kic value was calculated from®

.S |a .
K,:ijz(l ;W ;' %[1-99‘%("%){2-‘5"3-93(%)+2-7(%)-H (1)

#)-%)

The applied load is P, and dimensions a, ¥, B and S are defined in Table 4.1.
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Dimension Boundary-value sample CGS sample
(mm)
Length, L 50.8 112
Width, W 12.6 40.8
Thickness, B 22 . 48
Notch length, a 3 11.6
Loading span, 46 104.2
)
Table 4.1 Fracture sample dimensions

Figure 4.1 illustrates the typical variation of K; with load point displacement 5 for
unreinforced Vitreloy”™ 1, which has a peak value, Kic = 59.5 MPavVm. It is interesting to
note that the loading curve remains approximately linear up until failure, suggesting
limited inelasticity. At failure, the crack propagation is unstable, indicated by the
instantaneous unloading of the specimen. Results obtained from experiments conducted
on 3 samples gave consistent Kic values of 55, 57 and 59.5 MPavVm. For valid plane
strain fracture toughness testing, the specimen thickness must be greater than 2.5(Kic/6.)’,
where o, is the yield stress. Typical values for the metallic glass of Kic~57 MPavVm and
G.~2 GPa, requires that the specimen thickness be greater than ~1.6 mm for plane strain
conditions. Specimens used in the present study were at least 2.2 mm thick and therefore
the results reported represent the plane strain fracture toughness of the metallic glass.

Five composite specimens were tested in the 3-point bend configuration. The
results are depicted in Figure 4.2. There was substantial scatter in the results; the high

value was 38 MPaVm, and the low was 18 MPaVm. Three specimens failed at the average
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Figure 4.1  The variation of K; with load point displacement for an
unreinforced Vitreloy® 1 specimen loaded quasi-statically in a three point bend
configuration.
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Figure 4.2  K; versus displacement of 50% V¢ tungsten/V itreloy® 1 matrix
composite.
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Kic value of 26 MPaVm. Even though the calculated values are in error in the composite
material, these values are still significantly lower than those of the unreinforced metallic
glass. The K; value for the sample that failed at the highest load (Kic = 38) instantly
dropped to zero, indicating unstable crack growth. By comparison, the sample that failed
at Kic = 18 continued to sustain a load after initial failure. Despite a difference in excess
of 50% in Kic between these two curves, the area under the curves differs by less than 5%
(as determined by numerical integration).

4.3.2 Coherent Gradient Sensing (CGS)

CGS is a full field, lateral shearing interferometric technique with an on-line spatial
filter. In the reflection mode the technique measures out-of-plane displacement gradients
(surface slopes). When the sample is loaded the surface deforms in the region near the
crack tip, causing nonuniform spatial gradients in the optical path when light is reflected
from its surface. The changes in the optical path are related to gradients in the stress state
which are induced when loads are applied to the boundary of the initially undeformed
specimen.

The schematic of the experimental setup used for reflective CGS is shown in
Figure 4.3. An optically flat, highly reflective plate specimen is illuminated by collimated
coherent laser light. The reflected beam is then incident on a pair of gratings (40
lines’'mm), G; and G, separated by a distance A. The field distribution on the G; plane is
spatially filtered by the filtering lens L, and its frequency content is displayed on its back

focal plane. By locating a filtering aperture around either the 1 diffraction orders,
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information regarding the stress gradients is obtained on the image plane of the lens L.

Complete details of the technique are given elsewhere®.

Figure 4.3  Schematic illustration of the experimental configuration for
coherent gradient sensing (CGS) in reflection.

Figure 4.4 is a photograph of CGS interference fringes on the Vitreloy sample
immediately prior to failure. The individual fringes in Fig. 4.4 represent contours of

& u, / 8 x,. By measuring the values of the local polar. coordinates » and ¢ for a specific

fringe order, the out of plane deformations, and hence K;, may be calculated from:

o”zg_vh K, = 3¢)_ﬂp_ (2)

= ricof =¢|=
dx, 2FE2rx 2 2A

where u; is the deformation normal to the plane of the specimen, x; is the in-plane
direction aligned with the crack, v is Poissons ratio, 4 is the plate thickness, E is Young’s
modulus, m represents the fringe order, p is the diffraction grating pitch and A is the

grating spacing. Measurements taken from Fig. 4.4 provided a fracture toughness of
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Figure 4.4  CGS pattern recorded from a metallic glass specimen loaded in
three point bend.

