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1
DIFFUSION EQUATIONS

Changes in the structure of metals and their relation to physical and
mechanical properties are the primary interest of the physical metal-
lurgist. Since most changes in structure occur by diffusion, any real
understanding of phase changes, homogenization, spheroidization, etc.,
must be based on a knowledge of diffusion. These kinetic processes
can be treated by assuming that the metal is a continuum, that is, by
ignoring the atomic structure of the solid. The problem then becomes
one of obtaining and solving an appropriate differential equation. In
this first chapter the basic differential equations for diffusion are given,
along with their solutions for the simpler boundary conditions. The
diffusion coefficient is also defined, and its experimental determination
is discussed.

At no point in this chapter does the atomic nature of the material
enter the problem. This is not meant to detract from the importance
of the study of atomic mechanisms in diffusion. since the most inter-
esting and most active areas of study in diffusion are, and will continue
to be, concerned with the information that diffusion studies can con-
tribute to the atomic models of solids. We initially omit atomic models
of diffusion to emphasize the types of problems that can be treated in
this manner. In any theoretical development there are certain advan-
rages and disadvantages to making the fewest possible assumptions.
One advantage is that the results are quite generally applicable; a dis-
advantage is that the results are devoid of information about the atomic
mechanism of the process. (Thermodynamics is an excellent example
+f this type of approach.) The assumptions we make in Chap. 1 were
“rst applied to the problem in 1855 by Adolf Fick. It is indicative of
ne power of this approach that all the subsequent developments in the
neory of solids have in no way affected the validity of the approach.

In the second and subsequent chapters we discuss the atomic pro-

9



10 Diffusion in Solids

cesses involved in diffusion. In those chapters we present the basic
differential equations for diffusion and then develop several solutions.
giving examples of the application of each. The aim is to give the
reader a feeling for the properties of the solutions to the diffusion equa-
tion and to acquaint him with those most frequently encountered. Thus.
no attempt is made at completeness or rigor.

1.1 FLUX EQUATION

If an inhomogeneous single-phase alloy is annealed, matter will tlow
in a manner which will decrease the concentration gradients. If the
specimen is annealed long enough, it will become homogeneous and
the net flow of matter will cease. Given the problem of obtaining a
flux equation for this kind of a system, it would be reasonable to take
the flux across a given plane to be proportional to the concentration
gradient across that plane. For example, if the x axis is taken parallel
to the concentration gradient of component 1 the flux of component 1
(J)) can be described by the equation

dc
J, = —D,[%] (-1
ox |,

where D, is called the diffusion coefficient. This equation 15 called
Fick’s first law and fits the empirical fact that the flux goes to zcro as
the specimen become homogeneous, that is when the specimen reaches
equilibrium. Although it need not have been the case, experiment shows
that D,, or equivalently the ratio of —J, to the concentration gradient
is independent of the magnitude of the gradient. In this respect Eq.
(1-1) is similar to Ohm’s law, where the resistance is independent of
the voltage drop, or to the basic heat-flow equations in which the con-
ductivity is independent of the magnitude of the temperature gradient.

To emphasize the dimensions of the terms, Eq. (1-1) is written again
below with the dimensions of each term given in parentheses.

J(mass /Lty = —D(L*/1)(dc/dx)(mass/L’)/L

The concentration can be given in a variety of units, but the flux must
be put in consistent units. The diffusion coefticient has usually been
given in units of square centimeters per second, though in the new SI
units it is in square meters per second.

In a lattice with cubic symmetry, D has the same value in all di-
rections, that is, the alloy is said to be isotropic in D. The assumption
of isotropy will be made throughout the book unless a statement is
made to the contrary. If there are other types of gradients in the sys-



Diffusion Equations 11

tem, other terms are added to the flux equation. These effects are in-
teresting but complicated. They will be considered in Secs. 1-5 and
4-3.

As an example of the application of Eq. (1-1), consider the follow-
ing experiment performed by Smith.' A hollow cylinder of iron is held
in the isothermal part of a furnace. A carburizing gas is passed though
the inside of the cylinder, and a decarburizing gas over the outside.
When the carbon concentration at each point in the cylinder no longer
changes with time, that is (dc/d7) = O throughout, the quantity of car-
bon passing though the cylinder per unit time (g/7) is a constant. How-
ever, since J is the flow per unit area, it is a function of the radius r
and is given by the equation

J = q/At = q/27rlt (1-2)

where [ is the length of the cylinder through which carbon diffusion
occurs. Combining Eqs. (1-1) and (1-2) gives an equation for ¢, the
total amount of carbon which passed through the cylinder during the
time £

q = —DQalt) de/d(Inr) (1-3)

For a given run, ¢, I/, and t can be measured. If the carbon concen-
tration through the cylinder wall is determined by chemical analysis,
D can be determined from a plot of ¢ versus /nr. Such a plot will be
a straight line if the diffusion coefficient does not vary with compo-
sition. However, for carbon in y-iron Smith found that the slope of
this plot (dc/dlnr) became smaller in passing from the low-carbon side
of the tube to the high-carbon side. An example of his results for 1000° C
is shown in Fig. 1-1. At this temperature the diffusion coefficient var-
ies from 2.5 X 1077 ¢cm®/sec at 0.15 weight per cent carbon to 7.7 X
1077 ecm®/sec at 1.4 weight per cent carbon.

Similar experiments have frequently been performed by passing a
gas though a membrane. Often the membranes are so thin it is im-
possible to determine the concentration as a function of distance in the
membrane by means of chemical analysis. The experimental results
therefore consist of a measured steady-state flux, the pressure drop
across the membrane, and the thickness of the membrane (Ay). This
flux, for a given pressure drop, is called the permeability. To obtain
a value of D from these data, the value of dc/dy inside the membrane
must be determined. One way to do this is to assume that the value
of ¢ in the metal at each gas-metal interface is the value that would
2xist in equilibrium with the gas if there were no net flux. This would

R. P. Smith, Acta Met., 1 (1953) 578.
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Fig. 1-1—c¢ vs. log r for a hollow cylinder of iron after attaining a steady state with
a carburizing gas passing through the inside and a decarburizing gas passing over the
outside (1000° C). [R. P. Smith. Acra Mer.. I (1953) 578.}

be true if the solution of gas into the surface ot the metal occurred
much more rapidly than the diffusion out of the surface region into the
rest of the metal. Experimentally, this assumption is checked by de-
termining the fluxes for two thicknesses of membrane under the same
pressure differential and at the same temperature. If equilibrium does
exist at the gas-metal interface, then Ac is the same for both cases,
and from Eq. (1-1)

J = —D Ac/Ay

that is. J will be inversely proportional to Ay and both thicknesses will
give the same value of D. At the other extreme, if the rate of solution
of gas at the interface determines the flux, the flux will be the same
for both membrane thicknesses. and the value of D in the membrane
cannot be obtained from the flux.

1.2 DIFFUSION EQUATION
If a steady state does not exist, that is, if the concentration at some
point is changing with time, Eq. (1-1) is still valid, but it is not a
convenient form to use. To obtain more useful equations, it is nec-
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essary to start with a second differential equation. It is obtained by
using Eq. (1-1) and a material balance. Consider a bar of unit cross-
sectional area with the x axis along its center. An element Ax thick
along the x axis has flux J; in one side and J, out the other (see Fig.
1-2). If Ax is very small J, can be accurately related to J, by the
expression

Jy =J, — Ax(3J /dx) (1-4)

Since the amount of material that came into the element in unit time
(J)) is different from that which left (/,), the concentration in the ele-
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Fig. 1-2—(a) shows an assumed c¢(x) plot, (b) shows J(x) for this plot, and (c) shows
the element of volume with the flux J, entering and J, leaving.
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ment has changed. The volume of the element is 1 - Ax (unit area times
the thickness), so the net increase in matter in the element can be
expressed by any part of the equation

J, = J, = Ax(dc/dt) = —Ax(8J /9x) (1-5)

Now Eq. (1-1) is valid at any instant even if the concentration and
concentration gradient at that point are changing with time. Therefore
we can substitute it into Eq. (1-5).

dc d dc
—=—|D— (1-6)
at  ox ox
This is called Fick’s second law of diffusion.
The next section will deal with Eq. (1-6); however, the generality

of Eq. (1-6) should be pointed out. If one goes to three dimensions
and uses a vector notation, the general statement of Eq. (1-5) is

dc

—-vJ 1-7
o (1-7)

This is called a continuity equation and stems only from the conser-
vation of matter. In later sections we treat more complex cases in which
Eq. (1-1) is no longer the flux equation. Nevertheless, we shall con-
tinue to be able to use Eq. (1-7) since it remains valid in the presence
of additional gradients, e.g., a potential-energy gradient. If one deals
with entities which are not conserved, e.g., vacancies, then an addi-
tional term which is equal to the rate of production or destruction of
these entities per unit volume should be added to Eq. (1-7).

1.3 DIFFUSION EQUATION SOLUTIONS (CONSTANT D)

Steady-state Solutions. If D does not depend on position, and we
can take J = —DVe¢, Eq. (1-7) gives

30_

DV (1-8)
ot

V¢ is called the Laplacian of ¢, and its representation in different
coordinate systems can be found in many books dealing with applied
mathematics.” If a steady state exists, dc/dat = 0, and the problem
reduces to solving the equation

DVic=0 (1-9)

%), Crank, Mathematics of Diffusion, 2nd ed., Oxford Univ. Press, 1975.



Diffusion Equations 15

The simplest cases are, for cartesian coordinates in one dimension,
p¥ g (1-10)
ax?

for cylindrical coordinates where ¢ = f(r),

Dal oc dc  1dc
——|r—|=D|—+-—|=0 (1-1hH)
r or or ar°  ror

and, for spherical coordinates where ¢ = fn),
D ,ac e 2ac
ST —=|=D|=+-—]=0 (1-12)
r-or ar or ror

We shall not deal with the solutions to these equations except as they
arise in a few examples below.

The differential equation represented by Eq. (1-9) arises in many
branches of physics and engineering. In two or more dimensions the
solutions can be quite complicated. The interested reader should con-
sult books on heat flow,” or potential theory.*

Non-steady-state Solutions. If D is not a function of position, i.c.,
composition, Eq. (1-6) becomes

o D i 1-13

ot ax’ (-1
We wish to determine the concentration as a function of position and
time, that is, ¢(x,f), for a few simple initial and boundary conditions.
In general, the solutions of Eq. (1-13) for constant D fall into two
forms. When the diffusion distance is short relative to the dimensions
of the initial inhomogeneity, c¢(x,f) can be most simply expressed in
terms of error functions. When complete homogenization is ap-
proached, c(x,7) can be represented by the first few terms of an infinite
trigonometric series. (In the case of a cylinder, the trigonometric series
is replaced by a series of Bessel functions.) The reader interested in a
comprehensive listing of solutions should consult Crank or Carslaw
and Jaeger.’

Thin-film Solution. Imagine that a film only b in thickness with
solute concentration ¢, is plated on one end of a long rod of solute-
free material. If a similar solute-free rod is welded to the plated end
of this rod (without any diffusion occurring) and the rod is then an-

*H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, Oxford Univ. Press,
1959.
‘0. D. Kellog, Foundations of Potential Theory, Springer-Verlag, New York, 1967.
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nealed for a time t so that diffusion can occur, the concentration of
solute along the bar will be given by the equation

) bc, [-xz} (1-14)
c(x,p) = ———=exp| — -
2V wDt P 4Dt

in those regions where \/Dt > b.° Here x is the distance in either di-
rection normal to the initial solute film. To show that Eq. (1-14) is
the correct solution, two steps are necessary. First, differentiation shows
that it is indeed a solution to Eq. (1-13). Second, the equation satisfies
the boundary conditions of the problem since

for |x] >0, ¢—0 as t—x
for x=0, ¢c—® as t—0

yet the total quantity of solute is fixed since

S

J c(x,t) dx = bc,

The characteristics of this solution can best be seen with the help of
Fig. 1-3. Here the concentration is plotted against distance after some
diffusion has occurred. As more diffusion occurs, the ¢(x) curve will
spread out along the x axis. However, since the amount of solute is
fixed, the area under the curve remains fixed. To understand how this
occurs, observe that c(x = 0) decreases as 1/\/t while the distance
between the plane x = 0 and the plane at which ¢ is 1/e times c(x =
0) increases as \/t. This distance is given by the equation x =
2VD.

In Fig. 1-3b is plotted dc/dx versus x. This is proportional to the
flux across any plane of constant x. It will be seen that it goes to zero
at x = 0 and at large positive or negative values of x.

In Fig. 1-3c is plotted d*c/dx” versus x. This quantity is proportional
to the rate of accumulation of solute in the region of any plane of
constant x. It is also proportional to the curvature of the c(x) plot. Thus
it is seen that in the region around x = 0, ¢(x) is concave downward
and the region is losing solute. The concave upward regions on the
outer portions of the c(x) curve are gaining solute; regions at large
values of x are undergoing no change in solute content. To develop a
feeling for these curves, the student is urged to derive the latter two
for himself by plotting the slope of the curve above it versus x.

Equation (1-14) is often referred to as the solution for a thin film in

SFor thick films, the right side of Eq. (1-14) must be multiplied by the term (1 —
b*/(12D1)) [W. A. Johnson, Trans. AIME, 147 (1942) 331.} With the carrier free ra-
dioactive tracers now available, this correction is almost never necessary.
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Fig. 1-3—(a), (b), and (¢) show c(x), dc/dx, and d’c/dx’ versus x, for Eq. (1-14),
in arbitrary units.

the middle of an “infinite bar.” Since no bar is truly infinite, it is of
value to consider just how long a bar must be for this equation to
apply. If the thin film is placed in the middle of a short bar and none
of the solute is lost when it reaches an end of the bar, that solute which
would normally have diffused past the end will be reflected back into
the specimen, and ¢ in that region will be higher than given by Eq.
(1-14). Thus a short bar can be considered infinite if the quantity of
solute which would lie outside its length in a truly infinite bar is an
insignificant portion of the total solute present. Arbitrarily taking 0.1%
as a sufficiently insignificant portion, we need to solve for x' in the
equation

0.001 = (2/bc(,)J' c(x,r) dx

where (bc,/2) is the total quantity of solute in half of the bar and the
integral is the quantity beyond x'.

The solution to this equation is x’ = 4.6\/Dt. As might have been
expected, the answer is stated in terms of the quantity \/Dt. For suf-

s

ficiently short times any bar is “infinite,” and the time during which
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the bar can be considered infinite will depend on the magnitude of D
as well as the elapsed time. The length \/gt will appear in all diffusion
problems, and the length of an effectively infinite bar will be several
times VDt in all cases.

Application of Thin-film Solution. Another property of Eq. (1-14)
which is apparent from Fig. 1-3 is that at the plane x = O, the gradient,
dc/dx, equals zero, so the flux is zero. Thus Eq. (1-14) can be used
to describe the situation where the thin layer of tracer is placed on one
end or a bar and then allowed to diffuse into the bar. Eq. (1-14) de-
scribes the resulting solute distribution plane where the tracer was placed
is defined as x = 0. To determine D, thin sections are removed parallel
to the initial interface, after an appropriate anneal. These are sections
of constant x, and after the solute concentration of each is measured,
a semi-log plot is made of the concentration in each section versus x°.
From Eq. (1-14) it is seen that this is a straight line of slope —1/4Dr¢
so that if ¢ is known, D can be calculated.

This procedure has been highly developed and is currently used for
all the more accurate determinations of D for substitutional atoms. It
is invariably used with a radioactive tracer as a solute since the con-
centration of a tracer can be determined with orders of magnitude greater
sensitivity than is possible using chemical analysis. This means that D
can be measured with extremely small concentration changes. One of
the other advantages of using radioactive tracers is that it is just as
easy to study the diffusion of a silver tracer in silver as it is to study
the diffusion of cadmium tracer in silver. In both cases there is con-
centration gradient for the tracer atom involved, and there will there-
fore be a spreading out of the tracer with time. The fact that the tracer
is chemically very similar to the solvent in one case makes no differ-
ence in the application of the diffusion equations.

To help the reader develop an understanding of the magnitude of
the values of D in metals and the procedures involved in their mea-
surement, let us go through a rough calculation of the values of D
which can be determined with this type of experiment. For the case
of substitutional atoms in metals the value of D at the melting point
is usually about 10™* cm’/s, so that this sets a rough upper limit on
the values of D to be measured with this technique. If an accurate value
of the slope of In ¢ versus x% is to be obtained, it is necessary to have
several sections, say ten. If the ratio of maximum to minimum con-
centration is 1000 this corresponds to a value of x%/4Dt of about 7.
Setting an upper limit on the diffusion time of 10° s (12 days), the
minimum value of D that can be measured depends primarily on the
thickness of the sections that can be removed and collected. If this is
done with a lathe, the minimum section is about 0.001 cm and the
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corresponding minimum D is about 10™"* cm®/s. Thus D can be easily
measured over five orders of magnitude. This may at first seem like
an appreciable range, but because D varies rapidly with temperature,
it allows the determination of D from the melting point down to only
about 0.7 of the absolute melting temperature; most diffusion con-
trolled reactions of interest in solids occur at temperatures lower than
this.

Micro-sectioning techniques have been developed that allow sec-
tions of 3 nm to be taken (by plasma sputtering or oxide stripping
techniques). This reduction in section size means that values of D down
to 107 or 107*' cm?®/s can be measured. The reader particularly in-
terested in the experimental determination of D can consult the review
article by Rothman.®

e s —— — . 4
ppn—— L

x=0 x>
a.z'——ﬁ‘

Fig. 1-4

Solutions for a Pair of Semi-infinite Solids. Consider the initial
distribution which results if a piece of pure A is joined to pure B with-
out interdiffusion. This distribution is shown graphically in Fig. 1-4.
The boundary conditions are given by

c=0 for x<O0, at ¢
4

0
c=c¢ for x>0, at 0

A solution to the diffusion equation for this case can be obtained in
the following manner: Imagine that the region of x > 0 consists of n
slices, each of thickness Aa and unit cross-sectional area. Consider
one particular slice. It initially contains ¢’'Aa of solute, and if the sur-
rounding regions were initially solute free, the distribution after some
diffusion would be that given by the thin-film solution, i.e., Eq. (1-
14). The fact that there is solute in the adjacent slices does not in any
way affect this result, and the actual solution is thus given by a su-

®S. J. Rothman, “Measurement of Tracer Diffusion Coefficients in Solids,” Diffusion
in Crystalline Solids, ed. G. E. Murch, A. S. Nowick, Academic Press, 1984,
p. 1-61.



S\ Diffusion in Solids

e—(l-az)z/A ot

Fig. 1-5—c{x,f) is the sum of the exponentia] curves which represent the solute dif-
fusing out of each slab Aa thick.

perposition of the distributions from the individual slabs. If o, is the
distance from the center of the ith slice to x = 0 (see Fig. 1-5), the
concentration at any given value of x after time ¢ will be

P p— i“ x [ o a")z] (1-15)
clx, ) = ———— ae B -
2\/ (TrDt i=1 P 4Dt

Figure 1-5 shows how these various exponentials superimpose to give
the actual distribution for the case of rather thick slices. In the limit
of n going to infinity, Aa; goes to Zero, and from the definition of an
integral

o

(1) < J [ - “)2] d (1-16)
(x,1) = — —— ex _— o -
‘ o ), TPl ape

Substituting (x — @)/2VDt = u we can rewrite the solution’
,\/2\/5

o = —\;—_ J' exp(— ) du (1-17)
v J—=

This type of integral appears quite generally in the solutions of prob-
lems where the initial source of solute is an extended one and the dif-
fusion distance 2\/13} is small relative to the length of the system. The
integral cannot be evaluated in any simple manner, but because of its
frequent appearance in diffusion and heat-flow problems, its values are

"That this is a solution can be shown by differentiating Eq. (1-17) and substituting
in Eq. (1-13). Differentiating an argument of an integral is discussed in most books
on advanced calculus or differential equations.
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Table 1-1. The Error Function

z erf(z) z erf(z)
0 0 0.85 0.7707
0.025 0.0282 0.90 0.7969
0.05 0.0564 0.95 0.8209
0.10 0.1125 1.0 0.8427
0.15 0.1680 1.1 0.8802
0.20 0.2227 1.2 0.9103
0.25 0.2763 1.3 0.9340
0.30 0.3286 1.4 0.9523
0.35 0.3794 1.5 0.9661
0.40 0.4284 1.6 0.9763
0.45 0.4755 1.7 0.9838
0.50 0.5205 1.8 0.9891
0.55 0.5633 1.9 0.9928
0.60 0.6039 2.0 0.9953
0.65 0.6420 2.2 0.9981
0.70 0.6778 2.4 0.9993
0.75 0.7112 2.6 0.9998
0.80 0.7421 2.8 0.9999

available in tabular form. The function given in Table 1-1 is called an
error function and is defined by the equation®

, -
erf(z):Wfo exp(—u’) du (1-18)

It can be shown that erf(®) = 1, and it is evident that
erf(—z) = —erf(z)

Equation (1-17) can thus be rewritten

¢’ X
- =—|1+erf -
c(x,t) 5 [ er (2\/7>] (1-19)

This has already been plotted in Fig. 1-5.

It should be noted that each value of the ratio c/c' is associated with
a particular value of z = x/2\/Dt. Thus z = 1 is always associated
with ¢/¢’ = 0.92; the position of the plane whose composition is 0.92
¢’ is given by the equation x = 2\/Dr. Further inspection shows that
each composition moves away from the plane of x = 0 at a rate pro-
portional to \/Drt, with the exception of ¢ = ¢'/2, which corresponds
to z = 0 and thus remains at x = 0.

*The function erf(z) can be evaluated by numerical integration, or with the infinite
series erf(z) = (2/Vw)(z — 2°/3%11 + 235421 — 2763 ).
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“Infinite’’ System—Surface Composition Constant. Eq. (1-19)
gives a constant composition at the plane x = 0 independent of time.
Thus Eq. (1-19) can be used in the region x > O to describe the case
in which an initially homogeneous alloy of solute ¢’ is held in an at-
mosphere which reduces the surface concentration to ¢'/2 and keeps
it there for all + > 0. The boundary conditions are

c=c¢'/2 for x=0, at t>0

c=c for x>0, at t=20

and the solution is still Eq. (1-19). If the surface concentration is held
at ¢ = 0 instead of ¢'/2 for all 1 > 0, the solution becomes

X
g =c erf — 1-20
cx, ) =c ¢ [2 Dt] ( )

If the surface concentration of an initially solute-free specimen is
maintained at some composition ¢” for all £ > 0, solute is added to
the specimen, and the solution is equivalent to Eq. (1-19) in the region
x < 0. Since erf(—z) = —erf(2), the solution for this case (in the region
x> 0)is

x
(x,)=c"j1 —erf 1-21
cx. ) =c¢ [ er <2 —DZ)] ( )

Inspection of this equation shows that it fits the situation, since for x
=0,c=c"and atx > 2\/[7t, ¢ is about equal to zero.

It should be pointed out that in any of the solutions given by Eqgs.
(1-14) and (1-19) to (1-21), the zero of concentration can be shifted
to fit the case where the initial concentration is not zero, but some
other constant value, say ¢,. As an example, if the boundary conditions
are

c=c¢, for x>0, at ¢
t

0
=¢ for x<0, at 0

Il

the solution in Eq. (1-19) is changed to

) ¢ —c, [1 f< x ):\ (1-22)
() — ¢, = —er _
‘ 2 2\/Dt

The assumption of a constant D independent of position in the cou-
ple places a severe limitation on the use of this type of solution in
making accurate determinations of D. If D is to be measured with a
tracer in a chemically homogeneous alloy, it is usually easier to use
the thin-film solution discussed earlier. On the other hand, if D is to
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be determined in a couple which has a range of chemical compositions
in it, D will usually vary with the position, i.e. composition, and the
Matano-Boltzmann solution will be required (see Sec. 1-6 of this
chapter).

The most frequent use of the error-function solutions arises when it
is desired to estimate the amount of diffusion that will occur in a sys-
tem where D is known to vary across the diffusion zone. A complete
solution of the problem with a variable D is quite time-consuming, and
essentially the same answer can be obtained by using an average D.
This problem is found in the carburizing or decarburizing of steel, for
which Egs. (1-20) and (1-21) will often give adequate answers. An-
other case, in which these same equations would not give as accurate
an answer, is in the dezincing of a Cu-Zn alloy. Here, as the zinc is
removed, the sample shrinks, thus moving the original interface rel-
ative to the interior of the sample. No shrinkage was allowed for in
the derivations of Egs. (1-19) to (1-21); this further detracts from the
accuracy of the answers obtained with these equations.

Finite Systems—Complete Homogenization. The above solutions
have dealt with infinite systems. We now consider solutions for “small”
systems, that is, for those which approach complete homogenization.
It is first assumed that there exist solutions which are the product of
a function only of time 7(z) and a function of distance X(x). That is,
we assume that

c(x,t) = X(x)T(1) (1-23)

It may be noted that the solutions discussed up to this point are ex-
cluded from this family since they are of the form c(x,r) = f(x/ V).

If we differentiate Eq. (1-23) in the prescribed manner and substitute
in Fick’s second law, the result is

dT d’X
X—=DT—
t dx
or
1 dT 1d%X
DT di Xdd (129

The equation now contains only total differentials. The left side is a
function only of time, and the right a function only of distance. But
since x and ¢ can be varied independently, Eq. (1-24) can be satisfied
only if both sides of the equation are equal to a constant. This constant
will be designated as —A%, where A is a real number. The differential
equation in time then is
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which integrates to
T = T, exp(—A°D1) (1-25)

where T, is a constant. The reason for requiring that the quantity —A°
have only negative values stems from our desire to deal only with
systems in which any inhomogeneities disappear as time passes, i.¢.
that T approaches zero as f increases.
The equation in x is

d_

——+AX=0

dx®
Since A’ is always positive, the solution to this equation is of the form

X(x) = (A" sin Ax + B’cos Ax) (1-26)

where A’ and B’ are constants.
Combining the solutions for T and X gives

c(x,5) = (A sin Ax + B cos Ax) exp(—/\th)

But if this solution holds for any real value of A, then a sum of so-
lutions with different values of A is also a solution. Thus in its most
general form the product solution will be an infinite series of the form

clx,r) = A, + 2 (A, sin A,x + B, cos A,x) exp(—/\f,Dt) (1-27)
n=1
where A, is the average concentration after homogenization has occurred.
lefusmn out of a Slab. As an example of the use of Eq. (1-27),
consider the loss of material out both sides of a slab of thickness /.
The boundary conditions to be assumed are

c=c¢, for 0<x<h, at =0
¢c=0 for x=h and x=0, at >0

Ultimately the concentration in the slab goes to zero so A, = 0. By
setting all B, equal to zero, ¢ will be zero at x = 0 for all times. To
make ¢ = 0 at x = h, the argument of sin A,x must equal zero for x
= h. This is done by letting A, = nm/h, where n is any positive in-
teger. If we substitute B, = 0 and A, = nw/h into Eq. (1-27), the first
boundary condition requires that

¢, = D A,sin(xnm/h) (1-28)

n=1

i
3
i
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To determine the A, which will satisfy this equation, multiply both
sides of this equation by sin(xpw/h), and integrate x over the range O
< x < h. This gives the equation

h 2 h
J ¢, sin(xpw/h) dx = 2 A, f sin(xpr/h) sin(xam/h) dx
o n=1 o
Each of the infinity of integrals on the right equals zero, except the
one in which n = p. This integral is equal to 4/2. The values of A,
which will satisfy Eq. (1-28) are thus given by the equation

h

A, = 2/h) J ¢, sinknxm/h) dx (1-29)
Integration of this equation shows that A, = 0 for all even values of
nand A, = 4c,/nm for odd values of n. Changing the summation index
so that only odd values of n are summed gives

A, = A =4¢,/Qj+ DHm j=0,1,2... (1-30)

The solution is thus

4c, < 1 (2 + Dax
o(x,t) = — - sin
TG+ h (1-31)

2
2j+ 1

A moment’s study of this equation shows that each successive term is
smaller than the preceding one. Also, the percentage decrease between
terms increases exponentially with time. Thus after a short time has
elapsed, the infinite series can be satisfactorily represented by only a
few terms, and for all time beyond some period 1', ¢(x,7) is given by
a single sine wave. To determine the error involved in using just the
first term to represent c(x,r) after time t', it is easiest to consider the
ratio of the maximum values of the first and second terms. This ratio
R is given by the equation

R = 3 exp(87°Dt' /1)

For h = 4.75\/Dt, R is about 100, so that for k> < 22 Dy (or t >
0.0444%/D) the error in using the first term to represent c(x,?) is less
than 1%.

This solution could be applied to the decarburization of a thin sheet
of steel, and it is worthwhile to compare the use of this series solution
with the error-function solution of Eq. (1- 20). For short times the
sheet thickness can be considered infinite. The carbon distribution be-
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low each surface will then be given by the error-function solution as
well as by this series solution. To evaluate c(x,f) in this case using
Eq. (1-31) would require the evaluation of many terms, and it is easier
to look up the error function in a table. This is true until A =
3.2\/FD—t, at which time R = 20, and the error in using the error func-
tion is about 2% at the plane x = h/2. For times greater than this, the
first term in Eq. (1-31) becomes a better approximation and would be
used.

One of the most frequent metallurgical applications of this type of
solution appears in the degassing of metals. Here it is often difficult
to determine the concentration at various depths, and what is experi-
mentally determined is the quantity of gas which has been given off
or the quantity remaining in the metal. For this purpose the average
concentration ¢ is needed. This is obtained by integrating Eq. (1-31):

h
1
a = ;l,[, c(x,n) dx

= 2
8¢, 1 2j + Dm
= _— —_ D -
ﬂl,zoejﬂ)zexp( [ h ] t) (132

The ratio of the first and second terms in this series is three times as
large as in the case of Eq. (1-31), and for @ < 0.8 ¢, the first term 18
an excellent approximation to the solution. The solution for ¢/¢, <
0.8 can be written

¢/c, = 8/ exp(—t/7) (1-33)

where 7 = B2/7'D is called the relaxation time. Equation (1-31) is a
type that is met frequently in systems that are relaxing to an equilib-
rium state. The quantity 7 is a measure of how fast the system relaxes;
when ¢t = 7, the concentration has relaxed to roughly two-thirds of its
initial value. Large values of 7 thus characterize slow processes.

Equations similar to (1-32) and (1-33) and derived for the degassing
of cylinders have been used in the accurate measurement of D for hy-
drogen in nickel.® The form of the equations 1s identical, but the equa-
tion for 7 varies somewhat. For a long cylinder of diameter d the re-
laxation time is 7 = d°/4.8°D, while for a sphere of diameter d the
equation is 7 = d?/47’D. Noting that the maximum dimension of the
cylinder and sphere, d, is comparable to the thickness of the plate, A,
it is seen that as the surface to volume ratio of the solid increases, the
relaxation time gets shorter, for a given value of D.

M. Hill, E. Johnson, Acta Met., 3 (1955} 566.

}.;
|
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1.4 KINETICS OF PRECIPITATION

We consider next the solution of a much more complicated problem,
namely, the kinetics of the removal of solute from a supersaturated
matrix by the growth of randomly distributed precipitate particles. The
average composition of the solute in solution, ¢(f), can be easily and
continuously measured by several techniques. Thus the problem is to
determine the relationship between the time variation of ¢(¢) and the
diffusion coefficient, particle shape, average interparticle distance, or
other parameters that may be determined from independent observa-
tions or may need to be determined.

The problem is very complicated, but the complication comes pri-
marily from the number of particles rather than the complexity of the
diffusion around each particle. Thus the first task is to make a series
of simplifying assumptions which make the problem tractable without
making it so idealized that it bears no relation to the experimental sys-
tem. A detailed mathematical analysis of the problem and the errors
resulting from the different approximations has been given by Ham.'®

Fig. 1-6—Close-packed plane out of close-packed lattice of ppt. particles, and traces
of planes midway between particles. Circle is trace of equivalent sphere used in analysis.

Simplifications. Since the precipitate particles are randomly dis-
tributed it is not unreasonable to approximate their distribution by that
of a face-centered cubic (close-packed) space lattice. If planes are passed
midway between all nearest-neighbor particles, the planes enclose each
particle in a separate cell. [See Fig. 1-6 for a cut along the (111) plane.]
Each of these planes is a plane of mirror symmetry. There is no net
flux across a symmetry plane, since in the absence of a source or sink
in the symmetry plane, the only way it can be a symmetry plane is

"“F. S. Ham, J. Phys. Chem. Solids, 6 (1958) 335-51.
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for Ve to be zero across it. Thus there is no net flux into or out of
cach cell. Each cell can thus be treated as if its walls were impermeable
to solute. Determining &(¢) for the aggregate is thus reduced to deter-
mining &(¢) for only one cell. The mathematical description of the so-
lution can be still further simplified without significant loss of accuracy
if the cell bounded by segments of planes is replaced by a sphere of
equivalent volume. The radius of the equivalent sphere is defined as
r.. We are now ready to proceed to the solution of the problem.

Solution for Short Time. Consider first the initial period of pre-
cipitation when the solute-drained region is small relative to the size
of the equivalent sphere, that is, r, > \/Dt. The first equation is ob-
tained from the fact that ¢ decreases as solute atoms leave solution and
precipitate on the precipitate surface. The amount of material leaving
solution per unit time can be expressed both as the flux into the pre-
cipitate times the surface area of the precipitate and as the volume of
the cell times the rate of change of ¢ in the cell. If the precipitate is
taken to be a sphere of radius «, the equality of these terms gives the
equation

dqr, de ,

— = J(a)dma”
3 dt

where J(a) is the flux in the solid solution at r = a.

To evaluate J(a) we assume that the actual solute distribution near
r = a can be approximated by the steady-state solution that should
satisfy the boundary conditions

c=c¢, at r=r,

c=c¢ at alt)

i

where ¢, is the initial concentration in the matrix and ¢’ is the matrix

concentration in equilibrium with the precipitate. Obviously this steady-

state solution will not be obeyed throughout the equivalent sphere, but

it is to be used only at r = a and then only for dc/or at r = «. Letting

a vary with time, the value of dc/dr determined from this solution has

the correct time dependence, and indeed for very dilute solutions the

error involved in its use is insignificant.

In spherical coordinates at the steady-state, Fick’s second law gives

ac®  2dc
—_ + -— = 0 (1-12)
ar-  ror

The required solution is

c=b/r+d
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Using the given boundary conditions, and assuming r, > «(t) we have

)= —(c,— cafr+c,

Thus
dac (c, — ¢
J(a) = —D|— =-D——
(')r I':lY([) a(t)
or
de 3D
— == (c, — (1) (1-34)
dt r

¢

A second equation can be obtained from the conservation of solute.
Defining ¢" as the concentration per unit volume of solute in the pre-
cipitate and assuming o = 0 at 7 = 0, we have

(4/3)ymc"al(r) = (4/3)mr'[c, — &(1))
Solving this equation for a(1) gives
() = rlc, = ewy/c"1"?
Substituting this in Eq. (1-34) gives the desired differential equation
dc  —=3D(c, — ¢")
Defining b = (3D /r})(c, — /", Eq. (1-35) becomes
dc/dr = —b(c, — &)'*

le, — 1" (1-35)

This integrates to
—(3/2)c, =&y = —br + B
but at + = 0, ¢, must equal ¢, so B = 0. Thus
¢=c,— (2bt/3)"? (1-36)

This equation then gives the solution for short times, that is \/Dr <
r.. Ham shows that if a(0) = 0, Eq. (1-36) is a good approximation
for &/c, > 2/3. He also gives other solutions which are valid for more
complete precipitation, that is, ¢/c, < 2/3, as well as a discussion of
the case in which « # 0.

Let us now examine the properties of this solution. First, it is seen
that for a spherical precipitate (¢, — &) is proportional to 2. This
stems from the fact that the radius of the region drained of solute by
the precipitate particle is proportional to 1'/°. Equation (1-36) simply
states that ¢ equals ¢, minus a term proportional to the quantity of



30 Diffusion in Solids

solute precipitated. For spherical particles the volume drained of solute
is proportional to £2, and Eq. (1-36) results. If the precipitate particles
were very long rods of fixed length, their volume or the volume of
the region drained would change as 2, and the last term in Eq. (1-36)
would be replaced by a term in (\/2)2 or ¢. Finally, if the precipitate
formed in sheets, e.g., all over the grain boundary, the volume of the
drained region would increase as V/t, and the equation for & would
change to the form ¢ = ¢, — \/;t Thus our model predicts that the
precipitate shape can be determined from the initial slope of the plot
of In(¢ — c¢,) versus 1.

In the application of this analysis to experimental data, Eq. (1-36)
is often replaces by an equivalent exponential equation. The function
¢ exp(—bx) can be expanded into the series

cexp(—bx) = c[1 — bx + (bx)*/2! ...] (1-37)

which converges for all bx < 1. If bx < 1, the first terms [c(1 — bx))
give a good approximation. Comparing Egs. (1-36) and (1-37), it is
seen that for short times we can write

=l — (2bt/3¢Y* 1 = ¢, expl— (/7] (1-38)

where the relaxation time 7 is given by the expression

" Priel? r (c”) i
r=———"= "\ (1-39)
2D(c, — ¢ 2D \c,
Ham shows that for &(0) = 0, this exponential equation fits the data
down to smaller values of ¢/c, than does Eq. (1-34). This agreement
is because of compensating errors.

The relaxation time 7 can be determined from data on &(#). Usually
the quantities ¢”, ¢’ ¢,, and D are known from other experiments. Thus
r, can be determined, and from this the mean interparticle spacing can
be calculated. The quantities that contribute to T, and thus vary the
rate of precipitation can be noted in Eq. (1-39).

1.5 STRESS-ASSISTED DIFFUSION

General Effect of Potential Gradient. As the last problem to be
solved for constant D, we consider the effect of an elastic stress gra-
dient on diffusion. This is representative of the problems in which
Fick’s first law is no longer the flux equation. A potential gradient
tends to produce a flux of atoms, and this flux must be added to that
produced by the concentration gradient to arrive at the equation for the
total flux. In this section we consider the effect of a general potential
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gradient on the flux equation and the resulting changes in the equation
for dc/at. o

Consider a single particle moving in a potential field Vix,y,z2); the
gradient of this potential describes the force F on the particle. Thus

F=-Vv (1-40)

As an example of this for macroscopic particles, consider a marble on
an inclined plane. The potential here is due to gravity, and from ele-
mentary physics we know the force on the particle parallel to the plane
to be proportional to the slope of the plane relative to the horizontal.
Another common example of this type of force is the “pull” on a charged
particle in an electrostatic potential gradient.

It is found empirically that a potential gradient of force gives rise
to a mean diffusion velocity for the affected atoms. This fact is math-
ematically expressed by the equation

v =MF (1-41)

in which M is called the mobility and has the units velocity per unit
force. It is worthy of note that this equation is not of the form “force
equals mass times acceleration.” The force gives rise to a steady-state
velocity instead of a continuing acceleration because on the atomic
scale atoms are continually changing their direction of motion and thus
cannot accelerate under the action of a force in the way a free particle
does. This intermittent motion of the atoms on an atomic scale will be
discussed in detail in the next chapter. It is purposely avoided in this
entire chapter to give the reader a clearer picture of the type of prob-
lems that can be treated with no assumptions concerning the atomic
processes involved.

In applying a potential gradient instead of a concentration gradient,
we are simply replacing one small force with another. Thus it is plau-
sible, or even necessary, that the mobility is proportional to the dif-
fusion coefficient D. In Sec. 4-3, we show that the relationship is

M =D/kr (1-42)

where k is Boltzmann’s constant and 7 is the temperature in degrees
Kelvin. The flux that results in a homogeneous system from F is thus

the average velocity per particle times the number of particles per unit
volume. If the units on J and ¢ are consistent, we have

J=c¢v=MFc= —(Dc/kDHVV (1-43)

If a concentration gradient exists in addition to VV, the flux equation
1s given by the addition of Eqs. (1-1) and (1-43) or
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J = —D(Ve¢ + ¢VV/KT) (1-44)

Putting this flux equation in the continuity equation (1-7) gives, for
constant D

Jdc cVV
— =DV{Vc + — (1-45)
ot kT

This then is the equation that needs to be solved to determine c(x,y,z,1)
in the presence of a potential gradient.

Solution for Very Short Times. The stress field around an inter-
stitial atom in a solid solution is such that the atom can be attracter’
to a dislocation. Thus, in a supersaturated alloy, the precipitation ratc
on dislocations will be increased owing to the stress-induced drift which
is superimposed on the drift due to any concentration gradient. If 7 is
the radial distance between an interstitial atom and the core of an edge
or screw dislocation, the interaction between the two can be approx-
imated by the equations

V(r,0) = —B/r (screw) (1-46)
V(r,0) = —(A/r)sin 8 (edge) (1-47)

where B and A are appropriately chosen constants.

If an alloy is homogenized at a high temperature and quenched to
a low temperature where it is supersaturated, the initial distribution for
an isolated dislocation is given by

c=c¢, for r>0, at r=0
Expansion of Eq. (1-45) gives
e DVeVV  DcVY
+ +

— =DV
at kT kT

(1-48)

Our aim is to determine the initial flux of atoms toward an isolated
dislocation. This will depend on V¢ and VV. VV does not change with
time, but Ve does; and the general determination of how Ve changes
with time requires a solution of Eq. (1-48). However, for very short
times the solution of this difficult problem can be avoided.

In the homogeneous alloy at t = 0, Ve = 0, so the last term in Eq.
(1-48) determines dc/or. The equation for V*V(r,8) in cylindrical co-
ordinates is

) V' 1oV 18V
VV(r,0) = Sttt 5
or ror roo6

If V(r,0) is given by Eq. (1-47), V’V = 0, and dc/dt = 0. If V = -8B/
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r. then V°V % 0: but the resulting change in concentration with time
SCts up concentration gradients slowly, and for short times the drift of
solute toward the dislocation can be satisfactorily approximated by as-
suming that Ve = 0.4:" Using Eq. (1-46) because of its relative sim-
plicity, we obtain VV = B/r. Using Eq. (1-41) and (1-42), it is seen
that this gradient moves the solute atoms toward the dislocation with
a velocity given by the equation
—dr D B

(r) = —— = — — 1-49
e dr kT r? ( )

{ntegrating between r = r' at t = O and r = 0 atr = t' gives
r'= (3DBt' /kT)'? (1-50)

The interpretation of this equation is as follows. The atoms which were
initially a distance ' from the core of the dislocation arrive at the
dislocation core at 1 = ¢', and other solute atoms which were initially
at r > r' have taken their places at r = r’. Thus, even though d¢/at
remains equal to zero, at r = ¢ all solute which was in the region r
< r"atr = 0 will have precipitated or segregated at the dislocation
core.

