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Abstract
The process kinetics during Transient Liquid Phase (TLP) bonding
and other diffusion-controlled, two-phase moving interface problems
have been examined using numerical modelling and experimental
testing. The review section produces a general background of kinetic
modelling of two-phase diffusion-controlled processes. Considerable
emphasis is placed on the effect of grain boundary regions on process

kinetics, and on previous modelling studies.

Nickel base metals with diff--se:8 grain sizes were TLP-bonded
using Ni-19at.%P filler metal. The experiment results produced when
.onaing singie-crystal nickel closely correspond with the calculated
output of a one-dimensional model developed in the present thesis.
The results of influence of base metal grain boundary regions on the
process kinetics form the basis for the subsequent development of
two-dimensional finite difference models that accounted for grain

boundary-related phenomena.



Tue .e-dimensional, fully implicit finite difference model
cavir oo this thesis permits the calculation of solute distribution
ains (v location of the migrating interface in any diffusion-controlled,
two-phase moving interface process. The computed results are in good
agreement with experimental results produced in the present thesis,
and with results found in the literature (on the solution treatment of
o/B brass diffusion couples). The numerical calculation is very fast
and accurate. Also, the one-dimensional model permits selection of

optimum parameters during TLP-bonding.

The two-dimensional finite difference models developed to
examine the effect of grain boundary regions on process kinetics take
into account grain boundary diffusion, grain boundary migration and
grain boundary grooving (or liquid penetration during TLP-bonding).
Modelling has confirmed that the influence of grain boundary regions
depends on the grain size, the ratio of grain boundary diffusion and
lattice diffusion coefficients. Grain boundary migration only affects
the total amount diffused during part of the holding period. The grain
boundary grooving model takes into account: (1) volume diffusion in
each phase, (2) the excess chemical potential resulting from the
gradient interfacial curvature, and (3) the excess chemical potential
resulting from the balance between the grain boundary energy and
interfacial energy at the grain boundary triple junction. This model
correctly simulates liquid-solid interface movement at base metal

grain boundary regions during TLP-bonding.
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Chapter 1

Introduction

1.1. Two-Phase Diffusion-Controlled Processes

Diffusion-controlled growth or dissolution of an unstable phase
is important in a range of metallurgical situations [Sekerka, 1975]. For
example:

(a) in a solid-solid system when a second-phase grows and
subsequently dissolves during solution heat-treatment [Heckel, 1975],
or when an intermediate layer grows in a thermal barrier coating
[Kidson and Miller, 1964];

(b) in a solid-liquid system when the liquid phase grows and/or
shrinks during liquid phase sintering, or during Transient Liquid Phase
(TLP) bonding [Kaysser, 1980; Tuah-Poku, 1988];

(c) in a solid-gas (vapor) system when an intermediate aluminide
phase grows during aluminization of nickel-based alloy materials
[Hickl and Heckel, 1975].

In the present thesis, two-phase diffusion processes are defined as
those metallurgical situations in which the growth or/and dissolution
of an unstable phase occurs through solute diffusion and interface
movement (see Fig. 1-1 and a more detailed explanation is provided in

Chapter 2).
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Fig. 1-1 Two-phase diffusion-controlled processes
(the growth or/and dissolution of unstable
phase I depends on solute diffusion and
on interface movement).

1.2. Modelling of Process Kinetics

A number of investigators have modelled the growth or/and
dissolution of unstable phases [e.g., Tanzilli and Heckel, 1971; Lanam
and Heckel, 1971; Karlsson and Larsson, 1975; and Nakagawa et al,
1991]. However, major problems still remain. For example:

(1) Modelling of the TLP-bonding process still requires much
work, since almost all the research to-date has depended on the
application of analytical methods [e.g., Niemann and Garret, 1974,
Sekerka, 1975; lkawa and Nakao, 1977, Onzawa et al, 1978; and Tuah-
Poku et al, 1988; Nakao et al, 1€90; and Liu et al, 1991]. These
analytical approaches treat the joiring process as a number of discrete
stages -- dissolution, isothermai solidification and homogenization.
However, this is not what actually occurs during TLP-bonding. For

example, the completion time required during ine homogenization stage
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depends on the solute distributior: immediately following completion of
isothermal solidification. Nakagawa et al [1991] have pointed out that
at very low heating rates, solidification can occur when heating from
the filler metal melting point to the bonding temperature. This
situation cannot be modelled using analytical methods. In addition, the
analytical calculations for each stage in TLP-bonding depend on error
function and parabolic law assumptions that are only approximate
solutions.

(2) A review of the numerical-modelling literature concerning
the growth or/and dissolution of unstable phases confirms that
extremely long calculation times are involved. This occurs because
explicit formulae are employed during such calculations. This is an
especially severe problem, when an attempt is made to model a
complex process such as Transient Liquid Phase bonding (since the
processing time is extremely long compared with the calculation time
step needed for stability of the numerical solution). In this connection,
computations of other complex situations, e.g., microsegregation during
binary alloy casting, have taken several days to perform using
computer workstations [Battle and Pehlke, 1990].

(3) Almost all practical situations involve polycrystalline
materials and grain boundary regions enhance mass transport.
Consequently, the presence of grain boundary regions will markedly
affect process kinetics. For example, the total amount of solute
difftused during an "exchange experiment" is greatly influenced by the
presence of grain boundaries [Lidiard and Tharmalingam, 1959]. Also,

Kokawa et al. [1991] have also shown that the rate of isothermal
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solidification is faster when finer-grained nickel base metal is
employed during TLP-bonding. In this connection, only limited research
has dealt with the numerical modelling of the influence of base metal
grain boundary regions on the process kinetics during TLP-bonding and

similar metallurgical processes.

1.3. Thesis Objectives

The objectives of the present study comprise:

(1) Develop a new numerical program for modelling diffusion-
controlled growth or/and dissolution of unstable phases, with the
specific aim of decreasing the calculation time and increasing the
accuracy of the final calculation output;

(2) Use the numerical model (developed in (1) above) to analyze
the Transient Liquid Phase Bonding process, and confirm the validity of
calculated results by direct experiment;

(3) Develop numerical models that explain the influence of base
metal grain boundary regions on the process kinetics during two-phase

diffusion-controlled processes.

1.4. Thesis Layout

Fig. 1-2 shows a flow chart indicating chapters in this thesis.
Chapter 1 provides a general background for the research carried out in
this thesis. Chapter 2 examines the physical phenomena during two-
phase diffusion-controlled processes and published modelling results.
Detailed emphasis is placed on TLP-bonding and on solution treatment
of a/p brass diffusion couples. The underlying features of analytical
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solutions (for diffusion equations) and the finite ciiference method are
described. The influence of grain boundary regions (grain boundary
diffusion, grain boundary migration and grain boundary grooving) on
process kinetics ar@ reviewed in depth. Chapter 3 describes the
experimental results produced during TLP-bonding of nickel base metal.
The experimental results produced during TLP-bonding of single-
crystal nickei base metal are compared with the output of the one-
dimensional numerical model developed in Chapter 4. The effect of
base metal grain boundaries on the process kinetics during TLP-bonding
of nickel base metal forms the basis for the two-dimensional finite
difference models described in Chapters 5 and 6. The conclusions of

this thesis are presented in Chapter 7.
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Chapter 2

Literature Review

2.1. Two-Phase Diffusion-Controlled Processes

Solute transfer across the interface between two phases could
lead to one phase growing and the other dissolving. As mentioned in
Chapter 1, two-phase diffusion-controlled problems occur in a range of
metallurgical situations and involve solid/solid, solid/liquid, or

solid/gas systems. Two detailed examples are described below.

2.1.1. Transient Liquid Phase Bonding

Transient Liquid Phase (TLP) bonding is generally used during the
repair of aero-engine turbine blades [Jahnke and Demny, 1983] and
when joining components for electronic-circuits [Bernstein and
Bartholomew, 1966]. TLP-bonding has a number of advantages -- the
joint region has similar mechanical properties to the base metal and
complex shapes can be readily fabricated [Duvall et al, 1974]. During
TLP-bonding, an interlayer (filler metal) is clamped between the
contacting metal surfaces and the entire assembly is heated to the
bonding temperature. The filler metal will, at the bonding
temperature, melt or react with the base metal to form a liquid zone
and then this liquid will solidify isothermally. Following

soliditication, the joint region is homogenized at the same, or at some
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lower, temperature. All stages of TLP-bonding proceed when the solute
(the melting point depressant or MPD), which is initially concentrated
in the filier metal, continuously diffuses away from the joint center

region into the base metal.

Duvall et al [1974], when joining of Ni-Cr-(Co) alloys using Ni-B
filler metal, considered that TLP-bonding comprised three different
steps, namely, base metal dissolution, liquid phase isothermal
solidification and joint homogenization. However, Tuah-Poku et al
[1988] defined four stages during TLP-bonding of silver using pure
copper filler metal, namely, dissolution of the interlayer (filler metal),
homogenization of the liquid, isothermal solidification, and
homogenization of the joint region. MacDonald and Eagar [1992]
suggested that a further stage should be included to account for the
effect of solute diffusion during the heating cycle to the bonding

temperature.

There is some dispute concerning the definition of each stage
during TLP-bonding. This applies particularly to the dissolution stage.
Tuah-Poku et al [1988], analyzed the situation that occurred when a
single element filler metal was employed during TLP-bonding, and
suggested that filler metal melting and liquid zone widening at the
bonding temperature were quite separate stages. However, when a
single element filler metal is employed, the initial liquid phase forms
as a result of both interlayer melting and base metal dissolution. It is

easier to consider filler metal melting and liquid zone widening as a



Chapter 2 Literature Review 9

single stage; this is also consistent with Duvall et al's definition.

In addition, the assumption that the heating cycle between the
filler metal melting point and the bonding temperature has no influence
on the progress of TLP-bonding is incorrect. For example, when a

eutectic composition filler metal is employed during TLP-bonding,
solute diffusion when heating from the filler metal melting point (Ty,)

to the bonding temperature (Tg) can allow solidification to begin
before the bonding temperature is reached. Thus, Nakagawa et al
[1991] indicated that isothermal solidification could occur between Ty,

and Ty when the heating rate is slow (around 1K/s) and when a thin

(5um) filler metal is employed. These results were produced when
modelling TLP-bonding of nickel base metal using Ni-19at.%P filler
metal. The likelihood of solidification prior to reaching the bonding
temperature will increase markedly when a high diffusivity melting
point depressant is contained in the filler metal. Based on the above
comments, it is apparent that a new classification for the different

stages during TLP-bonding is required.

It is convenient to describe the new classification of TLP-
bonding using the binary eutectic alloy diagram shown in Fig. 2-1 and
the time/temperature relation shown in Fig. 2-2. It is worth pointing
out that this explanation equally applies when a single-element (pure)
filler metal is used during TLP-bonding (see Figs. 2-1 and 2-3 (b)) and
when an eutectic alloy filler metal is employed (see Figs. 2-1 and 2-3

(a)). This discussion can be easily extended to binary solid-solution
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alloy systems.

Stage I. This is the heating stage, where the sample is heated
from room temperature to the filler metal melting temperature (from
point o to a in Fig. 2-2). During heating, interdiffusion occurs and the
solute concentration C_g at the interface between base metal and filler
metal in base metal changes with temperature, following the solvus

line in the phase diagram (see Fig. 2-1). Niemann and Garret [1974]

Yemperature

-m

Cos CBS

Composition

Fig. 2-1 Hypothetical binary phase diagram with
a eutectic point.
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Fig. 2-2  Schematic showing the different stages
during heating cycle of TLP-bonding, where
Tg is the bonding temperature and T, is the

melting point of the filler metal.

pointed out that this heating stage is particularly important when the
filer metal is very thin (since all the filler metal can be consumed

during the heating cycle).

Stage Il. This is the dissolution stage, when the base metal
dissolves and the liquid zone widens (from point a to b and then to ¢ in

Fig. 2-2) and solute diffuses into the base metal. This stage can be
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Schematic showing concentration profiles during
TLP-bonding using a eutectic filler metal (a) and
a single-element filler metal (b).
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sub-divided as follows:

(1) Stage IlI-1, when the temperature is raised from the melting point
to the bonding temperature (from point a to b in Fig. 2-2) and the solute
concentrations, C, , and C, ,and CLB and CBL at the solid-liquid
interfaces are changing with temperature following the solidus and
liquidus lines in the binary diagram (see Fig. 2-1);

(2) Stage I11-2, involves isothermal dissolution at the bonding
temperature (from point b to ¢ in Fig. 2-2). When a single-element
filler metal B is employed in an eutectic system, three metallurgical
phases (o, p and liquid) will be involved at beginning of dissolution
stage (see stage II-1 and stage II-2a in Fig. 2-3 (b)) and then B phase
disappears (see stage 11-2b in Fig. 2-3 (b)). At the end of stage I, the

liquid zone reaches its maximum width (see Fig. 2-3).

It is worth emphasizing that solidification can initiate during the
heating cycle from the filler metal melting point when the heating rate
is slow and the thin filler metal contains a high diffusivity melting
point depressant. When this occurs, base metal dissolution may not
occur and filler metal melting will be immediately followed by

solidification (also see the paper by Nakagawa et al [1991])

Stage Ill. This is the isothermal solidification stage, where the
liquid zone solidifies when the solute continuously diffuses into base
metal at the bonding temperature (from point ¢ to d in Fig. 2-2). The

solute concentrations at the solid-liquid interface, C, , and C , , are

unchanged during this stage and only the width of liquid zone decreases
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until the joint is completely solidified. The solute distribution in
liquid is uniform during almost all of the isothermal solidification
stage [Nakagawa et al, 1991]. This stage is generally considered to be
the most important since the completion time required for the entire
TLP-bonding process is largely determined by the time required to
complete the isothermal solidification stage. As a result, much

research has been carried out on this aspect of the bonding process.

Stage IV. This is the homogenization stage, where solid-state
solute redistribution occurs (from point d to e in Fig. 2-2). The
homogenization temperature is not necessarily the same as that
employed during stage | and 1l. This stage is terminated when the
maximum solute concentration at the joint centerline reaches some

preselected value.

This new classification redefines the critical dissolution stage,
from the point when the temperature is raised above the melting point
of the filler metal. It is worth stressing that TLP-bonding is a
continuous process and Fig. 2-3 only provides a schematic

understanding of the physical phenomena that occur during the process.

The crucial point in TLP-bonding is that the completed joint has a
chemical composition located in the single phase region of the binary
equilibrium phase diagram (if no intermediate phases are allowed at
the final joint). The joining process approaches this end-point through

solute diffusion. The formation of the liquid phase assures complete
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wetting of the base metal and formation of a sound joint. It is also
clear from Fig. 2-3 that use of a single-element filler metal will
markedly increase the maximum liquid width and the time for joint
completion (compared with the situation when an equivalent thickness,

eutectic composition filler metal is used) [Tuah-Poku, 1988].

2.1.2. Solution Treatment of o/f Brass Diffusion Couples
When an o and B phase aggregate is solution-treated at a
temperature where only o is stable, there will be a time-dependent
transformation to the single phase o structure. However, if there is a
large flux in the B layer (resulting from large variations in solubility
with temperature and/or from a large interdiffusion coefficient at the
solution temperature) it is possible for the u/B interface to move
initially so that the amount of B phase increases. Finally, the B phase
dissolves, when a rapid loss of the supersaturation in p phase occurs,
and the final structure approaches the end-point defined by the
equilibrium phase diagram [Heckel et al, 1975] (see Fig. 2-4). In a
similar manner to TLP-bonding, solution treatment of an o and B brass
diffusion couple can be considered as a number of different stages, e.g.,
interdiffusion, o phase dissolution, B phase dissolution and
homogenization (when the average composition of test sample is in the

single o phase region of the phase diagram).

It is generally assumed that local equilibrium exists at the

moving interface during modelling of two-phase diffusion-controlled
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problems. In practice, local equilibrium is not attained, e.g., Langer

andSekerka [1975] presented a model that accounted for departures

(b)

Fig. 2-4 Schematic showing (a) partial Cu-Zn phase diagram;
(b) change in solute concentration profile across o/p
brass diffusion couple (after Heckel et al, 1972).
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from local equilibrium. However, the assumption of local equilibrium
at the migrating interface is particularly convenient and it is for this

reason that the assumption is employed during the present thesis.

2.1.3. Summary

This thesis considers diffusion-controlled, two-phase isothermal
phase transformations where the whole system approaches the end-
point defined by the equilibrium phase diagram through diffusional
transport. The two principal features of such transformations are
solute diffusion and interface migration. The process kinetics of two-
phase diffusion-controlled transformations are influenced by all

factors that affect diffusion.

2.2. Diffusion Equations in Structurally Homogeneous
Materials
2.2.1. Fick's Diffusion Laws
The mathematical basis of diffusion was first established by
Adolf Fick in 1855, and many text books have been published indicating
mathematical solutions for particular diffusion processes, e.g. Crank's
Mathematics of Diffusion [1975] and Shewmon's Diffusion in Solids
[1989].

Fick's First Law is based on the hypothesis that the rat: of
transfer of the diffusing substance through unit area of a section is
proportional to the concentration gradient measured normal to the

section, i.e.,
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aoC
J =- D ayv (2-1)
where J is the rate of transfer per unit area of section, C the
concentration of diffusing substance, y is the space co-ordinate
measured normal to the section, and D is the diffusion coefficient.
Conservation of the diffusing substance at each point leads to Fick's

Second Law:

dC
5t = ). @2)

Furthermore, if D is independent of composition, and also of location in

the sample, the above equation becomes:

= =D—. (2'3)

In two dimensional space, this is:

aC d2C d2C
505 " 5 ) &4

2.2.2. Solutions for One-Dimensional Diffusion Equations
Many useful analytical solutions for diffusion equations can be

found in the literature [e.g., the texts by Crank, 1985 and by Shewmon,
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1989]. A number of these solutions will be directly applied in the

present study.

(1) Thin-Film Solution

Imagine that an infinitesimally thin layer of diffusant of
concentration M is plated on to one end of a solute-free rod of infinite
length and ‘unit cross-section. If a similar solute-free rod is bonded to
the plated-end of this rod (without any diffusion occurring) and the rod
is annealed for time t so that diffusion occurs, the concentration of

solute along the bar will be given by the relation:

Oyt = = ex- " ) @5)
" 2yzDt \ 4DY
and the total quantity of the solute diffused will be:
[clybydx = m. (2-6)

(2) Thick Layer Solution
When the initial thickness (2h) of the diffusant source (Cg) is of
the order of the diffusion distance (\/—Df), and,

C(y.0) = Co, h2y20 (2-7)

C(y,O) = CM' y> h (2'8)
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where Cy is initial concentration of diffusant in specimen, the solute

concentration is:

Cly.)= CM+ (Co- CM){erf(-\/yng-erf(-\j%)}. (2-9)

(3) Solution For a Semi-Infinite Sample with a Constant Surface
Composition
If the surface concentration of an initially solute-free specimen

is maintained at some composition C4 for all t>0 values, solute

diffuses into the specimen and,
C(y.0) = Cy, (2-10)
c(Y) = Cy, (2-11)
and the solute concentration in the specimen is:

Cly) = c1+(cM-c,)erf(—\[i'ﬁ} (2-12)

The rate at which diffusant enters the specimen is given by the

relation:

( l/ D(CM'C) (2-13)
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The total amount M; of diffusing substance, which has entered the
medium at time t, is found by integrating the above equation with

respect to t,
Dt
M;= 2(C1-CM)‘\/-1;-. (2-14)

2.3. Finite Difference Method

The analytical methods and solutions of diffusion equations are,
for the most part, restricted to simple geometries, to simple initial
and boundary conditions and to constant diffusion coefficients. In
other words, it is either very difficult or impossible to obtain closed-
form analytical solutions in most situations. However, numerical
methods generally provide adequate numerical solutions more simply
and efficiently. For this reason, numerical modelling is recognized as
an essential tool that complements both analytical theory and
experimental results in many branches of science and engineering (see
Fig. 2-5).

Of the various numerical approaches, the finite difference method
is by far the simplest to implement [Allen et al, 1988} and is
employed in the present thesis. In the finite-difference method, the
continuous derivatives in the partial differential equations are
replaced by finite difference approximations at the grid-points and
boundary points in the solute domain. This produces a set of algebraic

equations which are solved using a computer.
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EXPERIMENT

ANALYTICAL COMPUTER
THEORY - »  SIMULATION

Fig. 2-5  Schematic illustrating of the roles of analytical
theory, numerical simulation and experimental
testing: the computer simulation can either be
compared directly with a theory (to test the
accuracy of the mathematical approximation) or
with the experiment results (to test whether
a model faithfully describes a real system),
(after Binder, 1992).