Kic = 55 MPaVm . Figure 4.5 is a plot of K; calculated from boundary measurements
versus K; measured from CGS. Note that these values are in agreement within 10%.
4.4 Results and Discussion
4.4.1 Unreinforced Zry; 25Ti13.75Cu2.sNigBezz s Bulk Metallic Glass

Given the extremely high yield stress and failure strength of Vitreloy® 1, one might
have expected the fracture toughness to be comparable to that of brittle ceramic materials.
Such brittle solids have fracture toughness' typically less than 10 MPaVm and, as shown in
Table 4.2, compare very unfavorably to structural metals (e.g. steels, aluminum, titanium)
whose toughness' exceed 30 MPaVvm. The Vitreloy, however, exhibits toughness

comparable to many high strength steels and approaches that of some titanium alloys.
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Figure 4.5  Comparison of the stress intensity factor determined from boundary
value measurements with that determined using CGS.

Material Fracture Toughness, MPaVm
Vitreloy 1® (Zra1.25Tii3.75Cu12 sNieBez s) bulk metallic 55-59
glass
Ti 6Al-4V (mill anneal plate) 123
Polycarbonate 2.75-33
C300 maraging steel 60
2024 aluminum, T351 31-44
ALO; 3-5.5
SiN, 4.2-5.2
Electrical porcelain ceramics 1.03-1.25

Table 4.2 Fracture toughness of selected engineering materials'.
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The high fracture toughness of unreinforced Vitreloy® 1 points toward some
microscopic toughening mechanisms. In ideally brittle fracture, the critical energy release
rate under plane strain conditions, Gic = (1-v?)Kc”/E simply equals the energy to create
two free surfaces, 2y.. Assuming brittle fracture, the apparent surface energy of the
metallic glass can be estimated. Using Kic~57 MPa\/m,.E =96 GPa and v = 0.36, the
calculated apparent surface energy is almost 30,000 Jm™. This apparent surface energy for
the metallic glass is exceedingly high in comparison to measured surface energies of
ceramics and pure metals which are typically 0.5-10 Jm>. This high apparent value of the
surface energy may suggest the operation of other mechanisms in addition to surface
creation that would contribute to a high net energy release rate.

Optical and scanning electron microscopy were used to investigate the
microstructural processes associated with fracture in the metallic glass. Figure 4.6 shows
a scanning electron micrograph of the fracture surface of a metallic glass specimen. The
relatively smooth area on the left of the micrograph is the surface of the initial notch,
whereas as the rougher region on the right side of micrograph is the fracture surface. In
Fig. 4.6 there is no evidence of macroscopic shear lips adjacent to the plate specimen
surfaces. The local roughness on the fracture surface is on the order of 50-150 pm.
Figure 4.7 shows a optical micrograph of the crack profile of the mating half of the
specimen shown in Fig. 4.6. The initial notch is located on the left of the micrograph.
The small bright regions in the micrograph are crystalline particles which are embedded in
the bulk metallic glass. Most crystallites in the region near the initial notch and adjacent to

the crack path contain microcracks in the direction parallel to macroscopic crack growth
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(perpendicular to the direction of tensile loads induced by the crack). In some cases,

crystallites located in the vicinity of the crack path were also surrounded by apparent

Figure 4.6  Scanning electron micrograph of the fracture surface of a metallic
glass specimen. The initial notch is located to the left of the image.

‘/ Sl;jl Frz\wlurc \

Flat Fracture
10 grm

Figure 4.7  Optical micrograph of the crack profile from the mating half of
metallic glass specimen shown in Fig. 4.6. Regions of both slant fracture and flat
fracture are observed. The initial notch is on the left of the micrograph.
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microvoids. As illustrated in Fig. 4.7, the crack path exhibits essentially flat regions
parallel to the macroscopic crack path and surfaces angled at 45° with respect to the crack
path. Inspection of these regions along the entire length of the fracture surface indicated
that the flat regions were often associated with the presence of fractured crystallites,
whereas the ligaments in the region between the crystallites angled at 45° are reminiscent
of void sheet formation in ductile metals. The maximum extent of the plane strain plastic

zone size, r,, was estimated using the following relation

7) 2 1 (Kie) T2 207 +.3] < on2d K]
"(—2—)-;(60) [(1 2v) +2}o.126(00) (3)

which resulted in a value of 7,=102 um. The calculated plastic zone size is approximately

equivalent in size to the fracture surface roughness shown in Fig. 4.6.
4.42 Tungsten Reinforced Vitreloy® 1 Matrix Composite

The tungsten reinforced metallic glass compositg failed at a substantially lower K¢
value than the unreinforced material. As may be seen from figure 4.2, the sample with the
highest K|c value failed in an unstable manner, while failure of the sample with the lowest
Kic value was less catastrophic. Because the displacement of the sample with the highest
Kic value (~0.27 mm) was 3 times larger than that of the sample for which Kic = 18
MPaVm , far more elastic energy was available to propagate the crack.