The amount of solute ¢ removed per unit length of dislocation after
!" is given by the expression

q=c,mr'"” = c,m(3DBt’ /kT)*> (1-51)

The period over which this solution is valid is determined by the vol-
ume in which the potential exerts an “appreciable” effect on the solute
atoms. To be more precise, the thermal energy of a solute atom in the
lattice will be about equal to kT. Thus when r becomes so large that
—V(r) < kT, the potential energy will be less than the thermal energy
of the particle, and the effect of the potential will be “inappreciable.”
We can thus define an “effective radius” for the potential as r = R,
where

—V(R) = kT = B/R (1-52)

Thus the condition dc/ar = 0 will hold longer in the region r < R,
where VV has an effect, than in the region r > R, where the effect of
VV is insignificant. The solution embodied in Eq. (1-51) can apply
only for the solute initially in the region r’ < R. For times when ' >
R. appreciable concentration gradients are set up, and a different anal-

"A more rigorous and more complete discussion of the mathematical analysis of
stress-assisted precipitation has been given by F. S. Ham, J. Appl. Phys., 30 (1959)
915. A discussion of the approximations made herein is given there.
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ysis of the problem is required. The value of R for the case of carbon
i «-Fe can be egtimated fram a value of 8. Taking 8 = Q7 dyoe-
cm® gives R = 25A."% With a dislocation density of 10" /cm®, the mean
distance between dislocations is about 300 A. Even with this relatively
high dislocation density, Eq. (1-51) breaks down after only a small

percentage of the solute has precipitated.

1.6 SOLUTIONS FOR VARIABLE D

All of the solutions discussed so far have been valid only for con-
stant D. In real experiments the diffusion coefficient can, and will,
vary. The diffusion coefficient for a given composition can vary with
time, owing to changes in temperature. It can also change with com-
position, and since there is a concentration gradient, this means that
D changes with position along the sample. In this latter case D = D(x),
and Fick’s second law must be written

dc 9 dc aD dc a’c
—=—|D—=)=——+D— (1-53)

ar  ox ax dx 0x dx-

The term 9D /0x makes the equation inhomogeneous, and the solution
in closed form then ranges from difficult (for special cases) to impossible.

We will first discuss the solution for D = D(c) which is most fre-
quently used in solids and then show how to treat the case in which
D = D(1). For a more complete discussion of problems in which D =
D(¢), see Crank.

Boltzmann-Matano Analysis. This is the solution for D = D(c¢)
most commonly referred to in metallurgical diffusion studies. It will
serve as an example of the ditferent line of attack required. It does not
give a solution c¢(x,r) as obtained before, but allows D(c) to be cal-
culated from an experimental c¢(x) plot. If the initial conditions can be
described in terms of the one variable u = x/\/;, ¢ is a function only
of u, and Eq. (1-53) can be transformed into an ordinary homogeneous
differential equation. Using the definition of u, we have

dc  dc du I x dc

ot duor 207 du
and
dc _ dc ou _ 1 dc

ax a du dx a 12 du

A . Cochardt, G. Schoeck, H. Wiedersich, Acta Mer., 3 (1955) 533.
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Substituting in the first part of Eq. (1-54), we obtain

x a’c_a<D dc>_1d<Ddc> (1-54)
207 du ox \\rdu)  rdu\" du )
or
—u dc d dc
—_=—<D—) (1-55)
2 du du du

This transformation of Eq. (1-53) into Eq. (1-55) is due to Boltzmann.
The method was first used to determine D(c) by Matano."

Consider the infinite diffusion couple which is described by the fol-
lowing initial conditions:

c=c¢, for x<0, at r=0
¢c=0 for x>0, at =0

Since x = 0 is excluded at = 0 and the original concentration is not
a function of distance aside from the discontinuity at x = 0, the initial
conditions can be expressed in terms of u only as

c=c¢, at u= —oo
c=0 at y=wx

Since Eq. (1-55) contains only total differentials, we can “cancel”
1 /du from each side and integrate between ¢ = 0 and ¢ = ¢’, where
¢’ is any concentration 0 < ¢’ < C,

o

-1 (7 dc e
— ude = | D — (1-56)
2 du], .,

c—0

The data on ¢(x) are always at some fixed time so that substituting for
u gives

-1 de’]™ dc
—_— xdc = Dt| — = Dt — (1-57)
2 13 dx =0 dx c=¢'

The last equality in Eq. (1-56) comes from the fact that in this infinite
system dc/dx = 0 at ¢ = 0. From the additional fact that dc/dx = 0
at ¢ = ¢,, we have the condition

f xde =0

so that Eq. (1-57) defines the plane at which x = 0. With this definition

"“C. Matano, Japan. Phys., 8 (1933) 109.
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of x, D(¢") can be obtained from the graphical integration and differ-
entiation of ¢(x) using the equation

) —1 [dx ‘
D(¢") = E 6—1: xdce (1-58)

The quantities needed to calculate a value of D are shown in Fig.
1-7. The Matano interface is the plane at which x = 0 in Eq. (1-57).
Graphically, it is the line that makes the two hatched areas of Fig. 1-
7 equal. The value of D at¢ = 0.2 ¢, would be calculated by measuring
the cross-hatched area of the figure and the reciprocal of the slope.
The error in the calculated value of D(c) is largest at the ends of the
curve where ¢/c, approaches one or zero, since in these regions the
integral is small and dx/dc large. To minimize these errors, the orig-
inal concentration vs. distance data can be smoothed by plotting them
on probability paper (one on which the error function is a straight line).
and using the equation of that line to obtain dx/dc as a function of
position.

This solution is quite useful for inferring D(c) over a range of com-
positions in alloys. With the wide availability of the microprobe and
computers, obtaining data on D(c) can be highly automated. Eq. (1-
58) assumes that the atomic volume of the alloy is independent of

Matano Interface

02

0

x=0 x—

Fig. 1-7— The Matano interface is positioned to make the hatched areas on cither side
of it equal. The cross-hatched area and tangent show the quantities involved in cal-
culating D at ¢ = 0.2¢,.



Diftusion Equations 37

composition, which is rarely true. For the use of a more generally valid
equation see ref."?

Solutions for D as a Function of Time. If D is a function of time
but not of position, inspection of Eq. (1-54) shows that the equation
reduces to dc/dr = D(£)(d°c/dx’). What this means is that all of the
solutions which were used for constant D can be used, but the product
Dt must be replaced by an averaged product designated Dt and given
by the equation

Dt = fD(t) dt (1-59)

The most common application of this equation is to correct for the
diffusion that occurs during the heating and cooling of a diffusion cou-
ple which has been annealed at some fixed temperature, although it
can also be used to calculate the degree of homogenization achieved
during a complicated annealing cycle.

As an example of the application of Eq. (1-59), consider a diffusion
couple that has the temperature-time history shown in Fig. 1-8a. The
problem is to determine the time 7' at temperature 7’ which would have
produced the same amount of diffusion as actually occurred during the
heating, annealing and cooling. This can be determined graphically
once the 7 versus ¢ data are transformed into a plot of D versus 7. This
has been done in Fig. 1-8b. It is seen that time spent in heating up to
0.87" contributes nothing to the total amount of diffusion. This stems
from the fact that D(T') is given by an equation of the form

D =D, exp(=Q/RT)

For many cases Q is such that near the melting point of the metal D
increases by a factor of 10 for each increase of 10% in the absolute
temperature. Figure 1-8b was obtained by using this relationship.

1.7 TWO-PHASE BINARY SYSTEMS

Binary systems seldom exhibit complete solid miscibility. A more
common situation is the simple eutectic system with limited solubility
on each side of the diagram. If A-B alloys are described by the phase
diagram in Fig. 1-9, what would the ¢(x) curve be for a diffusion

“H. C. Akuezue, D. P. Whittle, Metal Science, 17 (1983) 27. For a FORTRAN
program for solving the Matano-Boltzmann equation see “MATANO-—A Computer
Code for the Analysis of Interdiffusion and Intrinsic Diffusion Information in Binary
Systems,” P. T. Carlson. ORNL-5045, June 1975, NTIS. 5285 Port Royal Rd., Spring-
field VA, 22161.
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Fig. 1-8— (a) Temperature versus time record of diffusion sample; (b) D vs. time for
same sample. ¢’ is the time at T’ which would give the same amount of diffusion as
actually occurred in the cycle.

couple made by joining pure A to pure B and annealing at a temper-
ature below the eutectic temperature?

If the equilibrium solubilities are maintained in the two phases at
the alpha/beta interface, Fig. 1-9 shows the c(x) curve that develops
during a diffusion anneal. Note how the concentration of B drops from
the solubility limit of alpha in beta, Cg,, 10 that for beta in alpha, C,z.
That is, no two-phase a + B region is generated in the diffusion cou-
ple. This is due to the fact that no concentration gradient can exist
across a 2-phase field in a binary system. Another way to look at this
is to consider the drop in the chemical potential of B, u, across the
diffusion couple. This is also shown in Fig. 1-9. The chemical poten-
tial is continuous across the interface, though there may be a change
in slope.

Another measurable and useful quantity in this type of diffusion cou-
ple is the rate at which the two phase interface moves under the in-
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Fig. 1-9—¢(x) for diffusion couple between A and B which exhibit a simple eutectic
phase diagram. The variation of the chemical potential of B across the couple is also
shown.

fluence of diffusion. It is usual to assume that equilibrium exists across
the @ — B interface. Thus the compositions of the two phases at the
interface are constant and given by the phase diagram. Under these
conditions one equation can be obtained from the conservation of ma-
terial at the advancing interface. Considering the diffusion couple pre-
sented in Fig. 1-9, the rate of advance of the interface between the o
and B is proportional to the difference in the flux into the interface
(J4g) and the flux out (o)

[CuB - CBa](dw/dt) = ‘]a[j - ‘,,Ba

-[-2.(%) (%) | e
I B O S o B IS

Constant D. If the diffusion coefficients in Eq. (1-60) are inde-
pendent of composition, there are straightforward means for treating
the problem for different boundary conditions. As an example consider
a system in which solute is added to the surface of a two phase alloy
of composition C,. As B is added to the surface it is all used to convert
@ to B. There will be no flux of B out of the surface layer of beta into
the two phase alloy. Fig. 1-10 shows ¢(x) for this system. If the surface
composition is held at a value C, near pure B, a layer of g8 develops
on the surface whose thickness is designated as w. The boundary con-
ditions for c(x) in the beta are
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Fig. 1-10—¢(x) for the diffusion controlled growth of a B rich beta layer into an ini-
tially homogeneous two phase alloy. The hashed area indicates amount of solute necded
to advance the beta phase by dw.

c=C, at x=0 and >0

c=Cgy at x=w and >0 (1-61)
With these Eq. (1-60) becomes
dc
0x/ g

The simplest approach is to approximate the gradient in the beta
phase by a straight line of slope —(C, — Cg,)/w. Eqn. 1-62 would
then integrate to

w? = [(Cy = Cpa)/2(Cpo — CHIADIE (1-63)

A better approximation is obtained if c(x,7) in the beta layer is de-
scribed by an error function solution to the diffusion equations. This
would be exact for a fixed interface, and since the interface is moving
slowly it is a good approximation. The solution for c(x,f) in the beta
phase is then

c(x,t) = C, — Herf(x/2VDr), for 0<x<w (1-64)

H is a constant involving concentrations. The width of the beta layer
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should be given by an equation of the form
w' =y 4Dy (1-65)
where vy is a constant to be determined. Thus at x = w
C, — Cy, = Herf(y) (1-66)

The derivative of Eq. (1-65) give an equation for the gradient in the
beta phase as x approaches w. Eq. (1-62) and (1-64) then give"”

Choa = C, = H/(YV/m) exp(=y?)
Eliminating H between these last two equations
(€, = Cp)/(Cpa = C) = YWrmexp(y)erf(y)  (1-67)

This equation is valid for a wide range of values of v A(C, — Cp)
< (Cy, — C,) then vy is small. In such cases exp(y?) = 1 and erf(y)
= 2y/V/m. Or, substituting into Eq. 1-64 /

w’ = [(C, — Cp)/2(Cg = C,)] 4Dt (1-68)

which is identical to the result of the linear approximation, Eq. (1-63).
However, for y larger than 0.1 its value must be obtained from Eq.
(1-67).

Using Eq. (1-64), y can be obtained for any ratio of concentrations,
and the value of D in the growing phase determined from measure-
ments of the rate of growth of that phase. This same procedure can be
extended to the case of a diffusion couple made by joining pure A to
pure B with concentration gradients on both sides of the advancing
interface.'®

Variable D. When D changes significantly with composition there
15 no closed solution to the diffusion equation. However. returning to
the diffusion couple shown in Fig. 1-9, note that this system fulfills
the conditions required for the application of the Matano-Boltzmann
solution, namely the initial conditions can be expressed in terms of the
function y = x/\ﬂ The Matano-Boltzmann formulation can be used
to obtain some simple, useful equations. For example the thickness of
intermetallic phases (in binary systems) increase as \/z.'” The relation
between the rate constant for diffusion couples developing only one
phase and those developing several has been developed by Shatynski
ot al.'

“See Problem 1-3 for the differentiation of an error function.

"W. Jost, Diffusion in Solids, Liquids, Gases, Academic Press, 1952, pp. 69-75.
'G. V. Kidson, J. Nucl. Matl., 3 (1961) 21.

'S. R. Shatynski, J. P. Hirth, R. A. Rapp, Acta Met., 24 (1975) 1071.
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! V. How-
ever. in noncubic cryvstals 4 complete description of the relation be-
tween the flux J and the concentration gradient V¢ requires the knowl-
edge of two or more constants. As with the other topics discussed in
this chapter, the proof of these properties of D requires no assumption
about the atomic processes involved in diffusion. Rather, the results
follow from the symmetry of the crystal and the properties of a second-
order tensor.

The aim of the treatment given here is to develop an understanding
of the physical basis of the results. The reasoning is rigorous but lacks
elegance and generality. A general treatment requires a knowledge of
the transformation properties of second-order tensors. General treat-
ments can be found in Wooster and in Nye."

Consider the two vectors J and Ve. In the most general case they
will not be parallel, so that the simple relation J = DVc, where D is
a constant, is not adequate. For the general case it is assumed that a
given component of the flux is influenced by each of the components
of the gradient. Thus, the equations are™

Irde 10 a0, 7V NTea T s IO A IONT Lallil Das JuDic A ITmme T

dc dc dc

J. = _D”d_x_D]zd_y_DBZ (1-69)
dc dc dc

J, = —D21&;_D22;; _D23; (1-70)
dc dc dc

J. = _D31d_x_D325)_D33£ (1-71)

where the various scalar fluxes are parallel to the three axes of a carte-
sian coordinate system. The set of nine numbers designated D, is called
a second-order tensor and is defined by the above equations. To dem-
onstrate the possible simplification of these equations, consider a cube
of material whose lattice has cubic symmetry. Imagine that this cube

YW. Wooster, A Text Book on Crystal Physics, Chap. 1, Cambridge Univ. Press,
New York, 1949. A more general treatment is given by J. Nye, “Physical Properties
of Crystals,” Chap. 1, Clarendon Press, 1957.

A moment’s reflection will show that these equations, and thus the treatment given
here, can easily be adapted to the case of heat flow, the flow of electricity, and other
cases in which a vector flux is related to a potential gradient. Thus, the results obtained

below for D;;, hold equally well for the thermal and electrical conductivities.
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is a single crystal with the cubic axes of the lattice perpendicular to
the cube faces. A cartesian coordinate system is now set up with axes
perpendicular to the cube faces (parallel to the cube axes of the lattice),
and a concentration gradient is established such that defdx = a # 0
and dc/dy = dc/dz = 0. Equation (1-69) then gives the component
of the flux parallel to the gradient as

J. = =D\ (dc/dx)

If this gradient is removed and replaced by an equal gradient along the
y axis, that is, dc/dy = a and dc/dx = dc/dz = 0, the component of
the flux parallel to the gradient will be

Jy = —Dy(dc/dy)

Now if the lattice of the specimen has cubic symmetry, the x axis
([100] direction) and the y axis ([010] direction) are indistinguishable.
Swee the gradiemts were of equal magnitade in both cases this sym-
metry requires that J, in the first experiment must equal J, in the sec-
ond. But this says that D,, ¢ = D,, a, which requires that D, = D,,.
Similarly the z axis ([001] direction) is indistinguishable from the x
axis, so for the cube crystal

D\, =Dy, = Dy, (1-72)

In a lattice with tetragonal symmetry, the [010] and the [100] di-
rections are identical but are distinguishable from the [001] direction.
Thus in a tetragonal lattice

Dy, = D,, # Dy (1-73)

Finally, for an orthorhombic lattice each of the (1001, [010], and [001]
directions are distinguishable, so

Dy # Dy, # Dy

For the case of hexagonal crystals, the above type of argument will
prove that D, is the same in each of the six close-packed directions
of the basal plane. However, the fact that Dy, = D,,, for the case of
orthogonal axes in the basal plane cannot be proved without recourse
to the transformation properties of second-order tensors. If it is ac-
cepted that D, = D,,, then it should be apparent that of hexagonal
crystals

Dy = Dy # Dy

To enlarge on these results it is possible that in some hexagonal
lattice D5, may be found experimentally to equal D,;. However, this
cannot be asserted a priori from the symmetry. On the other hand if
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it is reported that D, # Dx» for some hexagonal material, either the
experimental results are wrong or some type of defect, or field, was
present which, in effect, destroyed the sixfold rotational symmetry about
the [001] axis. The only other alternative would be to conclude that
Egs. (1-69) to (1-71) are inapplicable. This is conceivable but ex-
tremely improbable.

So far we have ignored the constants D;; where i # j. However, if
D, is to be a simple constant for any cubic crystal, then in addition to
proving that Dy, = Dy, = D,,, we must show that all D; = 0, if i #
j. This can be done as follows. Again consider the single crystal with
a cubic lattice. We establish a gradient such that de/dy = a, but dc/
dx = dc/dz = 0. By measuring the component of the flux along the
x axis, we can determine D, since Eq. (1-69) gives

J.o= —D12(dc/dy) = —Dpa (1-74)

Imagine next that the source and the sink which established this gra-
dient are removed and the crystal is rotated 180 degrees about its x
axis ([ 100] direction), relative to the source and sink. Since the [100]
direction has fourfold rotational symmetry, the original and final po-
sitions of the lattice will be indistinguishable. If the source and sink
are again applied, the gradient is again established along the y axis.
However, since the y axis is fixed in the crystal, the 180 deg. rotation
has interchanged the +y and the —y axes, so the gradient will be just

the negative of its previous value. This means that now dc/dy = —a,
and dc/dx = dc/dz = 0. This gives
J. = —D)(dc/dv) = D a (1-75)

But by symmetry, J, from Eq. (1-74) must equal J, from Eq. (1- 75),
or
Dy =D

The required symmetry can be satisfied only if D, = 0. If the gradient
had been along the z axis, the same rotation could have been used to
show that D,; = 0. Since the y and z axes also have twofold rotational
symmetry, it follows that all of the off-diagonal terms (that is, D, with
i # j) are zero. Finally we have used only twofold rotational sym-
metry, so from the same proof it follows that the D; also equal zero
when i # j for tetragonal and orthorhombic crystals.

Similar reasoning shows that the D, (i # j) terms are zero for lattices
which have hexagonal symmetry. The results can be summarized as
follows:

D, O 0
Cubic D,=| 0 D, O (1-76)
0 0 Dy
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Textragonal Dy 00
& hexagonal Dy=1| 0 Dn 0 (1-77)
[ O 0 Dj ]
D, O 0
Orthorhombic D; = 0 D, O (1-78)

To demonstrate the use of these conclusions and Eqs. (1-69,71), we
shall apply them to the case where D;; is given by Eq. (1-77). Consider
the determination of the diffusion coefficient in such a material using
a tracer. If a single crystal is available with the ¢ axis (the sixfold axis
in hexagonal or fourfold in tetragonal) normal to one face, the tracer
can be deposited on that face. After diffusion the concentration gra-
dient is parallel to the ¢ axis, since Dz = D,; = 0, and so is the flux.
If the concentration distribution ¢(u) is determined by taking sections
parallel to the initial face, one obtains D,; from a plot of lnc versus
«”. If the ¢ axis is in the face covered with the tracer, the flux and
the gradient are again parallel, and the determination of D, is
straightforward.

For the intermediate case where the plated face makes an angle of
90 — 6 with the ¢ axis, the concentration gradient makes an angle of
6 with the ¢ axis. In this case the flux and the gradient are not parallel
if Dy # Ds;. This is shown in Fig. 1-11, where D,, < D,;. If c(u) is

\. 7
(VC)‘V*/

Fig. 1-11 —The orientation of the flux J and the concentration gradient V¢ for the
case of D), < D,;. The axis is parallel to the ¢ axis of the lattice. V¢ is normal to the
v oaxis so that (Ve), and J, equal zero.
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Table 1-2. DL and D| for Several Metals

D, D,L Qll QL D1/D|
Metal Struc cm?/s cm’/s kJ/mol kJ/mol T = 0.87,
Be hcp 0.52 0.68 157 171 0.31
Cd hcp 0.18 0.12 82.0 78.1 1.8
a-Hf hep 0.28 0.86 349 370 0.87
Mg hep 1.5 1.0 136 135 0.78
Tl hep 0.4 0.4 95.5 95.8 0.92
Sb hex 0.1 56 149 201 0.098
Sn bct 10.7 7.7 105 107 0.40
Zn hcp 0.18 0.13 96.4 91.6 2.05

Data from N. L. Peterson, Jnl. Nucl. Matl., 69&70 (1979) 3-37.

now determined, the value of D obtained from a plot of Inc versus u
is called D(#) and is given by the equation

D(§) = Dy, cos> 6 + Dy, sin’ 6 (1-79)

If necessary D;; and D, can be determined from measurements of D(6)
for different values of 6.

Data for some noncubic materials is given in Table 1-2. Here DL
and D|| refer to the diffusion coefficients perpendicular and parallel to
the ¢ axis of the lattice.

PROBLEMS

1-1. Write a computer program, in FORTRAN, PASCAL, or BASIC,

1-2.

that will evaluate the error function, Erf(z), over the range 0<
z < 2 in steps of 0.1, to an accuracy of at least 10~*. Have your
program check that the desired accuracy is achieved, and print
out the answer to only four places.

Run the program and hand in the program as well as the print-
out of a table of Erf(z) and z.
Hydrogen at 1.0 MPa is to be stored at 400° C in outer space,
in a thin walled (0.1 mm) spherical jron tank of 0.1 m radius.
You are to calculate the rate of pressure drop (MPa/s) as a result
of diffusion of hydrogen through the wall.

Take D = 10°% m?/s, and assume that the concentration of
hydrogen in the iron at either side of the wall is the equilibrium
solubility given by the equation

C(P) = 10°(P)"* gmH/gmFe (P in MPa).
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1-3.

1-5.

By differentiation show that Erf(x/2\/Dr) is a solution to
Eq. (1-13). Note
b(u)
If F(u) = f(x)dx, then

a(u)

dF o oooda o db
o f(a(u))du Sf(b(w) du

- A thin film of radioactive copper was electroplated on the end

of a copper cylinder. After a high temperature anneal of 20 hr,
the specimen was sectioned, and the activity of each section
counted. The data are:

a (counts/s/mg) x (0.01 cm)
5012 1
3981 2
2512 3
1413 4
525 5

(a) Plot the data and determine D from the best line plotted by
eye.

(b) Calculate the slope of log a versus % using a least-square
procedure, and plot the least squares line on the figure for
part (a).

A piece of 0.1% C steel is to be carburized at 930° C until the

carbon content is raised to 0.45% C at a depth of 0.05 cm. The

carburizing gas holds the surface at 1% carbon for all ¢ > 0. If

D = 1.4 X 1077 ¢cm’/s for all compositions,

(a) Calculate the time required at the carburizing temperature.

(b) What time is required at the same temperature to double this
amount of penetration?

(c) If D = 0.27 exp(—17,400/T) cm’/s, what temperature in-
crease is required to get 0.45% C at a depth of 0.1 c¢m in
the same time as 0.05 cm was attained at 930° C?

- If helium is injected into a thin (100 nm) copper foil and then

the foil is heated, the He quickly combines with vacancies to
form very small bubbles (10 nm radius). These bubbles diffuse
about in a random manner just as atoms do. However, when
they touch a free surface, i.e. come within a radius of the sur-
face, they are annihilated. When observing the foil in the TEM,
between consecutive anneals, it is much easier to measure the
number of bubbles per unit area than it is to measure the dis-
tribution of bubbles through the thickness.



Diffusion in Solids

(a) For an initially uniform concentration of bubbles write the
boundary conditions and give the equation for the average
concentration through the foil as a function of time, ¢(1),
for a foil of thickness A and bubble diffusion coefficient,
D,.

(b) Often the original distribution of bubbles is not uniform
through the thickness, but is higher on one side. Show how
this would affect a plot of Inc (1) vs ., and explain how you
could still get D, from the data.

1-7. It is suggested that the change in hydrogen potential of an aqueous

1-8.

1-9.

solution could be measured by the change in electrical resistance
of an inert metal foil immersed in the solution (The resistance
of the foil is proportional to the average concentration of hy-
drogen in the metal.) If the diffusion coefficient of hydrogen in
the metal is 107 cm?/s, what should the thickness of the foil
be if the concentration in the foil is to reach 0.95 of its final
value in one second.

A thick walled steel pressure vessel in an oil refinery contains
high pressure hydrogen for a long time. To avoid hydrogen
cracking on cooling the vessel is to be held at temperature with
no hydrogen inside it until most of the H has diffused out. As
boundary conditions take for c(x.1):

c(x,0)=c¢,x/h at =0
0, =0=cth,) at 1> 0.

(a) Derive c(x.p) fort > 0.

(b)y If D =58 X 10"* ¢cm?/s, and h = 25 cm, how long does
it take to get the average concentration, ¢, reduced to 0.1
c,?

A sensitive infra-red detector is made by vapor depositing al-

ternate 13 nm thick layers of HgTe and CdTe on a substrate. It

is found that the detector loses its sensitivity due to interdiftu-

sion after 55 hr at 162° C or after 250 hr at 110° C.

(a) Calculate an activation energy for the interdiffusion process
and estimate the life of the device at 25° C.

(b) Estimate the interdiffusion coefficient at 162° C.

. In a pure gold quenched from 700° C, it is thought that the su-

persaturation of vacancies is relieved by adsorption of vacancies

at dislocation lines.

(a) Considering the dislocation lines to be fixed cylindrical sinks
of constant radius r,, derive an equation giving the time de-
pendence of the ratio of the average vacancy concentration
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¢(r) to the initial concentration ¢, (for 0.8 < &/¢, < 1),
which could be used to check this hypothesis.

(b) Derive an equation for the case in which planar grain bound-
aries act as sinks for the vacancies.

. If a disc of an initially homogeneous single phase alloy of Ag

in Pb is spun in a centrifuge at a temperature where diffusion

can occur the lighter Ag atoms will diffuse toward the top of

the disc and the Pb toward the bottom. A sample is spun at

100,000 g until c(x) attains a steady state. Using Eq. 1-46, an-

swer the following questions:

(a) Give an equation relating the concentration gradient to the
acceleration and density difference.

(b) Does the concentration gradient depend on D? What deter-
mines the value of d lnc/dx?

(c) How would you guess the relaxation time for reaching this
steady-state 1s related to the height of the disc and D?

. An edge dislocation glides into a homogeneous region of an

Fe-C solid solution of C concentration ¢, and comes to rest:

(a) Integrate Eq. 1-45 to obtain an equation for c(r), the dis-
tribution of carbon around the dislocation after “infinite”
time.

(b) If the radius within which carbon redistributes in the elastic
field of the dislocation is 1 nm, estimate the time to redis-
tribute the carbon in this region, i.e. from above the glide
plane to below it. (take D for C in ferrite to be 107%
m’/s, which is true for 80° C). Explain the assumptions made
in obtaining your estimate.

3. Metals ‘A’, and ‘B’ form a simple eutectic diagram of the type

shown in Fig. 1-9. A diffusion couple between pure A and pure

B is made with a thin & + 3 layer in the middle, by means of

powder metallurgical techniques.

(a) The couple is given a brief anneal. In one figure draw a ¢(x)
curve that extends from the pure A region of the diffusion
couple to pure B. (Note there will be two c(x) curves in the
two phase region, one for each phase.)

(b) Consider the fluxes out of each side of the two-phase region
and show that the two-phase region will shrink with time.

. If pure A is joined to pure B (Fig. 1-9) there is a flux of A into

the B-rich phase (8), and B into the A-rich phase («). The dif-
ference between these two fluxes is reflected in a shift of the «
— [ interface relative to the end of the specimen. Starting with
Eq. 1-60, use a procedure similar to that developed in the text
to derive an equation relating the rate of this shift, dw/dt, to
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the diffusion coefficients and concentration gradients in « and
B for the case in which D in both phases are independent of
composition and thus error function solutions are valid. (For help
see G.H. Geiger, D.R. Poirier, Transport Phenomena in Met-
allurgy, (Addison Wesley, 1975), pp- 490--6.

_ An Fe-0.8% C alloy is decarburized in an atmosphere that keeps

the surface essentially carbon free.

(a) If the decarburization is carried out at 730° C a carbon free
layer of ferrite forms on the surface. Derive an equation
relating the alpha layer to the concentration difference across
the ferrite layer, time, and D in the the ferrite.

(b) Assuming Cny = 0.02 w/o carbon and that D = 10 ¢ ecm’/
s for carbon in the ferrite, how long will it take to form a
ferrite layer 0.01 cm thick.

(c) If the decarburization is carried out at 800° C the c(x) curve
crosses the alpha, alpha+aust. and aust. fields. Plot the c(x)
curve across the diffusion zone. On the plot label the com-
position limits of the two-phase fields.

The general equations for diffusion in a two-dimensional lattice

are:

Jo= —D“(dc/dx) — Dy(dc/dy)
‘]}’ - —‘D21(dc/dx) - Dzz(d('/dy)

Show what elements of the diffusion tensor, D, are zero and
which are equal for:

(a) A square array of points.

(b) A rectangular array of points.

(This treatment should be valid for the diffusion of tracer atoms
on the face of a crystal.)

. For a hard brittle material it is difficult to determine D by grind-

ing off layers and collecting the material removed. An alter-

native is to count the activity remaining in the sample after re-

moving material by grinding.

(a) For the case in which a thin layer of tracer is placed on the
original surface at x = 0 give the solution to the diffusion
equation, c(x,r), after a diffusion anneal, but before any ma-
terial is ground off the surface. Draw c(x,r) vs. X.

(b) Show that the total amount of material left in the sample
after the diffusion layer has been ground away (o0 a depth
of d is:

g(d) = Bll - erf(d/2V D)
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1-6.
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1
o0

1-9.

--11.

For an isotope whose radiation is adsorbed little in leaving the
sample, B is the total activity before any grinding is done. Note
the determination of g(d) allows the determination of D.

Answers to Selected Problems

. Initial dP/dt = 670 Pa/s.
. D =373 x10"° cm?/s.
. (a) 1.2 x 10*s.

(b) Quadruple the time of (a)

(c) 128°C

(a) Fort = 0, ¢(x,0) = ¢,; for t > 0, cr,ty =cth —r;) =0
&/c,) = 8/m)exp(—t/7) + (1/9) exp(—91/7) + ...)

(b) c(x,r) now contains terms like sin(2mx/h) so c¢(t) has terms
in exp(—4¢/7). Thus [né vs ¢ is not linear until t > /4.

. 0.006 cm.
@ et = 2 c,/misin(mx/Rexp(—t/v) — (1/2)sinQmx/

mexp(—4t/7) + (1/3)sin(3mx/h)exp (—9t/7) — ]

(b) 7=Rr/D7 = 1.1 x 10" 5. To remove 90% requires ¢ =
~7 (0.1 7°/4).

(a) 40.3 kJ/mol, 9300 hr.

(b) 8.5 x 107"° cm?/s.

If the atomic volume of Ag and Pb are assumed to be the same,

and m(Ag) is the mass of a silver atom, then

(@) d Inc(x)/dx = 10° g[m(Pb) — m(Ag)]/KkT.

. (@) ¢ = ¢, exp(=V/kT) = ¢, exp(—A sinf/rkT)

(b) Approximating this as relaxation in a cylinder, 7 ~ r/D =
100 s.

. (a) W2 = [Ca'y/(Cya - Ca‘y)] 2Du[

(b) 1950 s.

. (@) Dy =D, =0,D), = Dy,.

(b) D;y = Dy, =0, Dy, # Dy;.
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ATOMIC THEORY OF
DIFFUSION

If a drop of a dilute mixture of milk in water is placed under a
microscope and observed by transmitted light, small fat globules can
be seen. These globules are about 1 wm in diameter and continually
make small movements hither and yon. These movements, which are
called Brownian motion, give a continual mixing and are the cause,
or mechanism, of the homogenization, whose rate could be measured
in a macroscopic diffusion experiment. For example, if a drop of the
same milky solution is placed in water, it will tend to spread out, and
the mixture will ultimately become homogeneous. In this latter ex-
periment a concentration gradient is present, a flux of fat globules'
exists, and a diffusion coefficient could be measured. This is not quite
an after-lunch experiment though. since turbulent mixing must be avoided
and diffusion occurs quite slowly (D = 107 cm?/sec).

Brownian motion is not peculiar to the fat droplets in milk; in fact,
ctive study at the turn of the century showed that it occurred for any
microscopic particles suspended in any liquid or gas. This being the
-ase, there is the interesting and potentially complicated question of
10w the random motion of these particles is related to the macroscopic
lisplacement of the particles. For example, given the number of jumps
er second and the mean jump distance, how far will the particle be
rom an arbitrary starting point after some very large number of jumps?
‘his particular problem was initially treated about 1905 by Smolu-

‘The composition of milk is not simple, but for our purpose it can be considered a
lloidal dispersion of fat globules in water. Milk is used as an example because it is
¢ most easily obtained dispersion with particles that can be resolved at 500X.

wn
98]
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chowski and by Einstein and has been further developed over the years.’
It is generally called the random-walk problem.

This may seem like a digression from diffusion in crystalline solids,
but the problems have striking similarities. It is impossible to observe
the motion of the individual atoms in solids, but diffusion does occur
in them, so there must be relative motion of the atoms. It is therefore
reasonable to assume that diffusion occurs by the periodic jumping of
atoms from one lattice site to another. If this is indeed true, then the
mathematics of the random-walk problem will allow us to go back and
forth between the observed macroscopic diffusion coefficients and the
jump frequencies and jump distances of the diffusing atoms. The prob-
lem is not a simple one, but it is most exciting since it transforms the
study of diffusion from the question of how fast a system will ho-
mogenize into a tool for studying the atomic processes involved in a
variety of reactions in solids, for studying defects in solids, or for
studying the interaction between the atoms themselves.

In this chapter we discuss the random-walk problem, the atomic
mechanisms which are thought to give rise to diffusion, the factors
which influence the jump frequency of the atoms, and the calculation
of a diffusion coefficient from the combination of all of these.

2.1 RANDOM MOVEMENT AND THE DIFFUSION
COEFFICIENT

Before discussing the detailed mechanisms and mathematics of dif-
fusion, it is helpful to study a simple situation in which no detailed
mechanism is assumed. In this section we shall derive an approximate
equation relating D to the jump frequency and the jump distance with-
out going through a rigorous treatment of the random-walk problem.

Consider a crystalline bar that has a concentration gradient along its
y axis (see Fig. 2-1). We consider only jumps to the left and right,
that is, those giving a change in position along the y axis. Consider
now two adjacent lattice planes, designated 1 and 2, a distance 3 apart.
Let there be n, diffusing atoms per unit area in plane 1 and n, in plane
2. If each atom jumps an average of I times per second, the number
of atoms in plane 1 that jump in the short period dt is n,I'dt. Assuming
that the jump frequency is the same in all orthogonal directions, one-

2A readable, interesting treatment of Brownian motion can be found in the translation
of Einstein’s original papers. (A. Einstein, Investigations on the Theory of Brownian
Movement, Dover Publications, New York, 1956.) For an advanced, complete treat-
ment which deals more with mathematics and less with physical phenomena, see N.

Wax (ed.), Selected Papers on Noise and Stochastic Processes, Dover Publications,
New York, 1954.
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Fig. 2-1

sixth of the atoms will go to the right to plane 2, the number of atoms

jumping from plane 1 to plane 2 in d is (1 /6)n,I'dt. The net flux from
planes 1 to 2 is thus

1 number of atoms
J:g('ln - =———

(area) (time)
The quantity (n, — n,) can be related to the concentration or number
per unit volume by observing that n,/8 = ¢, and n./B = c,, giving

J = (1/6)c, = )BT

But in essentially all diffusion studies, ¢ changes slowly enough with
position that

Cp— = _B(ac/aY)
so that
1 ac

J=--8T 2-1
63 P (2-1)

This equation is identical to Fick’s first law if the diffusion coefficient
D is given by

D =(1/6)B'T (2-2)
The diffusion coefficient is therefore determined by the product of the
jump distance squared and the jump frequency.

It should be emphasized that I" was assumed to be the same for
Jumps from left to right as from right to left. Thus the flow down the
concentration gradient does not result from any bias of the atoms to
Jump in that direction. If each atom jumps randomly and n, > n,, there
will be a net flux from 1 to 2 simply because there are more atoms on
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plane 1 to jump to 2 than there are atoms on 2 to jump to 1. (If the
jump frequency to the right was greater than that to the left there would
be a net drift of the atoms to the right. This sort of an effect will be
discussed in subsequent chapters, for example when considering the
case of an electric potential gradient on diffusion of ions in ionic sol-
ids. in Chap. 5.)

Without assuming a particular mechanism, it is plausible that § is
about the interatomic distance in a lattice, or the order of one Ang-
strom. If we assume this, the jump frequency can be estimated from
the measured diffusion coefficient. For carbon in B-Fe at 900° C, D
=10%cm’/s. If B = 107% cm, then I’ = 10'*/s. That is, each carbon
atom changes position about 10 billion times per second.

Near their melting points most fcc and hep metals have a self-dif-
fusion coefficient of 10~* cm’/s. Again taking 8 = 107 cm gives I’
= 10%/s. Thus in most solid metals near their melting point each atom
changes its site 100 million times a second. If this number seems im-
possibly large, remember that the vibrational frequency (Debye fre-
quency) of such atoms is 10" to 10'*/s, so that the atom only changes
position on one oscillation in 10* or 10°. Thus, even near the melting
point, the great majority of the time the atom is oscillating about its
equilibrium position in the crystal.

2.2 MECHANISMS OF DIFFUSION

It is well known from the theory of specific heats that atoms in a
crystal oscillate around their equilibrium positions. Occasionally these
oscillations become large enough to allow an atom to change sites. It
is these jumps from one site to another which give rise to diffusion in
solids. The discussion given in the preceding section and most of the
kinetic arguments given in this chapter will apply to several or all of
the possible diffusion mechanisms. However, to aid the reader in un-
derstanding the applicability of the subsequent material, this section
will be devoted to cataloguing the mechanisms which are thought to
give rise to diffusion in crystalline solids.

Interstitial Mechanism. An atom is said to diffuse by an interstitial
mechanism when it passes from one interstitial site to one of its near-
est-neighbor interstitial sites without permanently displacing any of the
matrix atoms. Figure 2-2 shows the interstitial sites of an fcc lattice.
An atom would diffuse by an interstitial mechanism in this lattice by
jumping from one site to another on this sublattice of interstitial points.
(Note that these sites also form an fcc lattice.)

Consider the atomic movements which must occur before a jump
can occur. Figure 2-3 shows an interstitial atom in the (100) plane of
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Fig. 2-2—x indicates the interstitial sites in an fcc cell.

a group of spheres packed into an fcc lattice. Before the atom labeled
1 can jump to the nearest-neighbor site 2 the matrix atoms labeled 3
and 4 must move apart enough to let it through. Actually if 1 rises out
of the plane of the paper slightly as it starts toward 2, there is a par-

O

Fig. 2-3—(100) plane in fcc lattice showing path of interstitial solute diffusing by
interstitial mechanism.
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tially formed channel available. Nevertheless an appreciable local di-
latation of the lattice must occur before the jump can occur. It is this
dilatation or distortion which constitutes the barrier to an interstitial
atom changing sites. The basic problem in calculating a jump fre-
quency is determining how often this barrier can be surmounted.

The interstitial mechanism described here operates in alloys where
the solute normally dissolves interstitially, e.g., C in a- and y-iron.
In addition it can occur in substitutional alloys. For example in radia-
tion damage studies energetic particles, e.g. neutrons, can knock atoms
off normal lattice sites into interstitial positions to form what are called
“self-interstitials.” These diffuse quite easily, once formed. As another
example, though copper or gold atoms dissolve substitutionally in lead,
their average diffusion coefficient is much greater than that for lead
atoms. It is thought that a small fraction of the substitutional gold at-
oms go into interstitial positions and then move so rapidly through the
lattice that they dominate in producing the observed diffusion of the
solute in lead. The same behavior is found for copper in germanium.

Vacancy Mechanism. In all crystals some of the lattice sites are
unoccupied. These unoccupied sites are called vacancies. If one of the
atoms on an adjacent site jumps into the vacancy, the atom is said to
have diffused by a vacancy mechanism.

Figure 2-4 shows the nature of the constriction which inhibits motion
of an adjacent atom into a vacancy in an fcc lattice. If the undistorted
lattice is taken to consist of close-packed spheres of diameter d, the
equilibrium distance between the restraining atoms (atoms labeled 1
and 2 in Fig. 2-4a) is 0.73 d. The displacement required to move an
atom is thus small. In fact, the distortional energy put into the lattice
in moving an iron atom into an adjacent vacancy is roughly equal to
the energy required to move a carbon atom from one interstitial site

(a) (b)

Fig. 2-4— Two figures showing the movement of an atom into an adjacent vacancy
in an fcc lattice. (a) A close-packed plane of spheres. (b) A unit cell showing the four
atoms (shaded) which must move for the indicated jump to occur.
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to another in the same fcc phase. The reason that iron diffuses so much
more slowly than carbon is that while each carbon atom always has
many vacant nearest-neighbor interstitial sites, the fraction of vacant
iron sites is very small, and each iron atom must wait an appreciable
period before a vacancy becomes available.

In a bee lattice the barrier for the jump of an atom into a vacant
nearest neighbor site is more complex. Fig. 2-5 represents the extended
barrier of two sets of triangular barriers. The vacancy mechanism is
thought to be the mechanism of self diffusion for all pure metals and
for essentially all substitutional solutes in alloys. It also is found in
ionic compounds and oxides.

Interstitialcy and Crowdion Mechanisms. Solute atoms which go
into solution in metals as interstitials are appreciably smaller than the
matrix atoms and, as discussed above, diffuse by the interstitial mech-
anism. If a relatively large atom such as a solvent atom gets into an
interstitial position, how will it move? It will produce a very large
distortion if it jumps from one interstitial site to a neighboring inter-
stitial site. Jumps which produce very large distortions occur infre-
quently, so another diffusion mechanism which produces less distor-
tion could predominate.