2.3.1 Consistency, Stability and Convergence [Noye, 1982]

A finite difference equation is said to be consistent with a
partial differential equation if, in the limit when the grid spacing
tends to zero, the finite difference equation becomes the same as the
partial differential equation at each point in the solution domain. The

consistency is related to truncation errors, which are the differences
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between the partial differential equation and its approximating finite
difference equation. This can be easily evaluated using Taylor series

expansion.

A set of finite difference equations is said to be stable if the
cumulative effect of all the rounding-off errors is negligible.
Therefore, the stability of a finite difference equation is concerned
with the growth or decay of errors produced in the finite difference
solution by the arithmetic operations. This stability depends on all the
rounding-off errors introduced during the computation. Von Neumann's
method [Noye, 1982] is often used in stability analyses, but is only

really applicable to linear systems that have constant coefficients.

The solution of a finite difference equation, that approximates
any given partial differential equation, is said to be convergent if, at
each grid point in the solution domain, the finite difference solution
approaches the solution of the partial differential equation (when the
grid spacing tends to zero). The difference between the true solution
of the partial differential equation and the exact solution of the
approximating finite difference equation is called the discretization
error. In general, the problem of convergence is a difficult one to
investigate effectively. Fortunately, the convergence of the difference
equations that approximate linear parabolic differential equations can
be investigated using Lax's "equivalence theorem" [described in the
paper by Lax and Richtmyer, 1956]. Lax's theorem states: "Given a

properly posed linear initial value problem and a finite difference
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approximation to it, that satisfies the consistency condition, stability

is the necessary and sufficient condition for convergence.”

2.3.2 Various Finite Difference Schemes [Allen et al, 1988]
Taking a one-dimensional diffusion problem as an example:

dC _d2C
5-{=D'a?- (2-15)

A weighted average approximation for the above equation at
(j,t+At) grid-point, is given by:

C~t+M- Ct C-t+At 2 C-t+M+C +At C jt+1 .2 C]t'*'C]t- ;

j j j+1 CYj j-1
=D{ 6 + (1-96)

At (ay)?

(Ay)? (2-16)

where 6 is a weighted constant, and the solution is unconditionally

1
stable and convergent when 5= 06<1. For1<e <% , we must employ

the stability criterion:

DAt < 1
(ay)2 =2(1-20)°

(2-17)

When 6 = 0, Eq. (2-16) is an explicit scheme and its truncation error is
O(At +Ay?). When 6 = 1, Eq. (2-16) is an implicit scheme and its
truncation error is O(At +Ay2?). When 6 = 0.5, this is the Crank-Nicolson

scheme [Crank, 1975] and its truncation error is O(At? +Ay?). When the

(ay)?
12DAt

1
6 value is 5 - , truncation error is O(At? +Ay*) and the solution is
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also stable [Richtmyer, 1957).

it is necessary to point out that the economy of any particular
numerical scheme must always be considered. Therefore, there is

always a compromise between computational accuracy and economy.

2.4. Moving Interface Problems
2.4.1. Definition

Mathematically, the problem of diffusion-controlled growth or
dissolution of an unstable phase is called a Moving Boundary Problem or
Stefan problem, a reference to the early work of J. Stefan who, around
1890, was interested in the melting of the polar ice cap. In the present
thesis the interface between phases is distinguished from a grain
boundary region, by referring to it as a moving interface, not a moving

boundary.

Consider one-dimensional melting of ice, where the ice sheet has
length L and an initial temperature below the melting temperature.
When the surface of the ice sheet is raised at time t=0 to a
temperature above zero Celsius, melting occurs and the interface
moves from the the surface into the sheet. This interface separates a
region of water from one of ice at zero Celsius (see Fig. 2-6). Heat

flow occurs in both the water and ice phases. The problem involves
finding the temperature distribution in the water, T/ (y.t), and in the

ice, Ty(y.t), and the position of the water phase, Y(t), at time t, where

y is the space coordinate measured from the outer surface of the sheet
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Fig. 2-6  Schematic of one-dimensional melting ice problem.

(y=0). In this situation,

aT,  9°T,
cPiIT = Kia—yz‘- i=I, IT (2-18)
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where c is the specific heat, p is the density, K is the heat
conductivity, i=I refers to the water phase 0 <y < Y(t), and i=II refers
to the ice phase Y(t) <y < L (see Fig. 2-6). If ice and water have the

same density p, the Stefan conditions at the interface are:

TLY(1).)=T(Y(t).)=T =0, (2-19)

and,

oT 9T
ik 4§ I dy
K K= =L.p—. i

where T_ is the melting point of ice and L, is the latent heat of fusion.

Therefore, moving interface problems may be defined as time-
dependent initial value problems, where parabolic partial differential
equations with initial and boundary conditions, must be solved in a
time-dependent space domain that has moving interfaces [Crank, 1985].
The rate of interfface movement can be calculated from a flux balance
equation at the moving interface, and this is sometimes called the
Stefan condition. Moving interface problems are difficult to solve
since the location of the moving interface is not known a priori and

must be found as part of the problem solution.

2.4.2. Solutions for Moving Interface Problems

Moving interface problems occur in many branches of science and
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engineering and have been a popular research area in recent years.
Research to-date on moving interface problems in metallurgical
processing has mainly been concerned with the diffusion and heat flow
aspects of phase transformations or chemical reactions (also see §2.1).
Moving interface problems have been tackled by a broad spectrum of
researchers: engineers tackling practical problems, numerical analysts
producing suitable numerical algorithms, and pure mathematicians
deciding that the solutions to specific problems exist. Although many
analytical and numerical solutions are available [Rubinstein, 1971 and
Crank, 1984], very few analytical solutions are available in the closed
form. Because of this, recent research has emphasized the
development of numerical solutions, especially use of the finite
difference method. In this connection, Fig. 2-7 shows some of the
finite difference methods employed when solving moving interface
problems. It is beyond the scope of this thesis to discuss this bulk of
research in detail and the reader should consult the excellent review by
Crank [1984]. The present thesis will emphasize the results of
research on moving interface problems in the metallurgical field and
apply existing mathematical principles and numerical algorithms
during the solution of diffusion-controiled, two-phase moving

interface problems.

2.4.2.1. Analytical Solutions
Typical analytical solutions can be found in texts such as

Diffusion in Solids, Liquids, Gases by W. Jost [1960]. In addition, an
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extensive review concerning diffusion-controlled moving interface
problems and their analytical solutions has been presented by Sekerka
et al [1975]. However, the available analytical solutions involve one-
dimensional cases of an infinite or semi-infinite region, that have
simple initial and boundary conditions, and conctant thermal and
diffusion properties. Analytical solutions for the moving interface
generally take the form of functions of the single variable xHt.
These solutions are known as similarity solutions (they have been
sometimes been termed square-root relations or parabolic law
relations in the metallurgical field). Danckwerts [1950] presented a
general solution for unsteady-state linear heat conduction or diffusion
problems. In Danckwerts' paper, it was assumed that two phases meet

at the moving interface Y(t) for semi-infinite media (see Fig. 2-8),

ICLy.)  2Cy)

It = Dy 3y2 -0o<yY<Y () (2-21)
and,
0C(y.t) a2CH(y.t)
3t = Dyt ay2 . Y(t)<y<eo (2-22)

When the error function solution is applied to each phase,

Cyly) = A+ Ag erf(—L} (2-23)

and,

Clyt) = Ag+ Aqerf{—E= (2-24)
2+[Dgt
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Fig. 2-8 A general model for a semi-infinite, diffusion-
controlled, two-phase moving interface problem
(after Danckwerts, 1950).

where A1, Az, Az, and A4 are constants. Using the appropriate boundary

conditions, we obtain,

Cyloot) = Ay - Ay= C__, (2-25)

and,
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Crfeot) = Ag+ A= C_. (2-26)

At the moving interface, we have:

Y
C,(Yt) = A + A erf| —/——|=Cyp, (2-27)
1 1 2 [2 [—DIJ YI
and,
Y
CH(Y,t) = Az + A4 erfl———— =CYII' (2-28)

Since Egs. (2-27) and (2-28) must be satisfied for all values of t, Y

must be proportional to \t, ie.,
Y=2pvt , (2-29)

where B is a constant. Substituting Eqgs. (2-23)-(2-29) in the equation

governing interface movement,

dy() oC(y.t) 9C (Y1)
(CyrCyn) dt =Dy oy =Y(t)-DH —ay v (2-30)

we can can derive,

(Cy-CypBVm -

B C -C 2 '\fD Cyv,C 2
‘./_L"_Xﬁexp B + u(Cyu “’)exp-B— 0. (2-31)
1 ( B ) D, ( B ] O

+erf 1-erf

/D, Dy
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When B is calculated numerically using the above equation, Eq. (2-28)
traces the movement of the interface. However, in practice, non-

parabolic boundary motion will always arise when finite geometries
and arbitrarily specified initial conditions are applied [Sekerka et al,
1975]. Numerical modelling is particularly effective when analyzing

such situations [Crusius et al, 1992].

2.4.2.2. Numerical Solutions

Front-tracking methods are commonly applied when solving
moving interface problems, with the position of the moving interface
computed at each time step. Among them, the fixed-grid method is
most basic and easiest to use. Another method -- the variable space
grid method, first proposed by Murray and Landis, is very popular when
modelling metallurgical processes [Crusius et al, 1992]. For example,
Heckel and his co-workers [Tanzilli and Heckel, 1971; Lanam and
Heckel, 1971; and Hickl and Heckel, 1975], in 1970's, examined many
moving interface problems, e.g., solution treatment of a/p brass
diffusion couples and aluminization of nicke! alloys using the variable
grid method. In addition, other approaches such as the enthalpy method
and the isotherm migration method have been also applied to

metallurgical problems [Crank, 1984].

Using the fixed space grid method, we can derive the numerical
solution of a simple differential equation such as Egs. (2-21) and (2-
22) for points far from the moving interface. The interface will in

general be between two grid points at any given time. However, special
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92T
ay? ’

with the partial differential equation itself, in the neighborhood of the

formulae are needed to cope with terms such as 57 and as well as

moving interface [Crank, 1984].

Consider the problem of ice melting as an example. It is assumed
that, at any time t, the moving interface is located between two
neighboring grid points, nAy and (n+1)Ay (see Fig. 2-9). Using
Lagrangian interpolation formulae, the discrete form of the derivatives

will be [Crank, 1984}

2
a T LT Ryt } (2-32)
—kax_ 1+p p ~ p(1+p)’

ﬁ A [pThy (1+p)T,  (1+2p)T
(ayle:Ay{ 14p ~ p "+ p(1+p)m} (2-33)
for y < Y(t), and
azTH 2 J Tm Tn+1 Tn-i-2
(ay2 —kax (Ay)2lW(1-p)(2-p) T (1-p) T (2-p)}’ (2-34)
Ty @p3)Ty  (2P)Ty, (1-P)Ty .
(aYl Y Ay{(1 -p)e-p)t T (1-p) T (2-p) } (2-35)

for y > Y(t). However, Egs. (2-32) and (2-33) have singularities at p = 0
in Eq. (2-32) and p = 1 in Eq. (2-33). Difficulties with the above
treatment will be compounded when implicit finite difference formulae

are used. For example, Crank [1984] pointed out that, since the moving
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interface is not known at the new time, some iteration procedure is

usually inevitable.

Interface Position

|
|
i
1
|
1
Ay pay |

aEEE— d—bl
|

k-2 k-1 k k+1 k+2

Fig. 2-9  Fixed-grid method (after Crank, 1984).

In the Murray and Landis method, the number of space intervals in
each phase is constant throughout (Fig. 2-10). It is assumed that the
water region (y < Y(t) = €) is divided into r equally-sized space
increments of thickness, Ay,= ¢/r, that increase in size as the
interface progresses. Similarly, the ice region (y>e) is alsc divided
intc N-r equally-spaced intervals of thickness, Ay,= (E-e)/(N-r), which
shrink with time. This situation is illustrated in Fig. 2-10 for the

space case of N=2r=8 network intervals.
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The Murray and Landis method focuses attention on the

substantial temperature-time derivative of each internal point, given

by,

dTy @ATay (2T
GGG (2-36)

where the rate of travel of each point is related to the interface

velocity in the water by,

(2-37)

\

dy/dt _de/dt
( y ]‘ €

for a uniform water grid spacing.

Combination of Eq. (2-36) with Eq. (2-37) leads to:
dT (AT 92T
2 _ . Yi(%lnde (97
prI(dtl_ CiPrg (ay)]dt+K{ay2 ], (2-38)

in the water region (for the network points j=1,2...(r-1)). The

corresponding equation in the ice region is:
dT E-y, (8T ?°T
bkl 1 Yi(¢lm\de I1
CIIPII( dt )J= CrPIrE.¢ (ay ld#Kn( 2y2 ] (2-39)

for j=r+1, r+2,..., N-1. At the interface point €, these eguations are
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Fig. 2-10  Variable space-grid method (after Murray and Landis, 1959).
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again coupled via Eq. (2-20), i.e.,

de Tr-2'4Tr-1 Tr+2'4Tr+1
Lpa: KIrT +KH(N-r) _w (2-40)

2.4.2.3. Two or Three-Dimensional Moving Interface Problems

The complexity of moving interface problems for more than one
space dimension, increases by several orders of magnitude [Fox, 1975].
In a monumental study, Lazaridis [1970] used an explicit finite-
difference approximation with a fixed grid to solve two-phase
solidification problems in both two- and three-space dimensions. He
outlined the derivation of his equations for the two-dimensional case
only and referred to his thesis [1969] for details and for the
development of the three-dimensional relationships. The main problem
occurred when the moving interface was very close to a grid point.
Localized quadratic temperature profiles were used to avoid these
singularity problems. Lazaridis' manipulation is very complicated
indeed, in spite of the fact that he only considered explicit finite-
difference methods [Fox, 1975].

The interface (Stefan) condition during melting and solidification
problems can be expressed, in three-dimensional space, based on the

energy balance at the interface [Carlaw and Jaeger, 1959],

Ty(x,y.2,)=Ty(xy,2,t)=T =0, (2-41)

and,
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BTH

I gn

oT;

Kign - K13 = LoV, (2-42)

where n is outward normal to the interface (i.e. into the liquid), and v

is velocity of the interface in the normal direction. The interface

position is defined by the equation,
f(x,y,z,t)=0. (2-43)

A more usable form of Eq. (2-42) was derived by Patel [1968] as,

PP G o

This relationship is explicitly linked with the derivatives of the

moving interface f(x,y,z,t)=0, written as z=s(x,y.t).

2.4.3. Summary

Numerical methods are more suitable than analytical methods
when handling practical moving interface problems. Using Murray and
Landis's [1959] variable space grid method, the grid increment changes
when the interface moves and the number of space intervals in each
phase is constant. It appears that this method is not satisfactory in
the situations where one phase changes markedly in dimensions. For
example, the liquid phase changes from its maximum width to zero
width during TLP-bonding and this situation will produce

unsatisfactory calculation accuracy for the flux terms in Eq. (2-40)
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(also see the analysis by Pabi {1979]). Using the fixed space grid
method, the major problem occurs in applying the implicit finite
difference scheme. Also special formulae are needed to deal with the

singularity problems that occur in Egs. (2-32)-(2-35).

2.5. Grain Boundary Diffusion

Since the process kinetics in two-phase diffusion-controlled
problems are diffusion-controlled, all the factors affecting the
diffusion process will affect process kinetics. It follows that the
process kinetics of two-phase diffusion-controlled problems will be
greatly affected when grain boundary diffusion enhances solute

transfer.

A number of detailed reviews have been published concerning
grain boundary diffusion, e.g., by Aust and Chalmers [1970] on the
structure of grain boundaries and by Peterson [1983] on the
mechanisms of grain boundary diffusion. Also, mathematical analyses
of grain boundary diffusion have been discussed in the review paper by
Gupta et al [1975]. As a result, only the literature directly appropriate

to the present study will be reviewed.

2.5.1. Grain Boundary Diffusion Model and Basic Equations
The general approach in grain boundary diffusion involves use of

the so-called uniform slab model. This was first proposed by Fisher

[1951] and assumed that the grain boundary region is an isotropic slab

of material of uniform thickness within which diffusion occurs
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according to Fick's laws. The atomistic description of grain boundary
diffusion is detailed in the paper by Benoist and Martin [1975]; this
sheds some light on the physical meaning of the grain boundary

thickness introduced in the slab model.

The grain boundary slab model has very simple geometry, where
one isolated grain boundary (the bicrystal situation) or parallel grain
boundaries (the polycrystal situation) is assumed perpendicular to the
free surface (see Fig. 2-11). It is assumed that the concentration
variation across the grain boundary slab (in the x-direction) can be
neglected and the diffusivity along the grain boundary is much larger
than the diffusivity in the lattice [Fisher, 1951 and Whipple, 1954].

The following mass balance equations are obtained,

aC 92C , 02C [

= _p, (8x2 R ay2)' Ixi> 5 (2-45)
in the bulk material, and ,

3Cq _, 3Cqp  2D;(8C 3

51 = Dab 32 * s (ax)x=+5' Ixi< 5 (2-46)

at the grain boundary region, where, C and Cgp are the solute
concentrations, D; and Dgp are the diffusion coefficients in the bulk
material and in the grain boundary slab and & is thickness of the grain
boundary slab. Eq. (2-46) indicates that the change in the average
concentration inside the grain boundary slab results from the

divergence of the flux along the grain boundary (the first term) and
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Fig. 2-11 Schematic showing a grain boundary slab of
thickness & (after Fisher, 1951).

%///ff

from the exchange between the grain boundary and the lattice across

S
the interface at Ixi= >

The continuity conditions at the interface between the lattice

and the grain boundary require [Peterson, 1983],

)
Cgb= SC, IXl= 7

> (2-47)

where,
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s=1, for self-diffusion in a pure material
S=Seq, for dilute impurity diffusion and seq is the grain
boundary segregation factor [Gibbs, 1966).
s=C'a/Ca for grain boundary self-diffusion in a binary alloy
(i.e., A* (or B*) for diffusion in AB solid solution) [Bernardini
and Martin, 1976].

Therefore, rewriting Eq. (2-46) using Eq. (2-47):

o€ _, 9C 2D;(C _3
91=Devgye * g5 (ax)x=+5' Ixl= 5 (2-48)

2.5.2, Solutions for an Isolated Grain Boundary

The first analysis of combined lattice and grain boundary
diffusion was carried out by Fisher [1951] for a semi-infinite sample
with a slab of grain boundary and an infinite source (at constant
surface concentration). The most serious approximation in Fisher's
solution was that the concentration Cqp within the G.B. changed so

aC
slowly with time t that the term _3th could be set equal to zero.

Whipple [1954] solved this problem exactly using a Fourier-Laplace
transformation approach. Suzuoka {1961] later solved the case for an
instantaneous source (a finite surface source) condition utilizing

Whipple's transformations to evaluate the complex inversion integral.

Although, in principle, the Whipple and Suzuoka analyses provide
exact continuum model solutions, in practice many investigators

continue to use Fisher's analysis because it is simpler to apply. Later,
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papers by Le Claire {1963], Cannon and Stark [1968], and Suzuoka [1964]
have clearly established the superiority of the Whipple and Suzuoka's
solutions. They have also demonstrated the use of simple and accurate
techniques for extracting the grain boundary diffusion coefiicient from
experimental data. According to Le Claire [1963], the grain boundary

diffusivity can be evaluated using the expression

din C _lJ1 /2 din C /3
sD, - , 2-49
gbd (a 6/5 (a[n(sﬁ) 1/2]6/5]S ( )

where, T is the concentration of the diffusant found using the

sectioning method for determining the diffusivities, n=
) ? " \or

8 (Dgp
d B= - 1] Levine and MacCallum [1960] have shown b
ond b= o 1} Lo alum (1950 ’
dln C

numerical calculation that when B>30, the quantity 3N (sp)- 121575 is

very nearly independent of n(sp)” 12 and converges to 0.78 (for an
infinite source) and 0.72(sp)%-%% (for an instantaneous source),
according to Le Claire [1963] and Suzuocka [1964]. This means that the
shape of the overall concentration profile C(y,t) is almost independent
of the source condition provided that B is sufficiently large.

The analyses of G.B. diffusion in semi-infinite bicrystals have
been extended to the situation where the grain boundary moves in the
direction parallel to the surface. [Glaeser and Evans, 1988, Mishin and
Razumovskii,1992]. These results indicate that grain boundary
migration affects the apparent grain boundar/s diffusion coefficient

values derived when the results of diffusion experiments are evaluated
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using conventional (stationary) grain boundary diffusion models. This
conclusion is important when considering the problem whether the
diffusivity along the moving grain boundaries is higher than that of the
stationary grain boundaries [Hillert and Purdy, 1978; Smidoda et al,
1978; Gust et al, 1982 and Balluffi, 1982]. Mishin and Razumovskii
[1992] indicated qualitatively that moving grain boundaries intensively
absorb the diffusant and spread it in a relatively thin layer near the
surface. This effect may greatly affect the process kinetics of two-

phase diffusion problems.