There are two primary mechanisms for toughening a brittle material: ductile
deformation of the fibers, and fiber pullout. Neither of these mechanisms are present in
the tungsten reinforced composite. Figure 4.8 is an SEM micrograph of the fracture

surface around the notch in the specimen. The plane strain fracture toughness of tungsten
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is only 12-14 MPaVm, and the brittle manner in which the fibers failed is evident by the
relatively smooth fracture surface of the wires. Tungsten has a lower CTE than the
metallic glass matrix, resulting in significant compressive stress on the wire upon cooling.
Tungsten also wets well and bonds tightly to the metallic glass matrix. As a result there is
no fiber pullout to dissipate energy. The high density of brittle wires along the edge of the

notch also lowered the load at which fracture initiated.

Figure 4.8 Fracture surface of 50% V¢ tungsten/V itreloy® 1 matrix composite.
Region on left is the notch. Note the brittle fracture of the wires, and the lack of

fiber pullout.

Despite the lack of toughness of the composite material compared to the

unreinforced metallic glass, the presence of wires did arrest crack propagation. Figure 4.9
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is a photograph of a composite 3-point bend specimen. The unreinforced metallic glass
broke cleanly into two pieces when it fractured. The crack in the composite, however,
was arrested by the metal wires. This reinforces the idea that the proper choice of ductile
reinforcement and control of the interface bond strength can result in a metallic glass
matrix composite which has enhanced fracture properties compared to the unreinforced

material.

Figure 4.9  Photograph of composite 3-point bend specimens. Crack in bottom
specimen was arrested by the reinforcing tungsten wires.

4.5 Conclusions

1. Coherent Gradient Sensing may be accurately used to evaluate the toughness of bulk

metallic glass.

2. The plane strain fracture toughness of Vitreloy® 1 bulk metallic glass is 55 MPaVm.
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3. Crack growth in Vitreloy® 1 is unstable.
4. Ductile reinforcement will arrest crack growth in bulk metallic glass matrix

composites.



10.
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APPENDIX I

COAXIAL CYLINDER MODEL
FOR THE

CALCULATION OF FIBER COMPOSITE STRESS



117

This is a program to calculate matrix and fiber stress in a continuous fiber composite using the

coaxial cylinder model.

Ef =410-10°
v, '=0.28
a, =4.5.10°®

Em =9610°

v, = 0.36

o, =8.5.10°

r = 125-10°% r, =200-10°°

Fiber Elastic Modulus
Fiber Poisson Ratio
Fiber CTE

Matrix Elastic Modulus

Matrix Poisson Ratio
Matrix CTE

Temperature Change, (Tf - Ti)

The following lines calculate the elastic
constants for the fiber and matrix stiffness
matricies, Cf and Cm, respectively

These are the fiber and matrix radius, respectively



=0 0'03 =0
=0

20y, + BZ-AT

aT-(p, - B,)
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The following "aii” and "bii"constants

are used in calculating
the equations of elasticity

These are initial stresses in the radial (01)

and axial (03) directions
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13y 3 A3 Ay

L8138y 35 3y,

31 332 333 33,

a1 a2 343 2

§1.25°IO_4 -125-10* -8-10° 0

0 2.521-10" -1.765-10'"® 9.076-10"°

i
!
Y =
!7.28-10“ -2.521-10"  4.518-10"  1.131-10"

1637100 4.42410° 0 1.212-10°

Using the a's and b's to solve for the unknown X

[-0.002 ;
1-0.003 |

2508107 |
1-0.002 ]

=X, Assigning values to the X's to solve the stress equations

X

"

Ay
Ay =X,
B, =X

2 1

E =X
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r =25 10'6,50- 105125106 This set solves for the radial, hoop and axial stress
in the fiber

B PN A | DR
orr(r) =Cfj A~ — '+ ClyiA ~— 1+ CAiE- B aT
N r ! N r .
orr(r) These are the radial stresses in the fiber,
-6.893-107 beginning at the center and progressing outward.

-6.893-10
-6.893-10
-6.893-107
-6.893-10

: ! . B
- 7 1 N 1 . .
099(1’) -Cf“'!Al* —? ?‘Cflz '\_Al— —2/ ?Cfls E- Bl AT
: r: \ r

\

o88(r) These are the hoop stresses in the fiber,
-6.893-10 beginning at the center and progressing outward.
7
-6.893-10
-6.893-107
-6.893-107
-6.893-107

ozz(r) =2:Cfi A ~ CL E- BT

ozz(r) These are the axial stresses in the fiber, beginning
at the center and progressing outward.