One jump process which gives less distortion is the interstitialcy
mechanism. Consider the interstitial atom shown in Fig. 2-6. It is said
to diffuse by an interstitialcy mechanism if it pushes one of its nearest-

Fig. 2-5— Saddle point barrier for the darkened atom jumping to the vacancy indicated
in a bee lattice. Note double maxima in energy vs. distance for the jump.
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Fig. 2-6—(100) plane of fcc lattice with one atom on an interstitial site.

neighbor atoms into an interstitial position and occupies the lattice site
previously occupied by the displaced atom. The distortion involved in
this displacement is quite small, so it can occur with relative ease. The
mechanism has proved to be the dominant one for the diffusion of
silver in AgBr (Chap. 5). In this case the silver ion is smaller than the
Br, and an interstitial silver ion does not distort the lattice unduly.
In the case of pure fcc metals the atoms are all the same size, and
the distortion associated with the configuration shown in Fig. 2-6 is
quite large. It has been shown that for Cu, and probably for all fcc
metals, the accommodation of the extra (interstitial) atom in the man-
ner shown in Fig. 2-7. Still another interstitial configuration is called
the crowdion. It has the extra atom placed in a close-packed direction,

OL00
QC%Z;BDO

O
OO

Fig. 2-7—(100) plane of fce lattice with two atoms sharing one site. The difference
between (a) and (b) is an interstitialcy jump.
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Fig. 2-8—(111) plane of fcc lattice showing a crowdion. (Note extra ator in middle
row.)

thus displacing several atoms from their equilibrium position (see Fig.
2-8). This configuration resembles an edge dislocation in that its dis-
tor- tion is spread out along a line, it can glide in only one direction,
and the energy to move it is quite small.

With this multiplicity of configurations for an interstitial atom it is
well to point out that an interstitial atom means only that there is one
more atom than there are sites in a given small region. Similarly, that
a vacancy need not mean that a particular site is vacant but that the
region contains one fewer atom than sites.

2.3 RANDOM-WALK PROBLEM

After cataloguing the possible diffusion mechanisms, we turn next
to the problem of relating these atomic jumps to the observed mac-
roscopic diffusion phenomena. It has already been shown that near the
melting point of many metals each atom changes sites roughly 10°
times per second. Over the period of hours or days, the number of
jumps becomes astronomical. These jumps are made in all directions
and follow no particular pattern. Our problem is to take this welter of
jumps and calculate the mean distance an atom will move from its
initial site in 7 jumps. A first impression might be that the problem is
insoluble, owing to the randomness of the atoms’s jumps, and indeed
the exact distance cannot be calculated tor a particular atom. However.
precisely because of the random nature of the process and the large
number of jumps, it is relatively easy to calculate the average distance
that a group of atoms will have migrated from their initial sites. This
kind of problem is called a «random-walk” problem, and diffusion in
crystalline solids is only one application of a broad group which in-
cludes the flipping of coins, the structure of polymers, and the theory
of galaxies.”

*For further reading on the random walk problem, G. Gamov. One, Two, Three . . .
Infinitv, Viking Press (1947), Chap. 8, gives a very readable introduction. J. Manning,
Diffusion Kinetics for Atoms in Crystals, Van Nostrand, 1968. gives a more detailed
discussion of its use in diffusion problems.
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We will start with a general equation and make restrictions only as
needed. Imagine an atom starting from the origin and making n jumps.
The vector connecting the origin and the final position of the atom will
be designated R, and is given by the equation

R,=r +r+r+...=>r (2-3)

where the r, are vectors representing the various jumps. To obtain the
magnitude of R,, we square both sides of Eq. (2-3).

R, R,=R*=r,'r,+r,r,+r r+...+tr-r

n

+r,rtrrnp ot ot rnr,

.................................. (2_4)
+r,r,+r, r,tr,ry+ ... +tr,r,

We can rewrite this array as a series of sums in which the first sum
is the sum of the diagonal terms, r;-r, The second sum will consist
of all the terms r,-r,,; and r;-r;,,. There are n — 1 of each of these
terms, and they can be said to lie along the semidiagonals of Eq. (2-
4). Since r; ' r,,, equals r;,, - r;, these two sums can be combined. Pro-
ceeding in this manner gives

n n—1 n-2
= Z r,'r; + 22r,--r,-+, + 22 rr.,t o
i=1 i=1 i=1
n—1 n—j

—Ef”EEr P (2-5)

j=1 i=1

To put this in the form we shall finally work with, note that by def-
inition r,-1,,; = |r;||r;s,;|cos 6,;.; where . is the angle between the
two vectors. Substituting this relation in Eq. (2-5) gives

n—1 n—j

2 242 >0 rlir, | cos 6, (2-6)

j=1 i=1

Note that in the derivation of this equation no assumptions have been
made concerning: (1) the randomness of the jumps, (2) the lengths of
the successive jumps, (3) the allowable values of 6,,,;, or (4) the num-
ber of dimensions in which the atom is jumping. We shall proceed to
make assumptions about these and calculate an average value of R,

The problem of primary interest is that of diffusion in a crystalline
solid. For crystals with cubic symmetry all the jump vectors will be
equal in magnitude, and Eq. (2-6) can be written
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We will start with a general equation and make restrictions only as
needed. Imagine an atom starting from the origin and making n jumps.
The vector connecting the origin and the final position of the atom will
be designated R, and is given by the equation

R,=r +r+r+...= > (2-3)

where the r, are vectors representing the various jumps. To obtain the
magnitude of R,, we square both sides of Eq. (2-3).

R,-R,=R’=r,'r,+r, 5, +r-r+...+r-r,

+rr ottt rnr,

.................................. (2_4)
+r,r,+r,rptr,rp+ ... tr,r,

We can rewrite this array as a series of sums in which the first sum
is the sum of the diagonal terms, r;-r;. The second sum will consist
of all the terms r,-r,,, and r;-r;, ;. There are n — 1 of each of these
terms, and they can be said to lie along the semidiagonals of Eq. (2-
4). Since r;  r;,, equals Iy, ' I;, these two sums can be combined. Pro-
ceeding in this manner gives

n n—1 n—=2
= Zr,--r,-+ ZZrl»r,-H + ZEri-r,-+2+
i=1 i=1 i=1
n—1 n—j

'EHZEZr o, (2-5)

j=1 i=1

To put this in the form we shall finally work with, note that by def-
inition r,-1,.; = |r;||r;+,|cos 6,;,; where ., is the angle between the
two vectors. Substituting this relation in Eq. (2-5) gives
n—1 n—j
RZEr + 23 D irl|ri] cos 8, (2-6)
j=1 =1
Note that in the derivation of this equation no assumptions have been
made concerning: (1) the randomness of the jumps, (2) the lengths of
the successive jumps, (3) the allowable values of 6,,,;, or (4) the num-
ber of dimensions in which the atom is jumping. We shall proceed to
make assumptions about these and calculate an average value of R;.
The problem of primary interest is that of diffusion in a crystalline
solid. For crystals with cubic symmetry all the jump vectors will be
equal in magnitude, and Eq. (2-6) can be written
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n-1 n—j

nrt + 2r 2 2 cos 0, ;.

j=1 i=1

n—1 n—j
r2<1 +@2/n) Y, D cos 0,,,4]) (2-7)

J=1 i=1

Il

RZ

il

This equation gives R for one particle after n jumps. To obtain the
average value of Rﬁ, we must consider many atoms, each of which has
taken n jumps. The quantity nr* will be the same for each flight, but
the values of R? will be different, and the differences will arise from
the differences in the magnitudes of the double sums. The average
value of R; can be obtained by adding the various R, and dividing the
sum by the number of atoms involved. The result can be written

R =nr < +@2/m>. D cos b, ,+,> (2-8)
j=1 i=1

If each jump direction is independent of the direction of the jumps

which preceded it and each jump vector and its negative are equally

probable, then positive and negative values of any given cos 6, ,,; will

occur with equal frequency, and the average value of the term involv-

ing the double sum will be zero. When this is true

ITﬁ = nr (2-9)

VR =Vnr (2-10)

Two aspects of this result are particularly noteworthy. The first is the
extreme simplicity of the equation. The second is the fact that the mean
displacement (actually the root-mean-square displacement) is propor-
tional to the square root of the number of jumps.

As a simple example of the step between Eqs. (2-8) and (2-9), con-
sider the case of a single atom jumping back and forth along a line.
The values of cos 6,,.; are now either +1 or —1 since the angle be-
tween any two jump vectors will be either 0 or 180. If we consider
many lines, each with a particle initially at x = O as in Fig. 2-9a, after
n jumps the particles will be distributed at various distances from x =
0 as shown in Fig. 2-9b. From this figure it is apparent that R> for the
various particles differs appreciably. However, since values of cos 6
= +1 and cos § = —1 are equally probable, 2/n times the average
value of cos @ for all jumps will be much less than 1.

Although the number of jumps and number of atoms are very small,
let us consider in more detail the case depicted in Fig. 2-9. To obtain
the path of each atom, a coin was flipped 16 times. A head represented

or
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Fig. 2-9—(a) Initial distribution of atoms, one to a linc. (b) Final distribution after
each atoms made 16 random jumps. VR’ is the calculated root mean square of the
points shown.

a jump to the right; a tail, a jump to the left. In this way successive
jumps were independent of each other, and jumps to the left and to
the right were equally probable. The root-mean-square displacement
of this group of atoms is found to be 3.2 units. Since there were 16
jumps per atom, Eq. (2-9) predicts a value of 4.0, which is in rea-
sonable agreement considering the very small number of jumps involved.

To give a better understanding of the effect of the random movement
of atoms for very large values of n, consider the case of carbon dif-
fusing in y-iron. At an average carburizing temperature (950° C) car-
bon atoms make 10' jumps per second. Taking the jump distance to
be 0.1 nm, in one second each carbon atoms travels a total distance
of 1 m and a net distance of 10~ cm. After the 10* s (about 3 hr) of
an average carburizing treatment, the mean penetration is 0.10 cm,
while the total distance traveled by the atom is 10 km. It is thus ob-
vious that the net displacement of each atom is extremely small com-
pared to the total distance it travels.

Random Walk in FCC Lattice. As a second example of what is
involved in going from Eq. (2-8) to Eq. (2-9), consider the case of a
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Fig. 2-10—The arrows show 12 possible jump vectors in an fcc lattice.

vacancy diffusing in an fcc lattice.” Figure 2-10 shows the orientation
of the 12 possible jump vectors for this lattice. All of these vectors
are equivalent so that each will occur with the same frequency if an
average is taken over many vacancies and a very large number of jumps.
For this reason the mean value of the quantity r;-r,,;, i.e. r;- r,,; for
i # j, is independent of the vector chosen for r, ;. Furthermore, the
very large number of vectors to be dotted into r;, will consist of the
12 vectors of Fig. 2-10 in equal proportions. Thus the mean value of
the double sum in Eq. (2-5) will be zero if

12 12
D=1 cos ;=0 Q2-11)
j=1 =1

where the summation of j ranges over the 12 jump vectors of Fig. 2-
10. It can be seen in Fig. 2-10 that for any particular jump vector there
is another jump vector equal to the negative of that vector. For ex-
ample, rs = —r;. Therefore

r,'r,trors=r;'r;—r;:r, =0

Pairing up each of the 12 vectors with its negative in this way, we see
that Eq. (2-11) is satisfied, and so again we obtain

ITf, = nr’ (2-9)

A similar argument can be given for the case of liquids or gases.
The two main differences between this case and crystals is that all
values of §,,,; are possible instead of a discrete set and all values of
r are possible (although in any given system the values will cluster
about some mean). If the jumps, or flights, r; and —r; are equally

*The proof given here applies equally well for any other cubic lattice in which all
atoms are on equivalent sites.
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probable, they occur with the same frequency, and the double sum
again goes to zero. The resulting equation is

n

R= > ri=nr (2-12)
i=1

This equation differs from Eq. (2-9) only in that the unique jump dis-

tance of the crystal is replaced by a root-mean-square jump distance.

Relation of D to Random Walk. There are several ways of deriv-
ing the equation relating D to the atomic jump frequency and jump
distance. One is to consider an atom starting from the origin, as in the
preceding section, but instead of calculating R;, to calculate the prob-
ability that the atom has moved from the origin to a distance between
r and r + dr after n jumps. This probability can also be calculated by
solving the same problem using Fick’s laws. In addition to giving the
desired equation for r, this procedure shows that the two approaches
give identical answers. The main drawback to this approach for our
purposes is that the probability problem is complicated, though not
difficult.’

A second, simpler approach is to consider the same problem but to
solve only for the mean value of R, using the two techniques. It is
shown in one of the problems at the end of this chapter that, if C =
n/t and « is the jump distance®

R2 = no? = 6Dt (2-13)
so that
D = (1/6)Ia’ (2-14)

This equation differs from Eq. (2-2) in that the jump distance in three
dimensions, «, may not equal the distance between planes, 8.

A simpler derivation of Eq. (2-14) will now be given working with
a particular mechanism in a particular three-dimensional lattice. Since
most of the self-diffusion studies have been made on fcc metals, the
diffusion of a tracer in a pure fcc metal by a vacancy mechanism is
considered.

If I is the average number of jumps per second for each tracer atom
and n, is the number of tracer atoms on plane 1, n,I'6r of the tracer
atoms on plane 1 will jump in the short period &:. The quantity I'dt
will be proportional to the number of nearest-neighbor sites, to the

*A solution of this type is given in the first few pages of B. S. Chandrasekhar, Revs.
Modern Phys., 15 (1943) 1. This article is also reprinted in N. Wax (ed.), Selected
Papers on Noise and Stochastic Processes, Dover Publications, New York, 1954.

°0Or see M. N. Barber, B. W. Ninham, Random and Restricted Walks, Gordon &
Breach, (1970) Chap. 8.
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probability that any given neighboring site is vacant (p.), and to the
probability that the tracer will Jump into a particular vacant site in &,
namely wét.” Thus we can write

I'ét=12p, w ot (2-15)

Since only 4 of the 12 nearest neighbors are on the plane the given
atom is jumping to (see Fig. 2-10), the flux per unit area from plane
I to plane 2 is

Jip = 4”1Pv2 Wi

where subscripts have been added to emphasize the planes involved;
for example, p,, is the probability that any site on plane 2 is vacant.
Similarly the reverse flux is given by

Iy = dmyp,, Wy

In alloys, w and p. will change with composition and thus give rise to
a variation of D with composition. However, al] isotopes of a metal
are assumed to act the same, so that in a pure metal Wi = w5, and p,,
= Pv2. Combining these last two equations and noting that the distance
between planes B = a,/2, gives for the net flux

J=4p, w(n, — n,) = 4p, w(a,/2)(c; ~ c,) (2-16)
or substituting
a, dc
ame=-—3

we get
J=~ap, w(dc/dx)

From the assumed equivalence of all isotopes of the same metal, it
follows that p, will be equal to the fraction of sites vacant, or N,. The
desired equation is then

D=aN,w (2-17)

The calculation of D in a pure fec metal is thus reduced to the problem
of calculating the mole fraction of vacancies and the Jump frequency
of an atom into an adjacent vacancy. Conversely, if we measure D,
since a,, is known, we can calculate N.w; or knowing N,, we can cal-
culate w.

In a derivation similar to that which led to Eq. (2-17), it is possible
to derive an equation for an interstitial solute in a binary alloy. If the

If T, is the number of Jjumps a vacancy make per second, then 12w = [ = I'/p,.
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solution is very dilute, w is independent of composition, and the mole
fraction of vacant interstitial sites is essentially unity. Thus for a dilute
alloy, D for the interstitial element is

D=yaw (2-18)

where 7y is a geometric constant derivable from Eq. (2-14).

In closing, note that both Eqs. (2-17) and (2-18) can also be derived
from Eq. (2-14) by substituting & = a,/\/2 and I' = 12wN,. The ad-
vantage of the derivation given above is its relative simplicity and the
ease with which it can be extended to the cases in which p, and w vary
with composition, or the drift that occurs when w(, # w;,. However,
once the assumptions leading to Eqs. (2-17) and (2-18) are clearly in
mind, it is usually easier to work with Eq. (2-14).

2.4 CALCULATION OF D

Our study of the atomistic processes contributing to diffusion has
led to Eq. (2-17). From this point on, our understanding of D will
increase in proportion to our understanding of w and N,. Thus the cal-
culation of these terms is one of the basic problems in the atomic ap-
proach to diffusion. In this section we shall review the methods of
evaluation, trying to emphasize the assumptions and approximations
involved. The discussion to be given is strictly applicable only to self-
diffusion in pure metals or interstitial diffusion in very dilute, binary
alloys. The changes needed in an extension to substitutional alloys is
discussed in Chap. 4.

Equilibrium Concentration of Vacancies. To gain a better un-
derstanding of D for a vacancy mechanism, we consider first the prob-
lem of how many vacancies will be present in a pure metal and how
this concentration will change with temperature. The most important
concept to be grasped here is the increase in entropy which results from
the mixing of two pure components. A plausibility argument for this
increase in entropy can be seen from the following. If a drop of ink
is placed in a glass of water, the mixture will ultimately become uni-
formly tinted. An explanation for this homogenization might be found
in Fick’s laws, but it could also be found in a basic thermodynamic
requirement for equilibrium; namely, that for equilibrium the entropy
of any isolated system will be maximum. Thus, this homogenization
or mixing of the ink-water mixture must correspond to an increase of
the entropy of the mixture.

To be more quantitative, if an ideal solution is formed upon the
addition of component | to component 2, the equation for the increase
of entropy per mole of solution is
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Smix = —RI(1 = N)In(1 — Ny) + N, In(N))] (2-19)

where N, is the mole fraction of component 1. This equation is plotted
in Fig. 2-11. It is seen that the entropy per mole of any mixture is
greater than that of the pure components. To apply Eq. (2-19) to the
study of vacancies in metals, consider a large piece of pure metal with
no sites vacant. If several vacancies are taken from the surface and
mixed throughout the metal, the increase in the entropy, per mole of
solution 8S,,,, is

dSmix
dN,

8Smix =

8N, = —R zn< L ) 8N, (2-20)

N,
where 8N, is the change in the mole fraction of vacancies. In the limit
of N, — 0 it can be seen that 8S,,/dN, — . That is, the increase in
entropy per vacancy added is extremely large for the first few vacan-
cies, but it continually decreases from its initial, infinite value. It fol-
lows that at equilibrium there will always be some vacancies in a piece
of metal. To calculate just what the equilibrium value of N, will be,
we use the fact that in any isothermal, isobaric system at equilibrium
the change in the Gibbs free energy G will be zero for any small dis-
placement. If dn, additional vacancies are mixed into a mole of a crys-
tal already containing the concentration N, of vacancies, the change in
G will be

on, asS én,
N aN, N

6G = H, (2-21)
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Fig. 2-11—8,;, is the entropy increase upon forming one mole of an ideal solution
from the pure components. The slope of the curve is infinite at the limits of N, =0
and N, = 1.
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where N is Avogadro’s number. H,/N is the increase in the enthalpy
of the crystal per vacancy added and stems from the local changes in
the atomic and electronic configurations of the crystal when a vacancy
is introduced. The increase in the entropy of the lattice per vacancy
added, (3S/8N,)(1/N), arises from the ideal entropy of mixing as given
by Eq. (2-20) and a second part which stems primarily from the change
in the vibrations of the atoms when a vacancy is introduced. This sec-
ond contribution is designated S,/N per vacancy.® Substituting these
terms in Eq. (2-21) gives the equation

8G = [H, — TS, + RT InN,/(1 — N)|(én,/N) (2-22)

Both H, and S, will be independent of N, in very dilute solutions where
the vacancies do not interact with one another. (Experiments indicate
that in pure metals N, < 107*, so the solution is indeed very dilute.)
Since N, < 1, Eq. (2-22) can be written

8G = [H,— TS, + RT In N,1(6n,/N) (2-23)

But, at equilibrium 8G = O for any small én,. Thus at equilibrium, N,
must have the value given by the equation

N¢ = exp(S./R) exp(—H./RT) (2-24)

where the superscript e is added to N, to emphasize that N} is a par-
ticular value of N, instead of a variable. This equation can also be
written

N¢ = exp(—G,/RT) (2-25)

where G, = H, — TS, is the free-energy change of an infinite crystal,
per mole of vacancies added, over and above the entropy of mixing.
An equation identical in form to Eqgs. (2-24) or (2- 25) could be ob-
tained for the concentration of self-interstitial metal atoms, N;. In it,
G, = H, — TS, would replace G,.

A physical feeling for the meaning of, and basis for, Eq. (2-25) can
be obtained by studying Fig. 2-12. Here the molar decrease in the free
energy per mole of vacancies added is given by the line —RT In N,.
The horizontal line represents the tree-energy increase per mole of va-
cancies added (G,). The system will adjust N, until Eq. (2-24) is sat-
isfied, that is, until G, = —RTIn(N,). If the temperature is suddenly
increased to T,, RT In N, will increase while G, will be essentially
unchanged. In order to reestablish equilibrium, N, will increase until

*Strictly speaking, S, is a parameter which when added to the ideal entropy of mixing
gives the observed entropy effect. In solution chemistry S, would be called an excess
entropy of mixing.
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Fig. 2-12—N(T), the equilibrium concentration of vacancies at temperature T, is at-
tained when 7(dS,../dN,) = —G,. The variation of both of these quantities with N, is
shown, at two temperatures.

—RTIn(N,) again equals G,. For vacancies in gold, H, = 191 kJ/mol
(=1.0 eV per vacancy). Thus in the temperature range of 900-1000° C,
N, in gold will roughly double with a 90° C increase in temperature.
Often authors write N, = exp (—H,/RT), omitting the term including S,.
This is not correct, but the few data available indicate that exp (S,/R)
< 10. The omission of this term often gives an adequate approximation
and avoids the problems of discussing S,. Taking S, = 0 and H, =
23.0 kcal/mol, we get N, = 10™* at 980° C.

Calculation of the Jump Frequency w. The second unknown
quantity which enters into D is w, the frequency with which an atom
will jump into an adjacent, vacant site. The calculation of w, or even
its temperature dependence, from our fundamental knowledge of the
forces between atoms and reaction kinetics is very difficult. Actually,
our present knowledge is such that any calculation from fundamentals
cannot give a real check on experimental results. The main purpose in
such a theoretical study is to develop greater insight into the factors
which determine w and thereby D.

The atom movements required for an atom to jump are shown sche-
matically in Fig. 2-13; (a) and (c) show the initial and final states,
while (b) shows the midway configuration referred to as the activated
state. There are two separate requirements to be met before the group
of atoms can go from (a) to (c). First, the diffusing atom must be
moving to the right far enough to carry it into the adjacent site; and
second, the two restraining atoms must simultaneously move apart a
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Fig. 2-13—(a), (b), and (c¢) are schematic drawings showing the sequence of config-
urations when an atom jumps from one normal site to a neighboring one. (d) shows
how the free energy of the entire lattice would vary as the diffusing atom is reversibly

moved from configuration (a) to (b) to (c).
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great enough distance to let the diffusing atom through. Whenever these
two steps occur at the same time, the diffusing atom will change sites.

The most common method of calculating w ignores the detailed atomic
movements involved and uses statistical mechanics to calculate the
concentration of “activated complexes,” or regions containing an atom
midway between two equilibrium sites. The number of atoms diffusing
per second is then obtained by multiplying the number of activated
complexes (n,,) by the average velocity of the atoms moving through
this midpoint 7, divided by the width of the barrier or midpoint 6. From
this number jumping per second, it is shown that the average jump
frequency per atom is w = N,,.v/8, where N,, is the mole fraction of
activated complexes. The treatment of this problem in a rigorous man-
ner is very difficult since it is a many body problem, and the vibrations
leading to a site change are no longer harmonic.” The simplified treat-
ment given here is chosen to make the basic assumptions apparent.

The diffusing atom shown schematically in Fig. 2-13b is said to be
at the saddle point. Throughout the crystal there will always be atoms
entering this configuration as well as leaving it. To calculate the num-
ber of atoms at the saddle point at any instant, it is necessary to know
the increase in the Gibbs free energy of a region when an atom in it
moves from a normal site to the saddle-point position, G,,. Zener"
suggested that this free-energy change could be visualized in the fol-
lowing thought experiment. If the diffusion direction is defined as the
x axis, we constrain the atom so that it can execute its normal vibration
only in the yz plane. The atom is then slowly (reversibly) moved from
its initial site to the saddle point, allowing the surrounding atoms to
continuously readjust their positions. The work done in this reversible,
isothermal process, at constant pressure, is just equal to the change in
Gibbs free energy for the region (G,,). This can be written

Gm = Hm - TSm (2“26)

It is assumed that G,, has all the properties possessed by G, of Eq. (2-
25). Given G,,, the equilibrium mole fraction of atoms in the region
of the saddle point N,, can be calculated using a treatment essentially
the same as was used in obtaining the equation for Ni, that is, Eq (2-
25). Instead of mixing into the lattice vacancies which increase the
free energy by G, per mole of vacancies, we mix in activated com-
plexes which increase the free energy by G,, per mole of complexes.

For a more detailed discussion of the problem see Chap. 7 of C. P. Flynn, Point
Defects & Diffusion, Clarendon-Oxford Press, (1972).

100 Zener, in W. Schockley (ed.), Imperfections in Nearly Perfect Crystals, p. 289,
John Wiley & Sons, Inc., New York, 1952, or C. P. Flynn, Point Defects & Diffusion,
Clarendon-Oxford Press, (1972), pp. 335-7.
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The ideal entropy of mixing is the same for vacancies and complexes
s0, at equilibrium, n,, out of N atoms will be in the neighborhood of
a saddle point at any instant and

n,/N = N,, = expl(—=H,, + TS,)/RT] = exp(=G,./RT) (2-27)

In the equation w = N,v/8, simple dimensional analysis shows that
v/8 is a frequency. This is the frequency » with which the atoms at
the saddle point go to the new site. A more complete treatment shows
that v is of the order of the mean vibrational frequency of an atom
about its equilibrium site. Thus, of N atoms n,,v will jump from one
site to a given vacant neighbor site per second. If this is true, the
average jump frequency for any given atom will be

vn, /N = w = vexp(—G,/RT) (2-28)

A particularly simple interpretation of Eq. (2-28) is to think of it as
the frequency with which an atom vibrates in a given diffusion dire:-
tion v times the probability that any given oscillation will move the
atom to an adjacent site in that direction, exp(—G,,/RT). The precise
definition of v is one of the more difficult aspects of a rigorous theory.
However, it is usually taken equal to the Debye frequency.

Equations for D. Empirically it is found that D can be described
by the equation

D = D, exp(—Q/RT) (2-29)

where D, and Q will vary with composition but are independent of
temperature. Experimentally D, and the activation energy Q are ob-
tained by plotting /n D versus 1/T. The slope of this plot gives

dinD  Q

d1/T R

while In D, is given by the intercept at 1 /T = 0.
An alternate equation for D in the case of interstitial diffusion can
be obtained by substituting Eq. (2-28) for w in Eq. (2-18). This gives

D = [yadlvexp(S,./R) exp[—H,/RT] (2-30)

Comparing this with Eq. (2-29) shows that the first term in parentheses
is equal to D, and that Q equals the quantity H,,.

For diffusion by a vacancy mechanism in a pure metal, Egs. (2-28),
(2-24), and (2-17) give

X S, + S, -H,—H,
D =j{a,vexp 7 exp T (2-3D)
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The term in square brackets is again D,, while O is the sum of H,, and
H,. Since Q is seen to be made up of enthalpy terms in both cases.

The entropy terms S, + S,, from either Eq. (2-30) or Eq. (2-31) can
be evaluated from the known value of D,,, a’, y. and an assumed value
of v. As was pointed out above, v is usually taken to be the Debye
frequency for a pure metal. In the case of interstitial atoms, v can be
estimated by assuming that the potential-energy curve of the atom var-
ies sinusoidally along the diffusion path and its maximum value is
H,." In either case, the value of the entropy term obtained depends
on the value of v assumed. In view of the vagueness as to what v is
to be used, the S, cannot be determined with precision. However, as
will be seen in the next section, the evaluation of even an approximate
value can be quite helpful in checking experimental results.

2.5 CALCULATION OF H AND § FROM FIRST
PRINCIPLES

There has been a fruitful interaction between the theoretical calcu-
lations and experiment in this area. Historically one of the first ques-
tions was whether diffusion in fcc noble metals like copper occurs by
the exchange of two adjacent atoms Or by a vacancy mechanism. Later
with the advent of big computers and studies of radiation damage, the
theoretical models provided insights into the formation and motion
energies of self-interstitials, as well as small defect clusters. Most re-
cently the models have been used to study possible mechanisms of
diffusion in grain boundaries.

The models used on the large computers to calculate defect energies
starts with an assumed energy function. In this function the energy of
the lattice is described as a function of the relative position of all of
the atoms in the lattice. This is done with terms arising from the two-
body forces between the atoms plus a contribution from changes in
electronic structure and volume changes of the crystal.'”

We shall outline the calculations which have been made using the
models of solid-state physics. The actual calculations are beyond the
scope of this book. Nevertheless, by reviewing the models and the
results, the student will obtain a feeling for the physical effects which
contribute to H and S.

Calculation of H,,. The short range interactions between atoms in
noble metals and transition metals is determined largely by the repul-
sion of the filled electron shells, or ion cores, of the atoms. To cal-

e, Wert, C. Zener, Phys. Rev., 76, (1949) 1169.
2R A. Johnson, in Diffusion, ASM, Metals Park, OH, 1973, pp. 25-46.
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culate the energy of activation for an atom jumping into a vacancy, a
geometry similar to Fig. 2-13b is used for the activated state. Thus an
atom is placed at the saddle point, and the surrounding ions and elec-
trons are allowed to relax to this new configuration. Consideration of
the geometry shows that the vacancy has been divided into two equal
halves. Thus to a first approximation there is no change in the energy
of the electrons, and the electronic contribution to H,, is zero. How-
ever, the diffusing atom has moved appreciably closer to its neighbors
in the saddle-point configuration, and the ion-core interaction energy
is appreciable. The calculation of this interaction for the atoms which
are nearest and next nearest neighbors of the activated atom and va-
cancy is obtained by allowing the atoms to relax until the sum of all
of the energy terms is a minimum.

Calculation of H,. While the migration energy stemmed primarily
from ion core repulsion, the energy to form a vacancy stems primarily
from the change in energy of the free electrons in the metal. The dis-
cussion given here will deal with the metals copper, silver and gold,
though it should be similar for transition metals.

To establish a model for calculating H,, we take advantage of the
fact that the enthalpy of the crystal depends only on the number of
vacancies present and not on the mechanism by which they were pro-
duced. For this reason the conceptual procedure used here to form a
vacancy need bear no resemblance to how the vacancies are actually
formed in the real crystal. We consider the metal, e. g. copper, to con-
sist of ions with a charge of +1, arranged in a gas of electrons. If a
neutral atom is removed from the center of the crystal and placed on
a rough area of the surface, there is no change in surface area, but
there is an increase in the volume. This volume increase decreases the
average energy of all of the electrons and gives an energy change of
—2.8 eV per vacancy.'>!4

The removal of an atom from the center of the specimen to the sur-
face leaves one atomic volume devoid of charge. The free electrons
in the region around this vacant volume will tend to flow into the va-
cancy, but since there is no positive charge in the vacant site this will
increase the electrostatic energy. This can be seen with the aid of Fig.
2-14 where it is assumed that the positive charge density drops sharply
at the edge of the vacant site, while the time average of the electron
density tails off into the vacant site. The greater the electron penetra-
tion of the vacancy, the greater the electrostatic energy of the separated

“The energy unit eV (electron volt) is convenient for expressing the energy changes
in atomic processes. | eV per atom = 96.46 kJ /mol.
“The energy changes given here are those of F. Fumi, Phil. Mag., 46 (1955) 1007.
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Fig. 2-14—Model for positive and negative charge density distribution (p. and p.)
around a vacancy.

positive and negative charge. However, if this electrostatic energy is
minimized by forming a very sharp change in the electron density,
shorter wavelengths are required for the electrons and thus higher ener-
gies. At equilibrium, the increase in energy is primarily due to the
shorter wavelength (higher kinetic energy) of these electrons and is
+4.0 eV per vacancy.

Although most of the energy change accompanying the formation
of a vacancy is electronic, there is a small contribution from the change
in the positions of the ions surrounding the vacancy. These ion cores
can be thought of as close-packed spheres which are slightly com-
pressed. If an atom is removed, the surrounding ions will relax into
the vacancy, thereby decreasing their energy. This relaxation is small
in a close-packed lattice, and the energy decrease from this source is
only —0.3 eV per vacancy.

If these three contributions are added together, one obtains a value
of 0.9 eV per vacancy = E, = H, for copper. The experimentally
obtained value of H, is 1.29 eV (Table 2-1). The values of the energies
depend critically on the volume changes assumed, however, the results
obtained are of the correct magnitude, and the dominant contribution
of electronic terms is clearly indicated.

Calculation of S, & S,,." It is shown in most texts on statistical
mechanics that the Helmholtz free energy of a crystal relative to that
at absolute zero can be represented by the equation

F=—kT D In|1 — exp(—hv,/kT)]"" (2-32)

where i is summed over the frequencies of the crystal. The entropy
change for some process can then be obtained from Eq. (2-32) by using
the thermodynamic equation

S = —(dF /3T), (2-33)

For temperatures well above the Debye temperature, hy, < kT, and

*The discussion given here follows that of H. Huntington, G. Shirn, E. Wajda,
Phys. Rev., 99 (1955) 1085.
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Table 2-1. Point Defect Energies (in eV)*

Metal H,(pa) H,® H (qu) H (te)
bce
Mo 3.0 1.50 3.2
Nb 2.65 1.00
Ta 2.8 1.45
\" 2.1 .
W 4.0 1.5 3.6
Fe(par) 1.6 0.92
fce
Al 0.68 0.68 0.66 0.76
Ag 1.12 0.60 1.06
Au 0.89 0.84 0.94 0.94
Cu 1.29 0.78 1.27 1.17
Fe 1.4 1.26
Ni 1.78 1.32 1.63
Pb 0.57 0.59 0.55
Pd 1.85 0.91
Pt 1.32 1.37 1.31

From H. E. Schaefer, Positron Annihilation, P. G. Coleman, S. C. Sharma (eds),
North Holland (1982) p. 369, except thermal expansion from R. W. Siegel, J. Nucl.
Mail., 69&70 (1978) p. 117.

*H (pa) from positron annihilation, H,(qu) by quenching, and H.(te) from thermal
expansion.

*H, = O, — H/{pa).

these two equations give
S=-k 2 In(hv,/kT) (2-34)

If the frequencies of the perfect crystal are designated v,,, and the fre-
quencies after the introduction of a defect as vy, the entropy change
when a defect is introduced is

S=k D In(vy/vy) (2-35)

The summation in Eq. (2-35) extends over all of the vibrational modes
of the crystal. Actually solving for all of these modes is too compli-
cated a problem, so Huntington et al. simplified the equations by di-
viding the lattice into three regions. The first region contains only the
nearest neighbors of the defect, and in this region Eq. (2-35) is used.
If the defect involved is a vacancy, the force required to slightly dis-
place an atom into the vacancy will be less than that required for the
same displacement in a perfect crystal. This means that v, < y,, so
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that the contribution of the atoms in this region would tend to make
S > 0. If the defect involved is an interstitial atom, the atoms next to
the defect will be pushed much closer together, so that v, > v,, and
this will tend to make § < 0.

The second region contains the elastic stress field set up by the de-
fect. Here elasticity theory is applied. As is discussed below under
Zener’s theory of D, the elastic moduli decrease with increasing tem-
perature, so this elastically strained region always makes a positive
contribution to S.

The third region contains the rest of the lattice and is only affected
by the expansion or contraction required to give zero pressure at the
surface. The contribution of this region always reduces the magnitude
of the contribution of the first region but does not change its sign.

For the metal copper the values of S calculated for various defects
are

S,=1.5R S, +S, =0.9R S(nterstit.) = 0.8R  (2-36)

It is seen that in each case the effect of adding one mole of a defect
is to increase the entropy of the crystal by an amount roughly equal
to the gas constant R. As a comparison between these calculated values
and experimental results, the value of §, + S, for copper can be ob-
tained from data on the diffusion coefficient of copper in copper. The
experimental values of D, = 0.16 cm’/s,'® v = 7 X 10"%/s, and a, =
3.61A give S, + S,, = 2.8R. This is considered to be good agreement
since the calculated value is only approximate and the value of v to
be taken is also uncertain enough to make up the discrepancy.

2-6. EXPERIMENTAL DETERMINATION OF
H, H,, AND S,

It is possible to measure H,, H,,, and S, experimentally. This work
started with efforts to understand the damage introduced into metals
by fast neutrons in nuclear power reactors. However that damage is
complex and there has been an evolution from the study of these com-
plex annealing processes in non-equilibrium systems to experiments in
which the concentration of vacancies can be measured in samples at
equilibrium.

Three types of experiments are discussed. The first uses thermal
expansion data to obtain values of S, and H,. In the second H, is ob-
tained from the excess vacancies retained in a sample quenched from
high temperatures. The third uses positron annihilation to measure H,,.

'*A. Kuper, H. Letaw, L. Slifkin, C. Tomizuka, Phys. Rev., 98 (1955) 1870.
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Thermal Expansion. The type of defect which is most important
in diffusion studies in metals is thought to be the vacancy. Of the
procedures used to determine H, the simplest to interpret and the only
one giving data on S, comes from the study of thermal expansion.

When a piece of metal is heated, its length L increases. This ex-
pansion stems partly from an increase in the distance between lattice
planes, but also from the creation of additional vacant sites inside the
crystal. The lattice parameter q,, as determined by X-rays measures
only the increase in the average distance between lattice planes. Thus
the increase in the atom fraction of sites An/n will be proportional to
the difference between the increase in length of a sample AL/L, and
the increase in lattice parameter Aa/a. In general a change in volume
dV/V will be three times the change in linear dimension of the same
solid, dl/!1. Since An/n is proportional to the change in volume, one
arrives at the following expression

An/n = 3(AL/L — Aa/a) (2-37)

If the dominant defect was interstitials and not vacancies then An/n
would be negative. However Eq. (2-37) gives the change in the frac-
tion of atom sites independent of (1) the type of defects (vacancies or
interstitials), (2) the degree of lattice relaxation around the sites, or (3)
any pairing or clustering of the defects. If both vacancies and inter-
stitials were formed, An/n would be proportional to the difference be-
tween the concentrations of the two defects. In metals, An/n is pos-
itive, as we would expect, and it is assumed that An/n is due entirely
to vacancies.

Equation (2-37) is quite simple, but the experimental measurements
required to use it are not. Near the melting point An/n = 107, Thus,
to measure An/n with an accuracy of only 1% requires that Aa/a and
AL/L be measured to within one part in 10°. This is a nontrivial task
at room temperature, and at 700 to 1000° C it becomes a major un-
dertaking. To minimize the effect of errors in temperature measure-
ment, it is necessary to measure Aa/a and AL/L on the same specimen
at the same time. Careful studies of this type have been reported by
Simmons and Balluffi."” Their results for aluminum are shown in Fig.
2-15. The difference between the two curves gives the following
equation:

An/n = exp(2.4) exp(—0.76/kT) (2-38)

At the melting point of aluminum this gives An/n = 9.4 X 10™*. The
fact that An/n is positive confirms the belief that vacancies are the

R. Simmons, R. Balluffi, Phys. Rev., 119 (1960) 600.
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Fig. 2-15—Length change and lattice parameter change vs. temperature for aluminum,
taking AL/L and Aa/a to be zero at 20° C. The difference between the two lines is
directly proportional to the concentration of vacant atomic sites. [From R. Simmons,
R. Balluffi, Phys. Rev., 117 (1960) 52.]

dominant type of defect. If there is no interaction between vacancies,
they are randomly distributed. In this case An/n would equal N,, and
Eq. (2-38) would indicate that

H(te) = 0.75 eV /vacancy = 72 kJ/mole and S,/R = 2.4

It is generally agreed that there is a small interaction between the va-
cancies so that the vacancies will not be randomly distributed. If this
is true, the numbers appearing in Eq. (2-38) are not identically equal
to S,/R and H,,"® but it is felt that the changes in H, and S,/R will be
<3%. Other metals have been studied and in each case S,/R was pos-
itive and on the order of unity. For the determination of H, one can
get better data from a wider range of metals using positron annihilation.

Quenching Experiments. If a metal is heated, the new, higher
equilibrium concentration of vacancies is established first at disloca-
tions and boundaries, which act as sources. The new concentration

"Throughout this section G’s and H’s will be quoted either as the energy change
per mole of defects (kJ/mole) or as the energy per defect. This mirrors what the reader
will find in the literature and should lead to no confusion since the terminology and
units are completely interchangeable. The corresponding molar and atomic entropies
are expressed in the dimensionless quantities S/R and S/k, respectively.



82 Diffusion in Solids

then spreads throughout the specimen by the diffusion of vacancies out
into the crystal. If the specimen is cooled, the sources act as sinks,
and the vacancy concentration of the sample is lowered by the diffu-
sion of vacancies to these sinks. In either case, a finite time is required
to reach the new equilibrium concentration. If a metal is cooled very
rapidly, most of the vacancies do not have time to diffuse to sinks and
are said to be “quenched in.”

The electrical resistance provides a sensitive measure of the vacancy
concentration, so that under special conditions it can be used to mea-
sure the number of vacancies quenched in and the rate at which they
anneal out. The specific resistance of a pure metal p can be thought
of as being made up of two parts, one part due to the thermal oscil-
lations of the lattice p(T) and a second part due to various defects in
the lattice such as vacancies, impurity atoms, and dislocations. Since
we wish to vary only the vacancies concentration we can represent this
latter term by p, + p,, where p, is all defects aside from vacancies.
The equation for p is thus

p=pT)+pstp (2-39)

To measure the resistance change due to some quenching or annealing
operation, it is necessary to measure p at the same low temperature
before and after the operation. This makes p(T") the same in all mea-
surements and also makes it small. To make p reflect only changes in
p,, it is also necessary to keep py from changing during the cycle. This
will be accomplished if the specimen is not contaminated on heating
or quenching and if no additional dislocations are introduced by
quenching stresses. At the low vacancy concentrations involved, p,
will be proportional to N,, so that if p, + p(T) is the same before and
after a cycle, we shall have

Ap = Ap, = a AN, (2-40)

Using a resistance bridge, the electrical resistance of a metal specimen
can be measured with great precision. Experimentally this means that
if a pure metal is held at the temperature of liquid nitrogen [so p(T)
is small], a change in vacancy concentration will show up as an easily
and accurately measurable change in p.

Both H, and H,, can be obtained from quenching experiments. As
the specimen is quenched from higher temperatures, a larger number
of vacancies will be quenched in. If all of the vacancies, or even a
constant fraction, are quenched in, H, can be obtained from the vari-
ation of the quenched-in resistance with the quenching temperature T,,.
The quenched-in concentration of vacancies will be orders of magni-
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tude larger than the initial concentration, so that Eq. (2-40) can be
written

ApJa = AN, = N, = A exp(—H,(qu)/RT) (2-41)

This technique has been used by several groups, and consistent results
have been obtained for many metals. Representative values are given
in Table 2-1.

The temperature dependence of the rate of annealing out of vacan-

cies from quenched samples allows one to measure H,,. However, it
now is generally agreed that the most accurate values of H, can be
obtained by subtracting H, from the activation energy for self diffusion
in the temperature range where monovacancy diffusion is dominant,
Q.
Positron Annihilation. When certain radioactive isotopes decay they
emit particles called positrons. These have the mass of an electron but
their charge is equal and opposite to that of the electron. They could
also be called ‘anti-electrons’ since when a positron combines with an
electron the mass of the two particles is converted into energy in the
form of two gamma rays.