2.5.3. Grain Boundary Diffusion in Polycrystals

Harrison [1961] defined three classes of grain boundary diffusion
kinetics in polycrystalline materials; these depend on the relationship
between the lattice diffusion distance (\/D_,t) and the grain size (d) of
the material considered (see Fig. 2-12). In Type A kinetics, the lattice
diffusion distance is much larger than the grain size, diffusion fields
at neighboring grain boundary regions overlap and each diffusing
particle has entered, migrated or left a large number of grain
boundaries. Based on generalized "random walk" considerations, Hart
[1957] demonstrated the existence of an apparent diffusion coefficient,
Dapp. during Type A behavior. This apparent diffusion coefficient
combines the lattice diffusivity with a term fDgp, that accounts for the

fraction of sites, f, associated with the grain boundaries:

Dgb
Dapp= D (1+f T;TJ (2-50)
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where D; and Dy, are the diffusion coefficients in the bulk material and
at the grain boundaries. Campbell [1974] analyzed grain boundary
diffusion using Laplace-Fourier transformations ‘~r diffusion from an
instantaneous source through multiple parallel grain boundaries and
qualitatively related the resulting concentration profiles with the
grain boundary spacing. His results showed that when the bulk
penetration distance was much larger than the grain boundary spacing
(\/Ht»d). the average concentration profile was typical of a
homogeneous medium with a grain boundary diffusion coefficient equal
to the apparent diffusion coefficient. Based on these results,
Campbell [1974] suggested that Hart's relation was not an appropriate

solution for Type A diffusion problems.

In Type B kinetics, the lattice diffusion distance is much less
than the grain size and each grain boundary is assumed to be isolated.
This is identical with the semi-infinite bicrystal situation modelled by
Fisher [1951], Whipple [1954] and Suzuoka [1961]. An examination of
the overall kinetics during an exchange experiment confirmed that
there is no single apparent diffusion coefficient in Type B kinetics and
the amount of material removed from the crystal at time t is

proportional to t¥4 [Lidiard and Tharmalingam, 1959].

In Type C behavior, there is negligible lattice diffusion, diffusion
occurs only within the grain boundary region and different apparent

diffusion coefficients may be calculated depending on the type of
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Fig. 2-12  Schematic representation of A-, B- and C-diffusion
Kinetics. The vertical lines indicate grain boundaries
and the curved lines are isoconcentration contours.
The diffusion source coincides with the horizontal
lines in each case (after Gupta et al, 1975).
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experiment that is carried out [Harrison, 1961].

Cahn and Balluffi [1979] extended Harrison's classification of
diffusion kinetics to allow for grain boundary migration. Fig. 2-13
defines diffusion in a number of regimes (V is the gra’n boundary
migrating velocity) -- SID (stationary boundaries, isolated boundary
diffusion, diffusion occurs in lattice), SIN (stationary boundaries,
isolated boundary diffusion, no diffusion occurs in lattice), MID
(migrating boundaries, isolated boundary diffusion, diffusion occurs in
lattice), MIN (migrating boundaries, isolated boundary diffusion, no
diffusion occurs in lattice) and SOMM (stationary or migrating
boundaries, multiple boundary diffusion). Type A diftusion benhavior
occurs when \/D_ltor Vi exceeds the grain size, d. The Type B regime
divides into distinct regimes depending on the velecity of the grain
boundary. The Type C regime remains unchangad. Cermak [1980], using
the finite element method, evaluated the dependence of the inean
concentration of diffusant on the penetration depth. Near-surface
enrichment of solute was also confirmed in Cermak's analysis, as
Mishin et al [1992] had calculated. As pointed out early, this tendency
will decrease the apparent diffusion coeiiicient ng value obtained
using LeClaire's analysis. There is no ifference petween the apparent
diffusion coefficient, ng. and the true diffusion coefficient values

when /Dt >Vt [Cermak, 1990].

In practice, it is not always possible to maintain a semi-infinite

thickness condition 1in compariscn w::h the diffusant penetration
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Fig. 2-13 Pegimes of diffusional mass transport behavior
expected for a polycrystal containing stationary or
migrating boundaries (after Cahn and Balluffi,1979).

distance. Gilmer and Farrel [1976a, b] have shown that a correction

must be made to account for the finite thickness of thin film
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specimens. Physically, this means the diffusion field will be affected

by the diffusion from the other surface of the thin film.

2.5.4. Summary

Grain boundary regions provide high diffusivity paths and grain
boundary migration means that atoms have more chance to enter such
regions. Consequently, both increased diffusivity at grain boundaries
and grain boundary migration will affect the process kinetics during
two-phase diffusion-controlled transformation. From the foregoing
discussion, it is clear that the mathematical analyses of grain
boundary diffusion differ depending on the grain size, the sample
thickness, the velocity of grain boundary migration, and the
contribution of lattice diffusion which is dictated by the processing
temperature. Also, in practical situations, diffusion occurs over a
wide range of time intervals, from very short to long holding periods.
Consequently, when a two-phase diffusion-controlled problem is
studied in a continuous manner, there will be a transition from initial
Type C kinetics, through Type B behavior to Type A kinetics. It follows
that analytical methods are incapable of handling practical situations.
Numerical methods represent a more practical way of handling such
problems, because they can readily accommodate a wide variety of
boundary conditions and particularly, the transition regions between

the Type C, B and A kinetic regimes.

2.6. Grain Boundary Grooving
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It has been suggested that increasing interfacial area as a result
of grain boundary grooving will enhance diffusion and consequently
affect the process kinetics during two-phase diffusion-controlled
transformation [Tuah-Poku et al, 1988 and Kokawa et al, 1992].
Modelling of the interface profile evolution and interface migration

caused by grain boundary grooving are discussed below.

2.6.1 Dihedral Angle and Grain Boundary Grooving

Smith [1948] showed that when three different interfaces meet
in a randomly-oriented polyphase alloy, they will take up positions in
accordance with a simple surface tension equilibrium. The ratio of the
sines of the angles between any two interfaces depend on the ratio of
the interfacial free energies. In a two-phase alloy there will be grain
intersections where two crystals of the same phase meet a different
phase: this will produce two interphase boundaries (that are identical
if orientation effects are neglected) and one single phase grain
boundary (see Fig. 2-14). When this occurs the equilibrium angle (also

called the dihedral angle) of the included phase is:

Y,
8 =2 cos "1 —%, (2-51)
2 Yo p

where vy, and Yop 2r€ the interfacial free energies of the monophase and

duplex boundaries, respectively. The interfacial free energy depends on
the crystallographic orientation in both solid-liquid and solid-solid
systems [Basterfield, Miller and Weatherly, 1970]. Herring [1951]
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generalized this interface equilibrium by considering interfaces that

have direction-dependent energies and consequently torque terms.

A

s/

Z

Fig. 2-14 Schematic showing dihedral angle or
equilibrium angle (after Smith, 1949).

It follows that an initially flat interphase boundary will tend to
form a groove at the line of intersection with a grain boundary (to
establish the relation in Eq. (2-51)). The curvature of the groove
profile will vary from point to point, and this will produce a difference
in chemical potential along the interfacc. This gradient in chemical
potential will drive atoms from a point of higher chemical potential to
one of lower chemical potential so that the groove will deepen and
widen with time [Mullins, 1957].
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2.6.2. Mullins' Theory

Mullins theoretically analyzed the kinetics of grain boundary
grooving when a bicrystal solid contacted a saturated fluid phase
(liquid or gas) at sufficiently high temperature. Grooving occurred as a
result of surface diffusion, volume diffusion in the fluid phase and
evaporation-condensation [Mullins, 1957 and 1960]. In Mullins' model,
the initial fluid-solid interface was flat, and the grain boundary region
intersected the interface at right-angles (see Fig. 2-15). The

principal assumptions in his analysis comprised,

Solvent

Solid

M

Fig. 2-15 Schematic of a grain boundary groove (after
Mullins, 1959).
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(1) the fluid-solid interfacial energy was independent of
crystallographic orientation,

(2) the Gibbs-Thomson equation determined the relation between fluid-
solid interfacial curvature and chemical potential,

(3) quasi-steady-state volume diffusion occurred in the fluid,

(4) the slope of the interface changed little from the initial interfac
configuration, and

(5) there was negligible convection in the fluid.

In a gas-solid system, grain boundary grooving occurred due to a
combination of interface diffusion and evaporation-condensation. In a
liquid-solid system, grain boundary grooving occurred mainly due to

volume diffusion in the saturated fiuid.

2.6.2.1. Grooving as a Result of Volume Diffusion
Based on assumption (3), the concentration of solid element

C(x,y.t) in the liquid satisiies the relation [Mullins, 1960]:
V2C(x,y.t)=0. (2-52)

Assumption (4) means that the interface can be represented as the
plane y=0. From assumption (2), therefore, the boundary condition at
the interface is given by the relation:

I YintQ
C(x.y,t)=C°l1 + _ET_K(X’t)}' (2-53)
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where, C,is the concentration of solid element in the solvent phase in

equilibrium with the flat interface, Q is the atomic volume of the solid
atom, v, is the interfacial energy of the solid surface, and K is the

curvature of the interface (the concentrations of C and C, are

expressed as the number of atoms per unit volume). The curvature K is

given as:

2%y
ax2

YR )3/2°
{1+ (ax }

aY
Because of assumption (4) above, Ix <<1 and K can be approximated by

K= (2-54)

?Y

K=2-3. (2-55)

Mullins [1960] evaluated the concentration distribution of C(x,y,t) by
solving Eq.(2-52) using the boundary condition shown in Eq.(2-53).

If interdiffusion in the solid is negligible, the rate of migration
of a segment of the interface depends on volume diffusion only in the

solvent phase, namely,

Y oC
at=DQ(ay Y (2-56)
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where Y(x,t) is the y-coordinate at the interface and D is the
interdiffusion coefficient in the liquid phase. Mullins differentiated
Eq. (2-56) twice with respect to x to express this equation in terms of

interface curvature,

;K 32[(C
51 =De 37{(8 Vl:o ] (2-57)

Substituting the concentration distribution C(x,y,t) that satisfies the
boundary condition in Eq. (2-53) produces an integrodifferential
equation for K(x,t). This equation was solved analytically, assuming

that the the interface had a fixed slope at x=0, given by

dY
(5;1(:0 =-c0sH. (2-58)

The dihedral angle is determined by the the well-known equation for
the balance between the grain boundary energy Ygb and the interfacial

energy v, (also see §2.6.1.),

6 =2 cos ! 5—; . (2-59)
int

Based on these calculations, Mullins found that the groove profile had a

fixed shape and linear dimensions that were proportional to t'/3.

2.6.2.2. Grooving as a Result of Surface Diffusion
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If surface diffusion is the only process that operates, the
chemical potential along the interface depends on the interface

curvature [Mullins, 1957], i.e.,

W(K)=Ky, 2. (2-60)

This chemical potential gradient will produce a drift of interface

atoms with an average velocity given by the Nernst-Einstein relation:

V= .P__a_E_ DSJ@E.
T KT 9s~ kT 09s’

(2-61)
where D is the coefficient of interface diffusion and s the arc length
along the groove profile. The surface current J of atoms is the product

of V by the atoms per unit area v,

_ Dy, Qv oK
T KT 9s’

(2-62)
If the surface divergence of -J is evaluated, this represents the
increase in the number of atoms per unit area per unit time. This can

be converted to the speed of movement r_ of the interface element along

its normal away from its center of curvature, by multiplying by Q,

_ D'Yintsz 8_25

=" KT 32 (2-63)
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This equation can be expvessed in terms of y(x,t) by substituting for r

and K according to the expressions,

aYR|-172 Y
M= { 1+(5T)2} 3t (2-64)

J dx o )
andas = s Ix° The result is,

oy Dy % 3 ptss @ y"
5—t= l;T a{(‘l-ﬁ-y 2) ”Za_x' [(1+y,2)3/2:| } (2"65)

Using the small slope approximaticn, Eq. (2-65) becomes,

Y D@2
at~ kT

y". (2-66)
The solution of the above equation produces the same conclusion as
that when the volume diffusion is the only operating mechanism,
except that the linear dimension is proportional to t'/4. In the same
paper [Mullins, 1957], it is also shown that the linear dimension is
proportional to t'2, when the groove forms only under the action of an

evaporation-condensation mechanism.

Clearly, Mullins' theories are extensions of Herring's [1950] early
work which demonstrated by dimensional analysis that the quasi-
steady state change in the dimensions of a small particle during

sintering were proportional to t, t'/2,t"2 and t'/* respectively for
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viscous flow, evaporation-condensation, volume diffusion and surface
diffusion mechanisms. Gjostein [1961] and Robertson [1965] examined
grain boundary grooving in a copper/liquid lead system and confirmed
Mullins' predictions. Similar results were produced when researching
in chromium, molybdenum, and tungsten alloyed with rhenium [Allen,
1966].

Later, Mullins [1958] discussed the effect of thermal grooving on
grain boundary motion and indicated that thermal grooves could pin
grain boundaries at the surface and prevent their migration. However,
Allen's [1982] analysis confirmed that this occurs only when the rate
of grain boundary migration is slow. When the grain boundary migrates
quickly, the grain boundary and its groove can move together along the

surface.

2.6.3. Recent Developments
Ho and Weatherly [1975] applied Mullins' theor. for interface
migration by surface diffusion to the case of annealing an Al-CuAl,

eutectic alloy. They measured the rate of migration of a triple
junction formed between a grain boundary in Al and the Al-CuAl,
interface. This is a solid-solid analogue of grain boundary grooving in
solid-fluid systems. Since their experiment results accurately
matched Mullins' predictions, this means that interface ditfusion has a
dominant effect on the evolution of the "groove". Ho and Weatherly
[1975] also developed a theoretical model for interface migration by

simultaneous interface and volume diffusion.
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Robertson [1971] extended Mullins' analysis of grain boundary
grooving by surface diffusion to the case where the groove slope ranged
from 0 to 4 and Mullins' small slope approximation was not valid. His
results showed that the groove width is within five percent of the
small-slope groove width for all calculated groove root slopes but the
groove depth departs by more than ten percent from the small-siope
depth for groove root slopes greater than about 0.7. Hardy et al [1991],
recently, generalized Mullins' theory for grain boundary grooving as a
result of volume diffusion to the entire range of dihedral angles, by

using a boundary integral formulation of the associated free boundary

problem.

Mullins' analyses have focussed exclusively on the semi-infinite
case, where groove profiles at different grain boundaries do not
interact; this is only valid in very large grain-sized materials.
Hackeny and Ojard [1988] examined grain boundary grooving by
evaporation or by surface diffusion in a finite system and found that
the shape of the groove profile predicted using an infinite geometry
solution was closely approximated in the early stages of groove
formation. However, the groove profile attained a constant surface

curvature after long holding times.

In Mullins' work [1957,1960], each transport process operated
separately. However, in practice, a number of different factors will

affect grain boundary grooving. Srinivasan and Trived [1973] developed
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a theory for the growth of a grain boundary groove under the
concomitant action of surface and volume diffusion mechanisms. They
assumed that the surface diffusion mechanism predominated for short
holding times, although the volume diffusion contribution to the
transport of matter was not insignificant. On the other hand, the
groove profile was completely determined by the volume diffusion
mechanism for long holding times. The resuits of their model could be
used to derive both the surface and volume diffusion coefficients from

the experimental results.

Some other work worth reporting involves Binh et al's [1976]
theoretical and experimental research on grain boundary groove
evolution by surface self-diffusion on a planar surface and on a wire.
In case of a wire, they found that (1) there was non-steady state
evolution of the groove profile, and (2) the mean groove angle was not
constant, and varied with time. They assumed that the difficult-to-
observe equilibrium angle remained constant. The "observable mean
groove angle" is the slope angle that is measured at the bottom of the
groove and this value will depend on the resolution of the measuring

equipment.

2.6.4. Influence of Grain Boundary Diffusion

All the above theoretical investigations on grain bour-.ry
grooving are based on the assumption that the grain boundary does not
play an important role in materials transport. Vogel and Ratke [1991],

in their recent paper, combined volume diffusion in the melt and grain
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boundary diffusion into one mathematical model to explain the deep,
channel-like grooves formed at the grain boundary intersections with
the solid-liquid interface (during isothermal annealing of Al-bicrystal
couples in contact with an In-Al melt). Their model is an extension of
Mullins' theory for grain boundary grooving via volume diffusion, with
the addition of grain boundary diffusion. There are problems with their
approach.

(1) When calculating the solute concentration in the liquid phase
due to the grain boundary diffusion, they did not consider that the
indium depletion in the liquid phase near the grain boundary caused the
migration of the solid-liquid interface. Since the concentrations of the
liquid and solid phases are in equilibrium and indium lowers the
liquidus temperature of the aluminium solid, the solid-liquid interface
will migrate in the direction of the bulk liquid.

(2) They assumed that there was negligible diffusional flow in
the solid, and this contradicts their initial assumption (that grain
boundary diffusion was substantial).

(3) Their calculation violated the thermodynamic equilibrium
condition at the solid-liquid interface; also, they extended the small

slope approximation in Mullins' theory beyond its application limit.

it fcllows that the pioposed explanations regarding the
instability in the groove profile are doubtful. In this connection, the
wetting transition phenomenon that the contact angle (dihedral angle)
at the site of grain boundary intersection with the solid-liquid

interface approaches zero when the temperature exceeds a critical
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value is explained by the fact that the interfacial energy decreases

faster than the grain boundary energy [Straumal et al, 1992]

2.6.5, Summary

The driving force for interface migration, according to classical
grooving theory, comes from the interfacial curvature. It follows that
a flat interface that has no intersection with a grain boundary will not
migrate. This is quite a different situation from moving interface
problems in two-phase diffusion-controlled processes. The driving
force for the interface migration in two-phase diffusion-controlled
problems results from the concentration gradient in each phase and the
interface will migrate even when the interface is flat and there is no
grain boundary intersection (in single crystal situations). The
materials transport mechanisms during two-phase diffusion-controlied
processes include volume diffusion in each phase, interfacial diffusion

and grain boundary diffusion.

Extremely complicated analytical solutions have been derived to
understand grain boundary grooving. These derivations are difficult to
apply in complex situations, where several diffusion mechanisms
operate and where finite geometries apply. As a result, a new
numerical model is required for the interface migration under the
combined driving forces of concentration and interfacial curvature

gradients.

2.7. Modelling of TLP-bonding
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Mathematical modelling of process kinetics during Transient
Liquid Phase (TLP) bonding is an effective way of selecting optimized
joining parameters (filler metal composition and thickness, bonding

temperature and holding time) prior to actual bonding trials.

2.7.1. Analytical Solutions

Various attempts have been made to model TLP-bonding. These
approaches have generally been based on deriving analytical solutions
for each individual stage of the bonding process. It has been tacitly
assumed that the results of any stage do not affect the operating

condition in any subsequent siage of the TLP-bonding process.

2.7.1.1. Heating Stage

Eq. (2-14) was used by Niemann & Garrett [1974] to calculate the
loss of the copper from a Cu electroplated layer (the filler metal)
during the heating cycle from room temperature to the bonding

temperature during TLP-bonding of an Al-B composite material,
xp,= 1.1284 p(C,s-Cp) \/ Dgt. (2-67)

where, x is thickness of coating lost through diffusion, p_ is the

density of copper, Dg is the diffusion coefficient of Cu in Al, t is time,
C s is solubility of Cu in aluminium, p_ is the density of the alloy and

Cwm is the initial copper concentration in aluminium. The calculation

was carried out assuming constant C,., and D values. However, both the

diffusion coefficient and solid solubility limit increase with
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temperature. Because of this, Macdonald & Eagar [1992] indicated that
an effective diffusion coefficient, based on the work of Shewmon
[1975], should be used. In fact, this diffusion problem can be easily
solved using numerical techniques (see the paper by Li, Zhou and North,
1993).

2.7.1.2. Dissolution Stage

No analytical solution is available for stage Il-1 (base metal
dissolution during the heating cycle from the melting point of the filler
metal to the bonding temperature (see §2-1) since the solute
concentrations, C,  and C_,, at the interface vary with temperature.
Also, few analytical solutions exist indicating the process kinetics

during stage 1l-2 of TLP-bonding (isothermal base metal dissolution).

