Laser nitriding Laser surface remelting Laser cladding of Ti-6AI-4V

Thuan Dinh Nguyen

Laser nitriding of Ti-6Al-4V

* Method

* Equipment

- Fiber laser.
- CSTPQ center in La Pocatiere, Quebec.

Laser nitriding of Ti-6Al-4V

* Results

- High thickness, 400 microns
- Excellent bonding
- High hardness
- No cracks
- Relatively uniform

Laser nitriding of Ti-6AI-4V

* **Results** Measured 3 times at 3 different positions of 1 sample

Laser nitriding of Ti-6Al-4V * Future works

- Water erosion tests for laser nitrided samples.
- Processing parameters are reliable
 - → Further improvement
 - → Increase thickness up to 0.8~1 mm
 - → Welding + Nitriding

Laser surface remelting

* Objective

Surface remelting & rapid cooling → microstructural change

* Application

Papers (2008, 2010) of B. S. Mann: - Cylindrical shaped samples

- Compressed air

→ New approach: Ar gas

* Method

Laser surface remelting * Results

Laser surface remelting * Results

Laser surface remelting

- * Future works
- Do etching → microstructure.
 Etchant (HF, HNO₃, H₂O)
- Safety training course required
- Fabricate some samples for erosion tests

Laser cladding

* Method

Inject Al₂O₃ (60 microns) powder directly onto the surface

Laser cladding * Results

Top view

Laser cladding

* Results

Defects

- Cracks, pores
- Low penetration depth of Al₂O₃ particles

Causes

- Different thermal expansions
- Processing parameters
- Equipment

* Future works

- Review the cladding process
- Solve technical issues

Thank you for your time