A schematic representation of positron annihilation is shown in Fig.
2-16. A source containing Na?, often in the form of NaCl, is placed
near the sample that is to be studied. When a Na** atom decays it emits

Y BIRTH
(1.28 MeV) /7, VANNIMILATION
S skevs AE) !
" ;
urssn 3 ~ :
! VAN :
!
ZZNG et
-
¢t SOURCE

7ANNIMILATION

(511 keV t AE)
DOPPLER BROADENING

Fig. 2-16— Schematic representation of positron annihilation indicating the basis for
the three experimental techniques: lifetime, Doppler broadening and angular correla-
tion. [R. W. Siegel, J. Nucl. Matl. 69 (1978) 117.]



84 Diffusion in Solids

a 1.12 MeV vy ray and an energetic positron. When the positron enters
the solid it quickly loses its kinetic energy and becomes thermalized.
It migrates through the solid until after between zero and a few hundred
pico-seconds it combines with an electron to form two gamma rays of
about 511 keV. The great sensitivity of positrons to vacancies in metals
(down to N, of 107°) arises from the tendency of a positron to become
trapped in a bound state in a vacancy where positron annihilation sub-
sequently occurs. The absence of core electrons in a vacancy relative
to the electron density in the perfect lattice, results in the lifetime of
positrons localized in the vacancy trap being 20 to 80% longer than
those in the perfect lattice.

If the temperature of the source and specimen are raised from a low
temperature the vacancy concentration increases. With this rise in va-
cancy concentration the average lifetime of the positrons in the metal
increases as more of them become trapped in vacancies and are an-
nihilated there rather in the perfect regions of the lattice. Ultimately
when essentially all of the positrons are trapped and annihilated at va-
cancies the mean lifetime no longer increases with temperature. The
temperature dependence of N, can also be obtained from related small
variations in the relative energy or direction of the y rays emitted on
annihilation.

Positron trapping occurs in most, though not all, metals. It is an
equilibrium measurement, and one that allows measurements to be taken
at high temperatures. Due to its high sensitivity it can also be used
over a relative wide temperature range. Data obtained for a variety of
metals are given in Table 2-1.

2.7 EFFECT OF HYDROSTATIC PRESSURE ON
DIFFUSION

When a vacancy is formed in a solid the volume of the crystal in-
creases by roughly the volume of one atom. If a hydrostatic pressure
is applied to a solid at equilibrium one might expect that the equilib-
rium concentration of vacancies would decrease, allowing the external
pressure to do work on the system. Thus if self diffusion occurs pri-
marily by a vacancy mechanism, one would expect the self diffusion
coefficient to decrease appreciably with increasing pressure. This is
indeed found to be the case.

One can relate this volume change, and that associated with the
movement of atoms through the lattice, by applying equilibrium ther-
modynamic arguments. From thermodynamics we have the relation

(0G/3aP)y =V (2-42)
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Considering G,, and G,, to be free energies and using the equation
for D
D = a;N,w = alvexp(—G,/RT) exp(~G,,/RT) (2-43)

leads to the equation
dln(D/a’v) -1 /9G, 9G,,
—_— | =— + [ — (2-44)
aP r RT P/ ; P/,

oP T-RT ' " K -

and

Vsp is called the activation volume. V, is the partial molar volume
of the vacancies. Its magnitude will depend on the degree to which
the atoms surrounding a vacancy relax into it. If there was no such
relaxation, V, would equal the molar volume of the metal {2 since
creating a mole of vacancies in the specimen would increase the vol-
ume of the large piece just as much as adding a mole of the pure metal
would. However, there will be some relaxation of the lattice into the
vacancy, so V, will be less than (2. For a close-packed metals like Cu,
V, should be an appreciable fraction of 2. For bee alkali metals like
Na or Li it is a somewhat smaller fraction of (2.

The second term contributing to the activation volume V,, is the par-
tial molar volume of activated complexes. At the saddle point the dif-
fusing atom is expanding a constriction, while the volume of the di-
vided vacancy is approximately unchanged. Thus, V,, is probably
positive, but small. This means that an increase in the pressure would
decrease the concentration of activated complexes slightly.

Table 2-2 gives some experimental values of the ratio Vyp /0. It is
positive and less than unity for all of the solids. Vacancy diffusion is
the dominant mechanism here so this indicates that there is an appre-
ciable relaxation of the lattice into a vacancy. Note that the value of
Vsp/ Q2 for fcc metals is larger than that for the less closely packed
lithium or sodium lattices. (The larger of the two values for Na is
found at higher temperatures and is associated with divacancy diffu-
sion. The smaller occurs at low temperature where the monovacancy
mechanism dominates diffusion.) Experiments on the effect of pressure
on the rate at which quenched-in vacancies anneal out show that in-
creasing the pressure decreases the rate of annealing. In gold, V,,/0
= 0.15." This indicates that V,, is roughly one fourth that of V,.

"R. Emrick, Phys. Rev., 122 (1961) 1720.
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Table 2-2. Activation Volumes for Self-Diffusion

Metal Vsp/2 Ref.

Solid self-diffusion

Ag 0.9 b

Au 0.72 b

Cu 0.9 b

Li 0.28 b

Na 0.32, 0.59 a

Pb 0.73 b
Liquid diffusion

Hg 0.04 ¢

Ga 0.048 ¢
Interstitial

C in Fe (250° K) 0.003 d

N in V (433° K) 0.01 d

Cu in Pb (600° K) 0.004 d

*J. N. Mundy, Phys. Rev. B3 (1971) 2431.

"N. L. Peterson, J. Nucl. Matl., 69 (1978) 3.

°N. Nachtrieb, Liquid Metals and Solidification, ASM, Metals Park, OH, (1938), p.
49,

‘D. Beshers in Diffusion, ASM, Metals Park OH, (1973) p. 209.

It has been proposed that diffusion in a liquid occurs when a hole
opens up in the nearest-neighbor shell of atoms, and the diffusing atom
jumps into it. Some people conceive of these holes as having a volume
comparable to that of a vacancy in a crystal. The effect of pressure on
D is an ideal way to measure the mean size of these holes. The mea-
sured values of Vg, indicate that, at least in mercury and gallium, these
holes are such a small fraction of {2 that the concept of vacancies in
liquids is not appropriate.

Note that the activation volumes for interstitial diffusion are an order
of magnitude lower than those for self diffusion by a vacancy mech-
anism. This stems largely from the fact that no vacancy need be formed
for interstitial diffusion. Copper dissolves substitutionally in lead, but
is believed to move by an interstitial mechanism. This will be dis-
cussed further in Chap. 3.

2.8 EMPIRICAL RULES FOR OBTAINING Q AND D,

Just as there are systematic variations of physical properties with
position in the periodic table, e.g. melting point, elastic constants, etc.,
there is a systematic variation of diffusion data. This provides a way
to check new data for consistency, and can be used for making in-
formed guesses about the value of D for self diffusion where no mea-
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surements are available. Brown and Ashby have assembled data for a
wide variety of solids, chosen three correlations, and applied them to
a wide range of types of solids.” Their equations are:

» The diffusion coefficient at the melting temperature D(T,) is a constant.
» The ratio of activation energy to RT is a constant, Q/RT,,.
» The activation volume is given by the equation

Ve = (Q/T,)dT,/dp)

(The activation volume reflects the effect of pressure on D and is dis-
cussed in Sect. 2-9.) Some of their mean values for various crystal
structures are given in Table 2-3.

Table 2-3. Diffusion Correlations

Class D(T,)(cm?/s) Q/RT,, V* /()
Fecc 5.5 x 107° 18.4 0.85
Bee (Li,Na,K,Rb) 1.4 x 107° 14.7 0.40
Bec (trans. elements) 2.9 x 107* 17.8
Hcp (Mg,Cd,Zn) 1.6 x 1078 17.3 0.68
Alkali Halides 3.2 x 107° 22.7 4.6

From A. M. Brown, M. F. Ashby, Acta Mez., 28 (1980) 1085.

One of the better founded rules is that of Zener for the entropy term
S, This was originally put forward as a theory when the available
experimental values of D, for interstitials varied by many orders of
magnitudes and not even the sign of S, could be inferred with any
certainty. Zener reasoned that much of the work in moving an atom
from an equilibrium position to the saddle point goes into elastically
straining the lattice around the saddle point. Thus the work G,, can be
set equal to a constant times /\(e(,)2 where €, i1s some representative
strain for the matrix when the atom is at the saddle point and where
A is an appropriate elastic modulus for the solvent. Since G,, is a Gibbs
free energy, it follows that

S, = —(G,/T), (2-46)

But ¢, is essentially independent of temperature, so G,, varies with
temperature in the same way as A. Experimentally it is found that dA/
dT is negative for all solids not undergoing a phase change; therefore,
S, will be positive. The vibration frequency of the interstitial v can be
estimated by assuming that the potential energy varies sinusoidally from

*See also, H. Bakker, Diffusion in Crystalline Solids, ed. G. E. Murch, A. S. Now-
ick, Academic Press, 1984, p. 189-258.
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the equilibrium position to the saddle point. In this case
v=(Q/ma’)"’ (2-47)
where m is the mass of the interstitial, and « the jump distance. This
immediately set a lower limit on D, (interstitial) given by the equation
D,>a’v=10"cm’/s (2-48)
Zener developed this argument and predicted that S, is given by the
equation
Sm = BQ/T,) (2-49)

where much of the variation of the elastic constants from one element
to another can be removed by using the parameter.

B = —d(u/n,)/dT/T,)

Here T, is the melting point of the solvent, and w, is the elastic mod-
ulus at a low temperature.

Table 2-4 presents some of the accurate data now available. The
prediction of Zener’s theory can be represented as a constant value of

A=S,/(BQ/T,)

where A is the ratio of the experimental value of S, to the value pre-
dicted by Eq. (2-49). The agreement may not appear to be outstanding,

Table 2-4. Diffusion of Interstitials in Bcc Metals

D, Q
Solvent Solute (cm®/s) (kJ /mol) S./R A
Vv C 0.0088 116 1.4 0.66
N 0.042 148 2.9 1.1
(@] 0.025 123 2.5 1.2
Nb C 0.010 141 1.3 0.43
N 0.009 145 1.2 0.37
O 0.021 113 2.3 0.92
Mo C 0.012 161 1.5 0.61
N 0.0043 109 0.74 0.44
(0] 0.028 105 2.7 1.7
Fe C 0.004 80.1 0.83 0.37
N 0.005 76.8 1.1 0.51
o° 0.002 86.0

*From D. Beshers in Diffusion, American Soc. Metals, Metals Park, OH, 1973, pp.
209-40.
®J. Takada, Oxidation of Metals, 25 (1986) 93—-103. (Internal oxid.)
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and indeed it is not. However, the very accurate data which are now
available have been almost entirely determined since 1950. The data
available then were much poorer, and Zener’s theory was instrumental
in casting doubt on the validity of much of the older data.

Self diffusion data for several pure elements, as well as Q/T,, are
given in Table 2-5.

2.9 DIVACANCY FORMATION

If two vacancies are on adjoining sites, they are said to form a di-
vacancy. There is an attraction between vacancies in many metals and
thus a tendency to form divacancies. In addition divacancies often move
through the lattice more rapidly than do monovacancies. Thus diva-
cancy formation can enhance the rate of self diffusion by a vacancy
mechanism.

Consider the reaction of two vacancies to form a divacancy. f there
is no interaction between the two, the atom fraction of such pairs N-
in an fcc lattice is given by the equation

N,, = 6(N,) (2-50)

This is obtained as follows. The number of vacancies that are in di-
vacancies in a mole of material is given by the number of vacancies
times the probability that there will be a vacancy on any one of the

Table 2-5. Self Diffusion in Metals (Constant Q)

D,{) Q Q/TNI

Metal Struct (cm~/s) (kJ/mol) (kJ/K)
Cr bee 970 435 0.20
a-Fe bece 2.0 239 0.20
K bee 0.16 39.5 0.12
Mo bee 0.1 386 0.13
W bee 1.88 586 0.16
Al fce 0.047 123 0.13
Co fcc 0.83 284 0.16
v-Fe - fee 0.49 284 0.17
Pb fce 1.37 109 0.18
Pd fee 0.21 266 0.15
Pt fee 0.33 285 0.14
Th fce 1.2 320 0.16
Ge' dia.cub 25 318 0.26
Si’ dia.cub 20 424 0.25

Data from N. L. Peterson, J. Nucl. Marl., 69&70 (1978) 3.
'G. Vogel, G. Hettich, H. Mehrer, Jnl. Phys. C, 16 (1983) 6197.
’F. J. Demond, ct al., Phvs. Lett. 93A (1983) 503.
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vacancy’s twelve nearest-neighbor sites. In the absence of any inter-
action between vacancies, the probability that there is a vacancy on
any specific site is N,. If the number of vacancies is n, then the number
of vacancies in divacancies is 12 n,N,. This means that the number of
divacancies is 6 n,N,, and if we define N,, as this number over the
number of sites in a mole, Eq. (2-50) is obtained.

If there is an interaction between two vacancies, a correction term
must be added to Eq. (2-50). The more interesting situation is the one
in which the two vacancies are attracted to one another. In this case,
the free energy of the lattice is lowered when two vacancies move
together to form a divacancy, or equivalently, when work is required
to separate two adjacent vacancies. In this case N,, will be greater than
6(N,)*. The equation for N,, can most simply be obtained by forming
the equilibrium constant for the reaction between monovacancies to
form a divacancy. If we consider the formation of divacancies of a
particular orientation, the equation can be schematically written

O+ 0=
and, from the law of mass action®
In(N,,/N?) = =G,/RT or N,, = Niexp(—G,/RT) (2-51)

However, there are six different orientations of divacancies in an fcc
lattice, and we wish to count all of them in N2. Therefore,

N, = 6(N,)*exp(—G,/RT) (2-52)

Here G, is the molar free-energy change of the lattice when divacan-
cies are formed from two initially separated vacancies. If there is an
attraction between vacancies, the energy is negative and one speaks of
a binding energy between the vacancies in a divacancy.

The binding energy for divacancies is roughly equal to 10% of H,,.
Thus though the exponential term in Eq. (2-52) gets larger as the tem-
perature drops, N,, at equilibrium will decrease much more rapidly
with temperature because N, drops much more rapidly with tempera-
ture. Thus the contribution of divacancies to self diffusion would be
greatest at high temperatures. On the other hand if a metal is rapidly
quenched from high temperatures the vacancy concentration doesn’t
change during the quench, the exp(—G,/RT) term becomes larger, and
divacancies can make a large contribution to the diffusion of excess
(non-equilibrium) vacancies to sinks. For example the divacancy con-

*'The reader who is not familiar with this law will find it discussed under this title
or “equilibrium constant” in most books on thermodynamics or physical chemistry,
e.g., L. Darken, R. Gurry, Physical Chemistry of Metals, chap. 9, McGraw-Hill Book
Company, Inc., New York, 1953.
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tribution can substantially enhance the rate of solute diffusion and the
rate of precipitation in age hardening alloys.

2.10 SELF DIFFUSION ANOMALIES

It appears that self diffusion in pure metals always occurs by the
vacancy mechanism. Often it occurs with an activation energy @ that
is constant over a wide range of temperature and many orders of mag-
nitude of Dg,. However, as more precise data have become available
over a wider temperature range it has become clear that the Q is not
always constant; that is, a plot of In D vs. 1/T is curved, not straight.
This behavior is somewhat arbitrarily termed “anomalous.” At least
two mechanisms have been identified that can account for this, diva-
cancy diffusion in addition to monovacancy diffusion, and the decrease
of H,, as a phase transition is approached.

Divacancy Diffusion. It was pointed out in Sec. (2-8) that at higher
temperatures the equilibrium concentration of divacancies can become
appreciable, especially if there is an attraction between the vacancies.
These divacancies diffuse faster than monovacancies, and indepen-
dently of the monovacancy. That is they both contribute to I" in the
equation D = I'a’/6. In this case the self diffusion can be described
by adding the contributions of the two mechanisms to give an equation
of the form

D = D, exp(=Q,/RT) + D,, exp(=Q,/RT) (2-53)

Here D,, and Q, are those for the monovacancy that were treated above.
The energy Q, = H,, + 2H, — H,, where H, is the enthalpy part of
G, discussed in Sec. (2-8), and is positive if there is attraction between
the vacancies. Table 2-6 gives data for several metals whose behavior
is better described this way. Fig. 2-17 shows a plot of In D vs. 1/T
for self diffusion in sodium. The curvature is clearly visible. Study of
the effect of pressure on D indicates that the activation volume varies
with pressure in a manner that supports the operation of a divacancy
at high temperature and a monovacancy at lower temperatures.?
Phase Changes. Fig. 2-18 shows the variation of /n D with 1/T
for self diffusion of Zr” in B-Zr. The curvature is continuous, pro-
nounced, and far greater than is found in metals where there is no
phase transition but only a divacancy contribution. In Fig. 2-18 the
intercepts and slopes of the highest and lowest temperature tangents
give, 4.8 X 107 < D, < 2.5 X 1072 cm?/s, and 86.6 < Q < 196

“]. N. Mundy, Phys. Rev. B3 (1971) 2431. See also N. Peterson, J. Nucl. Matl.,
69, (1978) 3.
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Table 2-6. Self Diffusion in Pure Metals (Variable Q)

Dol Ql Dul QZ

Metal Struct (cm’/s) (kJ/mol) (cm?/s) (kJ/mol)
Ag fce 0.04 170 4.7 211
Au fce 0.04 170 0.56 229
Cu fce 0.16 200 6.4 250
Ni fce 0.92 278 37 357
Li bce 0.038 50 9.5 67
Nb bce 0.008 349 3.7 438
Na bce 0.004 35.2 0.29 44
Ta bce 0.018 392 10 516
\% bcce 0.014 283 7.5 359
B-Ti bee 0.00036 130 1.1 251
B-Zr becce 0.000085 116 2.8 273

From N. L. Peterson, J. Nucl. Matl., 69&70 (1978) 3-37.
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kJ/mol)*. The bcc beta phase of zirconium is stable from the melting
point down to 863° C. Below this temperature the beta transforms to
the hcp alpha phase. One reason a phase becomes unstable on cooling
is that the elastic constants resisting certain vibrational modes (shears)
in the lattice become weak. As the shear waves in question become
larger in amplitude the matrix phase becomes less stable relative to the
new phase, and finally below a certain temperature a new phase be-
comes stable. Sanchez and de Fontaine have shown that in 8-Zr this
decrease in activation energy is closely related to the structural fluc-
tuations that become increasingly frequent and large as the transition

*'J. Federer, T. S. Lundy, Trans, AIME, 227, (1963) 592.
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Fig. 2-19—Log D vs. 1/T for Fe in a-Fe at temperatures below the paramagnetic-
ferromagnetic transition (Curie) temperature. |[From G. Hettich, H. Mehrer, K. Maier,
Scripta Met., 11 (1977) 795.]

temperature is approached. The configuration of atoms at the saddle
point of the jumping atom in bec zirconium is quite similar to that of
the metastable @ phase which forms with the decomposition of the -
Zr. Thus the formation of the activated complex becomes progressively
easier as the phase transition is approached.* Essentially identical be-
havior is well documented for bee 8-Ti, and low values of D, and Q
have been reported for self diffusion in bec Hf as well as the bee phases
in actinide and rare earth metals which undergo phase transitions. In
going from B to « in Zr, the self diffusion coefficient drops by five
orders of magnitude as D falls to values for fcc metals without a phase
transition.

One final example of the effect of a phase transition is found for
self diffusion of iron when it goes through the paramagnetic-ferrom-
agnetic transition at 770° C. Fig. 2-19 shows a plot of /n D vs. 1/T.
Here there is no change in the crystal structure, but only a change in
the electronic structure and magnetic properties.

2] M. Sanchez, D. de Fontaine, Acta Met., 26, (1978) 1083.
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PROBLEMS

. In pure Ni it is believed that an interstitial Ni atom rests on the

{100} plane, and shares one of the lattice sites with the atom orig-
inally there. In a sequence of drawings of a (100) plane show the
atom movements involved in diffusion of the interstitial by an
interstitialcy mechanism.

If at + = 0, a quantity of solute is located at the point » = 0 in
a three dimensional medium, the concentration of solute at any
point r from the origin, after time ¢, is

c(r,t) = (B/t"’) exp(—r*/4Dr1)

(a) Give the probability (normalized to one) of finding an atom
in a spherical shell dr thick and r from the origin.

(b) What is the mean-square value of r, r?, for the solute after
time ¢?

(c) Using the results of part (b) and the random-walk equations
r* = na’, show that D = I'a’/6 when I' = n/t. (Note this
provides a rigorous derivation of Eq. 2-14).

. An adsorbed W atom on an atomically smooth surface of W can

be observed at low temperatures with the field ion microscope.

If the sample is heated, then cooled again and observed, the atom

has moved a distance Ax. Ax is measured after each of several

anneals.

(a) On a plane (2-dimensional diffusion) the mean square dis-
tance an atom diffuses in time ¢ is 4Dt rather than 6Dt as in
3-dimensions) Give an equation that can be used to calculate
the surface diffusion coefficient for the adsorbed atom D,,.

(b) If the following values of Ax (in nm) are observed after re-
peated 100 s anneals (1.0, 0.9, 1.5. 0.5, 1.1). calculate D,

(a) Calculate vy for a tracer in a pure bce metal where vy is defined
by the equation:

D = ya'wN,

(b) Calculate y for an interstitial solute in a dilute bec binary
alloy.

In hydrogen gas at 1 atm and 25° C, the average molecular ve-

locity is 1.3 X 10° cm/s, and the mean free path is 1.9 X 1077

cm. Calculate the diffusion coefficient of the gas. (Take the av-

erage velocity to be the same as the root-mean-square velocity.)

. In the temperature range —70 to 400° C the diffusion coefficient

for C in a-Fe is D = 0.02 exp(—10120/T) cm’/s. If the average
vibration frequency of the carbon atom in the lattice is 5.0 X
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10" /s, calculate the entropy of motion, S,,, for carbon diffusion.
(Take the lattice parameter to be 2.48 X 10°% ecm.)

. Concerning the annealing out of excess vacancies in gold:

(a) If H,, of a vacancy is 79 kJ/mol, estimate D, at 40° C.

(b) If 7 = d*/#°D,, estimate the mean intersink distance, d, if
T = 200 hr at 40° C.

(c) The activation energy for the diffusion of a divacancy pair,
H,,, is 60 kJ/mol. Assuming that D, is the same for both D,
and D, (divacancies), calculate the ratio Dv/D,, at 40° C.

. Would you expect the activation volume for self diffusion by an

interstitialcy mechanism to be larger or smaller than for a vacancy
mechanism? Explain.

Answers to Selected Problems

(b) r’ = 6 Dt
(b) D =2.75 x 107" cm?/s
(@ y=1, (b) y=1/6

S, = 2.7 cal/mol

(a) D,(SD) = D,,exp(S,/R) = 0.09 cm’/s. If S,/R = 1, D, =
1.6 x 107" cm?/s.

(b) d = 1.1 um. (c) D,/D,, = 6.7 x 107



3

DIFFUSION IN DILUTE
ALLOY

The next degree of complexity after studying diffusion in pure met-
als is to study the diffusion in dilute alloys. The simplest problem in
this area arises in interstitial alloys. Here the solute atoms diffuse on
a sublattice whose sites are essentially all vacant, and the only role
played by the solvent atoms is to form the barriers which define the
sublattice of the interstitial sites. Because the two types of atoms do
not share the same sites, the theory of interstitial diffusion is relatively
simple and has been discussed in Chap. 2. The use of relaxation or
resonance techniques to measure D for interstitials in bec metals is
introduced as a representative of a family of techniques in which the
mean jump frequency of the interstitials is obtained from some relax-
ation phenomenon. This frequency is then combined with a model and
random-walk theory to give values of D.

The problem of an atomic theory of D for substitutional solute in a
metal is different. Here the solute and the solvent atoms share the same
sites, and the analysis of D becomes more complex. Since the two
atoms do share the same sites, the difference in D for the solute and
solvent atoms allows one to estimate the ratio of the jump frequencies
for the solute and the solvent atoms. There are several theories which
suggest why, and by how much these D’s should differ. The data on
most substitutional alloys fit these theories, but some don’t and these
anomalies are discussed briefly.

Finally, the matter of trapping is discussed. There is often an at-
traction between solutes and structural inhomogeneities in the solid, in
effect a tendency to segregate there. This can markedly influence the
rate at which a solute can diffuse out of, or through, a solid. The most
striking effects are seen for hydrogen where the trapping energies can

97
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be large relative to the activation energy for diffusion in the absence
of traps. As a result the apparent diffusion rate of hydrogen in a metal
like iron can be determined entirely by the density of traps rather than
by the rate of lattice diffusion.

3.1 INTERSTITIALS AND ANELASTICITY'

In a bec lattice such as alpha-iron, an interstitial atom such as carbon
strains the lattice more along one of the cubic directions of the lattice
than along the other two. If the interstitial jumps to a neighboring site,
the direction of this high strain changes. If a stress is applied to the
crystal, the energy of the strain energy of the lattice will be lowered
if the interstitials jump to sites which align their strain fields with that
of the applied strain. This alignment gives rise to an additional strain
called the anelastic strain. From the rate at which this anelastic strain
appears, the jump frequency can be determined and from this the dif-
fusion coefficient.

To give a clearer picture of the distortion associated with an inter-
stitial solute, consider the interstitial atom shown as a solid black circle
in the bce lattice of Fig. 3-1. Its two nearest neighbors are shown as
circles con taining crosses, and their normal sites are a distance of a,,/
2 from the center of the solute. The four solvent atoms which are next
nearest neighbors to the interstitial (labeled e, f, g, and A) lie in the
xy-plane; their centers are a,,/\/i = 0.71 a, from the center of the
solute atom. If now the matrix atoms in Fig. 3-1a are enlarged until
they touch one another, as is a reasonable model for a transition metal,
it is seen that the distortion caused by the interstitial atom shown will
be much more severe in the z direction than in either the x or the y
direction. Thus the strain field introduced by the solute is said to have
tetragonal symmetry.

If the interstitial now jumps to the interstitial site to its left (shown
by a small black circle in Fig. 3-1), its surroundings will be equivalent,
but the tetragonal axis of the distortion will be in the y direction. If
the site occupied by the interstitial in Fig. 3-1 is called a z site, con-
sideration of Figs. 3-1a and 3-1b will show that atoms on z sites have
only x and y sites as nearest neighbors; similarly, x sites have only y
and z neighbors, etc.

Consider now a bec single-crystal wire with the [001] direction along
its axis and its interstitial atoms uniformly distributed between x, y,
and z sites. If a small weight is hung on the wire, there will be an

'For a more complete treatment see A. S. Nowick, B. S. Berry, Anelastic Relaxation
in Crystalline Solids, (Academic Press, New York 1972).
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Fig. 3-1—Body-centered cubic lattice showing interstitiai atom (®), its two nearest
neighbors (®), and an arrow pointing to one of the four sites the interstitial can jump
into. (b) shows the interstitial sites in a bce unit cell. There are no sites inside the unit
cell so all of the types of sites are shown on the visible surfaces of the cube.
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Fig. 3-2—Strain vs. time for an anelastic spccimen when load is applied at 1 = 0 and
removed at t = t'. €, represents the elastic after effect.

immediate elastic strain €,. As time passes, additional strain appears,
though the strain rate continually decreases.® This latter strain is due
to a net flux of atoms jumping into the z sites from the x and y sites
and is called the anelastic strain, €, (see Fig. 3-2). This preference for
z sites comes from the fact that the z sites are slightly longer in the z
direction. Thus the strain energy associated with an occupied z site is
less than for the x or v sites. If the load is removed, there will again
be an immediate elastic strain —e¢, and then, since all types of sites
will now be equivalent, there will be a slow, anelastic’ strain —e, which
restores the specimen to its original length. This is called the elastic
after effect.

Analysis of the Relaxation. Since the anelastic strain €, stems from
interstitial atoms changing sites, it should be possible to relate the rate
of decay of €, to the diffusion coefficient of the solute; in fact, this
relation can be made very simply. We start by designating the number
of interstitial atoms on x, y, and z sites as n,, n,, and n,, respectively.
If the mean jump frequency of an interstitial is designated I, the rate
at which atoms are leaving x sites at any instant will be I'n.. At zero
applied stress the energy of all occupied sites is the same, so the atoms
leaving one type of site will go half and half to each of the other types.
For example, the rate at which atoms enter x sites from y sites is I'n,/
2. It follows that

*The weights involved are such that the elastic strain is low, 107" or less.

’Since the strain is not a single-valued function of the stress, the wire is not elastic.
However, when the stress is removed, the strain returns to zero. To differentiate this
type of nonelastic behavior from the type in which a permanent set occurs, Zener coined
the word “anelastic.”
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dn, I'n, [In,
=—In +—+
dt 2 2

(-1

but since n, + n, + n, = n is a constant, we can replace n, + n.to
give

dn, dn,— n/3) 3 < n>
Tx_ O W n, —

2 3

3
= —— Anl’ (3-2)
dt dr 2 2

The literature on this subject invariably talks in terms of the mean
time of stay 7; of an interstitial, which is 1/I". Replacing 1/I" by T
Eq. (3-2) can be rewritten

dAn/dt = —(34n/21) = —An/7 (3-4)

Here 27,/3 has been replaced by the experimentally observed relaxation
time 7. Integration gives

An = An,exp(—t/7)

Now ¢, is proportional to An, so if log €, is plotted versus f, T can be
obtained from the slope.

The random-walk equations of Sec. 2-3 enable us to relate 7 to D.
Equation (2-14) gave

D= /6T’ (2-14)

where a is the jump distance of the interstitial. Since & = a,/2 in a
bee lattice,

D =1Td./24 = a3/367 (3-5)

To measure €, and 7 experimentally, it is customary to obtain the
strain by twisting a thin wire instead of pulling it in tension. The ad-
vantage of using torsion is that, by attaching a mirror to the wire and
using it to cast a reflected beam of light across the room, very small
strains can be easily measured. A value of 7 of almost an hour can be
measured in this way. This corresponds to values of the diffusion coef-
ficient of 107 cm’/s whereas D is over 10"° at the alpha-gamma
transformation temperature of 910° C. These values of D are much
smaller than those measurable by the thin-film tracer method since
those methods require measurable penetration while the relaxation
method reduces the required penetration to an absolute minimum: one
atomic jump.

Resonance Techniques. Let us now see how this anelastic effect
can be used at higher frequencies. Inspection of Fig. 3-2 shows that,
after the stress is increased to some new, constant value, the elastic
modulus (the ratio o/€) will be a function of time for r < 27. If an
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oscillating stress is applied with a frequency w = 1/, this variation
in the modulus, or relaxation, gives rise to a hysteresis loop when
stress is plotted against strain. This hysteresis reflects a loss of energy,
and is also called internal friction. If the stress is oscillated the max-
imum strain will occur shortly after the maximum value of the stress.
Mathematically this lag of the strain behind the stress by a small angle
8 is given by the equation®

o= 0,sihwr €= ¢,sin{wt — 8)

When the stress and strain are out of phase in this manner, an energy
AE is absorbed during each cycle. That AE is indeed nonzero when o
> ( can be seen by integrating over one cycle
2mf/w
AE =¢ode= U‘DEOJ’ sin(wt) cos(wt — Sw dr  (3-6)
Substituting cos(w?t — 8) = cos wt cosd + sin wt sin & and integrating
gives

AE = €,70, sin & 3-7)

Thus when & = 0, there is no energy loss, and as & increases from
zero, so does AE.’

To give a qualitative feeling for the variation of & with frequency,
we refer to Fig. 3-3. Here stress is plotted vs. strain for three ranges
of wr.

1. wr > 1. Here the applied frequency is so high that essentially no
interstitials change sites in reaction to the applied stress. In this
case, stress and strain are completely in phase; 6 = 0 and so AE
= 0.

2. wt = 1. At this frequency, many of the interstitials will be able to
change sites in reaction to the applied stress, but the stress will vary
too rapidly for the equilibrium population of each type of site to
be attained at any particular value of the stress. Thus 6 > 0, AE
> 0, and the lag between stress and strain shows up as a hysteresis
loop.

3. ot < 1. Here the applied frequency is so much lower than 1/7 that
the population of each type of site will continually be in equilibrium
with the applied stress. As a result, § = 0. The only difference
between this case and that of wr > 1 is a smaller slope for the

“In systems of interest & usually varies between zero and 0.1 radian.

*This energy loss is expressed in several different ways in the literature. If it is
observed that 8 is small, and noting that (1/2)e,7, = E, the most common expressions
are: sin 8 = tan 6 = § = AE/2nE = Q7'
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Fig. 3-3 — Stress-strain curves for very small strains in an anelastic material for various
values of the product 7.

stress-strain line. This stems from the fact that here the strain at
any stress is the elastic plus the anelastic strain, while with wt >
1 there is no anelastic strain.

A detailed analysis of this type of phenomenon will not be given.
A plot of the observed hysteresis loss Q7' (=8) versus 1/T is shown
in Fig. 3-4. Since 7 increases as exp(Q/RT), this is equivalent to a
plot of 8 vs In(w7). The curve agrees with the qualitative conclusions
given above. A detailed analysis shows that the maximum in & occurs
at ot = 1.

In experimental studies of & versus wr there are a variety of tech-
niques that can be used to drive the specimen, depending on the fre-
quency needed.® In diffusion studies 7 decreases exponentially with
increasing temperature (since 7 = 2/3I), and it is easier to vary wt
continuously by changing the temperature than it is to vary w. To de-
termine 7, the system is oscillated at a fixed frequency, and the energy
loss per cycle measured over a range of temperatures, allowing the
curve of Fig. 3-4 to be traced. Because w7 = 1 at the maximum in
the curve, 7 at the temperature of the maximum is 1/w, that is 1/27f
where f is the frequency in cycles per second. If the applied frequency
is increased and 8 is again measured over the same temperature range,
the curve will be shifted to higher temperatures, and  can be deter-
mined at a second temperature. Once o is known at two or more tem-
peratures, AH can be calculated.

“For a review of techniques see D. Beshers, Diffusion, ASM, Metals Park, OH,
(1973) p. 209.
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Fig. 3-4— Internal friction (&) versus 1/T at two frequencies. for carbon in tantalum.
[T. Ke, Phys. Rev., 74 (1948) 9.1

A plot of data obtained for nitrogen in niobium is shown in Fig. 3-
5. The values of 7 between 20 and 6,000 s were obtained by measuring
the elastic after effect while the values between 0.1 and 2 s were ob-
tained from the rate of decay of the oscillations of a torsion pendulum.
The two techniques combine to give values of 7 (and thus D) ranging
over five orders of magnitude. This wide range of values combined
with the accuracy of the individual points give values of D, and Q of
high precision.

Two variants of this technique will be mentioned in closing. It was
mentioned in Sec. 2-8 that vacancies in gold associate to form diva-
cancies which can diffuse faster than individual vacancies. A similar
association occurs between interstitial atoms. Here again the individual
and paired interstitials give rise to separable peaks which allow the
determination of the jump frequency of the pairs as well as the isolated
interstitial. The magnitude of & at its maximum is proportional to the
number of atoms, or pairs which give rise to the peak in question.
Thus the variation of the magnitude of & at the peak due to pairs gives
the variation in the concentration of such pairs.

3.2 IMPURITY DIFFUSION IN PURE METALS

In dilute substitutional alloys the solute and solvent share the same
lattice sites and the same vacancies. (This is in contrast with the sit-
uation in ionic compounds like NaCl where the sodium and the chlo-
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ride ions each diffuse on their own sublattice with their own point
defects.) Two types in questions will be considered, what determines
the relative mobilities of types of atoms in the alloy, and what is the
relative effectiveness of a jump in giving rise to diffusion.

In Sec. 2-3 it was shown that when a vacancy mechanism operates
in a pure metal, the self-diffusion coefficient is determined by the fre-
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quency with which an atom will jump into a vacant neighboring site
w, and by the probability that a given neighboring site is vacant p,. In
an infinitely dilute alloy, the problem is then to estimate whether, and
by how much, w and p, for a solute atom ditfer from w and p, for a
solvent atom. The treatments of this problem are all approximate. The
most satisfactory theory deals with the electronic, almost electrostatic,
interaction. This model works best for silver and copper base alloys.
Consider the case of a solvent of valence +1 and an impurity with the
same size ion core but with a valence of +2, for example cadmium
in silver. The metal is modeled as a lattice of Ag" ions surrounded by
a “gas” of free electrons. If one of the silver atoms is removed and a
cadmium atom put in its place, a Cd"* ion forms on the lattice site,
and contributes two electrons to the electron gas. The insertion of the
cadmium ion gives a sharp change in the positive charge density p’
(see Fig. 3-6a). There is an electrostatic attraction between the cad-
mium ion and the extra electrons it contributed to the electron gas.
Fig. 3-6a shows the variation of the positive charge density and the
electron charge density p, around the cadmium ion. Loosely speaking,
the ion’s second electron is weakly bound to it and spends its time
within one to two atomic diameters of the Cd* " ion. The Cd" ' is then
said to be “screened.” The electrostatic potential around the screened
impurity can be approximated by the equation

P (a)
P pe
! |
1 1 i 1 1 i 1
2 1 0 1 2 r/ro
I |
} |
| |
-vir) i I (b)
0+ | |
l |
| |
| |
! 1 1 ! 1 1 b
2 1t 0 1 2 r/ro

Fig. 3-6— (a) Positive and negative charge density around a nucleus with a +2 charge
in an array of nuclei with a +1 charge. r, is the nearest-neighbor distance. (b) shows
the resulting electrostatic potential.
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V(r) = Ze/r exp(—qr) (3-8)

where e is the charge on an electron, Z is the number of excess elec-
trons per ion (one in the case of Cd in Ag) and r is the radial distance
from the impurity. g is called the screening parameter and can be cal-
culated from the free-electron theory of a metal. Figure 3-6b shows
—V(r) around the screened impurity below the assumed positive charge
density distributions. V(r) rises [—V(r) falls] in the region one inter-
atomic distance r, from the ion. This indicates that a negative charge
would be attracted by the Cd" ¥ ion in this region. Since there is a net
negative charge associated with a vacancy, the energy of a vacancy
on a site next to a Cd"" ion will be reduced by an amount we will
designate E(r,). This reduced energy of a vacancy next to a Cd*” ion,
results in the concentration of vacancies on any given nearest-neighbor
site being increased to

P = N\' exp[E(ro)/kT] (3_9)

In addition to making p, > N, on a site next to a Cd" " atom the po-
tential V(r,) makes H,, for the solute less than H,, for the solvent. The
electrostatic attraction between the Cd' " and a vacancy tends to draw
the vacancy and the Cd" " ion together and thereby reduce H,,.

The differences between Q for the solvent and @ for the solute, AQ,
from this theory are compared with experimental results in Table 3-1.
The agreement is quite good. Attempts to use the same theory for Cd
and Zn base alloys are satistactory, but the model does not fit data for
Mg, Al, or transition metals as a solvent.

3.3 CORRELATION EFFECTS

In all cases studied up to this point the directions of successive jumps
of the diffusing atom have been assumed to be independent of one
another, that is they are uncorrelated. Also, the mean frequency of all

Table 3-1. Effect of Valence on Q (in kJ/mol)

Copper Solvent Silver Solvent
Metal Z AQ., AQy, Metal Z AQ., AQy,
Zn +1 =205 —16.6 Pd -1  +52.7 +30.9
Ga +2  -19.2 —19.2 Cd +1 -10.7 -10.2
Ge +3 =240 —24.3 In +2  —15.2 -14.2
As +4 —-355 —34.0 Sn +3 =208 -19.4
Sn +3 =232 ~21.3 Sb +4 =249 —23.8

Taken from A. D. LeClaire, J. Nucl. Matl., 69&70 (1978) p. 82.
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jumps has been assumed to be the same. In dilute substitutional alloys
this is not true for either the solute or the solvent.

This section starts with a detailed discussion of the correlation be-
tween the successive jump directions of a radioactive isotope of A in
pure A. In this manner the existence and effect of correlation between
successive jumps is established. Following this, the effect of correla-
tion on the equation for the diffusion coefficient of a substitutional
impurity is given and discussed. The correction for correlation in pure
metal will be seen to be small, but in the case of impurity diffusion,
it can be quite pronounced.

Pure Metals. The successive jump directions of an atom will be

uncorrelated if after any given jump all possible directions for the next
jump are equally probable. For example, the jumps of a vacancy dif-
fusing in a pure metal will be uncorrelated since after any jump all of
the neighbors of the vacancy are identical. 1t follows that all possible
jump directions have the same probability of occurring. This will not
be the case for a tracer of A diffusing by a vacancy mechanism in pure
A. After any jump of the tracer, all of its neighbors are not identical;
one of them is a vacancy, and the most probable next jump direction
for the tracer is right back to the site that is now vacant. This can be
seen in the two-dimensional close-packed lattice in Fig. 3-7. If the
tracer in the figure (at site 7) has just exchanged sites with the vacancy
now at the site labeled 6, the tracer’s most probable next jump is to
return to 6. Its next most probably jumps are to sites | and 5; i.e., the
vacancy jumps from 6 to S (Or 1) and then to 7. The tracer’s least
probably next jump is to 3, since this requires that the vacancy move
from 6 around to 3 before it jumps to 7.
It was shown in Chap. 2 that if successive jumps are random then
R: = na’. However, if the direction of successive jump vectors are
correlated then R? will be less than na’. The degree of this reduction
is corrected for with the correlation factor f which is defined as.

Fig. 3-7— Portion of two dimensional close-packed lattice showing a tracer () and a
vacancy ().
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f=1lim (R/na®) or R:=ndf (3-10)
The equation for the tracer diffusion coefficient thus becomes D =
fla’/6 instead of D = ['a’/6.
In Sec. 2-3 the equation derived for the mean value of R was

R: = no? {1 +2/m) Y, cos e,,,.,,} (2-8)

Comparison of this with Eq. (3-10) shows that f equals the terms in
square brackets. Thus the calculation of f requires that the mean value
of cosf,,; be determined. As was pointed out in Sec. 2-3, in a bee
or fec lattice all jumps are equivalent except for their orientation. That
is, all tracer-vacancy pairs that have just completed an exchange are
indistinguishable, aside from their orientation. Thus the mean value of
cos 0., is the same for each value of i, so it can be replaced by the
mean value of the cosine of the angle between any jump and the sub-
sequent jumps of the tracer, cos 6, cos ,, etc. The term in cos 0, takes
account of the correlation between the ith and (i + 2)th jump of the
solute. Compaan and Haven show that cos 6, = (cos 0,)' for a vacancy
mechanism,’ and the equation used to calculate f becomes

f=1+ 2(cos 6)' + 2(cos 6, + 2(cos 6,)° + ...
= (1 + cos 8))/(1 ~ cos 6,) 3-11)

The final equation for f is the sum of the infinite series, as can be
shown by dividing | + cos 6, by 1 — cos 6,.