Nakao et al [1988] developed a dissolution parameter when
joining Ni superalloy base metal using Ni-B-Cr filler metal using the

Nernst-Brunner equation:

At
C=Cyyt] 1-€xp|-K7, } (2-68)
where C and C,, are the solute concentrations in the liquid and at
saturation, K is the dissolution rate, V is the volume of the liquid and A
is the area of the solid-liquid interface. However, Nakagawa et al

[1992] argued that the Nernst-Brunner's assumption of a thin boundary

layer and a large bulk liquid region is hardly applicable during TLP-
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bonding. They also pointed out that solute diffusion in the base metal

was neglected in Nakao et al's approach.

Lesoult [1976], according to Tuah-Poku et al [1988], used a
square-root law solution to estimate the time for interlayer melting
during TLP-bonding (for a binary eutectic alloy TLP-bonded using a
single element filler metal). However, the assumption that the width
uf the liquid zone equals the width of the interlayer (when melting of
the interlayer is completed) is not really what occurs, as Macdonald ¢&.
Eagar [1992] pointed out. In fact, the base metal will dissolve when
the interlayer melts (see §2.1 of this thesis). In this connection, Liu et
al [1991] developecd a model that accounts for base metal melt-back
when the interlayer dissolves. They used a general error function
solution to describe the solute distribution in the liquid zone, when
modelling stage lI-2a (the dissolution stage when three metallurgical
phases exist, see Section 2-1). They also assumed no solute diffusion
in the base metal. However, these assumptions are questionable. The
error function solution is really only applicable for infinite or semi-
infinite mediums, and the liquid zone is very thin in comparison with
the solute diffusion rate in the liquid during TLP-bonding. Also, solute
diffusion in the base metal might affect the process kinetics during
stage li [Tual-Poku, 1988]. Liu et al [1991] listed some guverning
equations and the initial and boundary conditions for stage 1l-2b, and

did pbint out that those equations must be solved numerically.
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In summary, analytical methods are difficult to apply during
modelling of the dissolution stage during TLP-bonding. Later in this
section, it will be shown that numerical methods are extremely

effective when solving such problems.

2.7.1.3. Isothermal Solidification

The solute distribution in the liquid can be considered uniform
duiing the isothermal solidification stage in TLP-bonding [Nakagawa et
al, 1991], and therefore, solute diffusion in the liquid can be icnored.
In addition, the solid region can be assumed to be semi-infinite
because solute diffusion in the solid is slow. [t follows that the
isothermal solidification stage during TLP-bonding can be analytically
modelled, as a single-phase diffusion-controlled moving interface

probiem (se? Fig. 2-16).

Lynch et al [1959] first linked interface movement with the mass
balance at the liquid-solid interface, but faiied to provide an analytical
solution for the problem. Tuah-Poku et al [19821 proposed a method of
estimating the completion time for the isothermal solidification stage.
In their treatment, the problem was simplified to a half semi-infinite
base metal with a surface on which the solute concentration was
maintained at C, . Consequently, an error furiction solution can be
employed to describe the solute distribution in the base metal (also,

see §2.2 in this thesis):
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Ciyt) = Cy + CaLerf(\j—tt—yD:t) (2-69)

where C,, is the solute concentration in solid at the interface. Using

AC
t>0 t=0
CLa :
[
|
|
[
Coul |
l\ CM
>y
0 Y(t) Wmax/2
| Liquid | Solid

N
N\

Centerline of
the Joint

Fig. 2-16 Concentration profile along the specimen length
during the isothermal solidification stage.
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the procedure introduced in §2.2 of this thesis, the total solute amount

M, which has entered the base metal at time t, can be calculated by,

M= 2caL\/ % : (2-70)

If the amount of solute diffused into the base metal during the heating
and dissolu.ion stages is ignored, ihe total amount of solute diffused
into the base metal equals the original solute content (of the filier

metal), i.e.,

Dt
CEW,=4C,; \ / ol (2-71)

The completion time for isothermal solidification can then be

calculated using the relation,

__n_ (CeWo)2
tg=1 605 ( Col ) . (2-72)

A similar ireatment of this problem was reported by Onzawa et al
[1990].

lkawa et al [1979] and Nakao et al [1989] used similar error
function solutions to derive the solute distribution in the base metal
and took account of the mass balance equation at the solid-liquid

interface in order to obtain an analytical soluticni for the isothermal
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solidification stage of TLP-bonding. The following discussion provides
an outline of their derivation, with some small modifications that
allow for similar concentration units as in the present thesis. The

solute distribution in the base metal is described by the relation,
y-Y(t)
Ciyt)=C C,erf 2-73
0 = G+ Corer( o] @79

and the mass balance at the solid-liquid interface is,

- dy 9Cg(y.t)
CrLaCal) gt = Ds(a—y v

c
= -\/—n_ﬂ_é—t. (2-74)

By integrating the above equation, an expression for the displacement

of the interface as a function of time at the bonding temperature is,

4Cy Dgt
W - ]
WO=Wraris ey N 7 (2-75)

When W(t)=0, the completion time for the isothermal solidification

stage is given as,

TT- CL -C(IL CFWO
ts= - . (2-76)
16Ds| Ci, CoL

Comparing Eq. (2-72) with Eq.(2-76), there is one more
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CLa'CaL .
term,'—a:". in Eq. (2-76). It C << C . the two equations are
identical and this happens to be the conditions under which the error
function solution can be applied in the base metal (see Eq. (2-69) and

more details in Appendix I).

A more rigorous treatment has been presented by Lesoult [1979];
his derivation is basically identical to that described by Danckwerts
[1950] when he derived a general solution for unsteady-state linear

heat conduction or diffusion. A general error function solution is

assumed in the solid phase,

Cslyt) = Ar+ A erf(——y—} (2-77)

24/ Dgt

where Ay and A, are constants determined by the specific boundary

conditions. At the moving interface,

Y
Cg(Yt) = Ay + Agerf| —F/——|=C,, . 2-78
S( ) 1 2 {Z\ID—SJ al ( )

Since Eqg. (2-78) has to be satisfied for all values of t, Y must be

proportional to V1, ie.,
Y=-K\4Dt, (2-79)

The mass balance at the interface produces,
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dy(t) dCgly.t)
(CLa'CaL) dt —DS( dy =Y(t)' (2-80)

Solving Egs. (2-77) to (2-80), we can derive,

K(1+erfK)Vrn  Cy -Cy 2.81)

exp(-K2)  CiuCy’

By substituting B=-K+Dg, C.. = C, and C.. = Cy, in Eq. (2-31) (in
Section 2.4), an identical equation can be derived. Similar solutions
were derived by Sakamoto et al [1989] and Ramirez and Liu [1€92]. In
Lesouilt [1979] and Liu et al's [1991] derivations, the term exp(-K?) is

above the fraction in Eq. (2-81). This may be due to a misp<int.

Therefore, the completion time for isothermal solidification can

be calculated from,

2
Wmax
=5, 2
tS 1 6K2Ds ( 82)

where, W . is the maximum liquid width that is calculated using the

X

mass balance method [Tuah-Poku, et al, 1988]

Le Bance and M_.-el [1990] used an identical derivation procedure
to obtain a solution that accounted for boron consumption by boride
formation (when a boron-containing filler metal was used during TLP-

bonding of a nickel-based superalloy [Gale and Wallach, 1991]).
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2.7.1.4. Homogenization Stage
Eq. (2-9) was used by lkawa and Nakao [1979] to model the

homogenization stage,

iy { 75 2
C(y.t)=Cpy+5 (CE-Cpy) | erf| —=—= | -erf —
MT2 THEM \aDgt \aDgt

Wmax _Wmax
(2-83)

The solute concentration aitains its maximum value at the centerline

of the specimen (when y=0), namely,
Cmax=C(0,t)=Cpy+ (Cg-Cy) erf MWnax (2-84)
max 4 4_\/_6';

Kang [1988] and Nakao et al [1991] confirmed a good agreement
between ‘he calculated results (from Eq. (2-84)) and experimental
results (based on the redistribution of Cr during homogenization of
different nickel superalloy base metals TLP-bonded using a Ni-Cr-B
filler metal). It is worth noting that there was a small deviation
between the analytical calculation and exverimental measurement in

the early stages of homogenization.

2.7.2. Numericai Simulation

The only numerical modelling investigation to-date was carried
out by Nakagawa et al [1991]. They examined dissolution behavior
during TLP-bonding of Ni using Ni-P and Ni-Cr-P filler metal. This
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research confirmed the importance of filler metal thickness and of
heating rate between the filler metal melting temperature and the
bonding temperature on the base metal dissolution process. The
explicit finite difference method was employed to solve the diffusion
equations in the solid and in the liquid. However, a stepwise
("mechanical") mass balance method was used to determine solid-liquid
interface movement. This method cannot determine the exact irteiface
position, which can be very important, e.g., when calculating the
curvature of the interface during two-dimensional modelling of TLP-
bonding. A superior method involves use of a mathematical equation
such as EQq.(2-3"; to track the liquid-solid interface. Another problem
with Nakagawa et al's approach is the extremely long calculation time
required wheri t:é entire TLP-bonding process is mudelled using the
explicit finite difference method. As a result, much more work is

needed during numerical modelling of TLP-bonding.

2.7.3. Effect of Grain Boundaries on Process Kinetics
Tuah-Poku et al [1988] compared thair analytically calculated and
experimental completion times for isothermal solidification during
TLP-bonding of Ag using Cu filler meta. and found a marked difference
between these results. They suggested that this diterence might be
due to liquid penetration at grain boundaries in the base meta!. Such
liquid penetration increases the solid-liquid interfacia: area for
diffusion. Kokawa et al [1991] also observed that the rate of
isotherm<' solidification was faster when fine-grained nickel was

TLP-bonded (compared to that when coarse-grained nickel was joined
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using Ni-P iiller metal). An analysis of electron channelling patterns
derived from completed joints confirmed that liquid penetration was
greatest at random high angie grain boundaries in the base metal.
There was little liquid penetration at ordered grain boundaries

including small angle and twin boundaries.

2.7.4. Summary

This review has confirmed that almost all the modelling work to-
date on TLP-bonding has involved analytical methods. However, all
analytical approaches have treated the joining process as a sumber of
discrete stages and this is not what actually occurs during the TLP-
bonding process. For example, the completion time required for solute
homogenization will depend on the solute distribution immediately
following completion of the iscthermal solidification stage. Similarly,
the solute distribution in the base metal at the end of the dissolution
period will markedly affect movement of the solid-liquid interface
during the initial stage of isothermal solidification. In addition, at
gach stage, the error function solution and a parabolic law are
employed in the analytical calculations, and these may be considered
only as approximate solutions. Also, the analytical solutions for TLP-
ponding must be carefully evaluated, e.g., under what couditions can Eq.
(2-72) pe used to estimate the completion time of isothermal
solidification. Numerical modelling has the key advantage that it can
treat base metal dissolution, liquid phase isothermal solidification and
solute homogenization as sequential processes. r.so, numerical

moclelling can be readily applied to 2- or 3-dimensional joining
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situations, and when the fabricated components have complicated

shapes.
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Chapter 3

TLP-bonding Experimentation

This chapter describes the experimentation carried out during
TLP-bonding ¢f single crystal and polycrystalline pure nickel base
metals using Ni-19at.% P eutectic filler matal. The results obtained
from the single crystal nickel experiments will be directly compared
with the output of the one-dimensional numerical calculation
presented in the next chapter. A comparison of the experimental
results produced during TLP-bonding of single crystal and
polycrystalline nickel base metals also provides a direct indication
concerning the effect of grain boundary regions on the isothermal
solidification process. This aspect is particularly important with
regard to the deveiopment of two-dimensional numerical models for
TLP-bonding, since little research has been carried out on the influence
of base metal grain boundary regions on the process kinetics. In effect,
the experimental results produced during TLP-bonding of base metals
with different grain sizes provide the baseline information required
for numerical model development in the subsequent chapters of this

thesis.

3.1. Experiment Set-up
3.1.1. Materials
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High purity and commercially-pure nickel base metal were
employed during TLP-bonding. Pure nickel base metal was available as
single crystal, coarse-grained and fine-grained material. The chemical
compositions of the different nickel base metals are shown in Table 3-
1. In the case of single crystal nickel, the (100) orientation of the
tace-centered-cubic lattice was always aligned perpendicular to the
joint interface during TLP-bonding. The coarse-grained nicke! base
metal was Ohno-casted [Ohno, 1989] and had a grain size of
approximately 3.4 mm. The fine-grained nickel base metals had
average grain sizes of 33 um and 40 um for high purity and low purity
respectively. The sing'e crystal and fine-grained nickel base metals
were employed in the as-received condition, while the coarse-grained
base material was annealed at 1150 °C for 24 hours in vacuum prior to
TLP-bonding.

The test specimen dimensions were 12 mm diameter x 3 mm
thickness (for the single crystal nickel base metal) and 12 mm
diameter x 5 mm thickness (for coarse-grained and fine-grained nickel
base metals). 25 pm thick Ni-19at.% P filler metal was employed

during all TLP-bonding experiments.

3.1.2. Vacuum Furnace

All TLP-bonding experiments were completed in a specially-
designed, oil-quenchable vacuum furnace (see Fig. 3-1). This furnace
was vertically configured so that the individual test specimens could

be quenched into an oil bath while under vacuum. The distribution of
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La— Radiative
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N
l l Diffusion Pump

Fig. 3-1 Schematic of the specially-designed, oil-
quenchable vacuum furnace.
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Fig. 3-2  Temperature distribution along the length

of the vacuum tube in the furnace

temperature along the length of the vacuum tube is shown in Fig. 3-2.
This confirmed that a 100 mm long uniform-temperature zone existed
2 the tube center. Since the inside diameter of the vacuum tube was
42 mm, it 1s considerad thal the temperature aciiss the tube radius is
©form: i tributed.  The heating cyc'~ emgloyed during all TLP-

. .- g experiments is shown in Fig. 3-3. The average heating rate
was around 2.5 K/s between the filler metal melting point (1153 K)
and the bonding temperature (1423 K). The bonding temperature was
1423 K throughout and this temperature was maintained within +5 K
during the holding period. In all tests, the vacuum was maintained at

about 10-5 Torr.
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Fig. 3-3  The heating cycle during TLP-bonding.

3.1.3. Experimental precedure

The surfaces of the nickel samples were polished using #1200
grade emery paper to remove the deformed surface layer produced by
specimen machining operation and to make the contacting surfaces
smoother. All test specimens were then ultrasonically cleaned using
acetone immediately prior to spot welding. The filler metal was
inserted at the joint interface, and the assembly was spot-welded
using a nickel clamping fixture that maintained a constant gap width at
the joint interface. In addition, the two spot welds present at the
joint interface promoted intimate contact between the filler and base
materials (see Fig. 3-4). Escape of liquid filler metal during the
brazing operation was prevented by painting alumina-based stop-off

material at the joint periphery. The test assembly was suspender on a
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Spot Welding

K

Stop-off

\
Filler Metal

/ :

Clamp (Ni)

Fig. 3-4  Configuration of the TLP-bonding assembly.

wire and was then pulled to the uniform-temperature zone and then

dropped into the oil bath after a given holding time.

All test samples were examined using a combination of optical
and scanning eleciron microscopy (SEM). The test samples were etched
as follows: in a solution of 1 part concentrated nitric acid + 1 part
glacial acetic acid when observing the bonded region, and in a solution
of 1 part concentrated nitric acid + 2 parts concentrated hydrcchloric

acid + 3 parts glycerin for grain size measurement.

The average width of the eutectic structure in the bonded region

was measured by evaluating the cross-sectional area of the eutectic



Chapter 3 TL.P-Bonding Experimentation 84

structure at a magnification of 500 times. The eutectic width was
evaluated over a distance of 5 mm at the mid-section of the TLP-
bonded test specimens while the base metal grain size was measured
immediately adjacent to the bonded interface over the whole length of

the joint interface and in the base metal region.

3.2. Results
The process kinetics during TLP-bonding were evaluated directly

by measuring the eutectic width in joints produced at different holding
times (see Fig. 3-5 and Table 3-2). It should be noted that only the

isothermal solidification stage is illustrated in the Fig. 3-5, since the
time required for dissolution is very short and is particularly difficult

to measure [Tuah-Poku et al, 1988]. The eutectic width decreased

30
8 A Single-Crystal
§ [ o + Coarse Grain (d=3.4mm)
Y 9 Fine Grain, High Purity (d=33um)
g or a © Fine Grain, Low Purty (d=40pum)
8 +
8 °
]
5 10}
£ ° a
§ ]
4
0 A 1 o 1 0O 1 By
0 100 200 300 400

Holding Time (Vs)

Fig. 3-5 TLP-bonding of nickel base metals with
different grain sizes (d is the mean grain
size prior to TLP- bonding).
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Table 3-2 Experimental results indicating the change in
width of eutectic phase with increasing holding
time during TLP-bonding of nickel base metal

?:::: ?sg) %Tygslt:ll Coarse Grain filnl;;?n %;?12; Ili:)n; %ﬁl’;
48 26.2 25.5 26.6 23.9
14,400 18.5 16.3 143 14.4
32,400 - - - 7.34
57,600 7.22 5.91 3.89 =0
72,000 - - =0 0
90,000 4.66 1.77 0 -
129,600 =0 - - -
176,400 - 0 - -

linearty with the square-root of bonding time during TLP-bonding of all
nickel base metals. The rate of isothermal solidification of the
coarse-grained Ohno-casted nickel samples was slightly faster than
that of the single crystal nickel samples, while the rate of isothermal
solidification of fine-grained nickel samples was much faster. It
follows that grain boundary regions can speed up the process kinetics

during isothermal solidification.

Figs. 3-6 to 3-8 show the oil-quenched bonded region
microstructures produced using the different nickel base metals. A

planar liquid-solid interface is apparent in TLP-bonded single-crystal
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nickel base metal. However, liquid penetration occurred in the joints
produced in polycrystal nickel be se metal and the liquid-sciid interface

was non-planar (see Figs. 3-6 to 3-8).

The amount of grain growth during TLP-bonding is shown in Table
3-3. There was negligible variation in grain size during the TLP-
bonding of the coarse-grained nickel base metal; the average grain size
throughout the joining process was about 3.4 mm. However, extensive
grain growth occurred in TLP-bonded fine-grained base metal. The
overall grain size of high purity nickel base metal was only slightly
smaller than that of low purity nickel base meta! and therefore the
test results can be use to compare the influence of base metal purity
on process kinetics. It can be concluded that the low purity joints have
faster process kinetics (a faster rate of isothermal solidification). It
is also interesting to note the difference in grain sizes observed in
regions close to ana .ar from the solid-liquid interface (see Table 3-3).
It is possible that grain boundary groove retarded grain boundary
migration in regions close to the solid-liquid interface [Mullins, 1958
and Allen, 1982].

3.3. Discussion: Factors Affecting Process Kinetics
TLP-bonding is a diffusion-controlled process and any factor that

affects the diffusion process will alter the process kinetics during the

joining operation. In the one-dimensional (single crystal base metal)

situation, solute transport occurs via volume diffusion in the solid and
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(b)

(©

50um

Fig. 3-6  Opticai microstructures of the joint region
following TLP-bonding at 1423 X for 8 minutes
using different nickel base metals: (a) single-
crystals; (b) fine-grained, high purity and (c) fine-
grained, lcw purity.
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Fig. 3-7

50um

Optical microstructures of the joint region

following TLP-bonding at 1423 K for 4 hours using

different nickel base metals: (a) single-crystals;
(b) fine-grained, high purity and (c) fine-grained,
low purity.
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(b)

()

50um

Fig. 3-8  Optical microstructures of the joint region
following TLP-bonding at 1423 K for 16 hours
using different nickel base metals: (a) single-
crystals; (b) fine-grained, high purity and (c) fine-
grained, low purity.
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Table 3-3 Change in grain size during TLP-bonding

Fine Grain, . .
g , High

Hokding Coar§e Grained L o Purity Fine Grain, High Purity Nickel

Time (s) Nickel kel 0 DUk 1™ i buie near the soliiquid
se metal) base metal interface

48 2.9mm - 285um 90um

14,400 4.2mm 476um 431pm 129um

57,600 3.0mm 593um 463um 212um

90,000 3.1mm 680um 525um 297um

in the liquid. However, solute transport in polycrystaliine base metal
depends on a number of aspects (see Fig. 3-9):

(1) The polycrystalline base metal contains grain boundary
regions wheve the diffusivity is much higher than in the bulk region
[e.g., Peterson, 1983].

(2) The curved liquid-solid interface promotes interfacial
diffusion which is faster than that in the bulk base metal [Mulins,
1957].