-2.002-10
-2.002-10
-2.002-10°
-2.002-10°
-2.002-10°

Finally, we can use the calculated stresses to compute the Von Mises stresses:

vt :J{(m'r(l)-099(1))2+(099(l)-o-zz(l))z—(ozz(l)- om(1))”
2

ovmf =1.313-10°
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2.2-10° - ovmf = 2.069-10° This is how far below yield the fiber is. If it is negative, the
fiber has reached yield. The yield strength of the fiber is,
in this case, taken to be 2.2 GPa.

=125-10°%,143.75-10°¢.. 200- 10%  This is the radius of the matrix surrounding the fiber

_ le‘; : B, E
m(r) —lel'.AZ——Z/,‘lez'[A.l‘.-—;i.—les' —Bz"_\T
! r y r |

orr(r) This is the matrix radiali stress, beginning at the
-6.893-107 fiber and progressing outward.

e 17
-4.135-10
-2.275-10°
-9.615-10°
-1.192:10°7
o66(r) =C iall C o B Cm ., E- B -AT

0 oECm Ay - i My Ay Ml -B,
\ i \ r/
666(r) Th . .
ese are the hoop stresses in the matrix as a result of

1.573-10® cooling; they begin at the fiber and progress outward.
1.297-10°
itt-1o®
9.799-10°
8.837.107

ozz(r) = 2-Cm13-A2 - Cm33-E - BZ-AT

oz2(1) These are the axial stresses in the matrix, beginning
1.284-10 at the fiber and progressing outward.

1.284-10°
1.284-10°
1.284-10°
1.284-10°

_oml12510°) + orr{150-10®) + orr{175-10°%) + orr(200.10°8) + err(225-10°)
5

orTave ’
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orrave =-2.151-10 This is the average radial stress in the matrix

c0ave < o%U25 105} - 060(150-10°%} + 006 175-10°%) + 686(200-10°} - 606(225-10°%)
5

o80ave = 1.099-10° This is the average hoop stress in the matrix

ozz(1) =1.284- 10% This is the average longitudinal stress in the matrix

This is the Von Mises stress for the matrix:

_ ,:’(orrave - o0ave)’ - (oBBave ~ 0zz( 1)) + (62z(1) - orrave)”
| 2

ovmm = 1.415-10°
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APPENDIX I1
ESHELBY EQUIVALENT INCLUSION METHOD
FOR THE

CALCULATION OF PARTICULATE COMPOSITE STRESS



124

This is a program to calculate the stresses in a particulate composite using Eshelby’s method.

First, enter the material constants;

Em =96 10° Youngs modulus for the matrix
Ef =410-10° Fiber modulus
vim =.36

Matrix and fiber poisson ratio
vf =0.28

am =85-10°¢

Matrix and fiber thermal expansion, per degree C

af =4.5-10°°
AT =-3350 Temperature through which cooling occurs, beiow Tg
gtstar = (af - am)-AT This is thermal strain resulting from cooling
[ astart [ 0.001]
| astar | 0.001 |
| | 0.001 | isi i
Erstar = dtstar . Etstar =| : This is the thermal strain vector
o | 0
0o | o !
0o .0

Now, define compliance matricies for the matrix and reinforcement

I =identity(6) Cm =identity(6) Cf = identity(6)
Cm | =Em 1-vm
' (1 - 2-vm)-(1 +vm)
Cm, , =Cm, | Cm, , =Cm,
Cm“ 4 :__Eﬂ__
) 2-(1 +vm)
CmS‘S =Cm4‘4 Cm6,6 ::Cm‘.‘
Cm, , =Em- vm
‘ (1 - 2-vm)-(1 - vm)
Cm, , =Cm , Cm, K =Cm, , Cm, =Cm , Cm,, =Cm, ,
ce , =Ef— ="
' (1 = 20)-(1 + )
Cf,, =Cf, Ct, 5 =Cf, |

Cm, , =Cm, ,
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Cf;.‘ :_i__
* 21D
Cf; 5 =Cf, 4 Cls =Cfy 4
cf, , =Ef il
’ (1 - 2vH)-(1 =vb)
Cf 5 =Cf, ChL,=¢t, Ch s =Cf , CL, =Cf, Cf,, =Cf,
(1 0 0 00 0] ‘
01000 0]
00100 0
0001 00;
0000T10!
100000 1]
161310 9076101 907610 0 0 0 :
907610 161310"" 907610 0 0 0
can =| 9.076:10" 9.076-10" 1.613-10'" o 0 0
0 0 0 352910 o 0
0 0 0 0 3529-10°° 0 ,
0 0 0 0 0 3.529-10'° |
[ 5241-10'" 2038-10'! 2038-10" o 0 0
2.03810"  5241-10'" 203810 o 0 . 0
Cf: 2.038-10'"  2038-10" 5.241-10" o 0 0
0 0 0 1.602-10"" 0 0
0 0 0 0 1.602-10'' 0
K 0 0 0 0 1.602-10""