As an example of the calculation of . we shall outline the evaluation
of f for the two-dimensional close-packed lattice shown in Fig. 3-7.
This requires the evaluation of cos 6,. the average value of the cosine
of the angle between the last tracer jump (from 6 to 7) and the next
tracer jump vector. For this it is necessary to calculate the probability
of the tracer making its next jump to each of its six nearest neighbors.
In general we define p, as the probability that the tracer will make its
next jump to its kth nearest neighbor. Similarly 6, is the angle between
the jump vector 6 — 7 and the jump vector 7 — k. The equation for
cos 6, is then

cos b = pgcosb + pscosts + ... + p, cosh, = Zpk cos;  (3-12)
k=1

The basic problem here (as well as in the case of impurities) is to

calculate the various p,. The value of p, is calculated by summing the

’Sec K. Compaan, Y. Haven, Trans. Faraday Soc.. 52 (1956) 786.
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probability of the various vacancy trajectories which will move the
tracer to site k on the tracer’s first jump. Consider the case of the site
labeled 6, that is, k = 6, p, can be calculated from the series

p6:n16P16+n26P26+"‘:Zniépié (3-13)
i=1

where P is the probability that the vacancy will return for the first
time to site 7 from site 6 on its ith jump. This then moves the tracer
to 6 on its first jump. #, is the number of paths which will allow the
vacancy to move the solute from 7 to 6 for the first time on its ith
jump. m is a large number fixed by the accuracy desired. Throughout
this discussion, only one vacancy will be considered. Or equivalently,
it is assumed that the density of vacancies is so low that no other
vacancy will exchange with the tracer before the vacancy has random-
ized its position with respect to the initial solute-vacancy exchange.

Since the vacancy jumps are random, the probabilities of any par-
ticular vacancy path P, can be easily calculated. The probability that
the vacancy will jump to any particular neighboring site on its first
jump is 1/z, or in this case 1/6. The a priori probability that it will
jump to one specified site and then to another specified site is (1/6).
In general then P, = (1/6)".

As the simplest possible case consider the value of cos 6, for the
trajectories only one jump long, that is the vacancy exchanges with
the tracer on its next jump (m = | in Eq. (3-13)). The probability of
the vacancy exchanging with the tracer on its next jump is 1/z. For

this simplest case p; = 1/z and cos 8, = —1. The other p, equal zero
at this level of approximation so cos §; = —1/z and
f=1-2/z (3-14)

This is a good first approximation as can be seen in Table 3-2 which
gives the exact values for several lattices as well as the value of the
simple approximation f = 1 — 2/z. Note that this simple approxi-
mation accounts for about 90% of the correlation effect even though
the jump of the tracer to only one of z neighboring sites is considered.

To pursue the problem somewhat farther, consider trajectories up to
m = 4 in Eq. (3-13). There is just one path for the vacancy which will
bring it back to site 7 on its first jump so n,, = 1. There are no paths
which will return the vacancy to 7 from 6 on its second jump So ny
= 0. The value of ns is five since a first jump by the vacancy to any
of its nearest neighbors, aside from the tracer, and a return to 6 on the
next jump will allow the vacancy to go to 7 from 6 on its third jump.
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Table 3-2. Values of f for Vacancy Diffusion in Various Lattices

z f 1 —2/2

Two-dimensional:

Square 4 0.46705 0.500

Hexagonal 6 0.56006 0.667
Three dimensional:

Diamond 4 1/2 1/2

Simple cubic 6 0.65549 0.667

Body-ctr-cubic 8 0.72149 0.750
Face-ctr-cubic 12 0.78145 0.833

From: K. Compaan, Y. Haven, Trans. Faraday Soc., 52 (1956) 786.

A similar examination shows that n,, = 8. The next level of approx-
imation then gives

Pe=1/6 +0+ 5(1/6)° + 8(1/6)* = 0.1960

By symmetry ps must equal p,. To calculate these we note that n,5 =
ny, = 0, since the vacancy cannot return to 7 from 1 on its first jump.
The equation for ps or p; carried out to the fourth vacancy jump is

ps=p, =0+ (1/6)° + (1/6)° + 11(1/6)* = 0.0409
Similarly
Pa=p,=0+0+ (1/6) + 2(1/6)* = 0.0062
p;y = 2(1/6)* = 0.0015

Comparison of p, and p; shows that the tracer is 100 times more likely
to make its next jump back to 6 instead of on to 3. Using Eq. (3-12)

cos 6, = (—1)0.196 + (—1/2)(2)0.0409
+ (1/2)(2)0.0061 + (1)0.0015 = —.2262

Eq. (3-11) gives f = 0.631. This is to be compared with the exact
value f = 0.560 in Table 3-1. The difference between the two stems
entirely from the omission of vacancy path involving i > 4. The frac-
tion of the possible vacancy trajectories which has been omitted can
be seen by noting that the sum of all return probabilities, p, through
Ps. is only 0.292 instead of unity. Since the probability is unity that
the tracer will make a next jump by exchanging with the vacancy ini-
tially at site 6, this means that the sum of p, would increase over 70%
if terms in higher values of i were included in the calculation of each
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p..t Although 70% of the returns is a relatively large omission, it is
seen that the value of f calculated here would take care of 89% of the
total correlation. The main conclusion to be drawn is that the sums of
p. and f converge slowly to their final values. Hastening this conver-
gence is the main problem in calculating f.

Very Dilute Alloys. In alloys, vacancies interact with impurities,
so not only are the successive jumps of the impurities correlated, but
the successive jumps of the vacancies are too. As an extreme example,
consider the diffusion of an impurity which is “bound” or strongly
attracted to a vacancy. To simplify the geometry, we again consider
a two-dimensional close-packed lattice. Assume that the vacancy-im-
purity exchange rate w, is much greater than the vacancy-solvent ex-
change rate w,.” Under these conditions the successive jump directions
of the vacancy are no longer random but will be almost completely
correlated. That is, if the vacancy exchanges with the impurity on a
given jump, the probability that it will reverse that jump on its next
exchange is almost unity. The angle between successive jumps would
be 7, and coswm = —1. Substituting this into equation (3-11) gives f
= 0 as it should since for this type of exchange the net distance trav-
eled is zero. In this case the impurity will translate through the lattice
only as fast as the vacancy exchanges with the solvent atoms. Under
these conditions the impurity diffusion coefficient will be given by the
equation

D, :.faiw2pv = aiwll)v < aiwzpv (3-13)

Here f < 1, and it is obvious that correlation effects play a dominant
role in determining D,.

An approximate equation for f can easily be derived with the equa-
tions of the preceding subsection. First assume that the vacancy-im-
purity pair will not dissociate and that for its last jump the impurity
exchanged with the vacancy shown in Fig. 3-8. The calculation of
cos 0, is parallel to the case in which the vacancy jumps were random,
except that in place of 1/z the probability that the vacancy and the
impurity will exchange again on the next vacancy jump is wy/(w, +

*That the sum of p, will in fact equal 1 after a finite number of vacancy jumps can
be shown by appealing to the continuum treatment of Chap. 1. If an instantaneous
point source is placed in a two-dimensional medium at 7 = 0, the solution to the dif-
fusion equation is c(r,)=(const./t)exp(—r>/Dt). Thus the probability of finding a va-
cancy at its initial site in some time increment dr after time ¢ is p(¢)dt=(const/t)dt.
Now the probability that the vacancy will return to its initial site at some time between
t =e and ¢ = ¢ is the integral of p(r)dr or proportional to In(z), which must equal unity
at some finite time. Therefore the vacancy will return to the tracer after some finite
time.

“Here and in what follows the subscript 1 will refer to the solvent atoms while the
subscript 2 will refer to the impurity.
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Fig. 3-8 — Two-dimensional close-packed lattice showing vacancy (7)., impurity (®),
and solvent atoms (@). This differs from Fig. 3-7 in that w, and w, are different.

2w,)."Y If only the vacancy-impurity exchanges w, and w, are consid-
ered in calculating cos 6,, we obtain p, = w./(w, + 2w,). The ap-
proximate equations are

cos B, = —w,/(w, + 2w)) (3-14)
and
f= Wl/(Wl + wy) (3-15)

Ignoring geometric constants, the equation for the diffusion coefficient
of the solute atom is

D, = aiwlwlpv(wl + wy) (3-16)

Although this equation is only a first approximation, it has all of the
characteristics of the exact solution for two (or three) dimensions. In-
spection shows that D, is determined primarily by the slower of the
two jump frequencies. If the impurity-vacancy exchange is much faster
(w, > w)), then D, = aiwlp‘. If the reverse is true (w. <€ w,), then
D, = a’w,. Finally, if w, = w, then Dy = a w.p,/2.

The behavior in a three-dimensional lattice is just the same. If an
impurity-vacancy pair is formed in an fcc lattice, the only difference
from the above example is that there are four solvent atom sites which
the vacancy can move to without dissociating the impurity-vacancy
pair, instead of two (see Fig. 3-9). The probability of an impurity-
vacancy exchange on the next vacancy jump is thus w,/(4w; + w,),
and the resulting equation for D, varies with the ratio w,/w, in a man-
ner similar to that in Eq. (3-16).

For the case in which the vacancy-impurity pair is less tightly bound,

“To show this, note that the probability that the vacancy and the impurity will ex-
change in the time element dr is proportional to w,dr if dr < 1/w,. The probability that
the vacancy will make any one of the three possible jumps in dt is proportional to (2w,
+ w,)dr. The probability of the next vacancy exchange being with the impurity is the
ratio of these two or w,/(w, + 2w,).



114 Diffusion in Solids

o

> v @ C
Wo
O Wl o
W3
p
Wi O

C,/ e

Fig. 3-9— Vacancy-atom jumps used in the S-frequency model of solute-vacancy in-
teraction in an fcc lattice. w;, is the solute-vacancy exchange rate. w, moves the vacancy
to another solute nearest neighbor. w; moves the vacancy away from a solute. The
reverse of w; is w,. w, is the jump frequency far from a solute.

the rate of dissociation of the pairs must be included. If we assume
that the region affected by an impurity includes only its nearest neigh-
bors. w; can be taken as the frequency with which an associated va-
cancy exchanges with one of the seven solvent atoms which is not a
nearest neighbor of the impurity atom, and thus dissociates the va-
cancy-impurity pair. The probability of an impurity-vacancy pair dis-
sociating on its next jump is found to be Twy/(w, + 4w, + Tws). If
we calculate an approximate value of f as before by assuming cos 6,
= —w,/(w, + 4w, + Tw,), we obtain

= @w, + Twy)/QCw, + 4w + Twy) (3-17)

A more accurate calculation gives
= Qw, + Twy)/Cw, + 2w, + Twy)

If the calculation is generalized to include the return of dissociated
vacancies,

= Q2w + TFw3)/Qw, + 2w, + TFws) (3-18)
Substituting this in Eq. (3-14) gives
D, = a’p,w, Cw, + TFw3)/Qw, + 2w, + TFw;)  (3-19)

Here two additional frequencies have been added, w, is the frequency
for solvent self-diffusion, and w, represents the jump which brings a
vacancy to a solute nearest neighbor position; it is the reverse of w;.
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(See Fig. 3-9.) F in Eq. 3-18 is a function of the ratio wy/w, with F
= 1 for wy/w, = 0 and F = 2/7 for w,/w, = .,

The type of complete or partial association of impurities and vacan-
cies discussed above is important in the study of impurity diffusion in
ionic materials. For example, if a divalent impurity, such as Mg"'™, is
dissolved in NaCl, charge neutrality requires that the magnesium ion
replaces two sodium ions, replacing one with a Mg " ion and leaving
the other vacant. Though the vacancy and the Mg*" can move sepa-
rately there will be a strong electrostatic (coulombic) attraction be-
tween the two so the fraction of magnesium ions paired with vacancies
will be high. Thus it is easy to see why this problem was first treated
for the case of impurity diffusion in ionic materials.''

This type of approach involves many frequencies, but different types
of experiments can be used and by comparing these it is possible to
determine the ratios of the five frequencies.'?> The model can also pro-
vide useful insights into limiting cases, as can be seen from the following.

* If the rate of dissociation of vacancy-impurity pairs 7w; is much less
than 2w, and w, € w,s0 F = 1, Eq. (3-19) simplifies to

D, = a(z;wlwzpv/(wl + wy) (3-20)

* If impurity-vacancy exchange is much more rapid, then wy = (wy +
Tw3F/2) and
D, = a;p,2w, + Tw,F)

* If the impurity atom jumps relatively slowly, w, < (w, + Tw,F/2)
and

D = a;p,w,
* Finally, if the “impurity” is a solvent tracer. then Wy = Wy, = Wy =
w, and p, = N,. Thus
D, =D, = (9/11)a;N,w, (3-2D

Note that in Eq. (3-22) f = 9/11 = 0.82 even though correlation ef-
fects were only approximated in the derivation.

Ratio of D’s for solvent and solute. If the solute and solvent share
the same sites and the same vacancies there clearly are relationships
between D, and D,. The first of these is that they cannot differ in
magnitude by more than a factor of 10, and will usually be closer than
that. Furthermore, it has been observed that if D, increases with N,,

"A. Lidiard, Phil. Mag., 46, (1955) 1218.
"“For example see A. D. LeClaire, J. Nucl. Ma:l., 69&70 (1978) 70.
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then D, also increases with N,. These relationships are often expressed
in terms of the equations

D\(N,) = Dy(O)[1 + byN,] and  D,(N,) = D(O)[1 + BN, (3-22)

Thus b, and B, have the same sign, and have a magnitude that can be
expressed in terms of the exchange frequencies used above. From the
discussion of vacancy-solute binding energies given above, one would
expect b, and B, to be positive for solute to the right of silver in the
periodic table, e.g. Sn, and negative for elements to the left, such as
Pd. This is indeed the case." In fact the affect of solute can be thought
of as adding separate non-interacting regions of a different jump fre-
quency (a higher frequency if b is positive). The observed values of
D in the dilute alloy is thus the linear combination of D in the pure
metal plus the contribution from the different value in the disturbed
regions around the solute atoms.

3.4 INTERSTITIAL DIFFUSION IN SUBSTITUTIONAL
ALLOYS

Self-diffusion in pure fcc. hep. and bee metals seems to always oc-
cur by a vacancy mechanism. Also, the diffusion of substitutional sol-
ute in these metals usually occurs by the vacancy mechanism. As was
pointed out above, if the solute and solvent share the same vacancies
and same lattice sites, then the ratio D,/D, is between 0.1 and 10,
since both types of atoms must move for either to allow the diffusion
of the other. However, interstitial atoms diffuse much faster than those
on substitutional sites and if some of the impurity atoms spend a frac-
tion of their time on interstitial sites, D, can be orders of magnitude
greater than D,. Whether a solute goes into solution on interstitial or
substitutional sites is usually deduced from whether a smaller diameter
solute increases the lattice parameter (interstitial), or decreases it (sub-
stitutional). For example an empirical rule based on x-ray data indi-
cates that a solute will dissolve primarily interstitially only if its atomic
radius is less than 0.59 that of the solvent. However, diffusion studies
discussed below indicate that solute with radii up to 0.85 that of the
solvent may spend enough time as interstitials for interstitial motion
to dominate the transport of solute.

At thermal equilibrium any impurity will be distributed over both
interstitial and substitutional sites. If the interstitial sites are all equiv-
alent then there will be an equilibrium between the normal and inter-
stitial sites, which can be represented by the equation

“A. D. LeClaire, J. Nucl. Matl., 69&70 (1978) 70-96.
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sei+v (3-23)

The corresponding atom fractions of these sites are represented by V.,
N,, and N,. If these defects are at equilibrium locally then the equilib-
rium constant can be written

N:N./N, = exp| (G, + G))/RT| (3-24)

where G, and G, are the free energies of formation of interstitials and
vacancies, respectively. If N, is determined by an equilibrium with
dislocations then N, = exp(—G,/RT) and the fraction of solute atoms
present on interstitial sites becomes

N,/N, = exp(—G,/RT) (3-25)

Reliable calculations indicate that for copper and other close-packed
noble metals, G, is about four times G,. Thus the concentration of
interstitial copper atoms in copper is so small that their contribution
to copper self diffusion is negligible. However, there is evidence in a
number of systems that solute atoms which lie predominantly on sub-
stitutional sites but are at least 15% smaller than the solvent can diffuse
many orders of magnitude faster than the solvent atoms. For example
the ratio of the atomic radii for gold and lead is 0.83, but the diffusivity
of Au in Pb is many orders of magnitude greater than that for Pb in
Pb (at 175° C the ratio D,,/Dp, is 10°). Fig. 3-10 shows the tracer
diffusion rates for various elements in lead. It is seen that Cu, Pd, Au,
Ni. and Ag all diffuse at least 1000 times faster than Pb in Pb, whereas
D for Sn, Tl, Na, Hg and Cd lie within a factor of 10-20 of that for
Pb self diffusion. Thus the latter group of elements could diffuse by
a vacancy mechanism, while the former. fast diffusing elements could
not. Similar results are found for diffusion in tin with a strong simi-
larity in the order of the elements. that is D-/D, decreases in the order
Cu, Au, Ag.]4

The mechanism of this anomalously tast diffusion is not known,
though a great deal of sophisticated effort has been devoted to the
matter. Using the well studied lead alloys as our example some of the
results are presented here to indicate some of the techniques that can
be brought to bear to infer diffusion mechanisms." The techniques
discussed are centrifugation, isotope effect, and variation of solvent
Jiffusion with solute additions.

Centrifugation. If there are no forces on the atoms in a dilute alloy
:ne equilibrium solute distribution is one with no concentration gra-

"W, K. Warburton, D. Turnbull, Diffusion in Solids, eds. A. S. Nowick, 1. J. Bur-
Ton Academic Press (1975), p. 171.
“This treatment often follows A. D. LeClaire, J. Nucl. Matl., 69&70 (1977) 70—

BUS
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Fig. 3-10— Diffusivities of various elements in lead as a function of temperature. [From
W. K. Warburton, D. Turnbull, Diffusion in Solids, eds. A. S. Nowick, I. J. Burton,
Academic Press (1975), p. 171.]

dient. However, if the sample is placed in a centrifuges it can be given
placed under an acceleration in excess of 100,000 g. Under these ac-
celerations small mass differences in the elements of an alloy set up
forces that can lead to the development of an appreciable concentration
gradient. Whether an object rises or falls in such a column depends
on what is being forced to the top of the column if the object sinks.
In the case of a Au tracer in Pb what rises depends on the mechanism
of diffusion. For example if Pb and Au both diffuse by a vacancy
mechanism and occupy lattice sites then since Au is slightly lighter
than Pb, the Au would tend to rise since the heavier lead will take the
place of any Au initially in the bottom of the column. However, if the
Au diffuses by moving over interstitial sites, it will not displace a Pb
atom when it sinks to the bottom and there will be a strong tendency
for it to sink.

The equation for the actual distribution can be obtained as follows.
The centripetal force on a Au atom (subscript 2) can be written as (m;,
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— v'm,)w’x, where x is the distance from the center of rotation of the
centrifuge, m, and m, are the molecular weights of the two atoms, and
v’ is the ratio of the partial molar volumes of the solute (Au) to that
of the solvent (Pb). When this force is inserted in the flux equations
of Chap. 1, the equilibrium distribution becomes

din(N,)/dx* = (m, — v'm,)@’/2RT (3-26)

If Au occupies a normal lattice site then v’ = 1, so if Au diffuses by
a vacancy mechanism the force on the Au atoms will be small and
tend to make them move toward the top during diffusion. On the other
hand if Au occupied an interstitial position, its partial molar volume
would be small, v' would be closer to zero, and in the centrifuge the
lead would sink to the bottom of the sample since in doing so it would
displace little lead toward the top. The experimental results shown in
Fig. 3-11 indicate that the gold clearly sinks toward the bottom, and
is consistent with the mobile atoms being interstitials with a finite mo-
lar volume, that is v’ is somewhat greater than zero. (It has been found
that Au sinks in Na and K, while Au in In floats rapidly to the top

LOGIACTIVITY Au* )

CENTR. FORCE (we2x2/T)

Fig. 3-11 — Steady-state distribution of gold diffusing in solid lead in a centrifuge at
590° C. Definition of v’ given in text. [From S. J. C. Rushbrook Williams, L. W.
Barr, J. Nucl. Matl., 69&70 (1978) 556-8.]
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and the authors suggest that the gold atom diffuses interstitially in Na
and K but in indium diffuses as a gold-vacancy pair.'®)

Isotope Effect. The vibration frequency of a harmonic oscillator is
inversely proportional to the square root of its mass. If two different
isotopes, a and b, of the same element diffuse through the lattice they
will diffuse by the same process. However, the mass of the vibrating
complex will differ by the difference of the mass of the two isotopes
m, and mg and the larger vibration frequency of the lighter atom will
lead to its diffusing somewhat faster than that of the heavier atom. The
deviation of the ratio of the diffusion coefficients of these two isotopes
D, and Dg from the ratio of the square roots of their masses gives
information on the mechanism of diffusion through the equation'’

[(D./Dy) — 11/1(mg/my)*" — 1] = fAK (3-27)

Here f is the correlation coefficient. It enters because the increase in
the jump frequency due to the lower mass leads to a corresponding
increase in D which is less than that of the jump frequency by the
correlation factor. The second factor in Eq. 3-27, AK is the fraction
of the activation energy associated with the motion of the diffusing
atom. The vibration mode in a lattice that leads to an atomic jump will
involve the motion of not only the jumping atom but also its neighbors
at the saddle point. Thus for substitutional atoms AK is always some-
what less than one. How much less depends on the configuration of
the activated complex. For example for vacancy diffusion in fcc met-
als, the barrier the diffusing atoms must pass through consists of a
rectangle of four atoms in a (110) plane (see Fig. 2-4). Theoretical
calculations indicate AK is 0.87 in this case.'® In a pure fcc metal f =
0.78 so fAK is expected to be about 0.7, as it is.'” In a bec metal the
barrier for the diffusing atom consists of two successive triangles of
atoms in adjacent (111) planes (See Fig. 2-5). This creates a saddle
point with a double maxima in energy vs. distance. The larger complex
making up the saddle point configuration involves a larger mass, and
a correspondingly reduced value of AK. This is again born out by the-
oretical calculations. Unfortunately the value of AK is quite sensitive
to values of the forces between atoms when they approach one another
quite closely. As a result the value of AK observed at low temperature
is somewhat less than that at high temperature, so fAK drops some
with temperature even for a fixed mechanism. Nevertheless, isotope

'*S. J. C. Rushbrook Williams, L. W. Barr, J. Nucl. Matl., 69&70 (1978) 556-—8.

UC. P. Flynn, Point Defects & Diffusion, Clarendon-Oxford Press, (1972) 341-9.

*C. P. Flynn, personnel communication.

*N. L. Peterson, Diffusion in Solids, eds. A. Nowick, J. Burton, Academic Press,
(1975), pp. 115-68.
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effect experiments provide the most direct means for inferring values
of f. This suggests the mechanism and indicates whether it changes
with temperature in a given system.

If the fast diffusers in lead, such as Cu, Ag or Au, diffused as a
simple interstitial atom (like carbon in fcc iron) then f = 1 and fAK
= 1. However, the value of fAK for Ag diffusing in lead is 0.25 sug-
gesting that the mass of the activated complex is much greater that of
the Ag atom alone.

Concentration Dependence. The remaining type of evidence used
to infer a mechanism is the rate at which D, changes as the concen-
tration of solute increases. If D, > D, it is found that dD,/dN, > 0.
If diffusion occurs by a vacancy mechanism then the coefficient b, =
dD,/dN, can be calculated in terms of the multiple jump frequency
model of the preceding section. Qualitatively, if vacancy-solute pairs
form and exchange more easily than vacancy-solvent pairs, the addi-
tion of solute will increase D,. However, if diffusion occurs by an
interstitial mechanism the diffusion of solute and solvent will be in-
dependent of one another, and the ratio D,/D, will not be related to
the observed b,.

This type of argument has been applied to the binary alloys shown
in Fig. 3-10. It is found for Hg and Cd in lead that D,/D, and b, are
directly proportional to another. It is argued that in this case a vacancy-
solute interstitial pair forms, and the number of additional effective
solvent jumps due to the presence of solute was the same as the ef-
fective number of solute jumps.

For Au and Cu in lead the change in dD,/dN, is orders of magnitude
less than would be required if the solute diffusion was to occur by a
vacancy, or a vacancy-interstitial pair mechanism. For these elements
it is believed that an interstitial mechanism operates, but due to the
small isotope effect for these solutes it is believed that the interstitial
solute and a solvent atom share the same site (as in Fig. 2-6.), and
both must move in an activated jump. If the concentration of the solute
in interstitial sites is ¢; and that in substitutional sites is ¢,, and the
corresponding diffusion coefficients in these two types of sites are D,
and D, then the equation of D, is a weighted average of the jumps
that comes from each of the two types of sites, or

DZ = [C,-/(C,’ + C.&)]Di + ch/(("! + Cx)]Dx (3'28)

Estimates are that D, is over 10,000 times D,, so ¢; can be much less
than ¢, and still have the dominant transport mechanism be due to in-
terstitial diffusion.

The principal conclusion to be drawn from this is that solute atoms
diffuse by a variety of mechanisms in lead and tin. Similar results are
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found in some bcc metals, and have been interpreted in this manner,
though the situation there is more controversial.

3.5 DIFFUSION WITH TRAPS (HYDROGEN IN IRON)

Hydrogen being the smallest atom might be expected to diffuse more
easily through metals than any other element, and it does. Fig. 3-12
shows D for Fe, C and H in a-Fe from 1000° K to below room tem-
perature. Note that at 300° K an iron atom changes position once per
100 yr, and carbon every 10 s, while hydrogen is still jumping at a
rate of 10'*/s. Even at low concentrations hydrogen often leads to the
embrittlement of metals, for reasons that are poorly understood, but
certainly are related to the speed at which it can diffuse to highly stressed
regions.

The main purpose of this section is to indicate the large effect that
trapping at defects can have on diffusion in solids of solute with a low
equilibrium solubility. Hydrogen diffusion is used as an example since
it diffuses so easily that even shallow traps will produce a measurable
effect on D.*° Hydrogen in alpha iron is the most commonly studied
system showing this type of behavior. The extrapolation of high tem-
perature solubility (above 400° C) to low temperatures indicates that
the solubility of hydrogen in ferrite at room temperature would be about
one part in 10°, by weight. However, the observed solubility at room
temperature can be much greater than this, the exact value depending
on the density of low energy sites introduced into the lattice by dis-
locations, ferrite-cementite interface, microvoids, inclusions, etc. These
low energy sites serve as traps which inhibit the diffusion of hydrogen.

Consider two sheets of iron at room temperature with a hydrogen
gradient across them. One sheet contains no defects while the other
contains many dislocations. In the perfect crystal the hydrogen moves
with an activation energy of 8 kJ/mol. In the imperfect crystal if a
hydrogen atom moves to a dislocation the energy of the lattice is re-
duced by about 0.2 eV /atom, that is there is a binding energy of about
25 kJ/mol which the hydrogen atoms must overcome before it can
escape from the dislocation and diffuse away through the lattice.

To obtain an equation relating the effective diffusion coefficient D,
to the diffusion coefficient in the perfect lattice D,, consider the con-
servation of matter. Since hydrogen is either in traps or perfect lattice
sites, the rate of change of total concentration is given by the equation

*The literature on hydrogen in metals is immense. J. P. Hirth, Mer. Trans.A, 11A
(1980) 861-90, summarizes the behavior of H in Fe. H. H. Johnson, Mer. Trans A.
19A (1988) 2371, treats diffusion and trapping.
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Fig. 3-12—D and jump frequency for hydrogen, carbon and iron atoms in alpha iron
between 1000° K and room temperature.
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If we assume equilibrium exists between A atoms on trap sites and
lattice sites, i.e. the thermal energy is enough for the atoms to jump
out of the traps, then there will be an equilibrium relationship between

¢, and ¢, of the form ¢, = f(¢;). and the two time derivatives can be
combined to give21
% Ly wh " =dc,/d (3-29)
e ere c,/dc -29
; L+ f L . L

Thus the effective diffusion coefficient can be defined as
D, =D /(1 +f") (3-30)

Bubbles as Traps. As the simplest example of trapping consider
the case of hydrogen trapped as gas molecules in internal voids. The
solubility of hydrogen usually increases as the square root of the pres-

*'The characterization of traps from data on the variation of D with lattice concen-
tration is developed by, H. H. Johnson, N. Quick, A. J. Kumnick, Scripta Met., 13
(1979) 67-72.
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sure so the equation relating the concentration of molecular hydrogen
gas in the voids and the atomic hydrogen in the lattice is of the form
¢, = (c)’g(T) and

D, =D, /11 + 2¢,8(T)] = D, /11 + 2¢,/¢,] (3-31)

Note that the difference between D, and D, only becomes appreciable
when the concentration in traps is appreciably greater than the solu-
bility in the lattice. This is true for all kinds of traps and is part of the
reason that the effect of traps is more important at low temperatures
where the lattice solubility is lower. Something unique to this type of
trap is that D,/D, rises steadily with ¢; because the internal bubbles
collect an ever increasing amount of hydrogen. This is just the opposite
of the situation with saturable traps, as will be seen below. Voids are
not a common type of trap in metals, but can be significant in cold
worked two-phase alloys where deformation opens up holes around a
hard second phase.

Saturable Traps. The solubility of hydrogen in pure iron at room
temperature is low. So low that the solubility in an annealed piece is
much lower than the concentration of trapping sites around dislocations
in a cold worked piece. In such a case the diffusion of hydrogen at
low hydrogen concentrations is determined not by the jump frequency
of hydrogen in the pertect lattice, but by the escape frequency of hy-
drogen atoms from the traps, e.g. low energy sites around dislocations.
As a result the effective diffusion coefficient of hydrogen in the hy-
drogen-free cold worked metal is much lower than D in a well annealed
specimen. However, there are only a limited number of low energy
sites around a dislocation, and if enough hydrogen is added to fill all
the traps, the hydrogen diffusion coefficient in the cold worked crystal
increases to that of the annealed crystal. This pronounced effect of trap
density and hydrogen content has lead to a wide range of reported
values for Dy, in iron and steel, and is reflected in Fig. 3-12 by a pair of
lines for Dy at temperatures below 100° C.

The equation for saturable traps is more complicated than Eq. (3-
31). For simplicity we assume:

* only one type of trap exists and it has a binding energy H, for hy-
drogen that is independent of the fraction of traps filled,

* trap sites can only hold one hydrogen atom, i.e. they are said to be
saturable,

* equilibrium exists between H atoms on trap sites and lattice sites,
i.e. the thermal energy is enough for the atoms to jump out of the
traps.

* the atom fraction of sites that are trap sites is much less than unity.
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These assumptions are needed primarily to give a relation between
¢, and ¢,. In a system in which the hydrogen atoms are at equilibrium
between the two types of sites a fraction 6, of the trap are occupied,
6, of the lattice sites occupied, and the enthalpy difference between
the two types of sites is H,. Consideration of only the ideal entropy
of mixing on the two types of sites gives

6,/(1 — 6) =6, exp(—H,/RT) = 6,K (3-32)

where the assumption 6, < 1 has been used, and the entropy change
S, is neglected. Note that when 6, is small the fraction of trap sites
filled is directly proportional to the lattice concentration, 6, = 0,
exp(—H,/RT). The fact that each trap site can hold only one hydrogen
atom leads to the (1 — 6,) term in Eq. (3-32) which limits the fraction
of traps that can be filled. That is, there is a steady increase in the
entropy of mixing for adding hydrogen to the last half of the vacant
traps.

The atom fraction of lattice and trap sites is related to the number
of such sites per unit volume, N, and N,, by the equations ¢, = N, 6,
and ¢, = N,6,. Substitution in Eq. (3-32) gives

cll + Ke /N, | = N,Kc, /N, (3-33)
substitution of dc,/dc, in Eq. (3-29) gives™
-1
D, = DL[I L NNK 2] = [——D"CL ] (3-34)
(N, + Kc,) c, +c(l —86)
Note that when 6, = 1,
D=D, and RdinD/d1/T)=0Q=H,
while when 6, < 1.
D,=Di(¢c,/c). and RdinD/d1/T)=(Q =H, + H,,

Again a strong variation of D, requires that N, > N,. Also, the most
rapid change of D, with ¢, is in the range of 0.1 < 6, < 0.9.

As an example of the phenomena that can be explained with this
model, consider several observations made by Darken and Smith.?
They studied the uptake of hydrogen by cylinders of annealed, and
cold worked, steel with 0.2% C. In the annealed steel the carbide/
ferrite interface provides the dominant trapping site for hydrogen. In
iron at room temperature the lattice solubility of hydrogen is so low that
N, > N, even in annealed steel. Their observations were:

“R. A. Oriani, Acta Mer., 18 (1970) 147.
“L. S. Darken, R. P. Smith, Corrosion, 5 (1949) 1—16.
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« The amount of hydrogen pickup by the steel cylinders initially in-
creased as V7, and the time to saturate the cylinder increased as the
diameter of the cylinder squared. Both of these observations indicate
that the hydrogen pickup of the cylinders is diffusion controlled, that
is Fick’s Laws are obeyed.

» The solubility of hydrogen in steel for a given potential maintained
on the surface could be obtained by immersing it in dilute acid so
that hydrogen diffused in from both sides and saturated the sheet.
The concentration so measured is designated C,. In a second exper-
iment acid was placed on one side of the sheet and a vacuum on the
other side. After steady-state was attained, the average concentration
of hydrogen from this one sided charging was measured and des-
ignated C;. If D was a constant independent of concentration, the
ratio C;/C, would equal 0.5. For the annealed steel it was found that
C,/C, = 0.8. Drawing curves of concentration vs. distance through
the sheet should indicate to the student that such a ratio will only be
found if D' decreases appreciably in going from the high hydrogen
side of the sheet to the other. Thus a plot of c¢(x) is curved and con-
cave downward.

» The time to saturate a cylinder decreased as the hydrogen potential
of the charging acid increased. That is. if the concentration of hy-
drogen maintained in the metal at the surface was low, the time to
saturation was longer than if the surface concentration was high. (This
is contrary to what is predicted by the solutions for constant D given
in Chap. 1.) Also, using a high surface concentration, they found
the time to saturate a cylinder was appreciably shorter than the time
required for the hydrogen to diffuse out into a vacuum. Both of these
observations are consistent with the increase of D with hydrogen
concentration.

» Cold work increased the solubility of hydrogen in the steel by an
order of magnitude for a given hydrogen potential. This is due to the
increase in trap density with cold work. Much of this increase is due
to trapping at dislocations, though some may be due to voids which
open up in the carbide or carbide/ferrite interface of the pearlite upon
deformation.

‘Irreversible’ Traps. In the preceding paragraphs it was assumed
that there was only one kind of trap, and that H,/RT was small enough
that there was equilibrium between hydrogen in lattice sites and trap
sites. We now consider cases in which each of these assumptions is
no longer true. Irreversible trapping is a phenomenon which can easily
be observed in metals because the activation energy for lattice diffu-
sion H,, is small relative to the binding energy, H,, for hydrogen at
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the strong (irreversible) traps. Thus hydrogen may diffuse easily into
iron at room temperature but once trapped be bound so tightly at traps
that it cannot escape, that is, H, > RT. If the sample is subsequently
heated in a vacuum, the rate of escape from these deep traps deter-
mines the rate of escape from the sample. This escape is thermally
activated and taken to be proportional to exp(—H,/RT), where the ac-
tivation energy for release is approximated by H, = H, + H,, as in-
dicated in Fig. 3-13. If the rate of release is taken to be proportional
to the concentration in the traps ¢,, the release rate is described by the
equation

de,/dt = —Ac, exp(—H,,/RT) (3-35)

If the charged sample is continuously heated from a low temperature
at a rate ¢, the rate of evolution is initially zero since (H, > RT).
Evolution will begin when RT approaches H, and increase rapidly until
most of the traps are emptied, that is ¢, goes to zero. The temperature
of the peak in the evolution rate, 7,, is obtained by setting the differ-
ential of Eq. (3-35) with respect to ¢ equal to zero, and is given by

¢H,/R(T,)" = A exp(—H,/RT,) (3-36)

If there are two types of traps with different binding energies, the
hydrogen traps will release hydrogen independently of one another and
peaks will appear at two different temperatures. Using this technique

ENERGY —

DISTANCE —

Fig. 3-13— Schematic diagram of the energy level of hydrogen in iron showing the
energy for lattice diffusion H,,, and the binding energy H,.
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Lee et al.** have studied traps for hydrogen in a-Fe. Values for H,, are
18.5 kJ/mol at Fe/Fe,C interface, 26.9 at dislocations, and 86.9 at
the Fe/TiC interface.

Further examples of diffusion with internal traps:

« Internal oxidation of metals is another case of irreversible trapping
of a more rapidly diffusing solute, this time oxygen combines with
a reactive solute, such as aluminum in silver.?

« In amorphous materials like glass, hydrogen solubility and diffusiv-
ity indicate the energies of the sites the hydrogen can occupy are
best expressed as a continuous distribution of energies (trap depths)
around a mean.™

PROBLEMS

3-1. An internal friction peak caused by interstitial diffusion in a bee
metal has its peak at 50° C at a frequency of 0.70 Hz. When
the frequency is changed to 2.81 Hz the peak is shifted to 64° C.
(a) Calculate Q for the process.

(b) If the lattice parameter is 3.2 X 107" cm, calculate D at
100° C and D,,.

3-2. Draw a fcc unit cell, and explain why individual interstitial at-
oms do not give rise to an internal friction peak. Could inter-
stitial pairs give rise to internal friction?

3-3. A small stress (under 1% of the yield stress) is applied to a dilute
Fe-C alloy at —50° C for a day and then released. 99% of the
strain is recovered immediately, but the remaining 1% decays
exponentially with time with a relaxation time of 100 min.

Explain how and why the diffusion coefficient of C in Fe can
be accurately determined from this relaxation time.
Calculate D for carbon.

3-4. A jumping particle makes a series of n jumps each of length L.

(a) From your knowledge of the random walk problem write a
general form of the relation between n, L, and the mean
distance moved R’

(b) In three totally different experiments it is found that: in one
case R° = nL?, in a second R*=0 though n > 0 and L >
0. and in a third nL? < R* < n’L’.

¥H. G. Lee, 1. Y. Lee, Acta Met., 32 (1984) 131-6.

N, Birks, G. H. Meier, Introduction to High Temperature Oxidation of Metals. E.
Arnold, (1983), p. 95.

*R. Kirchheim, F. Sommer, G. Schluckebier, Acta Met., 30 (1982) 1059-68.
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3-6.

3-8.

Explain the different relationships that must exist between
the successive jump directions for each of the three cases.

. Would you expect any correlation between the successive jump

vectors of a tracer in a pure metal if diffusion occurs by

(a) A vacancy mechanism

(b) An interstitial mechanism

(¢) An interstitialcy mechanism

Calculate cos(f,) and f for a tracer diffusing in a two-dimen-
sional square lattice by a vacancy mechanism. (Consider only
vacancy exchanges with nearest neighbors, and trajectories which
move the solute again in three or fewer vacancy jumps.)

. The equilibration time for the diffusion of hydrogen into a piece

of iron initially free of H was measured at 50° C using two dif-

ferent hydrogen pressures, one quite low, and one quite high.

The time to reach saturation was much longer for the low pres-

sure than for the high. Similar tests on thinner samples gave the

same relative rates, thus a slow solution step at the surface was
ruled out as rate determining.

(a) Explain why saturation took longer when the ambient pres-
sure of hydrogen was low.

(b) This difference in apparent D between high and low hydro-
gen pressure disappears if the same experiment is performed
at 200° C. Why?

Steady-state diffusion of hydrogen is established through a sheet

of metal with a high hydrogen concentration maintained on one

side and a concentration of zero on the other side. Plot C(x)

through the sheet for the following three cases:

(a) D constant independent ot C.

(b) D increasing by a factor of 10 from low to high C.

(¢) D decreasing by a factor ot 10 from low to high C.

(d) For each of the variations of D(C) considered above, com-
pare the total content of the sample to that of one saturated
at the high value of C.

A cold worked sample of steel is charged with hydrogen at room

temperature, heated at a rate of 0.1° C/s, and the rate of hy-

drogen evolution measured.

(a) Calculate the temperatures of the maximum hydrogen re-
lease rates for a sample with two types of traps having bind-
ing energies of 18.5 kJ/mole and 26.9 kJ/mol. Take A =
0.01/s in Eq. 3-36.

(b) What would the temperatures be for the two types of traps
if the heating rate was decreased by a factor of ten?

. The evolution of hydrogen from a charged sample may be lim-
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3-1.
3-3.
3-5.
3-6.
3-7.

3-8.

3-9.
3-10.

Diffusion in Solids

ited by either lattice diffusion or escape from traps, depending
on the relative values of H,, the activation energy for diffusion,
and H, the binding energy at the traps.

(a)

(b)

(©)

(a)
1.3
(a)
f=
(a)

(b)
(d)

Two identically charged samples, differing only by a factor
of two in thickness, are quickly heated to a given temper-
ature and then held there. How will the time to evolve 90%
of the hydrogen ¢(.9) differ between the two samples if the
evolution is controlled by lattice diffusion?

If escape from strong traps rather than diffusion limits hy-
drogen evolution in the samples described in (a), how will
1(.9) differ for the two samples?

If the two charge sample are heated at a slow uniform rate,
draw a plot of hydrogen evolution rate for the case in which
lattice diffusion limits evolution, and another for the case
in which evolution from traps limits the release rate.

Answers to Selected Problems

21.3 kcal/mol (89.2 kJ/mol). (b) D, = 0.033 cm’/s.

x 107 em’/s

yes, (b) no. (c) yes. for every other jump.

0.542

The rate of penetration is proportional to D, ¢, /c,. Since ¢,
increases as P'/> while D, and ¢, are independent of P, the
rate is lowest at low pressure.

¢, increases substantially with temperature while ¢, = ¢, +
¢, will decrease due to the drop in ¢, with rising 7.
(6/cmax) = 1/2 for (a), is about 2/3 for (b) and about 1/3
for (¢).

Using Eq. (3-36), (a) 712° K. 963° K. (b) 480° K, 660° K

(a)
(b)

()

t(.9) will differ by a factor of 4 for the two.

£(.9) will be much greater than for diffusion control, and
will have the same value for the both thicknesses.

For diffusion control, the maximum rate of evolution will
be arise at a higher temperature (7,,,,) for the thicker sam-
ple. For trap release control, T,,,, will be the same for both
samples, but the rate will be higher for the thicker sample.
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DIFFUSION IN A
CONCENTRATION
GRADIENT

In the preceding chapter our discussion of diffusion in substitutional
alloys was limited to self-diffusion experiments. In such experiments
the specimen is, or is assumed to be, chemically homogeneous. Such
studies showed that the self-diffusion coefficients are, in general, dif-
ferent for the two elements in a substitutional alloy. Yet, if two semi-
infinite bars of differing proportions of components 1 and 2 are joined
and diffused, the Boltzmann-Matano solution gives only one diffusion
coefficient D(¢) which completely describes the resulting homogeni-
zation. Thus the problem is to relate this single diffusion coefticient
to the self-diffusion coefficients at the same composition. To do this
two new effects must be understood. The first of these concerns the
kind of matter flow which is to be classified as diffusion. In a binary
diffusion couple with a large concentration gradient we shall see that
diffusion gives rise to the movement of one part of the diffusion couple
relative to another. The coordinate system used in the Boltzmann-Matano
solution is fixed relative to the end of the specimen, and the chemical
diffusion coefficient is given by the equation'

D = —J/(c/dx) (4-1)

Thus any movement of lattice planes relative to the ends of the dif-

'In this chapter it is necessary to work with several different diffusion coefficients,
all of which apply to the same system but which are different. We shall define each
of them by an equation. The D obtained from the Boltzmann-Matano solution is called
the chemical diffusion coefficient and will be designated D.
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fusion couple is recorded as a flux and affects D even though such
translation does not correspond to any jumping of atoms from one site
to another.