(3) TLP-bonding is basically a homogenization process in which
solute continuously diffuses from the liquid zone into the base metal
solid. It follows that increasing of the solid-liquid interfacial area (as
a result of liquid penetration and grain boundary grooving) will provide
a larger transport area for solute diffusion across the interface

[Kokawa et al, 1992].
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(4) Grain boundary migration (as a result of grain growth during
TLP-bonding) will mean that solute has more chance of visiting grain
boundaries; this will affect solute diffusion and therefore process
kinetics.

(5) Other factors, such as grain boundary segregation, will

directly affect the grain boundary free snergy, and solute diffusivity.

—>V

Liquid Phase DL

Solid Phase -~
Dint Ds

ng

Fig. 3-9  Schematic showing the factors in the two-
dimensional model of TLP-bonding, D, Dg, ng and

D, are the diffusion coefficients in the liquid,

the solid, grain boundary regions and liquid-solid
interface regions respectively.
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It follows that the effect of grain boundary regions on the
process kinetics during TLP-bonding must depend on the solution of a
two or three-dimensional, diffusion-controlled moving interface

problem,

3.4, Summary

The influence of base metal grain size on the isothermal
solidification process kinetics during TLP-bonding of nickel using Ni-
19at.% P filler metal was examined. The eutectic width decreased
linearly with the square-root of the holding time for all nickel base
metals examined, and the rate of isothermal solidification increased in
the following order: single crystal, coarse-grained and fine-grained
nickel. It follows that the grain boundary regions can speed up the
overall solute transport rate. The presence of impurities in the base

metal also increase the rate of isothermal solidification.

It is suggested that the differing performance observed when
bonding single crystal and polycrystalline materials can be explained
due to grain boundary related factors influencing process kinetics. The
following chapters will describe the numerical models that explain the
effect of grain boundaries on the process kinetics during TLP-bonding

and other two-phase diffusion-controlled processes.
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Chapter 4

One-Dimensional Modelling of Process Kinetics

In this chapter, a general one-dimensional numerical model is
developed, which considers two-phase diffusion at a moving interface,
with the aim of increasing the calculation efficiency and accuracy. The
validity of the model will be verified by comparing the calculated
results with direct experimental test results. The numerical model
output will also be compared with some analytical solutions. Finally
this numerical model will be applied to examine the TLP-bonding
process and the requirements for parameter optimization during TLP-

bonding will be discussed in detail.

4.1. Computer Simulation
4.1.1. Physical model

Fig. 4-1 shows a schematic illustration of the diffusion-
controlled, two-phase moving interface problems that exist during
solution treatment of an o/ brass diffusion couple and during TLP-
bonding (see §2.1). Fig. 4-1(a) indicates a planar interface situation
where constant size zones of solute-rich, second-phase (B brass) are
dispersed uniformly throughout the matrix (o brass). When this
assembly is held at the solution temperature, the second-phase grows

and then dissolves [Heckel et al, 1975]. Fig. 4-1(b) illustrates the



Chapter 4 Modelling of Process Kinetics

O

4

Zero Mass Transfer

1’/ \\J Matrix (o brass)

/

N | \\\ y \N
< ' Second Phase (p brass)
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at Bonding Temperature)

Y

>

Fig. 4-1 Schematic illustrating modelling of (a) o/f
brass solution treatment (after Heckel et al,
1972); (b) TLP-bonding of nickel.
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situation during TLP-bonding, when the liquid pnase grows and then
disappears at the bonding temperaiure. As pointed cut early, both

processes are diffusion-controlled and involve moving interfaces.

The basic assumptions during numetrical modelling are:

(1) The moving interface remains planar throughout the
processing period; this is the exact case when only single crystal base
metals are involved.

(2) The diffusion coefficient, molar volume and activity
coefficient of the solute are independent of composition. The molar
volumes of the different phases are also equal;

(3) Local equilibrium exists at the moving interface;

(4) There is negligible liquid flow due to convection and stirring
(in the liquid phase) and there is no effect of latent heat on the
temperature distribution and on movement of the solid-liquid interface

when a liquid phase is involved.

4.1.2. Problem Formulation
Fig. 4-2 shows the solute concentration profile, C(y,t), and the
moving interface location, Y(t). The second phase region is located at 0

L
<y < Y(t) and the matrix region is located at Y(t) < x < 5 - The width of

the second phase is W(t) = 2 Y(t). The governing equations which

determine the solute diffusion field are:

aC(y1) _ 32C,(y.)

= <y< 4-1
T 0<y=Y(t) (4-1)
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3Cly)  2C ly.) L
T = Do Yisys; (4-2)
c
Cr
(a)
Cv1
Cy2
Cwm -
y
| | (b)
| |
| I
| I
| |
—al le—
| ]
| |

I I
-3 n-2 n1 j=n n+1 n+2 n+3

Fig. 4-2  (a) Concentration profiles produced by interface
movement. (b) The numerical method employed to
analyze interface movement.
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These are subject to the following boundary conditions:

9C(y.t)

( = l=o=°’ (4-3)
and

dC;(y.1)

( dy l:l_/z =0. (4-4)

The initial conditions are:

C,y.0)=C, O<ys<l2 (4-5)

and
C,(%.0)=Cy,, li2<y < L2 (4-6)

At the moving interface,

CLY(®).Y = Cyy, (4-7)

and
Cr(Y(®).t) = Cypy. (4-8)

and because of the conservation of mass at the moving interface,

interface movement is determined by the relationship:

_il
CvrCyv) g1 =91

aCI(y t) aCy(y.b)
( l/-Y(t)+(DH ay 1/=Y(t)’ (4-9)
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where JI is the flux in Phase I at the interface and JII is the flux in

Phase II at the interface.

4.1.3. Numerical Analysis

The approach taken involves using the finite difference
approximation to obtain discrete forms of differential equations (4-1),
(4-2) and (4-9), with finite boundary and initial conditions. An
implicit finite difference method is employed when approximating Egs.
(4-1) and (4-2) in order to decrease the calculation time; this
overcomes the stability restriction on the maximum time step. Many
investigators [Tanzilli,1968; Heckel,1972; Pabi,1979; Lanam,1971;
Karlsson; Nakagawa,1991 and Battle and Peklke, 1990] have solved Eq.
(4-9) using the explicit method. However, the accuracy of the solution
decreases when large time steps are employed. In the present thesis,
Eq. (4-9) is solved using an implicit method. As a resuit, a fully
implicit scheme has been developed to handle the diffusion controlled,

moving interface problem.

4.1.3.1. Approximating the Diffusion Equations
The space domain is divided into H equally-spaced intervals of

L .
length Ay= R’ namely, y;= (i-1)Aay, j =1, 2, 3, - , H+1. The interface

lies between the nodes j = n and n+1, and p = {Y(t) - (n-1)Ay}/Ay, where

O<ps<tandn=t,23, (see Fig. 4-2(b)). The time step varies with
EA
the interface velocity at a constant interface displacement At = —d7y

dt
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where E is a constant. Since the interface moves very quickiy during

the initial period of the processes and then slows down, this treatment
ensures that the time step will be small enough (in the initial stage) so
that the calculation accuracy will be acceptable. The finite difference

expressions for Eqgs. (4-1) and (4-2) are:

t+At .t t+At
c el

e +(1-6)(8°C);

e(azc)

ar =P (Ay)2

(4-10)

where 6 is a weighted constant and (820)]- = Cj+1-20j+Cj_1. for the
nodes j = 2,3, , H; except for the nodes near the moving interface.
Using the zero flux boundary conditions in Egs. (4-3) and (4-4), at the

boundary nodes j = 1 and H+1, one can obtain,
(820)1 = 2(C,-Cy) (4-11)

(8%C)yy, ¢ = 2(Cy-Cyy, 1) 4-12)

Near the moving interface [Crank, 1984]:

Ch.qy C
(82C), =2 {T_%; i p(?fp)}, (4-13)

CYH c +1 Cn+2
(0, =2 {<1-p><2-p) ")t (2-p)} ' (4-14)

Eqgs. (4-10)-(4-14) comprise two sets of relations, one (from j =
1 to k ) for the second-phase region, and the other (from j = n+1 to H)

for the base metal region. However, Egs. (4-13) and (4-14) have
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singularities at p = 0 in Eq. (4-13) and p = 1 in Eq. (4-14). This singular
behavior is handled using the following approach. When p <% , the
equation set extends from j = 1 to n-1 for the second phase region, and

C, can be calculated using a finite difference expression (assuming

that the concentration on both sides of the moving interface are

described by quadratic relations):

Ch.1 % }

-2
(8%C)p.q = 2 {2:—p T ap T (14p)(24D) (4-15)

an-z 2an-1 ZCYI
C.=- + +
n 2+p 1+p " (1+p)(2+p)

(4-16)

When p >% , the equation set extends from j = n+2 to H for the base

metal region:

CYII Cn 1 Cn 3
2 - . + + _
(8°C)n,2=2 {(2-p)<3-p) @-p) * (3-p)} (417)
and Cg,1 is given as:
2C 2(1-p)C 1-p)C
C Y (1-p) n+2 (1-P)Cy,3 (4-18)

= + -
n+1 ™ (2-p)(3-p) (2-p) (3-p)
The solution of Eq. (4-10) is unconditionally stable and convergent
1
when %s 6 < 1. However,for0 <96 <5 . we must employ the relation
[Richtmyer, 1957]:
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DAt < 1
(ay)2 S2(1-20)

(4-19)

This stability restriction on the maximum time step requires an

enormous number of calculation cycles during problem solution. In the

. . 1 (ayp? .
present thesis, the 6 value is taken as 2 " 12DAt where 6 is taken as 0

for all values of 6 < 0 at the initiation of the process, when the

velocity of the moving interface is very fast and the time step must be
small. This special scheme has a truncation error of O(at? +Ay#)
[Richtmyer, 1957]. This is smaller than that when 6 = 0 (for an explicit
scheme ), 6 = 1 (for an implicit scheme ) and even 6 = 0.5 (using the
Crank-Nicolson scheme [Crank, 1975]). The solution is also stable.
Another advantage of the implicit scheme is that there are no stability
restrictions concerning time step selection. This means that the
calculation time can be decreased without affecting the solution

stability.

4.1.3.2. Approximating the Moving Interface
Rearranging Eq. (4-9) provides:

dy() 1 {_(D E)CI(y,t)l +(D BCH(y,t)l }
dt (CyrCyp) I dy =Y(t) II gy =Y(1)

= f(Y(t).1). (4-20)
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The modified Euler method (implicit scheme) is applied to solve Eq. (4-

20), namely,
YO (t+At)=Y(t)+At f(Y(1),1), (4-21)
and
At
Y kD (trat)=Y()+5 (Y ), +(Y (K (t+AL), t+AL)), (4-22)

where k= 0,1,2,....... , and the iteration at each time step is performed

until

|Y(k+”(t+At)-Y<")(t+At)| 106
< .

Y (t+At) (4-23)

This implicit scheme for Eq. (4-20) improves the the calculation
accuracy, since the error is 0(At%) [Gerald and Wheatly, 1989] and much

larger time steps are therefore permissible.

The treatment applied to Egs. (4-13) and (4-14) can be used to
1
approximate the derivatives in Eq. (4-20). When p > 5"

) 1 [pCpy (1+p)Cy (142P)Cy;
(BYL=Y=AY{ 1+p ) p + p(1+p) }l (4‘24)
and

Ly 1 [(@p-5)Cyp;  (3-p)Ch,p (2-P)Ch.g

(ay l=Y= Ay {(2‘p)(3"p) + (2-p) - (3-p) }, (4_25)
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1
and whenp <,

daC; 1 [(+p)Cp., (2+p)C, 4 (3+2p)Cy;

(ay l/=y = Ay { 2+p ) 1+p + (1 +p)(2+p)}- (4'26)
and

Ly __1_{(2P'3>Cvn (2-p)Cp, { (2-p)Cn+2}

[ay ~voayl(t-p)2-p) ™ 1ep T (2-p) [ (4-27)

4.1.3.3. Initiating the Solution

Since the numerical solution cannot be initiated directly using
the initial conditions (in Egs. (4-5) and (4-6)), an approximate
analytical solution for a very small time step is used as the starting

point for the finite u:fference scheme, i.e.,
Y(at) = 3 1+2BVAT. (4-28)

In Eq. (4-28), B is calculated using Eq. (2-31) in Chapter 2 and is a
constant that depends on the material properties (on the solute

diffusivity and solubility values).

The numerical computation proceeds as follows:

(i) The initial movement of the interface is calculated using Eq.
(4-28).

(ii) The new solute concentration distribution at each nodal point,
after the initial interface movement, is calculated using the discrete

forms of Egs. (4-1) and (4-2).
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(i) The new moving interface position is calculated starting
from the previous position, using the discrete form of Eq. (4-9).

(iv) The redistribution of solute from the previous concentration
at each nodal point is calculated using the discrete forms of Egs. (4-1)
and (4-2)

(v) Steps (iii) and (iv) are repeated until the process is

completed.

4.2. Testing the Model

The normalized thickness of the second-phase (W/I) is plotted as
a function of dimensionless time (Dt//2) in Fig. 4-3 to Fig. 4-5. The
optimum calculation conditions which produced satisfactory results
were evaluated using a trial and error procedure. Different mesh size
and E values were selected and tested until no major changes in output
results were produced, when finer Ax and E values were substituted.
The effectiveness of these computations was evaluated by comparing
the calculated values with the experimental results produced during
solution treatment of o and B brass, and during TLP-bonding of single-
crystal nickel. The input values employed in these calculations are
listed in Table 4-1. The phosphorus diffusion coefficient in liquid
nickel is not available and is assumed to be 500 pm?/s (most diffusion
coefficients in liquid metals range from 100-1000 pm?/s [Welty et al,

1984]). The input data for the o/p brass diffusion couple are the same
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as those used by Heckel et al [1972). The inputs for Fig. 4-5 were
designed by Pabi [1979] to test the applicability of different numerical

models.

4.2.1. Comparison of Numerically Calculated Results with
Experimental Values
4.2.1.1. TLP-Bonding of Nickel Single-Crystal

Fig. 4-3 compares the output of the computer model with the
experimental results produced during TLP-bonding of single-crystal
nickel base metal. It is apparent that the computed results are in good
agreement with the experimental values, bearing in mind the

difficulties in obtaining an accurate diffusion coefficient value for

20
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© Experimental Data
| = Calculation Results
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Fig. 4-3  Comparison of the calculated and experimental
resuits during TLP-bonding of single-crystal nickel.
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phosphorus in the liquid phase, and the error caused by the assumption
that the phosphorus diffusion coefficients are independent of
composition. It is important to point out that the excellent
correspondence between calculated and experimental results occurs
only when a single-crystal nickel base metal is employed during TLP-
bonding. During modelling, it was assumed that there would be no
effect of grain boundary regions on movement of the solid-liquid
interface. When fine-grained nickel base metal is employed during
TLP-bonding, there is a marked effect of grain boundaries on the rate
of isothermal solidification (the rate of isothermal solidification
increases when the grain size of the base metal decreases, also see

§3.2). This aspect will be discussed in later chapters of this thesis.

4.2.1.2. Solution Treatment of o and B Brass Diffusion Couples

Fig. 4-4 compares the output of the numerical model with Heckel
et al's [1975] experimental results and the model calculations produced
by Tanzilli and Heckel [1968] and by Pabi [1979]. The TH (Tanazilli and
Heckel) model indicates a larger amount of transient growth compared
with the experimental results, and does not accurately correspond with
experimental results during the final stage of the solution process. In
this connection, Heckel et al [1972] added a dotted line to their
calculated curve to account for this discrepancy (see Fig. 4-4). Pabi's
model [1979] indicates faster solution kinetics late in the solution
process in comparison with the experimental results. The output of the
model developed in the present thesis has a better fit with the

experimental results than the TH model or Pabi's models, althoughsome
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deviation still exists late in the solution process. This difference
between calculated and experimental test results may be attributed to
errors in ascribing solubility and diffusion coefficient values, and to

axperiment errors during data collection.
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Fig. 4-4  Comparison of the calculated and experimental
results during solution treatment of thin, multilayer
a/B brass diffusion couples (using the experimental
results indicated by Heckel et al, 1972).

4.2.2. Effectiveness of the Model Developed in This Thesis
4.2.2.1. Efficiency

The cpu times involved during modelling were compared at 6 = 0

A 2
(in the explicit scheme) and 6 = 1 an”

2 " 12DAt (in the implicit scheme)

using a Silicon Graphics IRIS 4.0.1 Mini-computer. The cpu times are
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400 and 7.9 seconds respectively for Curve a in Fig. 4-5. In the explicit
case, the time step is limited to 8.0x10-4 sec and around 7.0x10%4
cycles are required to complete the calculations. Using the implicit
method, the time steps range from 1.85 x 105 to 0.285 sec and around
400 cycles are needed to complete the calculations. Although this
difference in cpu time does not appear great, it becomes extremely
important when TLP-bonding is modelled. When TLP-bonding of nickel
base metal is modelled, the fully implicit scheme requires 3 minutes
of cpu time, the calculation time steps range from 8.6 x 10-4to 70 sec,
and the number of calculation cycles is around 3500. However, when
the explicit scheme is used, the time step must be less than 10-3 sec,
the total processing time is around 9.0 x 10° sec and 108 calculation
cycles are required during numerical modelling. It follows that the
numerical model developed in this thesis has high efficiency. The cpu
times involved in the TH and Pabi's model calculations were
necessarily long since the explicit method was employed during their

numerical calculations.

4.2.2,2. Accuracy

Apart from directly comparing with the experimental results, the
output of the different models can also be compared using the
hypothetical input values suggested by Pabi [9], namely:

(1) when the interface flux into the matrix exceeds that from the
dissolving phase, there is no second phase growth (this is Curve a in

Fig. 4-5);
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Fig. 4-5 Comparison of the output of the different
computational models (TH-Tanzilli and
Heckel's model, 1971 and Pabi's model, 1979).

(2) when (Dy;/Dy) and (Cg-Cy)/(Cy-Cyy) are both unity, there is
zero interface movement for a short time period and then the second
phase dissolves monotonically (this is Curve ¢ in Fig. 4-5);

(3) when the flux into the second-phase exceeds that into the
matrix, the second phase grows and then dissolves (this is Curve b in
Fig. 4-5).

The output of the model developed in this thesis closely
corresponds with that produced using Pabi's model (for Curves a and c).
However, the TH mode! indicates an erroneous transient growth in
Curve c because of errors in the flux term calculation in Eq. (4-20).
This occurred due to the unequal grid size in the different phases

during numerical modelling (see §2.4). When transient second-phase
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growth occurs (Curve b), the model developed in the present thesis
produces a better prediction than the models produced by the Tanzilli
and Heckel [1968] and by Pabi [1979]. (This is clearly apparent based

on an examination of Fig. 4-4.)

4.3. Application of the Model during TLP-bonding

The numerical model has been used to examine TLP-bonding. The
input values employed during the numerical calculations are presented
in Table 4-2. A wide range of input values were employed to indicate
the effect of joining parameters on the completion time for TLP-
bonding. For example, the solute diffusion coefficient in the solid
varies from 0.1 um2/s to 10.0 um2/s, and the diffusion coefficient in
the liquid varies from 100 um2/s to 1000 pm2/s (the diffusion
coefficients in the solid and in the liquid encompass much of the range

of values indicated in the literature [Welty et al, 1984]).

4.3.1. Kinetic Modelling of TLP-bonding
(1) Solute Distribution

Figs. 4-6 to 4-8 show the change in solute concentration
distribution during base metal dissolution, isothermal solidification
and homogenization (assuming an infinite heating rate to the bonding
temperature). When the dissolution process is complete (at t = 3.36s)
the solute concentration in the liquid is almost uniform. In addition,
apart from the initial period of isothermal solidification, there is
virtually no solute concentration change in the liquid during the

isothermal solidification stage in TLP-bonding.
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Fig. 4-8 Change in solute concentration profile during
the homogenization stage.

(2) Movement of the Liquid-Solid Interface

Fig. 4-9 shows the change in liquid width with holding time
during bonding (a logarithmic scale is used to show both of the
dissolution and isothermal solidification stages). The details in Fig. 4-
9 are simplified in Figs. 4-10 to 4-11 to confirm whether movement of
the liquid-solid interface obeys the parabolic law during base metal
dissolution and isothermal solidification. During base metal
dissolution, movement of the liquid-solid interface does not obey the
parabolic law. The deviation from linearity in Fig. 4-10 occurs since
the solute distribution in the liquid is not uniform and interface
movement is determined by the combined effects of flux Jelivery from

the liquid and flux diffusion into the base metal (see Fig. 4-12).
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Fig. 4-11 Change in liquid width with bonding time during
the isothermal solidification stage.
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Fig. 4-12 Variation of the solute flux during the bonding
period, J,_is the flux supplied by the liquid and Jg

is the flux diffused into the base metal.
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Later in the isothermal solidification process, however, the solute
distribution in the liquid becomes uniform and the solute flux from the
liquid is zero. Also, solute diffusion in the solid is very limited
compared with the dimensions of base metal and consequently the
situation can be treated as a semi-infinite case. At the initiation of
the isothermal solidification stage, the sclute flux from the liquid is
not zero and this will produce a slight deviation from linearity (see

Fig. 4-13).
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Fig. 4-13 Detailed analysis of the initial stage of
isothermal solidification.