Now, calculate the Eshelby S-tensor
S =identity(6) initialize the S-tensor

S, | __7-5wvm_
: 15-(1 - vim)



. -1 -5-vm
L2 s5(1-wm)
S, 7Si2
S15 *51.2
S,3 =53
S50 “Sis
S3.2 755
54 = 4-5wvm
: 15-(1 - vm)
Ss.s "S54
S6.6 ~Ss.s
0542 0.083 0.083
io.oss 0.542 0.083
s—‘ 0.083 0.083 0.542
i 0 0 0
K 0 0
i 0 0 0
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o o o
o o 0o |
o o o |
02200 0 |
0 0229 0 '
0 0 0229

Now the physical constants can be calculated for the fiber fraction, f. Cc: composite stiffness
E3c: axial young's modulus; Stresses are mean stresses for r:natrix and fiber.

f=4

Ce ={Cm™' - £((Cf- Cm)-(S- £(S- )+ Cm) "(Cf- Cm)-Cm")"

Sc =Cc'!
1

Sc, .
3.9

E3c =

E3c =1.614-10"

This is axial young's modulus

As a check this works, as it is the young's modulus
for the unreinforced matrix material

oo [0.003
0 | 0.003 |

. = -8.195-10° Ea = Cm-loa Eq e —0.009!
0 0 |

0 o

0 SUN
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Now, calcuiate the transformation strain for an applied strain and a thermal strain

£ 0.002
; 0.002
0 | 0.002 :
gthermal =-((Cm - Cf)-(S- f(S-1))- Cm) -CfEtstar sthermal = 0 !
io
!
Lo
"~0.003 |
-0.003 |
y - 0.009 :
gload =((Cm - Cf)-(S- £(S-1)) - Cm)" -(Cm - Cf)-Ea-(- 1) gload = 0 ,
0 j
- . 0
6.296°10" |
6.296-107 |
7
omt =-fCm-(S - I)-¢thermal omt =| 6-296°10 ;
This is the mean matrix stress 0 )
from thermail contraction 0
L0 . .
1-9.445-107 |
oft =(1 - f)-Cm-(S - I)-ethermal 1-9.445-10" -
| ;
This is the mean fiber stress oft = ‘ -9.445-10°
from thermal contraction 0 i
0 !
|
L0 !
Elc = l
) Sc, |, This is transverse young's modulus
Elc=1.614-10"
-3.915+10
-3.915-10°

8 This is the mean matrix stress as a result

omload =-£Cm-(S - I)-doad emload =| 46310 of the applied load

0
go
L0

L2
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T 587310
| 5.873-107

3 8
ofload =(1 - f)-Cm-(S- [)cload ofload =172.194-10

o O o

| 2.381-107

@ 2.381-10
_i 2092-10°

7

omtotal =omt - emload emtotal

(=]

o

(=]

-

-3.572:107

oftotal =oft - ofload oftotal = ~3.138" 10

omave =oa - omtotal

"2.3814107
| 2.381-107
~|-6.103-10°
i 0
Lo
o

gmave

U U )

-3.572:10"

This is the mean fiber stress as a
resuit of the applied load

These are the total mean stresses as a
result of the applied load and the therma
contractions.

Sy U )

Finally, we arrive at the average matrix and
fiber stresses as a resuit of thermal
expansion and applied load.
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; -3.572+10"
|-3.572- 10’

} a1 0P

ofave = oa+ oftotal ofave = 1-133°10
: 0
|

0
"0

- -

Finally, we can use the calculated stresses to compute the Von Mises stresses:

—

H . . 2
| {omave - omave_j° + /omave, — omave, |
_ il 1 2 3) T 3 1
N

2
- cmavez) - (omave

ovmm =6.341-10°

This is the Von Mises stress for the matrix; for the fiber it is:

| 2 12 .2
! {ofave, - ofave_ " ~ (ofave, - ofave ) - (ofave, - ofave . “
[N 1 2/ \ 2 3, \ 3 ¥

vaf:’\/ 3

ovinf = 1.098- 10°
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APPENDIX III -
ESHELBY EQUIVALENT INCLUSION METHOD
FOR THE

CALCULATION OF ELLIPSOID FIBER COMPOSITE STRESS
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This is a program to caiculate the stresses in a disconﬁnuoué fiber composite using Eshelby’s
method.