The second effect deals with the relation between the diffusion coef-
ficient measured in a tracer experiment and the intrinsic diffusion coef-
ficient of the separate elements in a binary diffusion couple. This re-
quires a more detailed consideration of the chemical forces giving rise
to diffusion in solids. The development will be based primarily on
thermodynamic or phenomenological reasoning as opposed to the
atomistic models of Chaps. 2 and 3.’

4.1 THE KIRKENDALL EFFECT

Intuitively it would seem that D is some kind of mean value of the
diffusion coefficients of components 1 and 2. But, if components |
and 2 diffuse at different rates in a binary alloy, it is necessary to
obtain some parameter other that D to indicate the magnitude of this
difference. The first experiment which allowed the determination of
this difference for alloys was discovered by Kirkendall.® In the ex-
periment used. a rectangular bar of 70-30 brass was wound with fine
molybdenum wire (molybdenum is insoluble in copper and brass) and
then plated with about 0.1 in. of copper. This couple was then given
a series of successive anneals. After cach anneal, a piece was cut from
the bar, polished. and the distance between the Mo wires (d) was mea-
sured (see Fig. 4-1). It was found that d decreased an amount pro-
portional to the square-root of time. In the Cu-Zn system there is a
small volume change on adding copper to brass, but even after this
effect was subtracted out, a definite marker shift remained. This shift
required that the flux of zinc atoms outward past the markers be ap-
preciably greater than the flux of copper atoms inward across the same
plane. Kirkendall had attempted to show this effect in two earlier pa-
pers, and in this case the results were sufficiently unequivocal to move
his peers. In 1947 this was a new concept,® and its generality was not
apparent. However, later work on a variety of markers in many dif-
ferent alloy systems confirmed these results, and the effect has proved
to be quite general.’

‘For a summary of diffusion data in alloys sec Smithells Metals Ref. Book, 6th Ed.,
Butterworth (1983), Tables 13.3 and 13.4.

‘A. Smigelskas and E. Kirkendall, Trans. AIME. 171 (1947) 130.

*“The reader who is interested in the change which this made in concepts of alloy
diffusion will find the discussion of Smigelskas and Kirkendall's paper interesting reading.

*The work of L. C. Correa da Silva and R. Mehl, Trans. AIME, 191 (1951) 155,
is one of the careful, early confirmations. For a list of such refercnces, see D. Lazarus,
in Seitz and Turnbull (eds.), Solid State Physics, vol. 10, p. 71, Academic Press, New
York, (1960).
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wires

Molybdenum
Copper-. /
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Fig. 4-1 —Schematic diagram showing a cross section of the ditfusion couple used by
Smigelskas and Kirkendall.

4.2 DARKEN’S ANALYSIS

In 1948 Darken published an analysis of diffusion in alloys which
was inspired by the experiments of Smigelskas and Kirkendall.® In it
he established answers to the question of how the tracer diffusion coef-
ficients are related to D and the nonideality of the alloy. Darken’s
original paper is an excellent example of a phenomenological analysis.
A basic characteristic of this approach is that no atomistic model is
assumed so that the results are quite general. We will forego some of
this generality by assuming a vacancy mechanism and thereby work
with a more specific model.

It is useful to begin by considering what type of atomic motion is
to be considered as diffusion. The marker movement experiments show
that the region around the markers translates relative to the ends of the
sample where no diffusion occurs. The uniform translation or flow of
an entire region across a reference plane gives a tlux through the plane,
but this is not what would normally be termed a diffusion flux across
the plane. The concepts of flow may be clearer if the problem of the
diffusion of ink in a moving stream of water is considered. If water
containing a concentration of ink ¢ flows past a point on the bank at
a velocity v, the flux of ink past that point will be vc plus any flux
due to a concentration gradient in the water. To separate these two
contributions to the flux, it is necessary to determine v. To do this
chips of wood could be placed on the water and their velocity taken
to be that of the water.

°L. Darken, Trans, AIME, 175 (1948) 184.
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In this problem two coordinate systems must be considered. One is
fixed relative to inert markers, which experience has shown are fixed
relative to the lattice. This will be called the ‘lattice system’. The flux
and concentration gradient in this coordinate system define what are
called “intrinsic diffusion coefficients’. They are defined by the equations

Jy=—(D,/{)oN,/ox and J, = —(D,/E)ON,/ox (4-2)

D, in general will not equal D,. {2 is the atomic volume, while N, and
N, are the atom fractions of the two components.

The other coordinate system is that used to determine D in a binary
alloy couple using the Matano-Boltzmann technique. It will be called
the ‘reference system’ and is fixed relative to the ends of the sample,
that is in a region outside the diffusion zone. The flux of component
1 in this system, which we will designate Jr,, plus that for component
2, Jr,, equals zero, or

Jrit+Jr,=0 4-3)

The diffusion coefficient in such a system is given by Eq. 4-1. It is
further assumed that the volume of the couple does not change during
diffusion. This is equivalent to assuming that the molar volume of the
two species 1s independent of composition.

We now wish to obtain equations which interrelate the velocity of
these two coordinate systems relative to each other (the marker veloc-
ity) and the various diffusion coefficients D, D, and D,.

In general D, # D,. Since —dN,/dx = dN,/dx it follows that in the
lattice system more material will diffuse out of one side of the couple
than diffuses in. Though the equations obtained are independent of the
mechanism operating, a vacancy mechanism of diffusion will be as-
sumed here to aid in visualizing the situation. In regions without sources
or sinks (the great majority of the lattice), the number of lattice sites
is fixed, and the sum of the fluxes of atoms and vacancies in the lattice
coordinate system is zero,

J+h+1=0 (4-4)

Clearly J. = —(J, + J,) will not be zero. In metals it is a good ap-
proximation to assume that the vacancy concentration keeps its equi-
librium value at each point. If this is true, all of the vacancies that
flow through the couple must be created on one side of the couple and
annihilated on the other. This will move the markers relative to the
ends of the sample. The marker velocity v will equal the net flow of
atoms, which is the vacancy flux times the atomic volume

v=J502=—J, + )02 = (D, — D,)iN,/ox (4-5)
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Darken calculated that at 22.5% Zn
Do, =22 %x 10" em’/s
Dy, =5.1x10"cm’/s

D,./D¢, = 2.3

As N, approaches zero, Eq. (4-7) indicates that D approaches D,,.
From earlier work by Rhines and Mehl, D = D,, = 3 X 107" cm?/
s (at 0% Zn). This indicates that D, increases seventeenfold in going
from O to 22.5% Zn, and is consistent with the magnitude of increase
discussed in Chap. 3. However, as will be seen below this value of
D, cannot be equated directly to the diffusion coefficient obtained
from a tracer experiment in the absence of a concentration gradient.
Figure 4-2 shows a concentration-distance curve for a diffusion couple
consisting of 90 Cu/10 Zn against 70 Cu/30 Zn. Note the following:
* there is substantial asymmetry in c¢(x) with much deeper penetration
on the high Zn side
* the composition at the marker plane is again at 22.5% Zn
* the marker motion is given by the difference between the marker
plane after diffusion and the Matano Interface (Sect. 1-6).

Our calculation of D, and D¢, in no way acts as a check on the
validity of Darken'’s analysis. To do this one must compare the results
with experiments. and consider the assumptions leading to Eqs. (4-7)
and (4-5). The assumption in this derivation that the molar volume of
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Fig. 4-2—C(x) for 10Zn vs. 30Zn brass couple diffused 144 h at 887° C. [After
G. T. Homne, R. F. Mehl, Trans. AIME, 203 (1955) 88—99.]
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the alloy does not change with composition is a minor one, and can
be corrected for in a straightforward manner.” The assumption that the
flux relative to the markers is given by —D,(4C,/dx) is more funda-
mental and more difficult to evaluate. To discuss it properly, and to
compare D, and D, with the experimental values of the tracer diffusion
coefficients in the same alloy requires a more general description of
the flux equation and the forces giving rise to diffusion.

4.3 PHENOMENOLOGICAL EQUATIONS

In chap. 1 it was stated that in a binary phase, if the absence of a
concentration gradient is an adequate condition for equilibrium, one is
safe in using Fick’s first law as a flux equation since the flux will go
to zero as the system approaches equilibrium. This is applicable to
many systems, and since the concentration is easily measured, it is
commonly used. However, dc/dx = 0 is a very restricted condition
for equilibrium. To gain insight into just what the limitations of this
condition are, it is necessary to use a more general condition for

equilibrium.
For a given n-component system at equilibrium, the system can be
uniquely determined by specifying 7, P, w, fa, ..., M,—i, and ¢,

where , is the chemical potential'® and ¢ is any relevant scalar po-
tential, e.g., electric potential. If now the system is displaced slightly
from equilibrium, it seems most likely, and is certainly simplest, to
assume that the rate of return to equilibrium is proportional to the de-
viation from equilibrium. And. until it is proved to be unnecessary,
the flux of, say. component | is assumed to be proportional to the
gradient of each of the potentials listed above. Thus the most general
equation for J, is

J, = —L,(du, /dx) — L-(du~/dx)y — ... — L (du,,/dx)
— L (dT/dx) = Lp(dP/dx) — L, (d$/dx) (4-10)

Similar equations for the flux of component 2, the flux of heat, etc.,
can be given. These are called phenomenological equations since they
stem from no model, but from the observed conditions of equilibrium.
A general discussion of the derivation of these equations is given by

“R. W. Balluffi, Acta Mer., 8 (1960) 871.

"“The chemical potential y, is defined by the equation: w, = (3G/0n)p 1, @ # j.
Where G is the Gibbs free energy of the subsystem or phase. The minimization of G
for the system, at constant P and 7, is equivalent to the requirement that there be no
gradients in u, in the system.
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Flynn." Experimentally it is found that L,,, L,,, and L,, are not zero,
but for now we are interested only in the fact that in an isothermal,
isobaric, isopotential system, J; is not only proportional to du,/dx,
but is also proportional to du,/dx, du,/dx, etc., as well. A complete,
concise discussion of the application of the phenomenological equa-
tions to alloy diffusion is given by Howard and Lidiard."> We shall
discuss here only the assumptions required to obtain the flux equation
assumed by Darken.

Consider a one-dimensional diffusion problem in an isothermal two-
component system. For generality, separate equations are written for
the flux of vacancies J, as well as J, and J,."

Ji = =L (du,/dx) - Ly (dp,/dx) — Li(du,/dx) 4-11)
Jy = =Ly(du, /dx) — Ly(du,/dx) ~ L, (dw,/dx) (4-12)
JV = _Lvl(dl‘l‘l/dx) - LVZ(d“Z/dx) - LVV(dMV/dx) (4_13)

It

In any region where lattice sites are neither created nor destroyed, the
three fluxes are related by Eq. (4-4). If this is to be true for any value
of each of the gradients, substitution of Egs. (4-11) to (4-13) into
(4-4) shows that we must have

Ly+Ly+L,=0,
L+ Ly+L,=0,
le + L2v + va = O

For the equations as written here, there is a set of reciprocity relations
due to Onsager which state that L; = L;. Thus

L,=L,, L,=L,, L,=1L,,
Using all the equations between the L; gives
Ji=—Lyd(p, — w)/dx — L d(p, — p,)/dx (4-14)
Iy = =Ly d(u, — w)/dx = Ly du, — p)/dx  (4-15)

These are now the simplest equations which apply in general for a
binary alloy where a vacancy mechanism is allowed. If a vacancy
mechanism does not operate, the vacancy concentration will be at equi-
librium at all points, and du,/dx will equal zero (as will w,).

''C. P. Flynn, Point Defects and Diffusion, Clarendon Press, Oxford, 1972, Chap.
5.

R. E. Howard, A. B. Lidiard, Rep. Prog. Phys., 27 (1964) 162.

PThis does not assume that a vacancy meachanism is dominant; it only allows the
possibility. If a vacancy mechanism does not operate, then J, = 0.
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To obtain Darken’s flux equation, two additional assumptions must
be made. These are (1) that the vacancies are everywhere in thermal
equilibrium, that is u, = 0, and (2) that the off-diagonal coefficients
Ly, and L, are essentially zero. Inserting these two assumptions in Eq.
(4-14) gives

Ji = Ly dup,/dx (4-16)

To relate D, to L, in Eq. (4-16) we equate our two expressions for
Ji.

Ji = =Ly dw,/dx = —D, dc,/dx (4-17)

In Sec. 1-5, other equations were given for this flux. There a mobility
was defined as the ratio of the force on an atom (F) and v the mean
velocity of the atom when acted upon by F, or M = v/F. Using those
equations, Eq. (4-17) can be rewritten as follows with the chemical
potential appearing as a source'*

Jy=ve, =M Fic, = —Mc,dw,/dx
=—L, du,/dx = ~D, dc,/dx (4-18)
It is apparent that L,, = M c, and that
D, =M, dwu/dinc, = M, du,/dln N, (4-19)

The second equality in Eq. (4-19) follows since if ¢,/density = N,
then dinc, = dinN,. The mobility M is a more general indicator of the
diffusion mobility than D as can be seen by considering spinodal de-
composition. There the amplitude of fluctuations in composition in-
crease with time, so the diffusion flux is up the concentration gradient,
leading to the unphysical situation that D is negative. It can be shown
that du,/dinN, = N\(1 — N,)G" where G" is the second derivative of
the Gibbs Free Energy with respect to composition.”” But G” is neg-
ative for an alloy undergoing spinodal decomposition so D, = M,N,(1
— N))G" can go negative while the mobility M, remains positive and
essentially constant.
The equation relating w, and N, is

= w(T,PYy + RT(In N, + In )

"“Here the equation F = —du,/dx replaces the cquation F = —dV/dx used in Sec.
1-5. The concentration gradient that enters du,/dx does not exert mechanical force in
the sense that a potential-energy gradient does, but it does produce a net flux of atoms
and thus can be thought of as a force. Also one can take the viewpoint that this is
required if the flux given by Eq. (4-22) is to equal zero at equilibrium.

“L. Darken, R. Gurry, Physical Chemistry of Metals, p. 240 or p. 331, McGraw-
Hill, 1953.
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where vy, is called the activity coefficient of 1. Thus
du,/din N = RT(1 + din y,/din N))
and
D, =M RT(1 + dinvy,/dinN\) = M,RTI (4-20)

Here [ is called the thermodynamic factor. The same sort of relation
holds for component 2 with the same value of /. In dilute solution, ¥,
is a constant. (This follows from Raoult’s Law for the solvent and from
Henry’s Law for the solute.) Thus in dilute or ideal solution, D, /M ,RT
= 1, but in concentrated, nonideal solutions the ratio D,/M,RT will
differ from unity. The direction and magnitude of the deviation will
depend on the type and degree of nonideality. For negative deviation
from ideality v, is less than unity, but it increases more rapidly than
linearly with N,. Thus din vy,/din N, is positive and D, is greater than
M\RT. For alloys which exhibit a positive deviation from ideality D,
is correspondingly less than M,RT. With rising temperature alloys al-
ways tend to be more ideal. Thus any deviation of D, /M RT from unity
will decrease with rising temperature. It will be seen in the next section
that this leads to a different in the activation energy for the tracer and
intrinsic diffusion coefficients.

4.4 RELATIONSHIP BETWEEN INTRINSIC
D, AND TRACER D*

The only experimental check of Darken’s equations comes from a
comparison of the tracer diffusion coefficients for the elements in a
binary alloy and the values of D, and D, for the same alloy. Consider
a binary diffusion couple with no chemical concentration gradient, that
is, dN,/dx = 0, but in which there is an isotopic concentration gra-
dient, that is dN{/dx # 0. (N* is the mole fraction of radioactive com-
ponent 1.) Using Eq. (4-20), the self-diffusion coefficient in an alloy
is given by the equation

D= MRT( + din y¥/din N¥)y, .+, (4-21)

But the stable and the radioactive isotopes are chemically identical so
a mixture of varying N,/NT but constant N, + NT will be an ideal
solution. Since vy, should depend only on the overall value of N, +
NT and not on the relative proportions of N¥ and N,, (din vi/din N¥)
in Eq. (4-21) should equal zero. Thus

D¥ = M¥RT (4-22)
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From this same chemical identity of the two isotopes, it seems rea-
sonable to assume that the mobilities determined in the two types of
experiments are the same, that is, M7 = M,.'® Substitution in Eq. (4-
20) then gives

D, = D¥1 + din v,/dIn N,) = D¥I (4-23)

That is, the diffusion coefficient for component 1 in a chemical con-
centration gradient D, is not equal to the value D7 obtained in a self-
diffusion experiment except in ideal or dilute solutions. In concentrated
nonideal solutions D, and D¥ will differ. This difference arises from
the fact that with a given gradient dN, /dx or dN7/dx, the actual driving
force, du,/dx, depends upon whether there is a variation in N, +
N along the diffusion direction or simply a variation of N,/N7 with
no gradient in (N, + NT). Note that as the temperature rises / will
decrease in magnitude. Thus the activation energies for D, will ap-
proach that of DT at higher temperatures.

The most common type of diffusion data is for D, DY, and D%. Thus
an experimental check of this analysis can be made by relating these
three quantities. From the Gibbs-Duhem equation

Ndw, + N,dp, =0
and from the definition of w, as a function of N,
Ndp; = RT(dN; + N din ;)
Substitution of the latter into the former and the fact dN, = —dN, gives
N(din v, /dN,) = N.(din y,/dN-)
Combining this with Eq. (4-7) and (4-23) gives
D = (DN, +~ DN~ din v, /dIn N)) (4-24)
while Eq. 4-5 becomes
v=(D¥ =D + diny,/dln N, )oN,/dx (4-25)

A discussion of the fit of these equations to the experimental data is
better given after a discussion of the approximations made in these
equations and the first order corrections that can be made.

"“Bardeen and Herring, show that for a pure metal fM, = M¥, where f is the cor-
relation coetficient. Thus we are here assuming something about the rclative contri-
bution of correlation effects to experiments in which M, and M¥ are determined. Our
assumption is related to taking L, = 0 (i # j) in Eq. (4-9). This is discussed further
in the next section.
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4.5 TEST OF DARKEN’S ASSUMPTIONS

Two basic assumptions are implicit in the equations Darken used
First that the vacancy concentration was maintained at local equilib-
rium in all regions throughout the diffusion zone, and second that off-
diagonal terms, L, could be neglected.

Vacancy Equilibrium. The assumption that u, is zero requires that
the concentration of vacancies be maintained at its equilibrium value
at every point in the diffusion couple. Since diffusion occurs by a va-
cancy mechanism in the alloys studied, vacancy equilibrium requires
that a volume of vacancies equal to the volume swept out by the mark-
ers, i.e., marker shift times cross-sectional area of the couple, must
be created on one side and destroyed on the other. The problem of
understanding the assumption w, = 0 is then one of determining how
and where these vacancies are formed and destroyed. The regions of
formation and removal can be determined by operating on the experi-
mental ¢(x) curve.

Figure 4-3a shows an assumed c,(x) curve for the case of D, + Dy.
In (b) the fluxes have been obtained by taking the gradient of c,(x)
and multiplying by D, or D,. The vacancy flux is equal to the differ-
ence between J, and J; and is in the same direction as J,. In (c) the
divergence of J, is shown. that is. the rate of vacancy generation (dJ./
dx > 0) or destruction (dJ,/dx < 0). From this figure it is seen that
the vacancies are produced near one end of the diffusion zone and
removed near the other.

Initially it was thought that the active sources and sinks of vacancies
were the free surface or grain boundaries. However, it soon became
clear that in metals the sources and sinks were distributed more ho-
mogeneously. Edge dislocations would serve the purpose, but must be
continually regenerated since otherwise they will all grow out of the
crystal. A long-lived source is obtained by having part of a dislocation
with a screw component parallel to the diffusion direction rotate into
an edge dislocation in a plane normal to the flux. This edge dislocation
can then rotate around the screw dislocation, giving off or taking on
a plane of vacancies in each revolution. This geometry is quite similar
to that given by Burton, Cabrera, and Frank in their discussion of crys-
tal growth from the vapor. In our case, their ledge is replaced by an
internal edge dislocation. Bardeen and Herring'” show that the super-
saturation s required to operate a source or sink of this type is about
0.01, where

s = N, (actual)/N (equilib) — 1 (4-26)

"J. Bardeen, C. Herring, Atom Movements, ASM, Metals Park, OH, 1951,
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Fig. 4-3—(a) Assumed concentration-distance curve for component A. (b) Fluxes of
A and B that result (Dy > D,). The flux of vacancies will be equal to the difference
between J, and Jy. (¢) dJ./dx equals the rate of creation of vacancies at that point.

From the phenomenological viewpoint, one can say that
dl,Jdx = — u, = s 4-27

That is, the rate of creation or removal of vacancies is proportional to
the deviation of u, from its equilibrium value of zero. Thus the line
shown in Fig. 4-3c reflects the deviation from w, = 0. This variation
of u, with distance tends to decrease J, and increase J, relative to the
values predicted by Darken’s equations [see Eqs. (4-24) and (4-25)].
Such a deviation of w, from zero will therefore tend to make the ob-
served values of D,/Djy closer to unity than it should be. Some de-
viation from equilibrium is indicated by the fact that excess vacancies
precipitate as voids (Kirkendall porosity) on the side of the diffusion
couple where diffusion is more rapid. Several types of experiments
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have been done with pure metals to see if the deviation of s from zero
is appreciable. In each case it was concluded that the deviation of s
from zero was no more than a few percent. Indeed Kirkendall porosity
is not observed in copper-brass diffusion couples if the brass is vacuum
melted, thereby removing the small oxide inclusions that aid in the
nucleation of pores at the low supersaturation of vacancies produced
by diffusion. In diffusion couples made of non-metallic compounds
like MgO-NiO the situation can be quite different. There the creation
of additional cation vacancies is strongly constrained by the necessity
to form compensating defects on the anion sublattice. As a result
large gradients in w, can be set up by diffusion. This is discussed in
Chap. 5.

The Assumptions M; = M} and L; = 0. These two assumptions.
or more correctly approximations, are interrelated and it is impossible
to separate them.'® To consider the approximation involved consider
the difference between the two separate experiments in which M, and
M7 (or D, and DY) are measured. M¥ is determined from the rate at
which stable and radioactive isotopes of component 1 become inter-
mingled in a chemically homogeneous alloy; in this experiment there
is neither a net flux of matter nor a net flux of vacancies. M, on the
other hand is determined from the rate at which stable atoms flow
down a chemical concentration gradient: there is both a net flux of
matter and a net flux of vacancies in this experiment. A detailed anal-
ysis of this in terms of the phenomenological equations given above
leads to equations with many unknowns, and to little physical insight.

The most pronounced indication that L, doesn’t equal zero is found
by considering the effect of the net flow of vacancies through the dif-
fusion zone. This net flux of vacancies means that in addition to their
random motion, vacancies will more frequently approach any given
atom from one side than from the other. This vacancy flux (sometimes
called a vacancy ‘wind’) increases the penetration, and apparent D.
for the faster moving component, and decreases the apparent D for the
slower moving component. The largest experimental effect is found
for the marker shift since it depends on the difference between D, and
D,. The corrected version of Eq. 4-25 is divided by a correlation coef-
ficient roughly equal to that of the pure metal crystal involved.'" For

"“For a more detailed discussion of these constants, as well as experiments that in-
dicate the degree to which they are obeyed see, T. R. Anthony, Diffusion in Solids.
eds. A. Nowick, J. Burton, Academic Press (1975). pp. 353-79, or C. P. Flynn,
loc.cit. Chap. 8.

*J. Manning, Diffusion Kinetics for Atoms in Crystals, Van Nostrand, 1968, Chap.
5. See also, C. P. Flynn, Point Defects & Diffusion, Clarendon-Oxford Press, (1972).
Sec. 8.3.2.
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an fcc lattice this correction represents an increase of about 28% in
the marker shift.

v=(1/)DFf— DN +dlnvy,/dinN))ON,/dx (4-28)

Corrections to the equations relating D, to DT are also available.

Probably the most sensitive experiments to check these equations
were done by Meyer™ on the Ag-Au system. Here the values of D¥
and D7 differ by about a factor of two and the correction for non-
ideality rises to 1.6. The experiments were done under an argon pres-
sure to prevent the development of porosity. The observed marker shifts
agreed with those predicted by Eq. 4-28 to within 2%. Experimental
measurements on Cu-Zn*>' and Ag-Cd* show that a correction for the
vacancy wind shifts the calculated values of D,/D, appreciably and
brings them into more satisfactory agreement with the observed ratio
D¥/D*.

4.6 TERNARY ALLOYS

By now the increase in complexity that can arise in going from dif-
fusion in pure metals to binary systems should be established in the
reader’s mind. It is not difficult then to believe that diffusion in ternary
systems is more complicated. We describe here only one experiment
on ternaries. This indicates a few of the new problems that arise in
going from a binary to a ternary system. It is also relevant to the prob-
lem, mentioned earlier, of the correct flux equation to be used in treat-
ing diffusion.

Consider the following experiment. A bar of an Fe-0.4%C alloy is
joined to an Fe-0.4%C-4%Si alloy and ditfused at 1050° C where the
couple consists of only one phase (fcc austenite). Since there is no
carbon concentration gradient. Fick's first law would predict no flux
of carbon. Darken™ has performed essentially this experiment and ob-
tained the carbon distribution shown in Fig. 4-4. It is seen that carbon
diffusion has increased the carbon concentration gradient in the couple,
and produced a discontinuity in the concentration of carbon at the orig-
inal interface.

It has been shown in other studies that adding silicon to Fe-C alloys
increases the chemical potential of carbon. Also, at 1050° C the dif-

“R. O. Meyer, Phys. Rev., 18 (1969) 1086.

ID. J. Schmatz, H. Domian, H. 1. Aaronson. J. Appl. Phys., 37 (1966) 1741-3.
*N. R. lorio, M. A. Dayananda, R. E. Grace, Met. Trans., 4 (1973) 1339-46.
L. Darken, Trans. AIME, 180 (1949) 430.
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Fig. 4-4— Distribution of carbon resulting from 13-day anneal at 1050° C. The carbon
content was initially 0.48% throughout the left side and 0.44% throughout the right
side. (L. S. Darken) The chemical potential of carbon is continuous and monotonic
decreasing across the couple throughout the diffusion anneal.

fusivity of the interstitial carbon is several orders of magnitude greater
than that for the substitutional silicon. Thus upon annealing, the more
rapidly diffusing carbon is redistributed in the region of the joint to
give local equilibrium, that is, to eliminate the gradients in the chem-
ical potential of carbon. Since the sudden drop in silicon concentration
at the joint is not removed by diffusion, an equally sudden rise in the
carbon concentration develops. Using the results of the thermodynamic
studies. Darken showed that the chemical potential of carbon was in-
deed continuous through the joint. Thus the results can be correctly
and casily described with a flux equation of the form J = —M(u/
dx), while the description using Fick's First Law is virtually impossible.

This furnishes a striking example of the effects which can arise in
ternary diffusion couples. The effect is exaggerated by the very rapid
diffusion of the interstitial carbon relative to that of silicon. However,
in a ternary alloy with two substitutional solutes, a flux is possible in
the absence of a concentration gradient or even against a concentration
gradient. In these cases the values of D obtained using Fick’s laws are
empirical constants which depend on the gradient of composition as
well as the composition. As a result, they are of limited practical value
and no theoretical value.

Before closing our discussion of Darken’s experiment, it is inter-
esting to trace out the changes in composition at two points on opposite
sides of the couple using a ternary diagram. Figure 4-5 schematically
shows such a trace. Note that the points initially move along lines of
constant silicon concentrations. This is another way of indicating that
the carbon diffuses much more rapidly than the silicon. If the silicon
and the carbon diffused at the same rate, much of this curvature would
be absent.
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\

Fig. 4-5— Schematic diagram showing the change in composition with time of two
points on opposite sides of the weld in Darken’s diffusion couple of Fe-0.44%C and
Fe-0.48%C-3.8%Si.

Fe Si—

4.7 ESTIMATES OF D ACROSS A BINARY PHASE
DIAGRAM

The metallurgist is often faced with the problem of making “rea-
sonable approximations” for systems or alloys in which no accurate
measurements have been made. In the particular case of diffusion he
may be given the problem of estimating the relative value of D across
much of a phase diagram which contains several intermediate phases.
D has been measured in a few such alloy systems. and several helpful
generalizations can be made. Two of these follow.

1. If adding A to B lowers the melting point of B, or the liquidus line,
it will also increase D at any given temperature. If A raises the
melting point of B, D will decrease. This rule is a variation of the
observation that for a given crystal structure, D at the liquidus is
roughly a constant or H /T, is roughly a constant. As an example,
see Fig. 4-6.

For a given metal, at a given temperature and composition, dif-
fusion will be much faster in a bee lattice than in a close-packed

(9]
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Fig. 4-6— Phase diagrams and the variation of D with composition for several iso-
morphous systems. [C. E. Birchenall, Atom Movements, ASM, Metals Park. OH, (1951),
p. 122.]

lattice. This is true for both the solvent and interstitial and substi-
tutional solutes.

As examples of the second point. consider the following order of
magnitude ratios. For carbon in essentially pure iron at 910° C, D(a)/
D(y) = 100.7* For iron in iron at 850° C., D(a)/D(y) = 100.% For the
comparison of a bee and an hep lattice, in zirconium at 825° C, D(B)/
D(a) = 10°. The more rapid diffusion in the bcc modification is usu-
ally “explained” by saying that the bcc lattice is more loosely packed
or a more open structure. This is qualitatively consistent with our ear-
lier discussion of the ion core repulsion to the activation energy, and
indeed H,,/T,, is lower for bcc metals than for fcc metals (see Table
2-3).

PROBLEMS

4-1. Markers are placed at two locations in a diffusion couple made
by welding together sheets of pure A and B so as to form two
semi-infinite regions of A and B. One set of markers is placed at
the A-B interface and the other a short distance away in pure A.
* Give qualitative curves which show how the position of each

marker varies with time if D, > Dj. Derive these curves by

“R. P. Smith. Acta Mer., [ (1953) 578-87. C. Wert, Phvs. Rev.. 79 (1950) 601.
“C. Birchenall and R. Mehl, Trans. AIME, 188 (1950) 144,
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4-2.

4-3.

44,

4-5.

4-6.

plotting N(x) and dN/dx versus x and using the equation
v = (D4 — Dg)dN,/dx

A diffusion couple is made by Joining pure Cu to Cu-10%Al,
with inert markers in the weld interface. Annealing gives marker
motion indicating D,, > D,.

(a) Draw a plot of the concentration of Al vs. distance for the
annealed couple. Be sure to indicate the difference in pene-
tration distance on the two sides of the marker interface re-
sulting from D,, > D,.,.

(b) Show which way the markers at the interface will shift, and
where the Kirkendall porosity will be growing most rapidly
for the C(x) curve drawn in (a).

Using Eqs. (4-22) and (4-23), calculate dln D/d(1/T) = —Q/R

for D and DY. Discuss the reason for, and the sign of, the dif-

ference in the two.

Consider two diffusion couples involving alpha brass:

* a 30% Zn alloy held in a vacuum at 780° C where essentially

all of the Zn that comes to the surface evaporates,

* a piece of pure copper exposed to a Zn vapor in equilibrium
with Cu-30% Zn so that the Cu surface is held at essentially
30% Zn.

(a) For each specimen, plot the variation of concentration, C(x),
and flux, J(x), of Zn with depth below the surface. (Indicate
the direction of .J,, for each couple.

(b) Explain if, and where, porosity would form in each sample.

Inert markers are placed on the face of a sample of metal A. and

the face is exposed to a gas which maintains a fixed concentration

of B on the exposed face. The markers become embedded in the
sample with time as the sample grows from the added B diffusing
into the sample as A diffuses out into the B rich surface layer.

(a) Write an equation relating the difference in flux (Jy — Jg) at
the plane of the markers to (D4 — Dg) at this plane and to
the rate of marker motion relative to the pure A end of the
sample. (note N, + N, = )

(b) Explain where the marker will end up, relative to its initial
height to the external surface, if D, > D, and where it will
end up if Dy < D,.

Chromium is diffused into pure iron at 1000 C under conditions

which maintain a concentration of 50% Cr at the surface, The

Fe-Cr system has an austenite loop; at 1000° C the maximum Cr

content of the y-phase is 12%, and the minimum Cr content of

the a-phase is 13%. The diffusivity D of Cr is much greater in
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4-7.

4-8.

4-1.

4-3.

4-4.
cdw/dt = (J, + Jp)2 = (D4 — Dp)(0N,/0x),-,,

Diffusion in Solids

the a-phase than in the y-phase. Sketch a schematic diagram of

concentration of Cr vs. depth below the surface. Pay special at-

tention to slopes and curvatures. You need not draw to scale but

should indicate absolute values where possible.

In a given phase the flux of a given component is always in the

direction of its decreasing chemical potential. Therefore it is help-

ful to establish the following. Using the thermodynamic relation

between w,; and N; show that

(a) For a binary system if dN,/dx = 0, then du,/dx = 0, and if
du,/dx > 0, then dN,/dx > 0. (x is distance)

(b) For a ternary system if du;/dx > O then dN, /dx can be either
>0 or <0.

Explain how D, and D7 in Darken’s analysis are determined ex-

perimentally, and tell why they differ.

. Consider a diffusion couple of Cu against an alpha solid solution

of Cu-15a/0 Al with fine inert markers initially placed in the

interface between the two pieces of metal.

(a) How would you measure the Kirkendall shift?

(b) What is Kirkendall porosity, and where would you expect to
find it?

(¢c) How can this shift be related to the intrinsic diffusion coef-
ficients D,, and D, in the alloy? (are these values for all
compositions in the couple, or only for some particular
composition?)

(d) If the annihilation of vacancies was suddenly rendered im-
possible so that the vacancy chemical potential could locally
rise, or fall, what would this do to the relative fluxes of Al
and Cu?

Answers to Selected Problems

Initially dN,/dx is large at the weld interface, and zero at the
markers away from the discontinuity in composition. Thus the
markers at the weld interface will start moving immediately while
the other set will move only as the gradient, dN,/dx, at that lo-
cation rises.

The difference stems from the variation of the thermodynamic
factor, /, with temperature. With negative deviation from ideality
[ > 1, and Q for D, is less than Q* for DY. With positive de-
viation / < 1 and Q > QF.

(b) Porosity could form internally in the brass losing Zn.
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DIFFUSION IN NONMETALS

In the preceding chapters, the specific examples used concerned
metals. This stems partly from the author’s experience but also from
the fact that the majority of the research on diffusion in solids has been
done with metals. There is reason to believe that all the general theory
and most of the physical phenomena discussed in the earlier chapters
applies equally well to nonmetals, although well-studied examples are
often not available. With the change in electronic structure in going
from metals to nonmetals, several new effects arise. In insulators the
electrons are bound so tightly to the atoms that the principal means of
carrying electric current at elevated temperature is by the movement
of ions. In oxides and sulfides of transition metals the charge is carried
by electrons, or electron holes, but charge conservation dictates that
deviations from stoichiometry are accompanied by large increases in
the concentration of the point defects that aid diffusion. In elemental
semiconductors like silicon and germanium the bonding leads to both
special electronic effects and the relatively easy accommodation of host
and solute atoms on interstitial sites. This chapter deals with the phe-
nomena which are unique to nonmetals, and ordered alloys.

5.1 POINT DEFECTS IN IONIC SOLIDS

The reader may recall that the forces between atoms in an ionic
crystal are largely classical and that a well-developed theory of ionic
crystals was established before the advent of quantum mechanics. The
physical model resulting from such studies is demonstrated by the NaCl-
type lattice shown in Fig. 5-1. Here the equally charged ions are ar-
ranged so that the oppositely charged ions are nearer to each other and
the similarly charged ions are farther apart. If diffusion occurred by
the interchange of a neighboring sodium ion and a chloride ion, these
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ions would go to sites which were surrounded by ions of the same
charge. The increase in electrostatic energy of this new configuration
over the normal situation is so great that diffusion by this mechanism
is out of the question. Calculation of the energy required to form var-
ious mobile defects indicates that the dominant defects are always va-
cancies and interstitials.

Since there are two types of ions in these compounds, the formation
of defects is not as simple as in the case of a pure metal. For example,
if metal ion (cation) vacancies were formed at a surface of an ionic
solid and then diffused into the crystal, the surface would have an
excess negative charge; the inside of the crystal would have an equal
positive charge. These separated, unlike charges would have a very
large electrostatic energy per vacancy, so large in fact that the sepa-
ration of unlike charges over macroscopic distances does not occur.
To have defects which will maintain local charge neutrality, two kinds
of defects of opposite charge must be formed. For example, if both
an anion vacancy and a cation vacancy were formed, charge neutrality
would be preserved. When an equal number of anion and cation va-
cancies are formed, the resulting disorder is said to be of the Schottky
type. This type of disorder is the dominant type of disorder in alkali
halide crystals and is shown in Fig. 5-1a.

An equation for the equilibrium fraction of anion sites that are vacant
(N,,) and the equilibrium fraction of cation sites that are vacant (V,,)

(a) {b)

Fig. 5-1—(a) Schematic drawing of (100) plane of NaCl lattice showing the relative
sizes of the ions, and Schottky disorder: sodium vacancy Vy,, and chlorine vacancy
Va in equal numbers. (b) Spatial arrangement of the ions in the NaCl unit cell.
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can be obtained in a manner analogous to that used in Chap. 2 to
calculate N, . If 8n anion vacancies and on cation vacancies are added
to a crystal, and if all of the vacancies are randomly distributed, the
change in free energy of the system will be

8G = (dn/N)[H,, + H,, — T(5,, + S..) + RT(nN,, + InN,)] (5-1)

where —R In N,, is the ideal entropy increase for mixing anion va-
cancies into the crystal, S,, is the molar entropy of formation of anion
vacancies, and H,, is the molar enthalpy of formation of anion vacan-
cies. Similar definitions apply to =R In N, S, and H,.; N is Avo-
gadro’s number. Setting G,, = H,, — 7S..and G, = H,. — TS,., the
condition for equilibrium is

(N.)(N,) = exp[—(G,, + G.)/RT1 = exp(—=Gs/RT)  (5-2)

If N, = N,. the equation can also be written N,, = exp(—Gg/2RT),
where G; is the molar free energy of formation of the pair of vacancies.
This defect type is found in alkali halides, e.g. NaCl. It is also found
where defects on both lattices have energies of formation close enough
that the motion of both defects can be measured. .

If the free energy required to form an interstitial cation (G,.) is much
less than that required to form an anion vacancy (G.,). the charge of
the cation vacancies will be compensated by metal ions going into
interstitial sites. This combination of defects is known as Frenkel dis-
order. If N, is the fraction of interstitial sites which is occupied by
metal ions (cations) and the defects are all randomly distributed, the
equilibrium condition is

(N)N..) = exp(—Gr/RT) (5-3)

where Gy is the molar frec energy of formation for a pair of Frenkel
defects, i.e., and interstitial plus a vacancy. This type of disorder is
dominant in AgCl and AgBr. and is found in systems where the mea-
surable ionic motion is essentially limited to one type of ion due to
the large difference in the energies required for diftusion.

It should be emphasized that in our derivations it was not necessary
to assume that N,, = N,, lin Eq. (5-2)] or that N,, = N,. lin Eq. (5-
3)]. These two equations are thus analogous to the equilibrium con-
stants found in discussions of chemical equilibrium. Two cases com-
monly arise in which these general properties of the equations are used.
First, if G,. = G,,, then G5 = G and, in addition to cation vacancies,
both anion vacancies and cation interstitials will be present. The rel-
ative concentrations of the various defects must then be determined by
simultaneously satisfying Eqs. (5-2) and (5-3) as well as the condition
for charge neutrality which requires that N,, = N,, + N, (provided all



154 Diffusion in Solids

ions have the same charge.) Second, if some of the matrix ions are
replaced by ions of a different valence. For example, if CaCl, mole-
cules are dissolved in the NaCl a proportionate number of Na” vacan-
cies with a net negative charge must be added to maintain charge neu-
trality. Thus the equilibrium concentration of defects will be determined
by the arrangement which will maintain charge neutrality and at the
same time satisfy Egs. (5-2) or (5-3).

5.2 DIFFUSION AND IONIC CONDUCTION

When a solid is placed in an electrical circuit which maintains a
voltage across it, a force is exerted on the charged particles in the solid
and they tend to rearrange themselves, that is, the anion and cation
defects move so as to let current flow in the external circuit. In metals
and semiconductors essentially all of the current is carried by elec-
trons. However, in ionic solids at high temperatures the ions are more
mobile than the tightly bound electrons. Thus electricity is conducted
through the solid by the diffusion of ions.

To derive an equation relating the conductivity and the diffusion
coefficient, it is necessary to take account of the force exerted on the
ions by the electric field. Following the reasoning that led to the phe-
nomenological equations of Sec. 4-4, we proceed as follows: In the
absence of an electric field the condition for equilibrium is Vu, = 0
for each component. If g; is the charge on the particle then ¢,V is the
force on it due to the electric field V. The condition for equilibrium
in the presence of an electric field is thus

Vo, + qVé=0 (5-4)

The flux is equal to the product of the number of particles per unit
volume (c;), their mobility (M}), and the mean force on the particles.
Thus for the case in which uj and ¢ vary only along the x axis

J; = —M;c;(0p/3x + q;00/3x) (5-5)

In the absence of a field, the flux of particles can also be expressed
as

J; = —D;(d¢;/9x) (5-6)
or, from Eq. (5-5),

J; = —M;c; dp/ox
Now from the definition of y; in dilute solutions

aw;/dx = (RT/c)) dc;/ 0x
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So these two equations for the flux will be equal if
M,RT = D; (5-7)

This equation is referred to as the Einstein equation or the Nernst-
Einstein equation.'

To demonstrate how D is related to the electrical conductivity o,
consider the case in which the charge is carried by interstitial atoms.
The flux of charge, or the current per unit area {, will then be given
by the equation I = J.q;, and if (d¢,/dx) = 0, the current will be

[ = (D;q;c;/RT)X—d¢/dx)

The conductivity is defined by the equation 1 = o(—d¢/dx), and the
atom fraction of interstitials, N;, equals ¢;£2 where (2 is the molar vol-
ume, SO we can write

o/D; = N,q;/QRT (5-8)

However, using radioactive tracers, we do not measure the diffusion
coefficient for the interstitials (D,) but Dy, the diffusion coefficient for
a radioactive tracer in the solid. As was shown in Chap. 2 these two
are related by the equation D7 = fD;N;. Thus the conductivity is relate
to the tracer diffusion coefficient by the equation.

o/Dy = (zF)’ [fORT (5-9)

where the charge per ion has been replaced by the valence z times
Faraday’s constant to consistently work with molar units. If a vacancy
mechanism of diffusion is dominant instead of an interstitial one. the
same equation for the conductivity is obtained, but Dy = fD.N, is used
for Dy and the value of f would be different. Thus we have the inter-
esting result that the relation between o and D; varies with the mech-
anism of diffusion. This will be discussed further in Sec. 5-6.