4.3.2. Comparison of Numerical Calculation with Analytical
Solutions

(1) Isothermal Solidification
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Many investigators have applied analytical methods to mode! the
isothermal solidification and homogenization stages during TLP-
bonding [Lesoult, 1976; lkawa et al, 1979; ikawa and Nakao, 1979;
Tuah-Poku et al, 1988; Nakao et al, 1989 and Liu et al, 1991]. However,
it is very difficult to obtain analytical solutions for the dissolution
stage (see §2.7.1). In this section, the numerical output will be

compared with the results of analytical solutions.

In the analytical solution for the isothermal solidification stage,

it is assumed that movement of the solid-liquid interface (AX) obeys a

parabolic law:
AX=2B\t (4-29)

where t is holding time during TLP-bonding and B can be calculated

numerically using the following relation (see Appendix I):

D ( . 2
Y DS(CaLBCM) exP(-B—)=0 (4-30)

-er
JES

(CLa'CaL)B‘[n_ +

Therefore, the solid-liquid interface movement is characterized by a
constant B value which defines the rate of interface movement. The B
parameter is a convenient monitor when the results of the analytical
and numerical calculations are compared. In the numerical

calculations, B is evaluated using the relation:
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sl ay (4-31)

= — — t .
B 2d'\/t— dt

Fig. 4-14 shows the variation of the B parameter during base metal
dissolution and subsequent isothermal solidification. B decreases

progressively and approaches zero when base metal dissolution is
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Fig. 4-14 Comparison between the numerical and analytical
calculated B values.

nearly completed. B continues to decrease to a value of -0.185 um/\IE
and this value is identical with that produced using the analytical
solution (Eq. (4-28)). It follows that the isothermal solidification

stage during TLP-bonding can be readily estimated using an analytical
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solution and that the completion time for isothermal solidification

may be calculated using the relation:

ts=

—rx (4-32)

(Wmax
48

where the maximum width of liquid phase, W

. WoCr . T . . . .
relation, W_ .= -gv——nF' if the diffusion during the dissolution stage is

max- IS calculated using the

neglected. A relationship of this form (i.e., Eq. (4-32)) has been
previously indicated by a number of investigators [lkawa et al, 1979,
Lesoult, 1979, Nakao et al, 1989, Sakamoto et al, 1989 and Liu et al,
1992]. In direct contrast, base metal dissolution depends on a non-
parabolic relation and no single value of B value can characterize solid-

liquid interface movement.

(2) Homogenization

Work will be described to examine if the thick layer solution (see
§2.2.2) can be used to model the TLP-bonding process. In the thick
layer solution, solute diffusion occurs wholly in the solid-state when
the interlayer of thickness of 2h is inserted between two semi-infinite
dimension specimens. The solute concentration attains its maximum
value at the centerline of the specimen (when y=0) from Eq. (2-9),

namely,

h
Cmax=C(0,1)=C Co-C fl—— 4-33
(0,1)=Cpm+ (Co M)e(4\/D_3t} ( )
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Assuming h is half the thickness of the filler metal and Co is the

initial solute concentration in the filler metal, the calculation results
using Eq. (4-33) are compared with the numerical calculated values in
Fig. 4-15 (for the solute concentration at the specimen centerline
during TLP-bonding). The numerical and analytical results are in close
agreement during a portion of the homogenization cycle, although
differences are apparent early and late in the processing cycle (see Fig.
4-15). It follows that the analytical solution could be used to model
the homogenization stage during TLP-bonding. (The large difference
between numerical and analytical solutions during base metal
dissolution and isothermal solidification occurs because the analytical
calculations assume that solute diffusion occurs wholly in solid-state

and no liquid phase is formed.)

Ikawa and Nakao [1979] developed an analytical solution when
they evaluated the homogenization during TLP-bonding of nickel-based
superalloy material. In this case, the value of h was half the maximum
liquid width at the end of the dissolution stage and C, equalled CLo
The advantage of the treatment used in this thesis is that there is no
need to calculate the maximum liquid width using Eq. (4-33). Nakao et
al [1990] found close agreement between the calculated and
experimental values (for aluminium diffusion to the joint centerline).
However, there was a clear difference between the experimentally-
observed and calculated values early in the homogenization process.
They suggested that this difference may have been caused by a critical

assumption in their analytical calculations (that the aluminium
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RO
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concentration at the bonded layer was uniform at the beginning of the
homogenization period). Fig. 4-15 shows a similar dewiation between
the numerical and analytical results in the early stages of the
homogenization stage. The deviation between the numerical and
analytical results late in the homogenization stage in Fig. 4-15 is due
to the semi-infinite test specimen assumption in the analytical

calculations.
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Fig. 4-15 Calculated changes in the solute concentration at
the specimen centerline during TLP-bonding.

it may be concluded that the simple analytical solutions can be
used to estimated the completion times for isothermal solidification
and to estimate the solute concentration at the joint centerline. In

analytical solutions, the error function is needed and Eq. (4-30) must
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be solved numerically. It is worth noting that direct parameter input
into the numerical program will allow prediction of the completion
times for dissolution, isothermal solidification or homogenization (for
any selected bonding temperature and filler metal/base metal
combination). In effect, numerical modelling is particularly useful
when complex joining situations are contemplated. This is shown in

the following section.

4.3.3. Optimum Selection of Joining Parameters

Based on the close correspondence between the numerical
calculations and the experimental results, the model output can be used
to:

(1) predict the completion times required for dissolution,
isothermal solidification and homogenization;

(2) predict the solute concentration distribution both in the solid
phase and in the liquid phase throughout TLP-bonding; and

(3) select the optimum filler metal (chemistry, thickness) and
bonding parameters (e.g., temperature) which will insure that the TLP-

bonding operation will be completed within a reasonable time-frame.

It is well-understood that the filler metal must contain a
melting point depressant which is soluble and has a high diffusivity in
the base metal being joined. It is also easy to understand that the
smaller the content of the melting point depressant, the faster the
process will proceed, since the TLP-bonding depends directly on solute

diffusion into the surrounding base metal (see §2-7). Figs. 4-16 and 4-
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17 show the effect of varying the solute diffusion coefficients in the
liquid and solid on the time required for completion of base metal
dissolution, isothermal solidification and homogenization. In this
thesis, the completion time required for the homogenization stage is
arbitrarily defined as the time required to decrease the maximum
solute concentration to <0.5 at.% at the specimen centerline. In
practical TLP-bonding situations, the selected concentration value will
be determined by the component manufacturing mechanical properties

requirements.

The completion time required for base metal dissolution
decreases when the solute diffusion coefficients in the solid and liquid
phases are increased, with the solute diffusivity in the liquid having
the most important effect. However, isothermal solidification and
homogenization are only affected by the solute diffusivity in the base
metal (the completion time for these stages decreases when the
diffusion rate of the solute in the base metal increases). Since the
completion time for base metal dissolution is very short compared to
that required during isothermal solidification, these results indicate
that TLP-bonding is principally-dependent on the solute diffusivity in

the base metal.

It has been suggested that there will be an optimum bonding
temperature during TLP-bonding, and that this will depend on the
interplay of increasing solute diffusivity and decreasing the

equilibrium solute concentration in solid (when the bonding
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Fig. 4-16 Effect of solute diffusivity in the liquid on the
completion times required for dissolution,
isothermal solidification, and homogenization.
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Fig. 4-17 Effect of solute diffusivity in the solid on the
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Fig. 4-18 Effect of the solidus composition at the bonding
temperature, C_ , on the completion times

required for dissoiution, isothermal solidification,
and homogenization.

temperature is increased) [Tuah-Poku et al, 1988]. However, this view
is based wholly on a consideration of the isothermal solidification
stage during TLP-bonding. The critical homogenization stage is not

taken into account. Fig. 4-18 shows the influence of changes in the

equilibrium solute content in solid at the bonding temperature, Cyrp on

the completion times required for base metal dissolution, isothermal
solidification and homogenization. Cyy; Mmay be varied by altering the

solute content in the filler metal, or by changing the bonding
temperature. Although increasing the Cy, value decreases the time

required for completion of isothermal solidification, it also increases

the time required for homogenization. In fact, the time required for
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completion of the entire TLP-bonding cycle will not be affected by an
increase in the Cy,; (orCqL) value. This means the highest bonding

temperature should be selected when the TLP-bonding process is to be

optimized (since this will increase the rate of solute diffusion into the

base metal).

4.4. Summary

A fast and accurate, fully implicit finite difference model has
been developed that simulates diffusion-controlled, two-phase moving
interface problems. The computed results are in good agreement with
the experimental results produced during TLP-bonding of single-crystal
nickel base metal using Ni-19at.%P filler metal, and during the solution
treatment of thin, multilayer o and B brass diffusion couples. The
model developed in this thesis produces results that compare well with
the output of previous numerical models proposed by Tanzilli and

Heckel [1968 ], and Pabi [1979].

The numerical model has been used to examine the liquid-solid
interface migration during base metal dissolution and liquid phase
isothermal solidification, and to simulate solute redistribution during
homogenization. The main results comprise:

(1) The numerical model predicts the optimum joining parameters
during TLP-bonding. The optimum conditions occur during TLP-bonding
when the solute diffusivity in the liquid and solid phases increases,

and when the highest bonding temperature is employed.
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(2) Base metal dissolution cannot be represented using a
parabolic law. However, the isothermal solidification stage can be
readily estimated by assuming a linear relation between liquid-solid
interface displacement and the square-root of the holding time at the
bonding temperature. The values produced using numerical and
analytical modelling are identical in this case. Also, an analytical
solution can be used to estimate the solute concentration at the
specimen centerline following a given holding period during the

homogenization stage.
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Chapter 5

Numerical Model: Effect of Grain Boundaries
on Process Kinetics

In this chapter, a numerical model will be developed to examine
the influence of grain boundary diffusion and grain boundary migration
on the process kinetics during the two-phase diffusion-controlled
transformations. The process kinetics are examined by considering the
total amount diffused into the base metal, not by calculating the

location of the moving interface.

5.1. Computer Simulation
5.1.1. Physical Model
5.1.1.1. The Amount of Solute Diffused

As mentioned in §2.1, the growth and/or dissolution of the
unstable phase is the direct result of solute transfer across the
interface between the unstable phase and the matrix. It follows that
the total amount diffused across the interface at any given time may
be used as a monitor of process kinetics. For example, during the
isothermal solidification stage of TLP-bonding, the relation between
the liquid width, W(t), and the amount diffused into the base metal,

M(t), is given as (also see Fig. 5-1):
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(b)

Fig. 5-1 Development of a grain boundary model for
analyzing TLP-bonding (a) isothermal solidification
stage; (b) the exchange experiment model.



(W, ., - W(DIC, =2M(t) (5-1)

max

where W .. is the maximum licuid width and C _is the solute

X
concentration in the liquid at the interface. It follows that the process
kinetics during isothermal solidification might be effectively
described by M(t), the amount of solute diffused, instead of W(t), the
liquid width present during TLP-bonding. Of course, not every two-
phase diffusion process has such a simple relation between the M(t)
and W(t) as in Eq. (5-1). However, calculating the amount of solute
diffused with processing time is indeed a useful indication of process
kinetics. For this reason, the present chapter examines the factors

which affeci M(t).

5.1.1.2. The "Exchange Experiment" Model

If the second phase is ignored and the solute concentration on the
new surface is maintained at the concentration of the interface when
two phases are actually present, the model system changes to that in
an "exchange experiment”. In an exchange experiment, diffusion occurs
from a surface at constant solute concentration into material that is
free of diffusant [Lidiard and Tharmalingam, 1959]. For example,
during isothermal solidification in TLP-bonding, liquid phase is not
considered and it is simply assumed that the base metal has a free
surface where the solute concentration is maintained at Cy=C, (see
Fig. 5-1(b)). The numerical calculation evaluates the amount of solute

diffused into the base metal from this surface and the joining process
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terminates when the total amount of diffusing solute attains the
initial solute content in the filler metal (with the assumption that any
solute diffusion that occurs during the dissolution stage can be
neglected). The advantage of this novel approach is that the problem

becomes much simpler and we only have a one-phase diffusion process.

The computer model in this chapter evaluates the total amount of
material which diffuses as a function of holding time during ar
‘exchange' experiment (see the model illustrated in Fig. 5-2). It is

assumed that the grain boundary regions are perpendicular to the free
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Fig. 5-2  Schematic of the grain boundary diffusion model.
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surface, have thickness, §, and are at a constant spacing, d. The grain
boundaries move at a constant velocity, V, in a direction parallel to the
free surface. The other key assumptions during modelling are:

(1) The diffusion coefficients, molar volumes, and activity
coefficients involved are independent of compeosition change.

(2) The second phase is much smaller than the base metal;
therefore, the changes in dimensions of the base metal are negligible.

(3) The moving interface has no effect on the distribution of the
diffusing solute in the base metal. This applies during TLP-bonding,
since the maximum difference of solute concentration in the base
metal is much less than that at the interface (see Appendix I).

(4) No interaction occurs between the diffusing solute and the

grain boundary regions.

5.1.2. Problem Formulation

Because of symmetry, only one unit containing a grain boundary is
considered. The y-axis is along the moving grain boundary and the x-
axis is parallel to the direction of grain boundary motion (see Fig. 5-2).
The calculation region is defined by Qe {x=-d/2, d/2; y=0, L/2}, where
L/2 (=1 mm) is the specimen length. The governing equations for the
change in diffusant concentration with holding time are [Fisher, 1951;
Whipple, 1954; and Mishin and Razumovskii, 1992]:

aC 9%C 9°C aC )
5?=D'(a7+a_y?)'va_£' le>§ (5-2)
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in the bulk material, and,

2
vab a Cqb Q[ (BC (5-3)

D, roC
oL (0%
at=9bay2+8 (

ax)x=+5/2' 5 ax)x:-&/z' W<z

at the grain boundary region. In these equations, C and Cgb are the bulk

material and grain boundary concentrations, D, and ng are the diffusion

coefficients in the bulk material and at the grain boundary, V is rate of

grain boundary migration, and the grain boundary thickness, 3§, is
assumed to be 5.0x10°'°m. At the interface between the bulk

3
materials and the grain boundary, Ixl= 5

Cgp=kC. (5-4)

The parameter, k, is a material constant [Peterson, 1983] and is taken

to be unity in all calculations. From Egs. (5-3) and (5-4):

The initial and boundary conditions are:
C(x,y,0)= 0 (5-6)
C(x,0.)= C, (5-7)
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where C, is the concentration at the free surface.

The mean concentration at penetration depth, y, is given as:

9 d/2
Sy =g d ! 2c:(x,y,t)dx (5-9)

and the total amount diffused within domain Q is:

M(t)= JIC(x,y.t)dxdy (5-10)
Q

5.1.3. Numerical Analysis

The diffusion equations described in the preceding section are
solved numerically using an explicit finite difference method. The
finite difference grid is shown in Fig. 5-3. The interval between lines
paraliel to the y-axis is Ax (=d/20). The intervals between the lines
parallel to the x-axis are Ay=2um when y < 8um, Ay=5um when 8um <y
< 28um and Ay=50pum when y > 28um. Using the forward-time,
centred-space finite difference approximation, Egs. (5-2) and (5-5) can

be written as:

teAt t t £t t t ot
G -Cii  GCuj2C#Ciy; G ju1m2C*+Ci iy
—=D D
At Tz T (ay)?
t t
Cis1,i7Ci-1,j
N— (5-11)

2A%
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t+At (t t t t

t At t
C.i -G G 172G+ Gy ;. 5 -3C;#4C;, 1 ;-Cisz
- ot &
At ~ Tgb (Ay)2 " ks 2Ax
t t t
D 3Ci,j-4Ci-1,j+Ci-2,j
.= (5-12)

kd 2AX

5.1.3.1. Stability Criterion
Eq. (5-11) is a typical transport equation, and its stability

analysis can be found in literature, e.g., in the paper by Noye [1982].
The calculation time step At, must be,

(Ax)2(Ay)?
At < -13
1= 2D [(ax)%+(ay)?] (5-13)
The stability analysis of the grain boundary diffusion Eq. (5-12)
requires:
SAx(Ay)?
< 5-14
Aty 2[8Angb+2(Ay)le] (6-14)

Further details are provided in Appendix II and the calculation time

step is:

At < min {At, , At,}. (5-15)
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Fig. 5-3  Finite difference grid used in the grain boundary
diffusion model.

5.1.3.2. Consistency Analysis
The analysis of the compatibility of finite difference Eq. (5-11)
with respect to partial differential Eq. (5-2), confirms that Eq. (5-11)

1
introduces a numerical diffusion term, (5 V2At) i:)_x% (A similar effect



is indicated in the paper by Noye [1982]). Because of this, the time
step must be small enough so that this fictitious diffusion term is
much less than the true diffusion coefficient value. When the time
step satisfies the criterion given by Eq. (5-15), the fictitious diffusion

1 .
coefficient (3 V2At) is approximately 104 ~1075 of the real diffusion

coefficient, Dl .

A consistency analysis of the grain boundary diffusion equation
indicates that the finite difference approximation (5-12) is consistent
with the grain boundary diffusion equation (5-5) (for further

information, see Appendix III).

5.2. Results and Discussion
5.2.1. Influence of Grain Boundary Diffusivity

Fig. 5-4 shows the effect of grain boundary diffusivity and of
grain size on the ratio of My/Ms, where M, is total amount diffused into
a polycrystalline material and Ms the total amount diffused in a single-
crystal case. The influence of the grain boundary regions depends on
the grain size and on the Dy,/D; ratio. At low temperatures (T < 0.5-
0.75Tm, where Ty, is the equilibrium melting temperature of the
material in degrees Kelvin) the Dgp/D; ratio is 105 or higher. The
influence of grain boundaries on diffusional transport is much greater
under these conditions. However, at high temperatures (T > 0.75 Tp),
the Dgp/D; ratio is 102 or less and consequently Fig. 5-4 indicates that

the contribution that results from grain boundary diffusion will be
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much less. Fig. 5-4 also shows that the contribution due to grain

boundary diffusion increases when the grain size becomes smaller.

5.2.2. Influence of Grain Boundary Migration

Fig. 5-5 shows the effect of grain boundary migration on the M\/Mp
ratio, where M, is the total amount diffused into a polycrystalline
material that has moving grain boundaries, and M, is the total amount
diffused into a polycrystalline material, when the grain boundaries are
stationary. Grain boundary migration speeds up mass transfer during
part of the holding period, and during this period more diffusion occurs
when the grain size, the rate of the grain boundary migration and the

Dgu/D; ratio are increased.

Increased diffusion due to grain boundary migration can be
explained by the build-up in diffusant material in the wake of the
moving grain boundary (see Fig. 5-6). For short holding times (for
small lattice diffusion distances), the migrating grain boundary has
little influence on the concentration profile and consequently, there is
negligible difference between total amount diffused in the migrating
and stationary grain boundary situations. However, when the
processing time increases, more diffusant is built up in the wake of the
moving grain boundary and therefore, more material is diffused into the

specimen. For long holding times (large diffusion distances), the
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Fig. 5-4 The effect of grain size and of Dgp/D;
on the Mp/M; ratio.
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Fig. 5-56 The effect of grain boundary migration
on the My/Mp, ratio.
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difference in the concentration profiles decreases continuously: the
total amount diffused via migrating and stationary grain boundaries

become the same at very long holding times.

The ratio My/M,, attains a maximum value when YDt +Vt
approaches the grain size, d (see Table 5-1). Cahn and Balluffi [1979]
indicated that the boundary between Type B and Type A kinetics
occurred when VDt +Vt = d. They did point out, however, that although
their curves indicated a sharp transformation from Type A and Type B
behavior, they should really be considered as transition regions.Both
Mishin and Razumovskii [1992] and Cermak [1990] pointed out that
migrating grain boundaries spread the diffusant in a relatively thin
layer near the surface of the sample. Fig. 5-7 shows that the
calculated diffusant distribution in the y-direction. It is apparent that
migrating grain boundaries enrich the near-surface region in diffusant
and deplete regions far from the surface. (In Figure 5-7, Ty is the
mean diffusant concentration in a polycrystalline material with moving
grain boundaries, and T is the mean diffusant concentration in a

polycrystalline material that has stationary grain boundaries.)