First, enter the material constants;

Em =96-10° Youngs modulus for the matrix
Ef =410-10° Fiber modulus
vm =.36 Meatrix and fiber poisson ratio
vf =0.28
am =85-10° Matrix and fiber thermal expansion, per degree C
of =4.5-10°C
AT '=-350 Temperature through which cooling occurs, below Tg
etstar =(af - am)-AT This is thermal strain resulting from cooling
ar =25 Fiber aspect ratio; 1 for round particles
| aastar [ 0.001]
astar . 0.001 ;
0.001 | is i i
Etstar = | dstar | Etstar = J ! This is the thermal strain vector
L0 ’1 | 0 |
o o
. 0] L0

Now, define compliance matricies for the matrix and reinforcement

[ =identitw(6) Cm =identity(6) Cf =identity(6)
Cm, , =Em- i - vm
: (1= 2-vm)-(1 ~wvm)
Cm, , =Cm, | Cm; ; =Cm, ,
Cm4 R :__E_ﬂ'l_
y 2-(1 +vm)
Cm, ; =Cm, , Cmg ; =Cm, ,
le 2 =Em- vm
: (1 -2-vm)-(1 +vm)
Cm, ;=Cm, Cm,, =Cm , Cm,, =Cm,, Cm;, =Cm , Cm,, =Cm,
cf, | =Ef— -V
: (1 - 2-v)-(1 +vf)
Cf,, =Cf Cf, , =Cf;
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e
cf, ; =Cf, , cf, , =Cf, ,
cf , =Ef il
(1-2v0)-(1 =)
Cf 5 =Cf, Ch. =Cfy, Ch 5 =Cf, , Cfy, =Cf , Cf, , =Cf,
1 0 0 00 0]
010000
001000
1000100
000010
0 00 ]
1613-10" 907610 907610 0 0 0
' 9076-10"°  161310" 9.076-10° 0 0 0
Cm:; 9.076-10'"° 9.076-10'° 1.613-10" © 0 0 ‘
0 0 0 3.529-10"° o 0
0 0 0 0 3.529:10° 0
L0 0 0 0 0 3.529-10'
[ 5241-10"  2.038-10" 2038:10" 0 0 0 |
| 2038-10"  5241-10" 203810 0 0 0 |
Cf=§ 2.038-10'"  2.038-10" s5241-10" 0 0 0 [
) 0 0 1.602-10"" 0 0 ’
0 0 0 0 1.602:10" ©
5_0 0 0 0 0 1.602-10"" |
Now, calculate the Eshelby S-tensor
S =identity(6) Initialize the S-tensor
/ 2
A =ln\ar-—«]ar2— I/ A=3912 Calculate constants for S-tensor

2 ]

I '=2-ar-[““’ a-1)-a I =1.991
(arf = 1)-nfar® - |
3

e Q =0.586
8-(1-vm)

R - 1-2vm R =0.055
8-(1-vm)
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T =310 T=-6.17210"*
2 A
3-tar” ~ ]}
LT
Sl 1 :Q+R'Il -3 — S =0.694
. 4 1.1
5,2 5.1
s, =42 R@-2m) 22T s, =001
3.3 3 ' 3.3 ’
. Q LT -
SL2 ==_RIl+4= 81.2—0.086
3 3
S0 7S,
- 2 -
S, ; =-Rll-ar”T S, ;=0277
S;3 “S13
- - . -4
S, =-R(4-21)-T S, , =—4.04610
$52 755
- 2‘1, =
S,y 4R-1I-R- I-a/T S, 4 =0.49%
SS.S =S4.4
-, Q. T _
86.6 -23—1—2“R‘-5 56.6—0'608
" 0.694 0.086 0277 0 0 0o -
- 0.086 0.694 0277 0 0 0
go|™4046:107" ~4.046-107 0011 O 0 0
=
i 0 0 0 0.496 0 0
;0 0 0 0 0496 0 %
L0 0 0 0 0 0.608 |'

Now the physical constants can be calculated for the fiber fraction, f. Cc: composite stiffness
E3c: axial young's modulus; Stresses are mean stresses for matrix and fiber.

f=4
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Ce =[Cm' - £((CE- Cm)-(S- £(S- 1)) + Cm) - (Cf- Cm)-Cm™!]”"

Sc =Cc’!
E3c - ! This is axial young's modulus
Scs .
" As a check this works, as it is the young's modulus

E3¢=2.191-10 for the unreinforced matrix material

ir o r0.003 ]

0 ]' 1 0.003 |

.8.195.10° -0.009 |
oa =i 8.195-10 'Ea =Cm™'¢a Ea =| !