Before the equation relating o and Dy can be used. it is necessary
to know the fraction of the observed conductivity that is due to the jth
type of ion o;. The total conductivity o is due to the movement of
anions, cations, and electrons. The fraction of the total current carried
by the jth type of particle is termed the transport number ¢;. Thus

t, +e.+t, =1

where 7, is the fraction of the current carried by anions, etc. It follows

'In the physics literature the term “mobility”is not applied to our M but to the product
oM where e is the electronic charge. This product is often designated by the symbol
w. This procedure is not followed here since the symbol w is used to represent the
chemical potential and since the mobility as defined in Eq. (5-6) has already been used
in Chap. 4.
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that o, = ot,, etc. For alkali halide crystals at temperatures above
two-thirds of their melting point, ¢, is negligible. It is also found that
t, = 1 in these compounds, although 7, can be about unity in other
compounds, for example in the halides (BaF,, BaCl,. PbF,, PbCl,)’
or in oxides (ZrO,, ThO,, CeO2).3 In these compounds the dominant
defects giving rise to diffusion are anion Frenkel pairs or Schottky
pairs. The observation that either #, or ¢, is close to unity in most ionic
crystals can be understood as follows. Both D, and D, will vary ex-
ponentially with temperature, and the activation energies for the two
will be large but different. It follows that D, can be much larger or
much less than D, over an appreciable temperature range, so in many
cases the ionic conduction will occur primarily through the movement
of only one type of ion.

5.3 EXPERIMENTAL CHECK OF RELATION BETWEEN
o AND Dy

The relation between o and D+ indicated in Eq. (5-9) can be checked
experimentally and has been for several cases. The resuits of a study
on NaCl are shown in Fig. 5-2. Here the diffusion coefficient of the
sodium ion (D) was determined by evaporating a thin film of NaCl
containing radioactive sodium on the surface of a single crystal. This
was diffused, then sectioned, and D; determined using the thin-film
solution described in Sec. 1-3. In measuring the conductivity, the tech-
nique differs from that used on metals primarily in two respects. First,
the currents measured are very small since o is about 10°° (ohm—cm)"
or 1077 times that of copper at room temperature. Second, the voltage
must be alternated in sign so that the crystal will not become polarized
at electrodes. '

The ionic conductivity of sodium can be described in terms of an
apparent diffusion coefficient,

D, = oRTQ/F’ (5-10)

obtained from Eq. (5-9). (z = 1 for Na') In NaCl the sodium ions
move by a vacancy mechanism. Since the sodium ions of NaCl form
an fcc sublattice, f = 0.78 and Eq. (5-9) predicts that D;/D, = f, so
D, should give a line parallel to but 28% greater than the measured
values of D,. However, the results in Fig. 5-2 show that Dy essentially

For a summary of transport number data as well as an extensive discussion of ionic
conduction see A. B. Lidiard in Handbuch der Physik, vol. 20, p. 246, Springer-
Verlag, Berlin, (1957).

A S. Nowick, in Diffusion in Crystalline Solids, eds., G. E. Murch, A. S. Nowick,
Academic Press (1984) p. 143-88.
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Fig. 5-2—Log Dy vs. 1/T for sodium in NaCl as determined with radioactive sodium
(©) and from the conductivity (@). {Mapother, Crooks. and Maurer, J. Chem. Phys..
18 (1950) 1231}

equals D, between the melting point and 550° C. The reason for this
is unclear. One mechanism that would increase D, without changing
D, is the contribution of neutral pairs each being made up of a posi-
tively charged chlorine vacancy and a negatively charge sodium va-
cancy. The concentration of such pairs increases with the temperature
for the same reason that the concentration of divacancies increases in
metals (Sect. 2-9). The cation vacancies in these pairs could make a
significant contribution to D7 in the high temperature domain, but be-
cause they are neutral they would not move in an electric field and

thus would contribute nothing to the conductivity.* Below 550° C two

4y C. Nelson, R. J. Friauf, J. Phys. Chem. Solids, 31 (1970) 825-43.
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changes occur: the slope changes appreciably, and the measured values
of Dy are greater than those calculated from o by a factor of 2. Both
of these effects are due to the presence of metal impurities with a
valence different from that of sodium.

It is customary to define a new constant, the Haven ratio as

D;/D, = Hy (5-11)

For a vacancy mechanism in NaCl, H, = f, but this is not the case
for all mechanisms, as will be seen in discussing the interstitialcy
mechanism in Sect. 5.5.

5.4 EFFECT OF IMPURITIES ON D; AND o

The effect of impurities on the conductivity of ionic solids has been
the subject of many studies and provides a powerful tool for studying
the types and relative mobilities of the various defects formed. The
power of the technique comes from the fact there are definite relations
between the impurity concentration and the defect concentration. For
example, if a small amount, say 0.01%, of CaCl, is dissolved in NaCl,
the solution can be thought to occur by either of two imaginary pro-
cesses. First, two NaCl molecules could be removed per CaCl, mol-
ecule added. There would be no net change in the number of chlorine
ions but, since the Ca’ " ion occupies only one of the two vacated Na*
sites, a cation vacancy will be introduced for each Ca’" ion added. A
second possible process would be to remove only one NaCl molecule
per CaCl, molecule and place the extra chlorine ion in an interstitial po-
sition. Of these two possible processes the latter would involve a larger
free-energy change than the former, that is, G,, > G,.. Thus, when
CaCl, is added to NaCl, a cation vacancy will be introduced for each
Ca'" ion. To maintain charge neutrality, the number of defects with
a net positive charge (Ca' ' ions and anion vacancies) must equal the
number of defects with a net negative charge. The relation between
the atom fraction of the impurities and the atom fraction of defects is
therefore

N++ +Nva:N\'L (5_12)

where N' " is the fraction of cation sites occupied by divalent impurities.

The conductivity and diffusivity are both proportional to the con-
centrations of mobile defects so that the problem is to see how this
concentration is changed by the impurity concentration. We discuss
the case of Schottky disorder in the NaCl-type lattice. Frenkel disorder
is treated in the next section. In a pure NaCl-type crystal the concen-
tration of anion vacancies (N°,) must equal that of the cation vacancies
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(N.). (The superscript zero is used to denote the pure material.) If
divalent impurities are added, the concentration of cation vacancies
and anion vacancies will be different, but Eq. (5-2) is still valid. Thus

using Eq. (5-12) to substitute for N,, gives
(N\f(')(N\'(' - N++) = exp(_GS/RT) = (N?'()z = (Ivgu)2 (5-13)

This equation assumes that there is no significant interaction between
the impurities and the defects, so they are randomly distributed, i.e.,
the solution is ideal. Equation (5-13) can be rewritten

N N NO’
<N?+> _N(+_<N++> :0

This is a quadratic equation in (N,./N' 7). Now N, /N’ * must be pos-
itive, so the root of the equation 18

Nt (ZNU. ) /2
N,. = [1 + (1 +— ) ] (5-14)
2 N

This equation simplifies in two limiting cases—first, when N YN,
N,. approaches N\, ; second, when N° < N"", N,. approaches N
The first case applies to pure material, while the second applies to
impure material. However, N ° varies exponentially with temperature,
and since no material is absolutely free from multivalent impurities,
there will always be a temperature below which N, < N' 7.

We can now explain the sharp change in slope at 550° C shown in
Fig. 5-2. If sodium diffuses by a vacancy mechanism, Dy will be given
by an equation of the form

D;=vya N, wr

where v is a constant roughly equal to 1. and w; is the jump frequency
of a sodium tracer next to a vacant site. In the temperature range where
N** < N, this equation can be written

D, = ya’ exp(—Gs/2RT) exp(—G,,/RT)
=D, expl—(Hs/2 + H,)/RT] (5-15)

The variation of Dy with temperature here stems from the fact that both
N.. and w; vary with temperature. The observed Dy, and thus o, are
independent of the purity or history of the specimen in this range so
that these properties are intrinsic to the pure compound; the name “in-
trinsic range” was applied to the phenomenon before the mechanism
was understood.

In the low-temperature range N'' > N°.. Here the vacancy con-
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centration no longer varies with temperature but equals N*". The
equation for D; is then

D; = D, exp(—H,,/RT) (5-16)

where D, is much less than D, and is roughly equal to N'"D,. This
behavior is called “extrinsic” since it depends on the impurity content
rather than the intrinsic properties of the crystal.

The validity of Eqs. (5-15) and (5-16) can be checked in at least
two ways. First, the difference between the observed slope in Fig. 5-
2 in the intrinsic range and that in the low-temperature or extrinsic
range should equal H/2. The measured activation energies for the two
ranges is shown in Table 5-1.° The indicated value of Hy is 2.06 eV.
This agrees well with the calculated value of 1.92 eV .° The values of the
ratios of D, to D, are also given. The crystals used were reported to be
better than 99.99% pure; this agrees with the observed value of D, /D)
and the prediction D,/D! = 1/N'",

Table 5-1. Diffusion Data for Sodium in NaCF

Intrinsic Range

D, =3.1cm’/s H, + Hg/2 = 1.80 eV
Extrinsic Range

D, =1.6x 10%cm?/s H, =077 ¢V

D,/D, =12 x 10 Hg = 2.06 eV

*D. Mapother, H. Crook, R. Maurer, J. Chem. Phvs., 18 (1950) 1231.

The other check on this model comes from measuring the conduc-
tivity of a series of crystals which contain controlled amounts of di-
valent impurities. If the model leading to Eq. (5-16) is correct, the
values of o, or Dy, should increase linearly with N** at any given
temperature in the extrinsic range. Experiment shows that this is es-
sentially the case. Values of o for NaCl doped with CdCl, are shown
in Fig. 5-3. The values of D, increase with N**, while the slope is
unchanged. Also, when the temperature is high enough that the ex-
trinsic conductivity of each crystal becomes less than that of pure NaCl,
the slope increases, and the intrinsic conductivity becomes dominant.

If o of the above study is plotted against N™ 7, that is N, at some
fixed temperature in the extrinsic range, it is found that the line is not
quite straight but is concave downward. Thus ¢ does not quite increase
linearly as expected. The number of vacancies must still be equal to

*For a more complete set of formation energies see L. W. Barr, A. B. Lidiard, in
Physical Chem., v. 10, ed. W. Jost, Academic Press (1970) 151-228.
°M. Tosi and F. Fumi, quoted by Lidiard, op. cit., p. 274.
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Fig. 5-3—Log o versus 1/T for NaCl crystals doped with varying atom percent of
CdClL,.

N"" 50 all of the vacancies must not be contributing to ¢. This inef-
fectiveness of some vacancies stems from the fact that there is a cou-
lombic attraction between the divalent impurities and cation vacancies.
Thus there will be an equilibrium of the form

Ve, + Cd " = v-Cd

where V—Cd designates a cation vacancy on a site next to a cadmium
ion and bound to it. As the temperature drops the thermal energy drops
relative to this binding energy and more of the sodium vacancies be-
come bound to Cd* " ions. Since these pairs are neutral they will not
migrate toward the anode as an unassociated vacancy would, and thus
they do not contribute to o. However, the bound vacancy can con-
tribute to the motion of tracer atoms, and thus Dy, almost as effectively
as a free vacancy.’ This binding to form neutral pairs is probably the
main cause of D;/D, being roughly two in Fig. 5-2. This binding will
become more effective as the temperature drops further so there is no
fixed value of the Haven ratio in this regime.

’For a calculation of a/D, in this case see Lidiard, op. cit., p. 332.
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5.5 EFFECT OF IMPURITIES ON CONDUCTIVITY
(FRENKEL DISORDER)

In the example of Schottky disorder studied above, the mobility of
the cation vacancies was so much greater than that of the anion va-
cancies that the movement of the latter defect could be ignored. In the
best-studied materials which exhibit Frenkel disorder, the conductivity
occurs entirely by cation movement, that is, t. = 1.* However, the
cations move both by a vacancy and by an interstitial mechanism. It
is seen in the next section that the unambiguous relation of D; to o
requires a knowledge of the relative mobilities for these two defects.
Here we give a qualitative discussion of how the relative mobilities
can be determined, before deriving the equations relating o to D;.

To a good approximation the interstitials and vacancies move in-
dependently so that the total conductivity due to the cations can be
taken as the sum of the conductivities of each type of defect; thus

=0, + o,
o=cq M, + i M, (5-17)
o= cqMN, + M.N,) (5-18)

where ¢, is the number of cations per unit volume, and we have used
the relations ¢, = ¢.N,, ¢, = ¢.N,and ¢, = q; = —q,. ¢

If the ratio N/N is varied without changing the ratio M,/M,., th
change of o with N;/N, will indicate whether or not the defect bemg
added is the more mobile. This can be done as follows: if small amounts
of CdBr, are added to AgBr, the various concentrations (atom frac-
tions) must obey the equations—from charge neutrality:

N* ! + Ni(‘ = ch
from equilibrium:
(NN, = (N2 = (N = exp(—G/RT) (5-3)

Thus as the concentration of divalent ions is increased the concentra-
tion of interstitials will decrease, and that of the vacancies will in-
crease. Experimentally, it is found that the conductivity decreases when
CdBr, is first added to pure AgBr. This shows that silver interstitials
are more mobile than silver vacancies.

80xides of MO, structure can have anion interstitial and vacancies as the main de-
fects. They are also well studied, see A. S. Nowick, in Diffusion in Crystalline Solids,
ed. G. E. Murch, A. S. Nowick, Academic Press, 1984, p. 143—188.

"The equations developed here are for the case of a compound made up of mono-
valent ions, for example AgBr.
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Fig. 5-4 —Relative conductivity o/a, of AgBr vs. atom fraction of CdBr, at several
:emperatures. [After J. Teltow, Ann. Physik, 5 (1949) 63.]

As the concentration of CdBr, is increased, o continues to decrease
as long as the majority of the conduction is due to interstitials. How-
ever, as N'' and N, continue to increase, there comes a composition
at which o goes through a minimum and starts to increase (see Fig.
5-4). In this range the vacancies are starting to give the majority of
the conduction. Using the concept developed above, an equation can
be obtained which expresses o/c, in terms of N™ " N" _and M,/M, ."*
(o,is o at N'" = 0). Measurements of o/c, versus N~ at various
temperatures then allow the determination of M,/M_ and N from the
values of o/o, and N™~ at the minima. The equations are

(N' Doin = N%(d — D/ Vo (5-19)

(0/G)in = 2V D/ (1 + @) (5-20)

where ¢ = M,/M,. Figure 5-4 shows that (o/0,),, increases as the
temperature increases. In view of Eq. (5-20), this means that ¢ de-
creases with increasing temperature. Teltow found that for AgBr, ¢
changes from 7 as 180° C to 2 at 350° C. Since the temperature de-
pendence of each defect mobility is determined entirely by the acti-

"J. Teltow, Ann. Physik. Leipzig, 5 (1949) 63. (in German). For a discussion in
English, see Lidiard, op. cit. p. 288.
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vation energy for a defect jump, the temperature dependence of ¢ comes
from the difference in H,, for the two defects. From the two data above,
it can be calculated that H,(v) — H,(i) = 0.2 eV.

5.6 RELATION OF o TO D; IN AgBr
(FRENKEL DISORDER)

Careful measurements on o and D, for silver in AgBr'' have shown
that D,/D;, ranges from over 2 at low temperatures to 1.5 at high
temperatures. This ratio is even larger than the value of 1 expected for
an interstitial mechanism or 1/f for the vacancy mechanism. Thus a
mechanism other than interstitial or vacancy is implied. It is shown
below that an interstitialcy mechanism can give up to D,/D; = 3, thus
making it the most probable mechanism for the movement of the in-
terstitial silver ions.

An interstitial ion can move by jumping directly to another inter-
stitial site (direct interstitial mechanism) or by pushing one of its near-
est-neighbor ions into an interstitial position and taking its place (in-
terstitialcy mechanism). If the latter occurs, the interstitial charge moves
farther than either of the two ions involved. Figure 5-5 shows an in-
terstitial ion in one of the eight interstitial positions in an AgBr unit
cell. A heavy arrow indicates a jump to its nearest neighbor in the
exact center of the cell. This center atom can be displaced in a forward
direction to the center of any one of four cubes. If it goes in the di-
rection of the heavy arrow, [111], the jump is called a collinear jump.
If it goes to one of the other three forward positions, it will be called
a noncollinear jump.

To relate Dy to o for the interstitialcy mechanism, we again start
with Eq. (5-8)

o/D, = N.(zF)’/QRT (5-8)

where D, is the diffusion coefficient for the interstitial ion. The cation
sites neighboring an interstitial cation are all equivalent, so that all
jump directions are equally probable and successive jump directions
of the interstitial are uncorrelated. Thus

D, = (1/6)]e;

It should be emphasized that this equation refers to the diffusion of
the interstitial. To clarify the relation between the movement of the
interstitial and the movement of a particular ion, consider the two-
dimensional square lattice shown in Fig. 5-6. Between Fig. 5-6a and

"R. Friauf, Phys. Rev., 105 (1957) 843. For similar work on AgCl see M. D. Weber,
R. J. Friauf, J. Phvs. Chem. Solids, 30 (1969) 407-19.
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Collinear

Fig. 5-5— The heavy arrow shows the movement of the interstitial atom making a
jump by the interstitialcy mechanism. The other four arrows represent the possible
jumps of the atom displaced from a normal lattice position. The collinear jump vector
is so labeled; the three possible non-collinear jump vectors are not.
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Fig. 5-6—(a) and (b) show schematic diagrams of a two-dimensional square lattice
before and after a collinear interstitial jumps has occurred. @, is the distance which the
interstitial moves in this process. (C) and (d) show the same process, except that a
tracer atom (0) is involved. ar the distance which the tracer moves in this process.
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b the interstitial has moved by a collinear interstitialcy mechanism. As
far as a conductivity experiment can indicate, the only change between
(a) and (b) is that the charged interstitial has moved a distance «,. The
same process is shown again in Fig. 5-6¢ and d, except that here a
tracer is involved. In a tracer experiment a particular ion is followed
instead of the interstitial, and the distance a tracer ion moves in the
jump ay is one-half of «;.

The equation for Dy is

D; = (l/6)fFTa;

S < 1 in this case as can be seen from the following. In 5-6¢ the
neighbors of the tracer are identical, so there can be no correlation
between the tracer’s last jump and its next. In Fig. 5-6d the tracer must
make its next jump to an interstitial site, and these are not all identical.
Thus in (d) it is more probable that the tracer will make its next jump
backward in the direction it just came from than forward in the direc-
tion of its last jump. This correlation between jumps makes f < 1.

To derive an equation relating D; to D, for the collinear interstitialcy
mechanism, we note first that 2o, = a, so that D,/D; = I,/(4fT}).
The relation between I, and I'; can be obtained as follows: If over a
long period of time ¢ a tracer ion makes n jumps, n, of which are
interstitial and n, from normal sites, then

Iy=n/t=n/t + n,/t

but n; = n,, since this mechanism requires that the tracer always jumps
from a normal site to an interstitial site, or vice versa. If ¢, is the time
spent in interstitial sites, this gives

I = 2n;/t = 2n,/t)(1,/1)

Now n;/t; = I; by definition, and #,/t equal to the fraction of atoms
on interstitial sites at any time, N; gives Iy = 2I'N,. For the collinear
interstitialcy then

D,N;/Dy = 2/f (5-21)
Detailed calculation shows that in this case f = (2/3). Thus with Eq.
(5-3)
/Dy = 3(zF)'/RTQ (collinear int.)
or
oRTQ/c(zF)* = D, = 3D, (5-22)
For a noncollinear mechanism, again 2 I''N; = I';, but now (a,/a;)*

= (8/3) instead of 4. Also the value of f is lower in this case. The
result is
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D, = 138D, (5-23)

The third mechanism that contributes to diffusion in AgBr is a vacancy
mechanism. This was discussed above. Since oy = «,, the entire effect
is due to correlation, and from Eq. (5-9)

D, = 1.27 Dy (vacancy) (5-24)

Experimental results for AgBr are shown in Fig. 5-7. The ratio D,/
Dr varies from 2.17 (140° C) to 1.50 (350° C). It is apparent from the
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Fig. 5-7—Log D versus 1/T for silver in AgBr as determined by tracer and conduc-
tivity experiments. [From R. J. Friauf, Phys. Rev., 105 (1957) 843.]
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large value of D,/D; that the collinear interstitiaicy mechanism must
account for an appreciable part of the conductivity at 140° C, and for
a smaller, but finite, fraction at the higher temperature. With the help
of Teltow’s results on the relative mobilities of vacancies and inter-
stitials in AgBr (see Sec. 5-5), Friauf was able to determine the relative
contributions of collinear and noncollinear jumps as a function of
temperature.

In the last two sections, we have shown that the relation between o
and D; and the requirement of charge neutrality combine to give a
unique set of tools for studying diffusion in ionic materials. Charge
neutrality allows the concentration of defects to be varied in a known
manner, while the relation of ¢ to Dy allows the unambiguous deter-
mination of the mechanism of diffusion.

5.7 OXIDE SEMICONDUCTORS"

Though the name “semiconductor” refers to the mechanism of elec-
trical conductivity in a solid, solids which have this property also have
similar diffusion characteristics. In semiconductors the concentration
of mobile, or conducting, electrons is often high enough to make the
electron transport number equal to unity but low enough that the elec-
trons can be treated as non-interacting particles. Thus the simple re-
lation between the electrical conductivity and Dy found in ionic con-
ductors is lost, but the rule of charge neutrality can still be used in
treating defect equilibrium.

One of the most important characteristics of compound semicon-
ductors is the variation of stoichiometry with annealing atmosphere.
Well studied examples exist in transition metal oxides, or sulfides.
This deviation often appears as cation vacancies or interstitials, and
Dy for the cations is directly proportional to the defect concentration,
since these chemically induced defects are always greater than the ther-
mally induced defects. That is the material is always in the ‘extrinsic’
range. The effect of environment is more pronounced in transition
metal compounds because of the small energy difference between their
different valence states. If the compound is close to the stoichiometric
composition a striking change can be made in the defect concentration
with only a small change in composition. For example if the compo-
sition of MO is changed from M/O = 107> to 107*, the change in
composition is barely perceptible, but D; could change by an order of
magnitude. In effect the compounds are in the “extrinsic” range since
the defect concentration is determined by composition more than ther-

For oxide diffusion data, see R. Freer, J. Matl. Sci., 15 (1980) 803-24.
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mal fluctuations. The study of this type of behavior is important in
understanding the kinetics of high temperature alloy oxidation."

Co0. As an example of this type of behavior and the information
obtainable therefrom, consider the case of CoO. In this compound the
atomic radius of the oxygen ion is twice that of the cobalt so diffusion
occurs only on the cation sublattice. The variation of the vacancy con-
centration with oxygen partial pressure can be obtained by an equation
of the form

1/2 0x(g) + 3 Cog, = CoO + 2 Copy + Veo (5-28)

where V, designates a cobalt ion vacancy. The cobalt ions are given
the subscript “‘Co’ to emphasize that sites are conserved in the reaction
as well as charge, etc. The electron deficit which converts a Co®' ion
into a Co®" ion is called an electron hole (h"), and is essentially an
electron vacancy. At any instant it is associated with one Ilon, but it
can easily move from one to another.

The equilibrium constant for the reaction shown in Eq. (5-28) is

K= [flcoo(a(m+)zav]/[(“(foz+)} (PO)I/Z] (5-29)

CoO is present as a pure solid so CoO and Co”" will have activity of
one. The holes, vacancies, and oxygen will be present at low concen-
trations. If it is assumed that none of these species interact, i.e., the
solution is ideal, the equilibrium constant for the reaction is

(NN /(Po)'* = b’ exp(—H' /RT) (5-30)

where b is a constant and H' is the molar enthalpy change for the
reaction. Since two Co”" ions are oxidized to Co’™ to form each cation

vacancy, charge neutrality requires that 2V, = N, . Inserting this re-
lation in Eq. (5-30) gives
N, = (Py)""°b exp(—H'/3RT) (5-31)

If this equation is substituted in the expression Dy = ya:Nwy, two
results follow. First, the diffusion coefficient at constant temperature
should increase as the 1/6th power of the oxygen partial pressure.
Second, the quantity H in the expression

dln D7/3(1/T)p, = —H/R

will not equal the heat of motion H,, but will equal H,, + H'/3. This
reflects the fact that at constant oxygen pressure the composition of

YSee for example N. Birks, G. H. Meier, Intro. to High Temp. Oxidation of Metals,
Edward Arnold (1983)., and H. Schmalzried, Ber. Bunsenges. Phys. Chem., 87 (1983)
551-8, 88 (1984) 1186-94.
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the oxide changes with temperature. Note that an equation essentially
identical to Eq. (5-31) would hold for the concentration of electron
holes. The electrical conduction in CoO is entirely by holes, so the
measurement of the electrical conductivity as a function of oxygen
partial pressure and temperature gives information on how Dy will change
with these variables.

Experimental results for D, are shown in Fig. 5-8."* The diffusion
coefficient clearly increases with oxygen pressure, rising with about a
slope of 1/5th on the low oxygen side of the stability range, and 1/
4th on the high side of the range. The electrical conductivity shows
exactly the same pressure and temperature dependence. There are sev-

"“The discussion of CoO largely follows R. Dieckmann, Z. Phys. Chem. Neue Folge,
107 (1977) 189-210.
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Fig. 5-8 —Tracer D of Co in CoO vs. oxygen activity. [R. Dieckmann, Z. Physik.
Chem. NF, 107 (1977) 189.]
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eral possible explanations for this rise, which is a deviation from ide-
ality due to the ‘large’ concentration of vacancies and holes.

One model to account for this coulombic attraction between the pos-
itively charged electron holes and the cation vacancies (which have an
effective charge of —2) is as follows. Due to this attraction, the holes
and vacancies will not be randomly mixed, but there will be a high
probability of a vacancy having at least one electron hole on one of
its nearest-neighbor sites at any instant. If this situation is approxi-
mated by the case in which half of the electron holes are randomly
distributed and the other half are bound to vacancies to form vacancy-
hole complexes (V.h"), the reaction Cog, + V.h" = Col! + V. should
be subtracted from Eq. (5-28) giving

1/204(g) + 2Coli = CoO + Coli + V.h' (5-32)

But charge neutrality requires that the concentration of holes and com-
plexes are equal so

(NO(NW)/(Po)'* = K(T)
It follows that for this case N, and N, A are proportional to PY*.

If not half but all of the holes are bound to vacancies, a similar
analysis shows that the concentration of such defects (h'V.h™") would
vary as the square-root of the pressure. The experimental results for
CoO would indicate that each vacancy is partially paired with roughly
one hole, at the higher oxygen potentials and less than one at lower
oxygen pressures.

Magnetite (Spinel). A second interesting example of defects in a
transition metal oxide is found in Fe;O, (magnetite). This is a spinel
structure containing divalent and trivalent cations in the ratio 1:2
(Fes04) = ([Fe-O,][FeO]). It is metal deficient relative to the stoi-
chiometric composition at all but the lowest oxygen partial pressures
for which the phase is stable. If D7 tor iron 1s measured over the range
of oxygen partial pressures allowable in magnetite, the results shown
in Fig. 5-9 are found."” At high oxygen activities D; increases as
(P,)*?, as one might expect for a vacancy mechanism from the dis-
cussion of D7 in CoO given above. However, as P, decreases, D; goes
through a minimum and then rises in a manner reminiscent of the re-
sults for interstitial diffusion in AgBr shown in Fig. 5-4.

The defect structure developed in Fe;O, with changing P, in the
range on the right of Fig. 5-9 can be described by the equation

“R. Dieckmann, H. Schmalzried, Ber. Bunsenges. Phys. Chem., 81 (1977) (1)344—
7, (ID414-19.
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Fig. 59— Tracer D of Fe in Fe O, vs. oxygen activity. (R. Dieckmann, and
H. Schmalzried.)

2/304(g) + 3Fel = 1/3Fe;0, + 2Fell + Vi (5-33)

where the subscript "Fe’ is added to V and Fe so that one can see that
atomic sites are conserved in the reaction as well as chemical elements
and charge. As the oxygen activity drops, the compound shifts toward
stoichiometry (the concentration of oxygen vacancies drops). The ac-
tivity is unity for Fe’*, Fe'", and Fe O, so Eq. (5-33) indicates that
the vacancy concentration wiil vary as ag” in this regime. However,
as the oxygen activity drops the oxide becomes so close to stoichio-
metric that the interstitial-vacancy concentration is determined by the
reaction FeZ, = Fe?' + V which corresponds to the formation of Fren-

kel pairs. Adding this to Eq. (5-33) gives
2/30,(g) + 2Feil + Fei” =1/3Fe,0, + 2 Feje  (5-34)

Thus near stoichiometry the concentration of iron interstitials varies as
(a,)"**. The model then predicts

Dy = aD(P,)"" + bD(Po) " (5-35)

as is observed. (¢ and b are constants) The minimum in D occurs when
the two terms in Eq. (5-35) are equal, while the stoichiometric compo-
sition would occur when the concentrations of cation interstitials and va-
cancies are the same. A careful comparison of the stoichiometric com-
position with the diffusion data shows that the minimum in D; comes at
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a higher value of a, than does stoichiometry. It is calculated that D, =
15 Dy at this composition.

5.8 ELEMENTAL SEMICONDUCTORS'®

Diffusion and its control plays a major role in the production of
transistors and other solid state devices, since the performance of the
device depends critically on the distribution of dopants. The atomic
bonds in semiconductors are covalent (homopolar) rather than metallic.
This results in several basic differences between Si and Ge on one hand
and say metallic Cu or Ni on the other. For example:

* the diamond cubic lattices of Ge and Si are much more open than
that of close-packed metals. That is, there is more space between
the hard ion cores.

¢ the formation energy of vacancies is higher, relative to the melting
temperature, and the formation energies of vacancies and self-inter-
stitials are more nearly equal than in metals.

* atoms much more often occupy interstitial positions in Si and Ge.
This leads to an important role for Si interstitials in self diffusion,
and to relatively large atoms (Fe, Ni, and Cu in Si) occupying both
lattice and interstitial positions at equilibrium. Motion of the inter-
stitials dominates the diffusion process.

* the presence or absence of bonding can determine the mobility of
the solute. For example oxygen is small and occupies interstitial sites
in Si but bonds with Si and diffuses with a relatively high activation
energy (2 eV) while the larger Ni and Cu atoms, which form no
bonds with Si, move with a Q of closer to 0.5 eV,

There are good isotopes for the determination of self diffusion in
germanium, but no appropriate isotope for silicon. Thus D for Ge is
well known while that for Si is less certain. However, it is clear that
self-diffusion in Ge and Si at their respective melting temperatures is
orders of magnitude slower than that in metals at their melting points.
(see Fig. 5-10) This difference between semiconductor and metal in-
creases yet more at lower temperatures due to the relatively larger ac-
tivation energies (Q/7,,) for Ge and Si (see Table 2-5). A variety of
experiments indicate that self diffusion in Ge and Si is dominated by
vacancy motion at low temperatures, but at high temperatures D in
silicon may be dominated by the motion of interstitials. The values of

"“W. Frank, U. Goesele, H. Mehrer, A. Seeger, Diffusion in Crystalline Solids, eds.
G. E. Murch, A. S. Nowick, Academic Press (1984), p. 64—142. S. M. Hu in Atomic
Diffusion in Semiconductors, ed. D. Shaw, Plenum (1973), pp. 217-350.
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Fig. 5-10—Log D for Si, Ge and the noble metals vs. T./T.

D, for self diffusion in Si and Ge are in the same range as that for
metals. (See Table 2-5)

Fig. 5-11 plots log D vs 1/T for a variety of solutes in Si. The lines
representing D for Group III and V elements lie above but roughly
parallel to those for Si self diffusion. In addition there are some solutes
that diffuse much faster, and with lower activation energies, e.g. Cu,
Ni, Au or Li. These fast diffusing metal atoms are believed to form a
complete electron shell by capture of an electron or electron hole. The
resulting atoms interact weakly with the matrix and as a result the
migration energy is low (<1 eV). The fast diffusing solutes reside both
on substitutional and interstitial sites. Depending on the solute, the
atoms may occupy predominantly substitutional or predominantly in-
terstitial sites at equilibrium. However, there will always be a distri-
bution of atoms between the two types of sites, and the much higher
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mobility of interstitial atoms means that they usually make a dominant
contribution to the diffusion of such solutes. In fact the main new theme
of this section is the role of interstitials in self and solute diffusion and
the factors that influence the local concentration of interstitials.

The mechanism of diffusion in elemental semiconductors has been
deduced from several types of experiments. Two are discussed briefly

here.

Influence of Oxidation on Diffusion. In the manufacture of silicon
based devices it is customary to oxidize the surface at intermediate
temperatures to form an insulating SiO, layer. It has been found that
the growth of this oxide layer has three effects:
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« it leads to the nucleation and growth of partial dislocation loops (in-
terstitial type) on {I111} planes.

« it speeds up the diffusion of B, Al, Ga (Group Il elements) and P

« it slows down the diffusion of Sb, and As (Group V).

The injection of Si interstitials at the surface by oxidation would
reduce the concentration of Si vacancies through the reaction that forms
Frenkel pairs.

Sip + Vg = Sig; (5-36)

where Sig; represents a Si atom on a lattice site and Si; a Si atom on
an interstitial site. The equilibrium constant is

(NDIN,) = (NDINY) = K(T) (5-37)

The formation of mobile electrons is relatively easy in these elements
so defect concentration is not influenced by the need for charge neu-
trality as it was in the compounds discussed above. Thus the ratio of
vacancies and interstitials concentrations in thermal equilibrium with
surfaces and dislocations, N{/N¢, will not equal 1, but will take a
value reflecting the difference in the energies of formation of the two
defects. From Eq. (5-37) it follows that if N; > Nj then N, must be
less than N¢. If D for Sb is reduced by the oxidation, this indicates
that Sb diffuses by a vacancy mechanism.

With both interstitials and vacancies present at equilibrium, the dif-
fusion coefficient for any solute elements in Ge or Si is clearly the
sum of the vacancy and interstitial contributions, thus

D=DN, + DN, (5-38)

The generation of interstitial type loops indicates the injection of an
excess of interstitials at the surface. If this excess of Si interstitials
speeds up the diffusion of a solute, then interstitial Si atoms must play
a central role in the diffusion of that solute. A solute can be moved
into an interstitial position by an interstitial Si atom through the re-
action

A= Ag + Si K = N,N,/N, (5-39)

This is termed the ‘kick-out’ mechanism, whereby an interstitial silicon
pushes an interstitial solute off of a normal lattice site and into an
interstitial position.

Since an excess of Si interstitials would lead to an increase in the
concentration of interstitial solute atoms, and is found to speed up the
diffusion of Group III elements (B, Al, Ga), and P, it is clear that the
diffusion of these solutes is determined primarily by their motion as
interstitials. This could occur if the solute diffused either by an inter-
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-~ .l or an interstitialcy mechanism. It appears that the dominant
~._nanism is by an interstitialcy mechanism rather than by simple
--=rutitial motion. For Group V solutes the mechanism depends on the

_.te radius. Phosphorous, the smallest atom in this group, diffuses
-~ Tarily by an interstitial mechanism while the largest, Sb, diffuses
-- marily by a vacancy mechanism.

Zust Diffusers. Figure 5-11 indicates that some of the transition and

~ie metals diffuse many orders of magnitude faster than the host

-on atoms. Similar results have been reported for diffusion in ger-
~ .71um. The cause for this is two- fold: a non-negligible fraction of
“-z:¢ impurities occupy interstitial positions at equilibrium, and the
-_ovation for the jumping of these interstitial atoms quite low. One of
- - tirst studies of this rapid diffusion dealt with the low temperature
- -“usion of Cu in Ge, and the fact that the diffusion did not appear

sbey Fick’s Laws.

Before describing these experiments it is necessary to emphasize a
- ndamental difference between metal samples and the crystals of Ge

- Si used in such studies. The density of dislocations, may average

-m° or less in a good Ge or Si crystal, while in a metal the density
- mgh (105/cm2) even in a well annealed crystal. Thus in a metal the
- .tance a vacancy must diffuse to find a dislocation is much shorter
--in in a semiconductor. As a result, in a metal the equilibrium con-
_antration of vacancies is usually maintained throughout the crystal.
1 Ge or Si, vacancy sources are far apart, and the concentration of
. scancies or interstitials may deviate from the equilibrium value over
- iarge fraction of the crystal.

Now return to the Cu-Ge experiment in which diffusion does not
:ppear to obey Fick’s Law. If Cu is deposited on one face of a Cu
‘ree Ge crystal containing only a few dislocations in one sub-boundary,
. diffusion anneal leads to the copper distribution shown in Fig. 5-12.
There is a high concentration on the surface. then a low copper con-
-entration where only interstitial Cu is found in the lattice, then a rise
'n Cu concentration along the sub-boundary. Interstitial Cu is con-
-erted into a substitutional atom in the Ge lattice by the reaction

Cug, = Cu; + V. K =NN,/N,, (5-40)

This is termed the ‘dissociative mechanism.’ At temperatures where
diffusion is easily measured, 700-800° C, the equilibrium constant K
sor this reaction is much less than one. This means that the solubility
on substitutional sites, N¢, is much greater than that on interstitial sites,
\¢. However, the low concentration of interstitial Cu that develops
near the Cu rich surface rapidly spreads through the perfect crystal
.ince the diffusion coefficient of the Cu interstitial D; is quite large.
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Fig. 5-12— C(x) for Cu diffused into a Ge crystal containing a sub-boundary.

(More precisely D;N; > D,N,). In regions far from vacancy sources
the concentration of copper can only rise to N7 since the concentration
of vacancies N, is very small (N > N,) and there is no source of ad-
ditional vacancies. However, near dislocations, and free surfaces, where
new vacancies can be produced and N, maintained at thermal equilib-
rium, the conversion of interstitial Cu to lattice sites will continue until
the Cu concentration on lattice sites equals that on the outside of the
crystal. In the crystal shown in Fig. 5-12 the concentration at the sub-
boundary has not yet risen this high.

It is useful to treat the diffusion of these fast diffusing elements by
considering two limiting cases, that for perfect crystals where the sur-
face is the only source of vacancies, or sink for interstitials, and that
for crystals with many dislocations in which local equilibrium is main-
tained throughout the crystal. In each of these cases the conversion of
solute atoms from interstitial to lattice sites can be accomplished by
two mechanisms, the kick-out mechanism given in Eq. (5-39) or the
dissociation mechanism, Eq. (5-40).

A detailed analysis of the effect of these conversion mechanisms on
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the effective diffusion coefficient of the solute D, and on c(x,t), al-
lows one to distinguish between the two conversion mechanisms. "’

If the crystal is dislocation free, the vacancies needed for the dis-
sociation reaction in Eq. (5-40) can only move in from the free sur-
face. Consider a crystal with pure copper on the surface. After a brief
diffusion anneal the perfect crystal may be permeated with interstitial
copper, but the equilibrium concentration of copper, N¢, only develops
as fast as vacancies can diffuse in from the surface to convert inter-
stitial Cu to substitutional atoms. Under these conditions the advance
of the copper ‘front’ is determined by a balance between the flux of
vacancies from the surface, D, N¢, and the amount of copper needed
to advance the front unit distance, that is the solubility N — N{ =
N¢. The effective diffusion coefficient of Cu is thus given by

Dy = D,NT/NY (disloc. free) (5-41)

where the superscript ‘e’ indicates the value at thermal equilibrium.
From the known solubility of Cu in Ge, N, the value of f,D N7 can
be calculated. This is found to equal the tracer self diffusion coefficient
of Ge, as it should.

At the other extreme, if the crystal has a high density of dislocations
then the vacancy concentration is maintained at its equilibrium value
N¢ throughout the crystal. The flow of copper in from the copper bear-
ing surface is determined by the flux of interstitials D,N;. The amount
of copper needed to advance the front a distance dx is the solubility
of substitutional copper at thermal equilibrium. Thus D, for Cu is

Dy = D:N{/N; (dislocations) (5-42)

D.;; in this case is much greater than for the dislocation free crystal.
because N¢ > N°. Eq. (5-42) is similar to equation (3-34) for the dif-
fusion of hydrogen through hydrogen free iron. That is. mobile inter-
stitial Cu corresponds to the hydrogen diffusing rapidly through the
lattice, and the Cu on substitutional sites corresponds to the hydrogen
in traps.

The kick-out mechanism is the other mechanism to move interstitial
solute onto lattice sites. In this case the impurity interstitial has a higher
energy than that of the Cu discussed above, and instead of waiting for
a vacancy, it can move an Si atom off of its lattice site and move it
into an interstitial position. (It is believed that Au diffusing in Si pro-
ceeds in this way.) If the kick-out mechanism operates, Eq. (5-39), a
lot of interstitial Si atoms are produced and the process limiting the
influx of solute may be the elimination of these slowly diffusing silicon

"W . Frank, et al., loc. cit., pp. 116-35.
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interstitials. In a crystals containing many dislocations the removal of
excess Si interstitials is rapid (V ¢ is maintained). Solute interstitial dif-
fusion is then limiting and Eq. (5-42) again gives the effective solute
diffusion coefficient.

The case of solute diffusion in dislocation free crystals is more in-
teresting because here the kick-out mechanism gives results different
from the dissociative mechanism. Again interstitial solute permeates
the crystal, and now the Si interstitials generated by the kick-out re-
action must diffuse to the free surface before more interstitial solute
move into the region. In analogy with Eq. (5-41), one would expect
an equation of the form,

D= D/N,/N,. (5-43)

where N, is the atom fraction of Si interstitials. However, for the case
of solute diffusion into a pure Si crystal, the ratio N,/N, rises sub-
stantially from a low value at the free surface to a high value in the
interior. Thus D, increases substantially in moving from the free sur-
face into the front where the concentration is changing. This rise pro-
duces a flat concentration gradient and leads to the unique ‘signature’
of this mechanism. This can be seen as follows. Remember that the
rapidly diffusing solute interstitial has an essentially constant concen-
tration N, throughout the couple. The equation for the equilibrium con-
stant K in Eq. (5-39) can then be rewritten

KN, = NNj = NN, (5-44)
Substitution for N; in Eq. (5-43) gives
Do = (DININD/(N) (5-45)

At the free surface the value of Dy is D,Ni/N§. However, well be-
neath the free surface, the conversion of interstitial solute atoms gen-
crates a concentration of Si interstitials well in excess of the equilib-
rium value (N, > N7, as N, falls. As a result Dy rises to a much
higher value. The diffusion equations have been solved for this vari-
able D, and the predicted slow drop off in the observed c(x,t) curve
fits the observed data for Au diffusing in Si quite satisfactorily.'®

5.9 ORDERED ALLOYS AND INTERMETALLIC PHASES"

Ordered alloys and intermetallic compounds form the bridge be-
tween dilute alloys in which the tendency toward short-range order is

W _ Frank, et al., op. cit., pp- 125-8.
1. Bakker, Diffusion in Crystalline Solids, ed. G. E. Murch. A. S. Nowick, Ac-
ademic Press (1984), p. 189-258.
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weak, and the ionic compounds in which the energy to put an A atom
on a B site in the compound AB is so large that each type of ion
diffuses only on its own sublattice. Such alloys are always ordered at
low temperature, and sometimes this order persists up to the melting
point. In an ordered alloy the energy of an A atom on a B-type site
(B site) is higher than that of an A atom on an A-type site (« site).
However, this energy difference is small enough that some A atoms
do reside on B sites even in the ordered phase. This can be seen from
the existence of the ordered phase over a range of compositions or
from the lack of perfect long-range order in stoichiometric interme-
tallic phases. The study of diffusion in such phases involves two dif-
ficult problems. First, the vacancy concentration will depend on the
composition of the phase, so to understand the diffusion mechanism
one must determine to what extent a deviation from stoichiometry to-
ward an excess of A is accommodated by placing A atoms on 3 sites
and to what extent by forming vacant 3 sites. Second, if A atoms
diffuse in the ordered phase by moving into vacant adjacent 3 sites,
there will be a high probability of the A atom returning to the vacant
« site on its next jump. This correlation effect can be quite strong.
The main question to be discussed here is the mechanism of diffusion
in stoichiometric ordered alloys. Questions such as defect types in off
stoichiometric compositions,™ or the interesting matters of creep and
dislocation climb in such phases, are not addressed.