5.2.3. Apparent Diffusion Coefficient

When the surface is maintained at constant concentration, Co
anddiffusion takes place into material that is initially free of
diffusant, the analytical solution for the amount diffused (M) into a

semi-infinite, single crystal is [Crank, 1975]:
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Fig. 5-6  Concentration profile along x-direction, at y = 6éum,
when d = 5um, Dgw/D; = 105 and V = 10""'m/s. The
dashed line is for a migrating grain boundary and the
solid line is for a stationary grain boundary.

Table 5-1 \/D t + Vt values where the M\/Mp ratio reaches
its maximum value

d (um) V (x107"°m/s) [ t (x1075s) VDt + Vt (um)

5 10 3.0 4.7
40 10 36.0 42.0
40 5 67.0 41.7

Ms=2C 0

413

=.<0|

(5-16)
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Assuming a single appareni diffusion coefficient (Dapp), instead of
individual lattice and grain boundary diffusion coefficients, the total

amount diffused (Mp) in a polycrystalline material will be:

Mp=2co\/——9"—D; t (5-17)

Combining Eqgs. (16) and (17):

Dagp = Dy (—52)2 (5-18)

From this relation, Fig. 5-4 indicates that, in a polycrystalline
material, the Dapp/D, ratio increases when the holding time increases
and then tends to a constant value at long processing times. Assuming
that the diffusion process reaches a steady-state, when the lattice
diffusion distance is much larger than the grain size, then [Porter and

Eastering, 1992]:

8 Dgb
Dapp= D/(1+ —d' _ST) (5'19)

Thi~ relation is very similar to Eq. (2-50) that Hart [1957] derived
based on generalized "random walk" considerations. The numerical
prediction for the Dapp/D|ratio can be calculated using the results in

Fig. 5-4 and Eq. (5-18). Table 5-2 compares the numerical values
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withthose produced using Eq. (5-19). It is apparent that Eq. (5-19)
provides a satisfactory approximation for the apparent diffusion
coefficient in polycrystalline material, when long processing times
occur and VDt

exceeds d. This point is further illustrated in Fig. 5-8, where the
numerical calculations are extended so that the lattice diffusion

distance is 10 times larger than % (L=1.5mm in this calculation). The

results in Fig. 5-8 are quite different from those indicated by Campbell
[1974], since the average concentration profile is that in a
homogeneous medium, that has an apparent diffusion coefficient equal
to the grain boundary diffusion coefficient. This difference between
the results in this study and these of Campbell may be due to
underlying assumptions in each case. A continuous source is used in
the present study, while Campbell analyzed diffusion from an

instantaneous source.

Both lattice diffusion coefficient, D,, and grain boundary

diffusion coefficient, D are used in numerical calculations using the

gb’
two-dimensional model. If the model is modified to examine the one-
dimensional case, a single lattice diffusion coefficient is required and
this can be taken as the apparent diffusion coefficient (calculated
using Eq. (5-19)). The solute concentration profiles in the one-
dimensional and two-dimensional cases are be compared in Fig. 5-9

(the mean solute concentration at penetration depth, y, in two-
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Fig. 5-7 The change in the €,/ T ratio along the y-direction,
when d = 5um, Dgp/D; = 10°%, and V = 10" 'm/s.
Table 5-2 Dapp/Dl ratio values calculated when ng/Dl =10°
D D D
d (um) g o by Eq. (5-18)| 5™, by Eq. (5-19)
l l

5 2 10.89 11

10 1 5.48 6

20 0.5 3.04 3.5

40 0.25 1.91 225
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Fig. 5-8  The relation between the lattice diffusion distance
VDt and the Dapp/D; ratio, when d = 5um and Dgp/D; = 105.
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Fig. 5-9  The change in the C/C, ratio along y-direction. In the grain
boundary diffusion model, 5= 5x10"*um, d = 5um, Dgw/D; = 10%;
8D
in the one-dimensional model, D=Dgapp= D1+ a'—D“? ).
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dimensional model is given by Eq. (5-9)). Both results are identical
when the diffusion distance is twice the grain size, d. This provides
the further evidence that an apparent ditfusion coefficient exists which
combines the effects of the lattice diffusion coefficient and the grain

boundary diffusion coefficient.

The difference in the total amount diffused in the migrating and
stationary grain boundary situations decreases when VDt +Vt is much
larger than d. In this situation, the apparent diffusion coefficient can
also be calculated using Eq. (5-19), as Cahn and Balluffi [1979]

suggested.

5.2.4. Influence of Grain Boundary Regions on the Isothermal
Solidification during TLP-bonding

As pointed out in Section 2.7., the completion time for
isothermal solidification during TLP-bonding can be estimated using

the relation (see Appendix I for further details):

CW
ol S

where CF is solute concentration in the filler metal, W0 is the initial

width of the filler metal and DS is the solute diffusion coefficient in

the solid. Based on the results described in this chapter, Eq. (5-20) can

be modified to take grain boundary diffusion into account,
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C-w
- (e 21
oL app

where Dapp is the apparent diffusion coefficient. This equation can be

used to calculate the completion time for isothermal solidification
during TLP-bonding if the Dapp is known, or to calculate Dapp if the
completion time for isothermal solidification is experimentally

measured.

5.3. Summary

A numerical model was developed that indicates in a continuous
manner the effect of increased diffusivity at grain boundary regions,
and of grain boundary migration on the total amount of solute diffused
and hence, on the process kinetics during two-phase diffusion-
controlled problems. The principal conclusions are:
1. The influence of grain boundary regions on the total amount of solute
diffused depends on the grain size, and the ratio of grain boundary
diffusion coefficient and lattice diffusion coefficient, Dgp/D;. When
the Dgp/D; ratio is high (for temperatures in the range, T < 0.5-0.75Tp),
the influence of grain size on the total amount diffused is marked and
decreasing the grain size increases the total amount diffused. When
the Dgp/D; ratio is low, i.e., 1000 or less (at high processing
temperatures in the range, T > 0.75T), the influence of grain size on

the total amount diffused is small.
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2. The apparent diffusion coefficients in Type B and Type A kinetic
regimes, and in the transition regime between Type B and Type A
behavior, are calcuiated using the numerical model.

3. When \/ﬁ is larger than the grain size, d, the numerical calculations
support Hart's analysis [1957], that an apparent diffusion coefficient

exists. This apparent diffusion coefficient can be approximated using
, d Dgb
the relation, Dapp= D,(1+ d D )

4. Grain boundary migration increases the total amount diffused during
only part of the holding period. During this period, the total amount
diffused increases, when the grain size, the Dgn/D; ratio, and the rate
of grain boundary migration increase. For short processing times,
grain boundary migration has negligible effect on the total amount
diffused and, for long holding times, the total amount diffused is also

similar in stationary and migrating grain boundary situations.
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Chapter 6

Numerical Model for Grain Boundary Grooving

In this chapter, a numerical model will be developed for the
evolution of grain boundary grooves during two-phase diffusion-
controlled transformation. This model includes the following factors:
the concentration gradient in each phase, the excess chemical potential
resulting from both the balance between the grain boundary free energy
and the interfacial free energy, and from the gradient of interfacial

curvature.

6.1. Computer Simulation

A quantitative description of grain boundary grooving depends on
finding the solution to a two-dimensional, diffusion-controlled, non-
steady-state moving interface problem. No published work has dealt
with such a problem, for the boundary conditions that apply in the

present thesis.

6.1.1. Physical Model

In practical situations, grain boundary regions in the base metal
are not planar, they intersect the interphase interface at different
angles and at different intervals. However, this situation is extremely

difficult to model due to its complexity. In the present thesis, a
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simple and symmetrical model is assumed where grain boundaries are
planar and parallel with each other, and intersect the interface at right
angles at constant intervals (see Fig. 6-1). The solute distribution and

the interface position can be obtained by solving the diffusion

Ay
Grain ' Grain
Boundary } Boundary
Interface Phase IT
Phase I X
— —————— —— .N - — - — - — >
Interface ‘
d
e} ‘ -]

Fig. 6-1 Schematic of the model indicating grain boundary
groove formation.
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equations in the shadowed region in Fig. 6-1 with suitable initial and
boundary conditions. In Fig. 6-1, no grain boundaries are assumed in the
second phase (Phase I), which is an exact situation when Phase I is a
fluid.

Grain boundary grooving in two-phase diffusion-controlied
problems depends on the following driving forces, transport
mechanisms and effects:

(1) Driving forces: the concentration gradient and the excess
chemical potential resulting from the balance between the grain
boundary free energy and the interfacial free energy at grain boundary
triple junctions, and from the gradient of interfacial curvature;

(2) Transport mechanisms: volume diffusion in each phase,
interfacial diffusion and grain boundary diffusion;

(3) Other factors: grain boundary segregation and the melting
point difference between the grain boundary and the bulk region.

Because of such complexity, it is very difficult to take all the
above factors into account. As a first approximation, the transport
mechanism involves only volume diffusion in both phases and the

driving force includes all three different gradients indicated above.

The following assumptions are made to simplify the
mathematical calculations:

(1) The diffusion coefficient, molar volume and activity
coefficient of the solute are independent of composition. The molar

volume of the both phases are identical,
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(2) In liquid-solid situation, flow of the liquid phase as a result
of the convection and stirring is negligible, and hence, the flow of
solute and solvent elements required for the migration of the liquid-
solid interface depend only on interdiffusion;

(3) Local equilibrium exists at the interface, and therefore the
compositions of each phases on the interface can be derived using the
relevant equilibrium phase diagram;

(4) No intermediate phase is formed;

(5) The Kirkendall effect is negligible.

6.1.2. Problem Formulation
The change of the solute concentration in both phases at points

far from the interface and from the grain boundary can be described as

follows:
acI 5
-1 2
3¢ = Dy Vv CII (6-2)

where CI and CII are the solute concentrations, and DI and DII are the

solute diffusion coefficients in Phase I and Phase II respectively.

Migration of the interface can be described using the following

relation:
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aC,  ac
(CyrCyrp) V= -Dr3, + Dprgn - (6-3)

where V is the velocitv of the interface in the direction normal to the
interface, Cyyand Cy; are the solute concentrations at the interface in

phase I and phase II, and (d/dn) is the directional differential normal
to the interface. According to Patel's analysis [1968), Eq. (6-3) can be

transformed to:

CyrCyi %= {'DI (%% vt Dn(aaiynlﬂ} {1 + (3—1)2} (6-4)

where Y(xt) is the y-coordinate at the interface. This equation

provides the velocity of the interface in the y-direction. Therefore,
using this equation, we can calculate the migration of the interface
along grid lines parallel to the y-axis. This approach is taken in the

finite difference analysis described below.

The boundary and initial conditions are:

dC;

(ay -0=0, (6-5)
dCy d9C;

(-a—x o (a_x o 0, (6-6)

Cixyt) =0, at y=L/2 (6-7)
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Cy(x.y,0) = 0, at y2! (6-8)
Ci(x.y.t) = Cr, at /2y=0 (6-9)
Y(x,0) = l/2, (6-10)

where | and Cg are the thickness and initial concentration of phase I.

6.1.2.1. The Excess Chemical Potential Resulting from the
Balance between the Grain Boundary Energy and the
Interfacial Energy

Suppose that a grain boundary intersects an interface at point O
and the intersecting point shifts from O to O' by AY as shown in Fig. 6-
2, The change in free energy caused by this shift of the intersecting
point is given by [Swalin, 1962 and Woodruff, 1973):

Ay = ('ng + 2 i COSO)AY, (6-11)

where Ygb is the grain boundary energy and v, is the interfacial energy

(the orientation dependence of Yint IS @assumed to be negligible). This

treatment is different from the classical approaches where an
equilibrium dihedral angle is assumed at the grain boundary triple
junction at all times (see Section 2.6.). The advantages of this
treatment comprise: (1) it treats the formation of the grain boundary

groove as a dynamic process; (2) Eq. (6-11) can handle the situation
when Ygb is larger than 2 y;, [Woodruff, 1973]. The thickness of the
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Fig. 6-2  Schematic of the balance between grain boundary
free energy and interfacial free energy at the
grain boundary triple junction.

specimen in the direction perpendicular to the plane of the page is

assumed to be unit length.
From Eq. (6-11), the solute at the intersecting point O has an

excess chemical potential Ay, compared with the solute in the bulk,

according to,

Ay AY
Ap = = (Y, + 2Y,,6088)—
An g An
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Q
= (Mgp + 2¥;,4COSH) m (6-12)

where An (mol) is the amount of solute required to shift the
intersecting point from O to O', Q is the molar volume of the liquid and
solid phases, and & is the width over which the chemical potential of
the solute is influenced by the grain boundary. In the present
calculations, d is taken to be equal to the grid size, ¢, in the x-
direction.

In order to account for the effects of chemical potential Ap on

interdiffusion, equivalent concentrations were introduced at the
intersecting points C? and C?I, given by the

following equations:

A A
Cr= CIexp(ﬁ%) ~ CI(1 +ﬁ$) (6-14)
Ap A
C?I= CHexp(RT) = CII(1 + F#). (6-1 5)

6.1.2.2. The Excess Chemical Potential Resulting from
Interfacial Curvature

The interfacial curvature also influences the chemical potential
of solute atoms. The solute atoms at the liquid-solid interface having
curvature K have a chemical potential greater than that of the solute

atoms in bulk [Swalin, 1962):
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KyintQ

Ap = =t
= CyrCyn

(6-16)
where vy, is the interfacial free energy per unit area, Q the atomic
volume, and,

%Y
ax2

ET

A positive value of K corresponds to a concave interface. The influence

K= (6-17)

of chemical potential on interdiffusion is taken into account by
introducing equivalent concentrations C? and C?I given by

of-cren(gt)- o 145t} (6-18)
A A
Cr= CHexp[ﬁ.%) - 011(1 + E%) (6-19)

6.1.3. Numerical Analysis

In this chapter, the diffusion equations described in the preceding
section are solved numerically using the explicit finite difference
method. In the finite difference analysis, a network of lines pass
through the shadowed area in Fig. 6-1 (also see Fig. 6-3). The interval
between lines parallel to the y-axis is Ae (=2um).  The intervals

between the lines parallel to the x-axis are &=5um for i2y=20 and
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Fig. 6-3  Finite difference grid used in tha grain boundary
grooving model.

Ay=25um for y2I. The solute concer‘ration at points far from the

interface are calculated using the standard explicit finite difference

expression [Crank, 1975] for Egs. (6-1) and (6-2):
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t+At
C

t
i i

i-1,]

Ct

i,j+

-Ci;  Clyj2Ci+C

i+1,]
— =D D \
At (ax)2 " (Ay)2

t t
1-2C|-]+C'-]'1

(6-20)

where D=D;and D;. This finite difference equation is consistent to the

Egs. (6-1) and (6-2). and its solution is conditionally stable [Noye,
1982].

Special formulae are required when calculating solute
concentration near the intefface. For example, we need to calculate the
solute concentration at point p near the interface in Phase I (see Fig.
6-4). Since the interface displacement is expressed in y-direction (see
Eq. 6-4), the interface location will be determined by the positions
along the grid lines in the y-direction (e.g. points a, b, d and e in Fig. 6-
4). The neighboring grid points of point p are b, ¢, f and g (g and f are
points far away from the inteiface, b and ¢ are the points at the
interface). The solute concentration Cp(m,n) at point p is given by the

non-uniform grid spacing finite difference equation:

CeCp C

Ag € A g

C:,, C; and Cft are the solute concentrations at normal points at

L . . . t.
prior time , and therefore are known during numerical calculation. C, is
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Fig. 6-4  Finite difference grid showing the interface line
a-b-d-e and its surrounding region.

the interface concentration in Phase I and is calculated using Egs. (6-

18) and (6-19) and the following discrete equations,
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92y Ym-1'2Ym+Ym+1
) (6-22)
oY Yms1"Ym-1q

t, . - t
Cq is calculated in a similar manner. C_ can be calculated by

interpolating between points b and d. Once Cf, and Cé are

t+At

calculated, G, can be determined along with the values of C,t. Cé and

t
Cp.

The interface position, Y,:At, at point b in Fig. 6-4 can be

calculated using the finite difference form of Eq. (6-4),

¥rt1+At'Y:n
CyrCyn ™27 =
Co-Cp Ch-Co Yns1-Ym- 1
\\'DI —"A;—+ DH_{-:-A—:—:— L1+ 2t (6-24)

The solute concentration at other grid points and the interface location
at other grid lines are determined in the similar way. The time step

used in this calculation is:

1 %2

Ats3o e2+£2 D (6-25)
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where D equals D; or Dy;.

6.1.4. Parameters Employed in Numerical Calculations

A liquid-solid system (TLP-bonding of nickel using Ni-19 at.% P
filler metal) is considered in the present thesis. However, it is worth
pointing out that the numerical model developed above can also be
applied to solid-solid or solid-gas systems. The diffusion coefficients
and the eqilibrium solute concentrations employed in this chapter are
similar to those employed in Chapter 3 system (see Table 3-1). The
grain size is assumed to be 40 um. The initial thickness of the filler
metal is 40 um. The grain boundary energy v, is 0.848 J/im? (reported
as the free energy of the large angle random grain boundaries of nickel
[Murr, 1975]). The ng/ Yint F2ti0 in pure metals is estimated based on
experimental results to be 2.22 [Miller and Chadwick, 1967]. In the
present study, both Tgb and ¥;,, are assumed to vary from 0.424-0.848

J/m2, and the ng/ Yint Fatio is assumed to vary from 1 to 2.

6.2. Results

The numerical model developed above has been applied to TLP-
bonding of nickel base metal using Ni-19 at.% P filler metal. Figs. 6-5
and 6-6 show evolution of the liquid-solid interface profile at the
bonding temperature. Based on Fig. 6-5, the liquid-solid interface is
almost planar during the base metal dissolution stage, and liquid
penetration at the grain boundary region is only apparent near the end
of the dissolution process. Based on Fig. 6-6, liquid penetration

becomes more pronounced when the holding time increases during the
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isothermal solidification stage. The penetration depth increases to
more than 10 um -- large enough to be observed using conventional
optical microscopy and scanning electron microscopy. These
indications are comparable with the experimental results produced in
this thesis (see Fig. 3-6 to 3-8). 'n this connection, Kokawa et al
[1992] also indicated that the liquid penetration could not be observed
during the dissolution process, but became more pronounced when the
holding time increasad during the isothermal solidification stage of
TLP-bonding. The horizontal broken lines in Fig. 6-6 indicate the
calculated displacement of the liquid-solid imerface when the effect
of grain boundary-related factors are neglected. It is clear that the
width of the liquid phase in the bulk regio~ far from the grain boundary

(represented by the width at the symmetry axis) is smaller when the

25 - Grain Boundary I,

Solid H

Liquid

Interface displacement (um)

10 20

5 T T
-20 -10

Distance from grain bounday (jtm)

o o

Fig. 6-5  Evolution of the profile of the liquid-solid
interface during the dissolution stage.



Chapter 6 Grain Boundary Grooving 165

effect due to the grain boundary energy and liquid-solid interfacial
energy are taken into account. It follows that the isothermal
solidification process in the bulk region is accelerated when the
effects of the grain boundary energy and the liquid-solid interfacial

energy are taken into account.

Grain Boundary

Interface displacement (jum)

Distance from grain bounday (um)

Fig. 6-6  Evolution of the profife of the liquid-solid interface
during the isothermal solidification stage.

The influence of the grain boundary energy on liquid penetration
at the grain boundary region is shown in Fig. 6-7. In this figure, the
liquid-solid interfacial energy is maintained at 0.424 J/m2, and the
grain boundary energy is varied from 0.424 to 0.848 J/m2. It is quite

clear from Fig. 6-7 that the penetration depth is increased and the
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angle at which the liquid-solid interface intersects the grain boundary
becomes sharper when the grain boundary energy is increased. Kokawa
et al [1992] observed that the liquid penetration at large angle random
grain boundary regions was much more pronounced than that observed
at the crdered r;rain boundaries (small angle grain boundaries and twin
toundaries). Since a large angle random grain boundary has higher
energy than an ordered grain boundary, the calculated results in Fig. 6-
7 correspond well with the experimental observations made by Kokawa
et al [1992].

Liquid penetration at the grain boundary region is also strongly
influenced by the liquid-solid interfacial energy (Fig. 6-8). Liquid

penetration becomes more pronounced when the solid-liquid interfacial
energy is decreased. It follows that only the ng/Yim ratio, not the

individual values of Yint OF Ygp determine the shape of solid-tiquid
interface (see Fig. 6-7 and Fig. 6-8). The reduction in  liquid
penetration is very small (less than one per cent) when the grain

boundary energy decreases by 50 percent (see the curves in Figs. 6-7
and 6-8 where ygb/yim=1).