0 0y

o | 0

.0 I L0

Now, calculate the transformation strain for an applied strain and a thermal strain

"0.001 ]
! 0.001 |
sthermal =- ((Cm - Cf)-(S- £(S- 1)) - Cm) " CfEtstar cthermal = 2-003
) :
0]
70005
1~0.005 |
doad =((Cm - CH-(S- £:(S-1)) - Cm) '-(Cm - CH-Ea-(-1) cad =| 3-012
o
"y eceiqnd O 0
; 4.55510 ;
| 4.555-107 |
' :
omt =-f-Cm-(S - [)-¢thermal m:! 1.285-10°
This is the mean matrix stress | 0 [
from thermal contraction | 0 '
Lo : { 6832107 |
|-6.832-10
oft =(1 - £)-Cm-(S - I)-cthermal m:i‘l-928‘108

This is the mean fiber stress i
from thermal contraction !

o O O




135
Elc =

This is transverse young's modulus

Se,

Elc =1.592-10" | -7.23610°
-7.236-10°

This is the mean matrix stress as a resulit

: 8
omload =-fCm-(S- I)-doad omioad = 4.502-10

0 , of the applied load
0 | '
0 )
[ 1085107
|
' 1.085-10

1

|

7

| i
_ _-6.752-10% ! - This is the mean fiber stress as a
=(1-0-Cm-(S-1D- ad =,

ofload '=(1 - £)-Cm-(S-D)-doad  oflo {0 } result of the applied load

0 |

0

- 4

[ 7

3.831+10
3.831-10
5.787-10°
0

0
Lo

7

These are the total mean stresses as a
result of the applied ioad and the thermal
contractions.

omtotal =omt+ omload cmtotal =

L U v SO

'-5.747-107

-5.747-10
= -+~ - 03 8

oftotal :=oft ~ ofload oftotal =| 86810

0

0

‘0

—

r
!
!
!

3.831-10°

: 7
383110 Finally, we arrive at the average matrix and
-2.408-10° | fiber stresses as a result of thermal

emave =6a + omtotal omave = A .
0 expansion and applied load.

0
.0 J
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1-5.747-107 |
-5.747-10" ;

5 9 !
ofave =oa + oftotal ofave =| ~1-688-10 ;

0
0

-0

-

Finally, we can use the calculated stresses to compute the Von Mises stresses:

! 2
1

-

omave, - gmave )
3 1

\

2
- cmave3) +

2

2
omave, - omavez) + ( omave.

/
1 \

2

mmm=J‘

ovmm =2.791-10°

This is the Von Mises stress for the matrix; for the fiber it is:

i

i V2 / 22 ’ 2
| (ofave, - cfave_,/\ - ofave, - ofave,}” + (ofave, - ofave, )

1
" 2

ovmf = 1.63-10°
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APPENDIX IV
ESHELBY EQUIVALENT INCLUSION METHOD
FOR THE

CALCULATION OF CONTINUOUS FIBER COMPOSITE STRESS
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This is a program to calculate the stresses in a continuous fiber composite using Eshelby’s
method.

First, enter the material constants:

Em =96-10° Youngs modulus for the matrix
Ef:=410-10° Fiber modulus
vm =.36 Matrix and fiber poisson ratio
vf =0.28
am =8.5-10°° Matrix and fiber thermal expansion, per degree C
of =4.5-10°°
AT =-350 Temperature through which cooling occurs, below Tg
gstar = (af - am)-AT This is thermal strain resulting from cooling
[ atstar | " 0.001 ]
; ! i
i dstar I| 0.001 i
0.001 | is i i
Etstar = # gstar ! Etstar =l ) This is the thermal strain vector
, 0 I j |
j i
0 0
.0 ! i 0

Now, define compliance matricies for the matrix and reinforcement

I =identity(6) Cm =identity(6) Cf =identity(6)
Cm, , “Em- t-vm
(1 - 2-vm)-(1 - vm)

Cm, , =Cm | Cm,; , =Cm, |
Cm4 r Em

¥ 2-(1 +vm)
Cm, ; =Cm, , Cmg ¢ =Cm, ,
le 2 =Em- vm

' (1-2vm)(l+vm)
Cm, ; =Cm,, Cm, =Cm , Cm,;=Cm , Cm,, =Cm, , Cm,, =Cm ,
cf  =Ef— =¥