It is apparent that iiquid penetration at grain boundary regions
during TLP-bonding of Nickel using Ni-19 at.% P filler metal can be
numerically modelled by taking into account factors such as the grain

boundary energy and the liquid-solid interfacial energy.
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6.3. Future Work on the Grain Boundary Grooving Model

Evolution of grain boundary grooves at the iiquid-solid interface
during TLP-bonding of nickel using Ni-19 at.% P has been explained
using the model developed in this chapter. This model can be also
applied to the other two-phase diffusion-controlled processes,
assuming that solutions car be formed for two or three-dimensional,
diffusion-controlled and aon-steady-state moving interface problems.
All transport mechanism.s will participate the diffusion process,
namely, volume diffusion in each phase, grain boundary diffusion and
interfzacial diffusion. The driving forces for diffusion involves the
concentration gradients in both phases, a~d the chemical potential
gradients that resuit from the curvature gradient, and the balance of
grain boundary free enzrgy and interfacial energy at the grain boundary
triple junction. Other factors, such as grain boundary segregation, will
also strongly affect the process kinetics. The following section will
describe the grain boundary diffusion and interfacial diffusion relation
that could be employed in formulation of a general model for grain

boundary grooving.

6.3.1. Increased diffusivity at Grain Boundary Regions

Grain boundary diffusion depends on the relation (also see Chapter 5):

= 2 (6-26)

aC 2Cc Diac Drrrac
x=-8/2 2

3t =Pogye * 15 |9 s K6 |9
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where Dgp are the diffusion coefficients at the grain boundary, 8 is the

grain boundary thickness, and k is a segregation-related factor.

Interface movement at the grain boundary triple junction is

determined by the following relation:

dy dC dC oY
(CyrCyrp) gt = {-DI (ﬁl:v’“ ng(—a%lﬂ} {1+ (5)2} (6-27)

The effect of increased diffusivity at grain boundaries and of grain
boundary segregation are accountel for using the above equations.
However, according to the calculation experience in this study, an
extremely long calculation time is required if an explicit finite
difference scheme is employed to solve the grain boundary diffusion
equations. In effect, the principal difficulty will be in solving the

grain boundary equations using an implicit finite difference scheme.

A change of Dgp will affect the rate of .aterface movement at the
grain bourdary triple junction (see Eq. (6-27)). For example, let us
consider the situation during the isothermal solidification stage of
TLP-bonding. When Dgp increases, the term dY/dt wiii decrease. This
means that the interface will move faster towards the joint centerline.
It follows that the above equations an qualitatively explain how
increased diffusivity at grain boundaries could speed up interface

movement and hence the proces: kinetics.
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6.3.2. Interfacial Diffusion

As can be seen from Egs. (6-16) and (6-19), the liquid-solid
interfacial energy produce a chemical potential gradient for solute
along the liquid-solid interface. This chemical potential gradient
produces diffusion flow along the liquid-solid interface and
consequently, gives i'se to the migration of the liquid-solid interface
as describcd by Mullins [1957]. When a compositional discontinuity

occurs at the interface:

K'Yi ntQ

6-28
(CyrCyip} (6-28)

Al = -

The chimical potentiai gradient along the interface will
therefore be associated with the gradient of interfacial curvature.
Such gradients will promote diffusion of solute atoms having an

average velocity given by the Nernst-Einstein relation:

D a(Ay)
V=T s (6-29)

where D is the coefficient of interfacial diffusion and s the length of
the arc along the profile. The interface current J of atoms will be the

product of v times the number of solute atoms per unit area:

CintD afAE)
= %Ta os (6-30)
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If we refer to the conservation of mass [Mullins, 1975 and

Takahashi et al, 1988], the velocity of interface motion in the normal

direction will be:

QS . a4
Vo= o= 6-31
"™ CyrCyyy 9s (6-31)

Y .
A simple geometrical projection of velocity 3t gives the relation:

aYRl12 oY
Vp= { 1 +(ﬁ)z} 3t (6-32)

and by using the relation ;?:: gﬁ aa—x , then:

oY ayp| 12
at={‘+(at} Vn

D.C. &8 3 YR 1-1/2 3Ap
_ int “int”int O vt —t -
~ RT(Cy-Cypp) 09X [{ + (ax)z } ax ] (6-33)

where D iz the diffusion coefficient along the liquid-solid interface,
C,nt is the composition of the liquid-solid interface and w is the

thickness of the liquid-solid interface. Composition Cint is taken as

(Cyr+Cyyp)/2. The migration rate of the interface is therefore the sum

of the migration rates given by Egs. (6-4) and (6-33). It follows that

the influence of intenacial diffusion can be taken into account.
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6.4. Suinmary

A numerical model has been developed for the evolution of the
grain boundary gjrooves during two-phase diffusion transformation. The
driving force for the diffusion process results both from concentraiion
gradients and from curvature gradients. The following factors are
indicated in the model:

(1) solute diffusion in each phase;

(2) the excess chemical potential resulting from the interfacial
curvature;

(3) the excess chemical potential resulting from the balance
between the grain boundary energy and the interfacial energy at the

grain boundary triple junction.

Application of this numerical model 4uring TLP-bonding indicates
that the model can correctly display the liquid-solid interface
migration at grain boundary regions. The calculated liquid penetration
.¢pth is also comparable with the experimental observations. The

numerical calculations alsc indicates the correct trends in the

evolution of thz liquid-solid interface profiles when the '-'gb/Yint ratio
varizs. These results of the numerical model compare well with the

microscopic observation made by Kokawa et al [1992].

Formulae that take grain boundary diffusion and interfacial
diffusion into account during development of a general grain boundary
grooving model have been presented. These formulations will produce a

useful starting-point for the development of a general model that can
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handle two or three-dimensional, diffusion-controlled moving interface

problems.
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Chapter 7

Conclusion

This thesis has examined numerical modelling of TLP-bonding and
other two-phase, diffusion-controlled moving interface processes. The
present study comprises four distinct sections:

(1) TLP-bonding of nickel base metal having different grain sizes (using
Ni-19at.%P filler metal);

(2) Deveiopment of a cne-dimensional numerical model, verification of
the model by testing TLP-bonded single crystal base metal and
development of the optimum parameters during TLP-bonding operations;
(3) Development of a numerical model indicating the influence of
increased diffusivity at grain bcundary regions and of grain boundary
migration on the process kinetics in diffusion-controlled processes;
(4) Development of a numerical model explaining the evolution of grain
boundary grooving (or liquid phase penetration during TLP-bonding)
during two-phase, diffusion-controlied moving interface problems.

The principal conclusions are indicated below.

7.1. TLP-Bonding Experimentation
The influence of nickel base metal grain size on the process
kinetics of isothermal solidification during TLP-bonding was examined.

The eutectic width decreased linearly with the square-root of the
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holding time in all nickel base metals investigated. @ The principal
conclusions are:

1. The rate of isothermal solidification during TLP-bonding increases in
the following order: single crystal, coarse-grained and fine-grained
nickel. It follows that base metal grain boundary regions can speed up
the overall solute transport rate during TLP-bonding.

2. Impurities in nickel base metal increase the rate of isothermal

solidification during TLP-bonding.

7.2. Kinetic Modelling of Two-Phase Diffusion Processes

A fast and accurate, fully implicit, one-dimensional finite
difference model was developed that simulates diffusion-controlled,
two-phase, moving interface problems. The principal conclusions from
this modelling phase are:
1. The computed results are in excellent agreement with the
experimental results produced during TLP-bonding of single-crystal
nickel using Ni-19at% P filler metal. In addition, the computed results
show excellent agreement with previously published experimental
results developed during the solution treatment of thin, multilayer «
and B brass diffusion couples [Heckel et al, 1975]. Also, the numerical
model developed in this study produced results that compare well with
the output of the numerical models developed by Tanzilli and Heckel
[1968], and Pabi [1979].
2. The one-dimensional model effectively simulates, in a continuous

manner, liquid-solid interface migration during base metal dissolution,
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liquid phase isothermal solidification and solute redistribution during
homogenization during TLP-bonding operations.

3. The numerical model predicts the optimum joining parameters during
TLP-bonding. The optimum conditions occur when the solute diffusivity
in the liquid and in the solid phases increase, and when the highest
bonding temperature is employed.

4. Base metal dissolution cannot be represented using a parabolic law
assumption. Consequently, analytical modeliing cannot be used to
simulate base metal dissolution. However, the isothermal

solidification stage can be readily estimated by assuming a linear
relation between solid-liquid interface displacement and the square-
root of the holding time at the bonding temperature. The values
produced using numerical and analytical modelling are identical in this
case. Also, an analytical solution can be used to estimate the solute
concentration at the specimen centerline following a given holding

period during the homogenization stage.

7.3. Numerical Model: Effect of Increased Diffusivity at Grain
Boundary Regions and of Grain Boundary Migration

A numerical model was developed that indicates in a continuous
manner the effect of increased diffusivity at grain boundary regions,
and of grain boundary migration on the total amount of solute diffused
and hence, on the process kinetics during two-phase diffusion-
controlled problems. The principal conclusions are:
1. The influence of grain boundary regions on the total amount of solute

diffused depends on the grain size, and the ratio of grain boundary
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diffusion coefficient and lattice diffusion coefficient, Dgp/D;. When the
Dg»/D; ratio is high (for temperatures in the range, T < 0.5-0.75Ty,), the
influence of grain size on the total amount diffused is marked and
decreasing the grain size increases the total amount diffused. When
the Dgp/D; ratio is low (at high processing temperatures in the range, T
> 0.75Tw), the influence of grain size on the total amount diffused is
small.

2. The apparent diffusion coefficients in Type B and Type A kinetic
regimes, and in the transition regime between Type B and Type A
behavior, are calculated using the numerical model.

3. When VDt is larger than the grain size, d, the numerical calculations
support Hart's analysis [1957], that an apparent diffusion coefficient

exists. This apparent diffusion coefficient can be approximated using

. 8 Dgb
the relation, Dapp= D 1+ D,

4. Grain boundary migration increases the total amount diffused during
only part of the holding period. During this period, the total amount
diffused increases, when the grain size, the Dgp/D,; ratio, and the rate
of grain boundary migration increase. For short processing times,
grain boundary migration has negligible effect on the total amount
diffused and, for long holding times, the total amount diffused is also

similar in stationary and migrating grain boundary situations.

7.4. Numerical Model: Grain Boundary Grooving
A numerical model was developed that indicates the evoiution of

the grain boundary grooves during two-phase diffusion-controlled
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processes. The driving force for the diffusional process results from a

smbination of concentration and interfacial curvature gradients. The
fcliowing factors are taken into account:

{1) voiume diffusion in each phase;

(2) the excess chemical potential resulting from the gradient ol

interfacia! curvature;

(3) the excess chemicai potential resulting from the WLalance

beiween the grain boundary energy and interfacii: eneryy at the

grain boundary triple junction.

The model correctly simulates solid-liquid interface migration at
grain boundary regions during TLP-bonding. The principal recuits are:
The calculated liquid penetration depth at grain boundary regions is
comparable with direct experimental observaiions in TLP-bonded nickel
base metal. The numerical calculations indicate the correct trends
during evolution of the liquid-solid interface profile. The liquid
penetration depth increases when the ng/Yint ratio increases. These
resnlts are in close correspondence with the microscopical
cuselvdi: NS made by Kokawa et a! {1692).

Additionally, a useful starting-point for the development of a

2ral mol. ' capable of handling two or three-dimensional, difusion-
controlled moving interface problems has been presented. This general
formulation accounts for ali diffusion mechanisms, namely, volume
diffusion in both phases, interfacial diffusion and grain boundary

ditfusion.
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Appendix I

Analytical Solution of the Isothermal Solidification

during TLP-Bonding

From the analysis in Chapters 3 and 4, we can get some irnportant
information about the isothermal solidification during TLP-bonding:
the solute concentration in the liquid phase is mainly constant and the
solute diffusivity in the solid is limited compared with the base metal
dimensions. It follows that diffusion in the liquid can be ignored and
the solid phases can again be approximated as semi-infinite mediums.
Therefore, the problem become a semi-infinite one-phase diffusion

problem.

(1) Calculation of Rate Constant §
The following is similar to Danckwerts' derivation when a general
solution is indicated for a diffusion problem which involves two phases

separated by a moving planar interface.

Assuming two phase meet at the moving interface Y(t),

Cslyt) _ 92Cy(y.) Y(t)<y<eo (a1)

at  ~ -8 ogy2?
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When the error function solution is applied to the solid phase,
Y __
Cqslyt) = A1+ Acerf a2
S(y ) 1 2 (2\/63} ( )
Using the appropriate boundary conditions, we obtain:
At the moving interface, we have:
Ca(Yt) = A1+ A erf—i——C (a4)
s\hl) = A1 2 2 \/Es—t ol
From Egs. (a3) and (a4),
Cm-C
A= Gy —— —%—, (a5)
Y
1-erf
2+ Dgt
Cu-C
IV Vol
Az = y (86)
1-erf Y
2\/ Dgt
(a7)

Cm-C, Cm-Cyy y
Cs(yst) = Cy- aY + 0¢Y )erf(z Dst}

- 1-erf
1 erf(2 '_Dst) er (2 r_DSt
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Since Eqgs. (a4)-(a6) have to be satisfied for all values of t, Y must be

proportional to Vt, i.e.,

Y = 28t, (a8)
and then,

dy(t ]

FIR (a9)

Substituting Egs. (a7) and (a9) in the equation governing interface

movement,
dy() acg(y.t)
(CLa-Ca) dt =DS( ay =Y(t)' (a10)
we can get
32
expl-~~
B CM'CaL ( DS)
-Cy1) —=D .
(CLa al) \jt_ S1 orf B W (a11)
Ds
Then
Dg(C,, -C 2
(CLy-Col)BVT + wexp(-%—s) =0, (a12)

1-erf B
=)
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This equation can also derived by substituting C..= C, and C..= Cy,

into Eq. (2-31). In the papers by Tuah-Poku et al [1988] and by Liu et al
2

B
[1991], the term exp(— D_) is under the fraction and this may be due to a
S

misprint.

(2) Estimation of the Completion Time for Isothermal

Solidification
By assuming:
B =G/Dg, ‘ (a13)

the Eq. (a12) becomes:

[1-erf(G)]GVr _ Cq-Cy

= . al4
exp(-G?) CraCul @4

Therefore, G is a factor related to the solute distribution. When G-—0,

then erf(G)—1, Eq. (a-7) becomes:

CuCul CumCaL y
csly) = Cm~ Terf(G) * T-erf(G) erf(z Dst]

- CaL+(CM-CaL)erf(2—\jyﬁ) (a15)
S
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This is the same as Eq. (2-12). Therefore, if G is small, the isothermal
solidification can modelled by the model of an exchange experiment.

The total amount diffused into the solid phase, M, can calculated by Eq.

(2-14):
/D t
M; = 2(CoL-Cyy) —ni (a16)

When this amount equals the initial solute content in the liquid phase
when the isothermal solidification starts, the isothermal

solidification stage will be complete. By assuming the solute amount
diffused into the base metal is negligible during the dissolution stage,

W,Ce
this initial solute content in the liquid phase equals 5 then,

5 =2(Cal-Cy) \/ T (a17)

therefore, the completion time for the isothermal solidification is:

CeW, Yo
T F''o
's = Too (—CaL‘CMJ . (a18)

When Cy,=0, the above equation becomes:

CeWy) 2
_n_ (S
's =T6Dg ( CaL ) (al9)
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This is also given in the paper by Tuah Poku et al [1988], but the
derivation there is less rigorous. The crucial point is that the above

equation is only valid when G is small.
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Appendix II

Consistency Analysis of the Finite Difference Approximation

for the Grain Boundary Diffusion Equation

The finite difference equation of the grain boundary difiusion

equation (5-2) is:

t+At .t t t At t t t
Cl.j 'Ci,j Cl,j+1'2Ci,j+Ci,j-1 b '3Ci,j+4Ci+1.j'Ci+2,j
- _ LA
At =Dgb (Ay)?2 " ké 2Ax
t t t
D 3CLi'4Ci_1lj+Ci_2'i
—a
" ks 2AX ' (a20)

Using Taylor series expansion, we can get:

t

t 2

t ' t
G+ —a—t—At + 51 312 AtZ + -] - Ci.i.
At
act a2c; a%c;

i, 1 l-j “ |tj

Dy t o A ta 1
“ay? LG+ Gy 4o 5z &Y+ 3153 Ay3+ o ]- 26

dy
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¢ aCit,i 1 azCit-} 1 ascit-i
) 1 2 1 3, ...
+G; 3y AY + 5 a2 Ay® -3 33 Ay® + 1}
act. a2c! .
Diisct e 2G4 || axe | = Ax?
toax C1:9G+ 200+ |5 b sn® * 2 X2 k=idi2

¢, |

; i \ [aqt'jl
L 3, ... ) —_
+3) %3 kess2 AX® + ] O.S[CM + | ax =+8/22Ax

t t
1 °C; ; 4 |9
L 2,0 3 -
Tar| ax? =+5/2(2Ax) T3l axd kess2 (24%)7+ I
t 21
o, t t (ac,,jl . [%%Ci, ,
+8AX {'1 5CI,] + 2[C|-l - ax =-6/2AX + 2] ax2 =-8/2AX
3t t
[ . t {acml
I T A R S S Rl Wy NP
t t
1 9%C; ; 3% .
1 2 L ...
*21| ox2 =-5/2(2AX) 3ty ax3® k=-82 (2Ax)7+ I
(a21)
Therefore:
3¢t 32c! ath atc!

i i i i

A 2y _ Do —— L A2 3
ot T2 32 At + O(At°) = Dgp 3y2 +Dgv75 2y Ay“+0O(Ay©)
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Appendix
t
D (aCit i\ D, 1 (asci,i
=4 ! D1 2 3
Tk8\ X  x=+d2 k8 3!\ 3x® kesdi2 Ax® + O(AX7)
U (33(3.t .
D, (_a_ci D; 1 b

2 3
i\ X Jxmon P K83 9x3 keuin 2%+ 04X

(a22)

This equation simplifies to

t t t t
aCi'j_D azc;l,j QL(BCM-] m[E)Ci,jJ ! (a23)
At~ 9y2 T ks 9x Jxessz T koL 90X Jxemgn T U a

8%C; | 3*C; | 3°C; |
t

Ei,j= E at2 At+ng§ ay4

a%c'
D[ 1 1)

* I(E 3! axs =-8/

\ AX? + O(At3) + O(Ay3) + O(AX3).

(a24)

Eq. (a20) is therefore consistent with the G.B. diffusion equation |,
because the truncation error E;J—>0, when At—0, Ay—»0 and Ax—0. It

has truncation error O(At+Ay2+Ax2).
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Appendix III

Stability Consistency of the Finite Difference Approximation

for the Grain Boundary Diffusion Equations

Rearranging the finite difference equation (a20):

t+at At t t Lt
G -Cij = tapy(Cijs1-2C#Cy i y)
t t t
+ fgbx(-1 .5GC;+2C;,; ;-0.5C;,5 )
t t t
- fgbx(1 .SCi’i-2Ci_1’j+0.5Ci,2'j) N (a25)
AtD AtD
_ ——ab _ o .

where fgby = (Ay)2 and fgbx = oAk The stability of Equation (a25) may

be determined by application of the von Neumann method in the
following way. Each Fourier component of the error distribution at the

time t may be written:
ﬁit,j= (G)tei” (mxidx+myjay) (a26)

where (G)! is the complex amplitude at time level t of the particular

finite Fourier component whose wave numbers in the x and y direction
are m, and m,, and where i°=v-1. Defining the x and y phase angles by

By=mm Ax and By=1:myAy, Eqg. (a26) then becomes:
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g:('] - (G)teic(kﬁx*’jBy)_ (a27)

Substitution of Eq. (a27) into the error equation corresponding to the

finite difference equation (a25) gives, on division by (G)te' (KBx+iBy),

At- - -.c . - Cea?
Go1 =f [cosBy i sm[iy 2+cos[3y+| snnBy]

gby

Hopx[-0.5(cos2B, -i°sin2B,)+2(cosB,-i°sinB, )-3

-0.5(cos2B, -i°sin2B, )+2(cos ﬁy+i°sinBy)], (a28)

then,

B . B
GAt= 1-4fgbysm2(-2¥)- 8fgbxsm2(?x). (a29)

Because G is real, the stability requirement IGAY<1 becomes

(B
-1s1-4fgbysm2(§“) by SiN ( )<1. (a30)

This is satisfied, and Eq. (a25) is stable, if

2y, + 4f (a31)

gbx s
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Therefore the criterion for the calculation time step is

1
At < : (a32)
2( Dy 20!)

(ay)2 " sax