’ (1 - 2-vf)-(1 = vf)
Ch, =Cf | Cf, ; =Cf
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Cf44 = =
2:(1+vf)
Cf s =Cf, 4 Chig =Cf, 4
Cf , =Ef il
) (1 = 2:v)-(1 + ¥f)
Cf 5 =Cf,, Ch.y =Cf Ch; =Cf,
10 00 0]
,§o 1 000 o‘i
/001000
100010 0]
o000 1 0|
!Lo 0000 1]
| 161310 907610 9.076:10" 0
f9.o76-|o‘° 1.613-10'"  9.076-10" o
Cm=§ 9.076-10'° 9076-10"° 1613-10" o
) 0 0 3.529-10"
; 0 0 0 0
‘0 0 0 0
“5.241-10" 2038-10"" 203810 0O
©2.038-10'""  5241-10" 203810 o
Cf=§2.038-10“ 2038 10" 524110 o
o 0 0 1.602-10"!
il 0 0 0 0
10 0 0 0

Now, calculate the Eshelby S-tensor

S =identity(6) Initialize the S-tensor

5-wvm

S S —_
1.1 8-(1 - vm)

S,2 %5,

$;3 =0

_ 4vm-1

g -2 -1
12 8.(1-vm)

o

2910

o W O o o
. W

0
0
0
0

1.602¢ 10"
0

"

0
0
0 |
0
0

1.602-10" !
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- 3-4.vm
6.6 8-(1 - vm)

, 0.906 0.086 0.281 0
| 0.086 0.906 0281 0
i 0 0 0 0
0.
0
0

25

©O o 0o © o o

©C O O o o o

0 0 0
0 0 0
0 0 0 305 |

Now the physicai constants can be calculated for the fiber fraction, f. Cc: composite stiffness
E3c: axial young's modulus; Stresses are mean stresses for matrix and fiber.

f-4

Ce = Cm ' = £((Cf~ Cm)-(S- £(S- I)) - Cm)" "(Cf- cmy-Cm! 1

Sc =Cc !
E3c = S [ This is axial young's modulus
C.
3.3

" As a check this works, as it is the young's modulus
E3c=2.192-10 for the unreinforced matrix material



;0] 10003 ]

0 | 0.003
v :5-8.195-108‘553 I Ea_!!—0.009:

0 0

' 0 | .0

.o 0

Now, calculate the transformation strain for an applied strain and a thermal strain

j 0.001
L 0.001 !
y . 0.003 .
ethermal =-((Cm - Cf)-(S- f-(S-1)) - Cm) "-CfEtstar gthermal =i
t
f
| 0
L0
7-0.004"
1 -0.004
i
a i 0012 |
gload =((Cm - Cf)-(S- £(S-1))- Cm) -(Cm - CH-Ea-(-1) doad =| o !
] O i
2.12:107 0o |
P a12-10"
omt =-f-Cm-(S - I)-cthermal 5 g |
emr=| 1.138:10°
This is the mean matrix stress ) g
from thermal contraction 0 |
o
1-3.18+107
~3.18:10"
oft =(l - £)-Cm-(S - [)-¢thermal cﬁ=£‘['708'108
This is the mean fiber stress 1‘ 0
from thermal contraction j 0
L0
Elc = S This is transverse young's modulus
C
1.1

Elc=1.494-10"
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9.191-10’

9.191-10
5.268-10%

|

7
!
!
7 i
J

i

omload =-fCm-(S- [)-ddoad omload =

o O ©

[-1.379- 108
-1.379-10°
-7.903-10%
0

0
0

ofload =(1 - £)-Cm-(S- I)-dload ofload =

1.131-10®
1.131-108
6.407-10° |

{
|
|

emtotal =omt+ emload omtotal = !

0 i

-1.697-10°
{-1.697-108 |
-9.61-10°
0

0
1 0

oftotal =oft ~ ofload oftotal =

M .

[ Lasietet

| Li3tet

5-1.788-[08
0

0
10

omave =¢a - ortotal omave =

[ S

This is-the mean matrix stress as a resuit
of the applied load

This is the mean fber stress as a
resuit of the applied load

These are the total mean stresses as a
result of the applied load and the thermal
contractions.

Finally, we arrive at the average matrix and
fiber stresses as a result of thermal
expansion and applied load.
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-1.697-10°
1-1.697- 10

9
ofave =oa + oftotal ofave =| "1-781-10
0

0
L0

e e
.

Finally, we can use the calculated stresses to compute the Von Mises stresses:

2 2 2
- omave, )" ~ (omave, - omave, }* ~ (omave, - omave )
2/ 2 3) \ 3 1

2

b,
,;'(\cmave
ovmm = |

Al

1

ovmm =2.919-10%

This is the Von Mises stress for the matrix; for the fiber it is:

V2

\ ,
. )

/
2

P 2 2y
! (6fave, - ofave_ )" - {ofave, - ofave, =+ /ofave, - ofave
\ 1 2 \ 2 ;07\ 3 1

ovmt =

ovmf = 1.611-10°