Consider the ordered intermetallic phase shown in Fig. 5-13. This
is often referred to as the CsCl or ordered beta brass structure. In it
A atoms have only B nearest neighbors, and B atoms having only A

—a-sublattice

—p -sublattice

Fig. 5-13—Two cells of the CsCl structure. If the alloy is disordered, the lattice is
bee. (From H. Bakker)

*J. P. Neumann, Acta Met., 28 (1980) 1165—70. H. Bakker, et al. in Atomic Trans-
port in Alloys: Recent Development, Ed. G. E. Mirch, M. A. Dayananda, TMS/AIME
(1985), pp. 39-66.
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nearest neighbors. When the alloy is disordered the phase has a bcc
structure. If diffusion occurred by jumps to vacancies on nearest neigh-
bor sites then diffusion would destroy the order of the crystal. Three
mechanisms that would allow diffusion and preserve the order are:”!

(a) an atomic jump to a vacancy on a next nearest neighbor site, that
is, an A atom jump to a vacant a site along a (110) direction.

(b) a pair of vacancies, one on each sublattice, start on adjoining sites.
(See Fig. 5-14) One vacancy makes a 1/2(111) jump which dis-
sociates the pair. This places an A atom on a B site, or a B on an
« site. If the misplaced atom now jumps into the second vacancy
it returns to its proper sublattice and the divacancy is reassociated.
Note that the vacancy pair can give diffusion on either sublattice.

{(c) one vacancy, on either sublattice, can make a sequence of six cor-
related nearest neighbor jumps in a ring in a {110} plane so as to
exchange the two A atoms on their sublattice and the two B atoms
on their sublattice, Fig. 5-15. Though the sequence begins and
ends with perfect order, after only three jumps there are three mis-
placed atoms. This sequence is the simplest (introduces the least
disorder) while allowing diffusion with only one vacancy and near-
est neighbor jumps.

The ratios of D,/Djy for each of these mechanisms differs. For (a)
and (b) the ratio can have any value since the diffusion on the two
sublattices is uncoupled, while for (c) the ring cannot operate without
a coupling between jumps on the two sublattices. A detailed analysis
shows the ratio must lie between 0.5 and 2.0 for the six-jump-ring. A
ratio within this range extending over a wide temperature range has
been observed in several of the beta brass type phases, e.g. CoGa,
AuZn, AgMg, to mention a few.

The energy increase on exchanging neighboring A and B atoms in

1
oL

Fig. 5-14— Diffusion by a divacancy mechanism shown on the (110) plane of a CsCl
lattice. B indicates the B-type sites in the ordered alloy. (Hahn, Frohberg, & Wever)

2] Hahn, G. Frohberg, H. Wever, Phys. Stat. Sol.(a), 79 (1983) 559-65.
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{b)

Fig. 5-15— (a) shows the initial configuration of a six-jump-ring mechanism on a {110}
plane and arrows representing the 3 vacancy jumps that lead to (b). The arrows in (b)
show the jumps that will complete the ring. ® are B atoms, O are A atoms.

an initially ordered alloy is called the disordering energy, V,. If this
disordering energy is less than the mean thermal energy of the atoms
at the melting point, i.e. V,/RT,, is less than one, the phase will dis-
order at some temperature below the melting point of the alloy. If it
is high the intermetallic phase will remain ordered to its melting point.
The correlation factor f for diffusion in an ordered alloy decreases rap-
idly as V,/RT increases, that is as the temperature drops. This can be
seen in Fig. 5-16 where diffusion data are shown for beta brass in the
temperature range that includes the transition temperature. Much of
the increase in the activation energy for diffusion as the temperature
drops below the ordering temperature is due to a rapid decrease in f
with rising V,/RT. In systems where the disordering energy is quite
high, f for nearest neighbor jumps goes so low that nearest neighbor
jumps stop contributing to diffusion. Then the second nearest neighbor
jump mechanism probably predominates. Cation diffusion NaCl or CoO
would be extreme examples of this situation.

The other type of ordered intermetallic that has been studied exten-
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Fig. 5-16—D for Cu(A) and Zn(0) in B-CuZn vs. 1/T in alloys ranging from 46.5 to
48 a/o Zn. [A. Kuper, et al., Phys. Rev., 104 (1956) 1536.]

sively is of the type Ni,Sb. Here the Ni type atoms occupy two kinds
of sites as shown in Fig. 5-17, but the majority component (Ni in this
case) can diffuse without disturbing the order of the alloy. The ma-
jority component is found to diffuse with a low activation energy rel-
ative to the melting point of the compound. Also, it moves with an
appreciably lower Q than the minority element. For example in Cu;Sn,
O, = 0.85¢V and Qg, = 1.11 eV ina 79.8 a/o Cu alloy.”* In Cu;Sb,
which melts at only about 10% lower temperature, Q, = 0.31 eV. At
least part of the explanation for this is the tendency to form structural
vacancies on the majority component sublattice with deviations from
stoichiometry.

2N. Prinz, H. Wever, Phys. Stat. Solidi A, 61 (1980) 505, see also Bakker.
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Fig. 5-17—The A;B structure. Larger circles correspond to B atoms. Smaller to A
atoms. The lattice is bce when disordered.

PROBLEMS

5-1. The free energy of a diffusing ion of charge e decreases by ae(dd/
dx) = eAd in moving from left to right in the figure. If the free

& Ag
@
L. ]
2
&
Y ) /
» « -

Position of diffusing ion
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5-2.

5-3.

5-4.

5-5.

Diffusion in Solids

energy of activation for the jump is g and the vibration frequency
is v:
(a) Show that the jump frequency from left to right is

vexpl—(g — eAd/2)/kT|
and from right to left is
vexpl—(g + eAdp/2)/kT].

(b) The conditions for a normal ionic conductivity experiment
might involve d¢p/dx = 10 V/cm and T = 1000° K. If a =
2 x 107% cm, g=2eVandv = 10”/5, calculate the mean
jump frequency and the ratio of the two jump frequencies.
(k= 8.7 X 107°eV/K

The diffusion coefficient for Na in NaCl at 600° C is 3 x< 107"

cm?/s. Calculate the conductivity in (ohm-cm)™', neglecting any

correlation effects, i.e. take f = 1. The molar volume of NaCl
is 26 cm’

(a) Define Frenkel and Schottky disorder.

(b) Give the equations dictated by charge neutrality relating the
defect concentrations for each case.

(c) Find the ratio N,./N.,, for the case where the free energy to
form a Schottky pair (Gs) equals that to form a Frenkel pair
(Gr).

As Cd is dissolved in initially pure AgBr the electrical conduc-

tivity (and silver diffusivity) falls and then rises as a result of

changes in the defect concentration.

(a) Explain what causes the fall and rise of the conductivity.

(b) The same sort of minimum is found for the diffusivity of Fe
in Fe;O, as the P(O,) is increased from low to high in the
Fe;0, phase field. Fe interstitials and vacancies are the type
of defects. Explain which defect determines the diffusivity of
Fe on the low and high sides of the minimum, and give equa-
tions relating the defect concentration to the P(O,).

Due to coulombic forces the work, G,, is required to reversibly

move a divalent impurity from next to a cation vacancy in NaCl.

(a) Write an equation for the association/dissociation of a va-
cancy-impurity complex.

(b) Derive an equation for the equilibrium constant relating the
atom fractions of the vacancies, N,, divalent ion, N, and
complexes, N..

(¢) How should the number of nearest neighbors on the cation
sub-lattice enter this equation.
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5-6.

5-7.

5-8.

The most pronounced differences between the tracer diffusion
coefficients of the more mobile component, D} and the chemical
D are found in compounds. Here the difference is due primarily
to the rapid change of activity with st01ch10metry in crossmg a
phase field. Thus one customarily finds that D > D% > D}, where
each “>” reflects changes of several orders of magnitude.”
Consider a binary system of the elements A and B with one
compound AB. Assume the terminal solid solutions (A in B, and
B in A) to have virtually no solid solubility and be ideal (g, =
in a; = g;Ny).
(a) Graph the activity of A, a,, vs. N, for Ny = OtoN, = 1.
(b) Estimate the average magnitude of d In(ay)/d In(N,) in the
AB compound if the stoichiometry range of the compound is
1077
(c) The variation of a; across the AB phase field is not linear but
sigmoidal with the most rapid change at exact stoichiometry.
If the type of disorder is by the formation of Frenkel pairs,
would this slope increase or decrease with increasing G?
Explain the relationship between the following for a compound
semiconductor like Fe;04
(a) Cation vacancy concentration and oxygen partial pressure.
(b) Cation interstitial concentration and oxygen partial pressure.
(c) Diffusion coefficient of the cation and the oxygen partial
pressure.
In a commercial silicon single crystal there are virtually no dis-
locations present. For fast diffusing impurities (dopants) this often
gives rise to a lattice diffusion coefficient which varies with the
dislocation content of the crystal. Explain how and why this is
true.

Answers to Selected Problems

. (b) jump freq. = 10%/s, ratio = expleAd/kT] =1 + 2 X 1077
. Use Eq. (5-10) D, = = gRTQ/F?, o = 1.5 x 107 (ohm-cm) "'
. (¢) From charge neutrality, N,, + N,, = N,., but N, = N, s0

NVC/NVG = 2

. (a) See Sec. 5.5. (b) See Sec. 5.7.

®See for example K. Becker, H. Schmalzried, V. Wurmb, Solid State lonics, 11
(1983) 213-9.
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HIGH DIFFUSIVITY PATHS

In the preceding chapters the only defects which aided diffusion
through the crystal were vacancies and interstitials. Dislocations, free
surfaces, and grain boundaries entered only to help attain the equilib-
rium defect concentration. However, it is now well established that the
mean jump frequency of atoms at dislocations, boundaries, or surfaces
is much higher than that of the same atom in the lattice. The diffusivity
is therefore higher in these regions. This higher diffusivity is of interest
for several reasons. First, there is the question of what error these paths
introduce in the measurement of the lattice diffusion coefficient. Also,
with properly designed experiments it is possible to determine the dif-
fusion coefficients in each of these high diffusivity regions, allowing
one to learn more about the structure of these paths and about how the
atoms move in them. Finally, there are a group of Kinetic processes
which are limited by such diffusion, for example diffusional creep.
structural changes in thin films, or the stability of fine catalysts.

As an example of the phenomena we are talking about, the contri-
bution of diffusion along grain boundaries can be seen in Fig. 6-1.
Here the apparent self-diffusion coefficient in silver is shown for sin-
gle-crystal and polycrystal samples. This apparent diffusion coefficient
is just that value of D obtained by plating radioactive silver on the
surface of the specimen, diffusing it, and then determining D from a
plot of In(activity) vs. penetration distance squared. At high temper-
atures, the same value of D is obtained from both types of samples.
However, below 700° C the values of D obtained using a polycrystal
consistently lie above the values obtained with a single crystal. The
high-diffusivity paths' in this case are grain boundaries. Below about

'Zener coined the phrase “short-circuiting paths™ to describe this type of effect. For
one accustomed to thinking in terms of the electrical analogue of diffusion, it is ap-
parent that a high-diffusivity path corresponds to one of high conductivity, and this
will tend to relieve the potential gradient or act like a short circuit. However, this
analogy is not immediately apparent to many, and the phrase “high-diffusivity path”
is used here.

189
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Fig. 6-1— Values of D; for silver in silver single-crystals and polycrystalline samples.
|D. Turnbull, in Atom Movements, ASM, Cleveland, (1951) p.129.]

600° C (0.7T,) the contribution of the grain boundary region becomes
dominant.

An estimate of the increase in the jump frequency in the neighbor-
hood of a grain boundary can be obtained as follows. In pure silver
the smallest grain diameter which can be retained at high temperatures
will be about 1 mm. If this is true and the high-diffusivity region around
a grain boundary is taken to be 3 X 10~* cm wide, about one atom in
10° will be in the grain boundary. At 650° C these few grain bound-
aries double the measured diffusion coefficient. If one-millionth of the
atoms make a contribution to the jump frequency which is comparable
to that of all the rest of the atoms, then each of these must be jumping
roughly one million times as often as the regular lattice atoms. At
lower temperatures the difference between the jump frequency in the
grain boundaries and that in the lattice is even larger. Since the grain
boundary atoms represent such a small part of the specimen, it also
follows that the mean jump frequency in this region can be a few or-
ders of magnitude larger than it is in the lattice, for example 10’ times,
and still the boundary regions will make no significant contribution to
the total flux.

The first problem to be dealt with is how to measure the diffusion
coefficient in these high-diffusivity paths. These paths cannot exist ex-
cept as regions surrounded by otherwise perfect crystals, so some means
must be found of treating measurements made on samples in which
the surface atoms represent a very small fraction of the atoms in the
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sample. Two types of such experiments are discussed. The first uses
a concentration gradient as a driving force and the accumulation of
solute to measure the total amount of material transported. The second
uses surface tension as a driving force and obtains the total flux from
the change in the shape of the sample.

6.1 ANALYSIS OF GRAIN BOUNDARY DIFFUSION

To obtain values of the grain boundary diffusion coefficient D, from
diffusion studies on bicrystals, Fisher suggested the following analy-
sis.? Consider the grain boundary to be a thin layer of high-diffusivity
material between two grains which have a low diffusivity. A section
normal to the grain boundary and the free surface is shown in Fig.
6-2.

To obtain the differential equation which is valid inside the high
diffusivity slab, consider an element of this slab which is dy long by
8 thick by unit length deep (into the page in Fig. 6-2). The fluxes into,
or out of, the faces normal to the x and y axes are shown in Fig. 6-
3. Any plane normal to the z axis is a symmetry plane, so J. would
equal zero. A dimensional argument shows that the rate of change in
concentration for this element of grain boundary is given by

?J. C. Fisher, J. Appl. Phys., 22 (1951) 74.

S S SO SR SRS NN :——1
.

3
L=

Fig. 6-2— Coordinate axes and isoconcentration line in a section of the model used
for grain boundary diffusion analysis.
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Fig. 6-3 —Fluxes into and out of an element of grain boundary slab.
ac, 1 aJ, —aJ, 2
= SlJ, —J. ——dy| —2dvJ.|=—==ZJ  (6-1)

Jt  1dvéd ' ay dy é

J. is the flux out of the grain boundary into the perfect lattice and
can be replaced by —D,(dc,/dx) where D, is the lattice D, and the
gradient is evaluated in the lattice just outside the slab. An expression
for J, can be obtained if a grain boundary diffusion coefficient D, is
defined by the equation

J, = =D, dc,/dy (6-2)
Substituting in Eq. (6-1) then gives for the c(x,y,?) in the boundary
slab
ac, d%c, 2D, [dc,
— =D+ (6-3)
ot ay 0 \dx/ _5p

Outside the grain boundary, diffusion would obey the equation
de,/at = D\ Ve, (6-4)

The problem thus becomes one of determining the solution c(x,y,r)
which will simultaneously satisfy these differential equations in the
respective regions and be continuous across the boundary between the
slab and the grain, that is

c,(8/2) = ¢(8/2) (6-5)
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Solutions. Experimentally, solute is applied to the free surface at y
= 0 and allowed to diffuse into the sample. Solutions have been ob-
tained for the boundary conditions of either constant surface compo-
sition, or the application of a thin film to the surface. If D, is much
greater than D, the solute penetration around the grain boundaries will
be deeper than through the lattice. It is the distribution of this material
which diffused along the boundary to a depth well beneath the layer
entering through the lattice that allows the determination of D,. Work-
ing with the case of constant surface composition, Fisher found that
the concentration in the grain boundary rises quickly at first but then
at an ever-decreasing rate. Thus the grain boundary concentration at
any point on the boundary will be near its final value during much of
the anneal. To simplify the analysis he assumed that the boundary
composition at each point stays at its final value throughout the ex-
periment and that the flux in the lattice is perpendicular to the bound-
ary. This yields a simple, approximate solution for the solute that en-
ters the lattice via the boundary. The same type of assumptions have
been used by others in considering other geometries.

The first exact solution, and the one most frequently used, is due
to Whipple. He also assumed a constant surface composition, and used
a Fourier-Laplace transform to obtain a solution in integral form.* Nu-
merical analysis indicated* that beneath the surface layer due to lattice
diffusion where dIn(¢)/d(y") is constant, Whipple's solution gives a
region where the slope din(&)/d(y*”) is constant and D,8 can be ob-
tained from the equation’

[dIn(&)/d(*H) = 0.66(D, /0" (1/8D,) (6-6)

Note that one can determine only the product D,§, not D, alone. This
equation is valid only in the region of v greater than. say, 4\ D t.
where the tracer present has entered the crystal by diffusing in along
the boundary and then out into the crystal from the grain boundary. If
such a region is to develop, D, must be much greater than D,. Whether
or not it develops is indicated by the parameter

B =(D,/D)8/2VD1) (6-7)

which should be 10 or greater for Eq. (6-6) to be used. Figure 6-4 is
adapted from Whipple and shows contours for a concentration 0.2 times
the surface concentration, for 8 = 0.1, 1.0, and 10. Note that there
is no significant extra penetration along the grain boundary until 8 >

‘R. T. Whipple, Phil. Mag., 45 (1954) 1225.

*H. Levine, C. MacCallum, J. Appl. Phys., 31 (1960) 595.

*See N. L. Peterson, in Grain Boundary Structure and Kinetics, ASM, Metals Park,
OH (1980), pp. 209-37.
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Fig. 6-4 — Iso-concentration contours showing the degree of extra penetration near grain
boundary for various values of 8. v = 1 is the penetration in the absence of a grain
boundary. (R. T. Whipple)

1 1f6 =4 x 10 *cm, and D, = 107" cm?/s, then t = 10 s (=28
hr). This means that D,/D, must be greater than 5 % 10* before there
is appreciable penetration at the boundaries. Physically the reason tor
this is that the grain boundary slab is so thin that the grain boundary
flux is not sufficient to bring in enough material to distort the contours
until D,/D, > 5 X 10%

Measurement of D,. If D, is much greater than D,, solute will dif-
fuse along the boundary to a greater depth than in the lattice before
being drained off into the grains by lattice diffusion. Two methods for
determining D, have been used extensively:

« measure the distribution of in-diffused solute in a series of thin slices
cut parallel to the sample surface, ¢(y), and use Eq. (6-6) to give
D,é.

« measure the depth of penetration of a given concentration at the
boundary Ay compared to the lattice penetration from the surface far
from the boundary.

The second technique is useful for comparing the relative D, of
different boundaries. The first is used for accurate determination of
D,d.
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Experimentally one invariably applies a thin film of tracer to the
surface rather than maintaining a constant surface concentration as as-
sumed in Whipple’s solution. Suzuoka found the solution for the thin
film case.® The solution differs from that of Whipple, but the slope of
diné/dy®” is nearly the same. If 8 = 10 the equation for determining
D,d given by Suzuoka’s solution results only in the constant 0.66 in
Eq. (6-6) being decreased by a few percent.

A thin-film tracer experiment in a crystal free of grain boundary
effects produces a penetration curve with /n(¢) vs y* being a straight
line. If grain boundary diffusion makes a significant contribution, the
tracer penetrates much deeper, the penetration curve drops more slowly
and gives a line for n(¢) vs y°/5. Thus the penetration curve consists
of a sum of two terms and can be described by the equation

c(y.t) = A, exp(—y*/4D1) + Ay exp(—y**/b) (6-8)

where A,, A;, and b are known constants. If In(¢) drops more slowly
than y*, this is a clear indication that some high diffusivity path is
operating in addition to lattice diffusion. Fig. 6-5 shows a penetration
curve for a gold tracer diffused into a fine grained thin film of gold

°T. Suzuoka, J. Phys. Soc. Japan, 19 (1964) 839.
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Fig. 6-5— Penetration plot for Au* into polycrystalline Au. A three term exponential
fitting procedure yields three lines, and values of D for diffusion in the lattice (inset,
D), sub-grains (II) and grain boundaries (III). [D. Gupta, J. Appl. Phys., 44 (1973)
4455.]
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at 253° C (0.4 T,,). The data has been fit to an equation of the form
of Eq. (6-8) but with an additional y(’/5 term. The small inset shows
that the data points closest to the surface fit n(¢) vs yz. The main
graph is a plot of In(¢) vs. y*° with two straight lines, labeled 1I and
III. The one main line (III) is due to diffusion along grain boundaries,
and clearly penetrates quite deeply.

Egs. (6-5) and (6-6) are only valid for bicrystals, or polycrystal-line
samples for which the grain diameter 2R is much greater than the mean
diffusion distance in the lattice 2\/D,z. If R is less than or equal to
\/_l—)l_t, then different effects are seen. These are discussed in Sec. 6-
3 along with the effect of arrays of dislocations.

Before leaving this analysis it should be pointed out that the math-
ematical analysis given above is also applicable to the case of surface
diffusion. The slab in Fig. 6-2 is a plane of symmetry so there will
be no net flux across it. Thus if the half of the bicrystal to the left of
the slab is removed, the high-diffusivity slab remains, but now it cor-
responds to a solid-vapor interface. In the derivation of Eq. (6-3), the
only change required is to remove the factor of 2 since the volume
element in Fig. 6-3 now loses material to the lattice on only one side.

6.2 EXPERIMENTAL OBSERVATIONS ON GRAIN
BOUNDARY DIFFUSION

As a result of transmission electron microscopy and computer mod-
eling, there are now quite detailed models for the low temperature
structure of grain boundaries, and quite reasonable models for their
high temperature kinetic behavior.” There has also been a substantial
number of measurements of D,0 as a function of temperature and
boundary structure.®

Grain Boundary Misorientation. The dislocation model for a low
angle grain boundary predicts that a low angle [001] tilt boundary con-
sists of edge dislocations parallel to the [001] direction and a separation
distance of s = a,/[2sin(6/2)].° The lattice between the dislocation
cores is elastically strained but relatively perfect. Turnbull and Hoff-

’See R. W. Balluffi, in Diffusion in Crystalline Solids. ed. G. E. Murch, A. S.
Nowick, Academic Press, 1984, p. 320-78.

N. L. Peterson, in Grain Boundary Structure and Kinetics, ASM Metals Park, OH
(1980) 209-37. And, G. Martin, B. Perraillon, in Grain Boundary Structure and Ki-
netics, ASM Metals Park, OH (1980) 239-95.

*The two halves of a bicrystal containing a (001) tilt boundary have a common [100]
direction in the plane of the boundary and can be brought into coincidence by rotation
about the [100]. If the grain boundary also is a plane of symmetry, it is said to be a
symmetric tilt boundary. If the common [100] direction is normal to the boundary, the
boundary is called a (100) twist boundary.
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man postulated that in the core of these dislocations the diffusion coef-
ficient D, is much greater than D,. Thus instead of replacing the grain
boundary by a slab of uniform thickness & and diffusivity D, the
boundary is described as a planar array of ‘pipes’ of radius ‘a’ and
spacing s. For diffusion in the direction of the dislocation cores or
pipes this gives the equation

p = D, = D(md’/s) = D,ma’|2sin(0/2)/a.] = D,ma*6/a, (6-9)
Several predictions stem from this model.

+ D,5 should increase linearly with misorientation, at least in the low
angle region where the dislocation cores don’t overlap. This is borne
out by the data in Fig. 6-6.

« The activation energy for grain boundary diffusion Q, = Q, should
be independent of 6, at least in the low angle region. (See Fig.
6-6.)

« D,& should not be isotropic in the boundary, but should be appre-
ciably larger in the direction of the pipes than normal to them. As
g increases, and the cores get closer together, the anisotropy should
decrease. The data in Fig. 6-7 shows this. Also, the anisotropy per-
sists even at very high angles where the dislocation model is no longer
valid. Similar results have been demonstrated for other metals.

The data for silver in Fig. 6-6 and Eq. (6-9) lead to the equation
D, = 0.1 exp(—82,500/RT) cm’/s (6-10)

for the pipe diffusivity. This is consistent with the data for high angle
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Fig. 6-6— Dependence of log(D,8) on temperature and 6 for [100] tilt boundaries in
Ag. [D. Tumnbull, R. Hoffman, Acta Met., 2 (1954) 419.]
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Fig. 6-7— Anisotropy of D,5 on 6 for [100] tilt boundaries in Ag. [R. Hoffman, Acta
Met., 4 (1956) 98.]

boundaries in Table 6-1. Using Eq. (6-10) and the data in Table 6-1
the ratio D,/D, at T/T,, = 0.7, 0.5, and 0.3 are, 5 x 10°, 6 X 10/,
and 6 X 10", respectively. These are typical of other metals.

At larger misorientations the dislocation model is no longer valid,
and as @ keeps increasing one ultimately rotates the two crystals through
an angle corresponding to a symmetry operation and the boundary dis-
appears. In between, the boundary will pass through coincidence ori-
entations where the energy is lower, the lowest order coincidence being
a coherent twin boundary in fcc metals. Fig. 6-8 shows such an ex-
ample for diffusion parallel and perpendicular to the axis of rotation
in [011] tilt boundaries in aluminum.

Table 6-1. High Angle Grain Boundary & Lattice D in Metals

Dnl Dob Ql b
Metal Struc  (cm%/s) (cm’/s)  (kJ/mol)  (kJ/mol)  Ref.
Ag fce 0.04 0.03 170 85 1
Au fcc 0.04 0.03 170 90 2
Ni fee 0.92 0.07 278 115 3

Lattice data from Table 2-5 and 2-6. 8 assumed 3 X 107* cm.
'D. Turnbull, R. Hoffman, Acta Met., 2 (1954) 419.

*D. Gupta, K. W. Asai, Thin Solid Films, 22 (1974) 121.

*A. R. Wazan, J. Appl. Phys., 36 (1965) 3596.
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Fig. 6-8 — Penetration of Zn parallel and perpendicular to the [011] rotation axis of Al
bicrystals. [I. Herbeuval, M. Biscondi, C. Goux, Mem. Sci. Rev. Met., 70 (1973) 39.j

Clearly there is a variation with angle and a minimum at the coherent
twin orientation (2 = 3). The lack of symmetry reflects scatter in the
data and scatter in the misorientation of the bicrystals used.

Temperature Dependence. Experimental results clearly indicate
that the activation energy for grain boundary diffusion is less than that
for lattice diffusion, while D, is about the same for the two. This is
born out by the data in Table 6-1. The samples used to get this data
were polycrystalline and the observed penetration will be weighted to-
ward high angle grain boundaries with higher values of D,0.

If one compares D,5 for different types of grain boundaries, the re-
sults can be rationalized in terms of the atomic packing in the given
boundary compared to the packing (density) in a perfect lattice. If there
is more open space a grain boundary, some of the atoms will be able
to jump with a lower activation energy than if the atoms are more
tightly packed. A lower Q will translate into a higher value of D. Such
behavior is shown in Fig. 6-9 which represents the spectrum of data
for D in: boundaries made of undissociated dislocations or high angle
boundaries (Q,/Q, = 0.4-0.5), dissociated dislocations and twist
boundaries (Q,/Q, = 0.6-0.8), and lattice diffusion. For the same
misorientation between two grains, diffusion down a twist boundary
is 10 to 100 times slower than down the tilt boundary. Examination
of a tilt boundary shows that it has clear regions of low density while
a twist boundary involving screw dislocations has little dilatation and
primary shear strains. (The surface diffusion curve is discussed below.)
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Fig. 6-9 — Diffusivity vs. reduced reciprocal temperature for various diffusion paths
in metals. [N. Gjostein, in Diffusion, ASM, Metals Park, OH, (1973) p. 241-74.]

Mechanism. Calculations using molecular dynamics models have
been made on models of dislocations, and a few on segments of grain
boundaries. Fig. 6-10 shows several consecutive planes normal to the
plane of a § = 36.9° [100] tilt boundary (X = 5) in a bcc lattice. This
boundary is ‘high angle’, but also has a relatively small repeat distance
along the boundary in the planes shown. Thus the size of the model
needed for calculations is reasonable. The results for diffusion in such
a grain boundary indicate that both the motion energy and the for-
mation energy of a vacancy are less than in the lattice, with the re-
duction in the energy of motion being about twice the reduction in the
formation energy.'® Other conclusions are:

* Vacancy jumps along the grain boundary core, of the sort B — D
— B or B — C — B are the most frequent.

““R. W. Balluffi, in Diffusion in Crystalline Solids, ed. G. E. Murch, A. S. Nowick.
Academic Press, 1984, p. 320-78.
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[310]

Fig. 6-10— Structure of 3R = 5 [110] tilt boundary in bce lattice showing repeated
triangular units, and jump sequences along the core designated by arrows between at-
oms with letters beside them. (after R. W. Balluffi)

» Movement in the boundary normal to the core is much slower than
along the core, that is, anisotropy in D,8 persists at the high angles.
+ Interstitials can form relatively easily, but move slowly.

The interatomic potentials used for such calculations do not give
accurate values of the energies involved. but authors working with

m00els of 2 yariely of melals, Jor bosh dislosalions and grain bound-

aries, all agree that diffusion is primarily by vacancy motion. This
conclusion is further strengthened by the observation that the activation
volume for diffusion in high-angle grain boundaries in silver is larger
for boundary diffusion than for lattice diffusion, namely V, is 1.1 £
while V|, = 0.9 0."" This large V, also lends credence to the basic idea
that vacancies exist in the boundary which are very similar to those
existing in the lattice.

Alloying Effects. Alloying elements often segregate at grain bound-
aries or dislocations. This is especially true for elements whose sol-
ubility is low. This can have two distinctly different effects:

""G. Martin, D. A. Blackburn, Y. Adda, Phys. Status Solidi, 23 (1967) 223.
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» The binding to the high diffusivity path raises the mean diffusion
coefficient of the impurity because it spends a larger fraction of the
time where it diffuses faster. ’

* The solute can change the boundary structure, for example fill in
open spaces and make it harder for atoms to move along the bound-
ary or dislocation.

The first effect of segregation can most easily be treated by consid-
ering the boundary condition between the grain boundary and the lat-
tice. Rather than the concentration being equal in the two regions, Eq.
(6-5) becomes

c(8/2) = Kc((8/2) (6-11)

Subsequent equations are unchanged except that D,d is replaced in all
equations by KD,$.

The second effect cannot be quantified as simply, nor is there any
widely accepted theory of solute diffusion or the effect of solutes on
solvent diffusion, as there is for lattice diffusion.

6.3 DISLOCATION & GRAIN SIZE EFFECTS

The treatment above dealt with the measurement of D, and D, in
bicrystals. Consider now the effect of randomly oriented dislocations,
or a fine grain size. These are of interest in studying the kinetics of
diffusion limited processes at or below half the melting temperature,
and are central in determining the rate of diffusion in fine grained thin
films.

There is great similarity between the results for diffusion enhanced
by a three dimensional array of dislocations' and that arising from a
3-D array of grain boundaries."” We will describe the results for dis-
locations, and then compare the results with those for boundaries. Con-
sider the regular array of dislocation pipes of radius ‘a’ and separation
2Z as shown schematically in Fig. 6-11. They are normal to the free
surface, which has solute on it. The section can show three different
types of solute distributions depending on the ratio of the mean dif-
fusion distance in the lattice \/D_lt to the separation Z, and remem-
bering that D, is always much larger than D,.

* VD > Z, an atom interacts with several dislocations in diffusing
this far through the lattice. The dislocations increase the effective

?A. D. LeClaire, A. Rabinovitch, in Diffusion in Crystalline Solids, ed. G. Murch,
A. Nowick, Academic Press (1984) pp. 259-319.

“D. Gupta, D. R. Campbell, P. S. Ho, in Thin Films—Interdiffusion and Reactions,
eds. Poate, Tu & Mayer, J. Wiley & Sons, (1978) pp. 161-242.
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Fig. 6-11— Schematic representation of the various concentration profiles that can de-
velop with different ratios of V/(D,7)/Z. The solute source is at the top of each figure.

diffusivity D, for the solid, so that the penetration depth is greater
than it would be without dislocations. The advancing isoconcentra-
tion lines are relatively flat near the dislocations. This will be re-
ferred to as ‘A-kinetics.’

. \/5,; < Z, but \/D_,t > a. The solute field around each dislocation
develops independently of its neighbors, and the situation is similar
to the case of grain boundary diffusion in bicrystals analyzed above.
B-kinetics.

. \/D_lt < a, Diffusion occurs only in the dislocation pipes with no
loss to the surrounding lattice. This is rare in bulk samples, but in
a thin film at T =0.5 T,,, D,/D, can equal 10° (see estimate for Ag
above) and diffusion through a one micron thick film can occur with-
out any solute being lost to the lattice. C-kinetics.

These three cases are next treated in more detail.

(a) Consider the dislocations randomly oriented with an average sep-
aration of 2Z. If \/D_,t > 6Z then a diffusing atom encounters several
dislocations over the time t, and the effect of the dislocations is to
increase the average jump frequency of the atoms in an isotropic man-
ner, thus D.4/D, > 1. If the heat flow analogy of the grain boundary
diffusion problem was a system consisting of a sheet of aluminum foil
between two sheets of plastic, then the heat flow analogy here would
be a system consisting of fine aluminum wires randomly distributed in
plastic. The relation between D and D, can be obtained by a random
walk argument due to Hart."* Assume that each atom makes n jumps
in a pure metal single crystal containing many randomly oriented dis-
locations. Ignoring correlation effects and assuming all jumps are of
length r, the net displacement for each atom after »n jumps is R, and
the average displacement

“E. Hart, Acta Met., 5 (1957) 597.
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Rl = nr’ (6-12)

Now of the n jumps taken by an atom n, were in the lattice and n, in
dislocation pipes. The jump frequencies inside and outside the dislo-
cation are defined as

t,1,=n, and t, I = n,

where n = n, + n,, t, and ¢, are the times spent in the dislocation and
lattice respectively, and t = ¢, + #,. Eq. (6-12) can then be rewritten

—=I,rt+Ir- (6-13)
14

Except for a geometric constant, 1?,2,/ t equals Dy and except for the
same constant, I, r* and I, r* equal D, and D,, respectively. Thus
D for a single crystal is

D = gD, + D\(1-g) = D\(1 + g(D,/D))) (6-14)

where g = t,/t. For a pure metal g is (a/Z)", or the fraction of atoms
in the pipe. Some straightforward arithmetic indicates that if D,/D,
= 10’ then the dislocations in an annealed crystal (10°/cm’) have a
negligible effect on D, but if the dislocation density is increased a
hundred fold by slight cold working, D, is increased significantly.
For the diffusion of a solute that tends segregate to the dislocation, g
= K(a/Z).

(b) In this case there is a region well below the surface in which
the lattice around each dislocation pipe contains solute which entered
by diffusion along the dislocation, that is VDt > a. However, these
solute fields do not overlap with one another because, VDt < Z. Thus
a semilogarithmic plot of the average concentration ¢(y) in a section
at a depth y beneath the surface will show two regions. Near the sur-
face where lattice diffusion is dominant /n(¢) is proportional to y* and
the line has a slope (—1/4Dt). Beneath this at a depth of say y >
5VDit, In(¢) is proportional to y (not y** as in the case of grain boundary
diffusion) and the slope is given by

dIn(¢)/dy = A/la(D,/D)"*] withA=0.8 (6-15)

This slope is independent of time, in distinct contrast to the case for
a tail due to grain boundary diffusion (see Eq. 6-6). Also, the slope
is independent of: the density of dislocations, and whether the surface
concentration is held constant or a thin film is applied. However, the
intercept of a plot of /n(¢) vs. y extrapolated to y = 0 would depend
on each of these variables.
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Fig. 6-12— Penetration curve for Na* into an NaCl single crystal showing a tail due
to diffusion along dislocations. (Y. K. Ho, Thesis, Imperial College, London, 1982.
See LeClaire & Rabinovitch)

Fig. 6-12 shows two penetration plots for a Na tracer diffusing from
a thin surface film into pure NaCl single crystals in the low temperature
(extrinsic) range. Note that the linear plot fits the data quite well, and
that increasing the time by a factor of 4 does not change the slope.
Both of these observations confirm that the tail is due to separate dis-
locations not dislocations aligned in low angle boundaries. Ho also
treated the contribution of these dislocations to the electrical conduc-
tivity and found that

o = (F’D/RTf)nla’(D,/D))}d (6-16)

where d is the dislocation density. This adds one more mechanism to

the list of possibilities that can influence ¢ and D in the Extrinsic range.
(¢) Here the solute all stays in the dislocation pipes, and c,(y,) is

obtained in the same way used in Chap. 1 with D, replacing D.
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6.4 DIFFUSION ALONG MOVING BOUNDARIES

Our treatment of grain boundary diffusion has been limited to sta-
tionary grain boundaries. There the transport from the surface into the
lattice is aided by boundary diffusion, but ultimately limited by dif-
fusion through the lattice. However, if the boundary moves as diffu-
sion occurs, the rate of mixing from the surface into the lattice is greatly
increased. Recently it has become clear that in samples containing strong
concentration gradients diffusion along existing grain boundaries can
induce the boundaries to move, and even induce nucleation and growth
of new grains. The difference in the degree of mixing of solute in the
two cases can be profound. The difference in solute distribution be-
tween stationary and moving boundaries is indicated in Fig. 6-13. There
at the boundary that has not moved the solute enriched layer is deep
and very thin. The solute enrichment behind the boundary that has
moved is somewhat more shallow, but orders of magnitude wider.

The sort of behavior shown in Fig. 6-13 is not found when the con-
centration difference between the surface layer and bulk is small, but
is quite common if the concentration is large. It is called, Diffusion

ﬁ’FQVV B

7Z

Fig. 6-13— Cross section of sample containing two grain boundaries after exposure of
the upper surface to a solute vapor. One boundary has exhibited DIGM along a portion
of its length, one has not. The shaded area reflects the relative volume of solute en-
riched matrix around the two boundaries.
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Fig. 6-14— Photomicrograph illustrating the surface relief accompanying the local
zincification of an iron foil 40 microns thick by DIGM. [M. Hillert, G. Purdy, Acta
Met. 26 (1978) 333.]

Induced Grain-boundary Migration (DIGM). One of the systems which
easily exhibits DIGM is Fe-Zn. Fig. 6-14 shows the surface of a sam-
ple which has undergone DIGM. The regions high in Zn show up along
the original boundaries in relief and contained 6-7% Zn through the
entire thickness of the foil. The remaining part of the grains showed
no increase in Zn aside from a surface layer about 0.1 um deep formed
by lattice diffusion. The solute rich regions shown in Fig. 6-14 formed
both by the movement of existing boundaries, and the nucleation and
growth of new grains.

Questions concerning DIGM can be grouped in three categories: what
happens, why, and when? The first has been touched on above, and
will be described further below. As for ‘why?’, DIGM is driven by
the free energy of mixing solute into the lattice. There is no general
agreement on how this free energy couples to the boundary to move
it, and indeed there may be several mechanisms operating at different
times and in different systems.'> The central point for our purpose is
that DIGM can occur in alloy systems, and when it does, it will greatly
increase the apparent D.

The question of when DIGM occurs has several types of answers:

» DIGM has been observed in essentially all binary alloys where it has
been looked for. It has been reported in a few binary ceramic sys-
tems, but has not been found in most ceramic systems investigated.

""P. G. Shewmon, G. Meyrick, in Interface Migration & Control of Microstructure,
ASM (1985) 7-17.
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« DIGM has been reported to occur over a range of temperatures up
to almost the melting point, but the effect is most pronounced and
important at low temperatures.

« Only high angle boundaries exhibit DIGM. This may be due to their
higher values of D,, but probably has more to do with their ability
to generate the many new sites needed to incorporate the solute into
the alloy lattice.

. The movement is not continuous in time for a given boundary, but
may stop and start again, may stop and then reverse, or may stop
and not start again.

« The rate of both nucleation and growth increases as the Ac across
the boundary increases.

6.5 SURFACE DIFFUSION AND SHAPE CHANGE

There are a variety of diffusion controlled phenomena familiar to a
materials scientist which involve a change of shape and are driven by
surface tension (surface free energy) or applied stresses too low to
move dislocations. Examples are:

- creep at low stresses in polycrystalline materials can occur by dif-
fusion through the lattice (Nabarro-Herring creep), or along grain
boundaries (Coble creep).

« the sintering of powders occurs by the diffusion (lattice or boundary)
from regions of sharp curvature to low curvature.

The principles which go into calculating the rate of each of these
processes are understood. However, the actual calculation of the rate
is often made difficult by the complicated geometry.

An example of surface tension driven diffusion with particularly simple
geometry is the smoothing of a surface with a sinusoidal ripple in it.
This problem is chosen because:

+ A straight forward mathematical analysis exists.

+ The analysis is borne out by experiment.

» The results provide a means for determining the surface diffusion
coefficient.

The analysis describes the relative contributions of competing trans-
pOIt processes.

« It provides a basis for treating other geometries by Fourier analysis.

Analysis of Surface Smoothing.'® Consider the sinusoidally curved
surface shown in Fig. 6-15 whose elevation y is given by the equation

W . W. Mullins, “Solid Surface Morphologies Governed by Capillarity,” Metal
Surfaces, ASM, Metals Park OH (1963) p. 17-66.
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Fig. 6-15— Transport processes causing the decay of a sine wave in a solid surface.
(W. W, Mullins)

y(x,1) = a(t) sin(wx) (6-17)

The chemical potential of the atoms on the hills is higher (1 > 0) than
that beneath a flat surface (u = 0), while in the valleys the chemical
potential is lower (u < 0). The magnitude of this variation is related
to the surface tension y and the curvature K by the equation

= —0yK (6-18)

where (2 is the atomic volume. For a surface like this where the height
y is a function only of x, K = y"/(1 + y'>)"/* where y' and y" are the
first and second derivatives of y with respect to x. Thus

wix, ) = —Qyy" = Oya(t)w’ sin(wx) (6-19)

where Eq. (6-17) is used to obtain the final equality. As indicated in
Fig. 6-15 transport from the hills to the valleys can occur by three
paths, diffusion through the gas, the lattice. or along the surface. If
we assume that surface diffusion occurs in a thin layer of thickness &,
the flux crossing unit length on the surface is

J, = (D&8/RT)ou/ox (6-20)

where the derivative along the surface. d/ds. has been set equal to 9/
ox, an approximation good for small slopes. Combining Egs. (6-19)
and (6-20) gives

J, = —(D,8/RT)Qy a(t)w’ cos(wx) (6-21)

The variation in chemical potential along the surface also gives rise
to fluxes of atoms through the solid, and through the gas. The con-
centration variation in each phase can be approximated by the steady-
state solution to the diffusion equation, V¢ = 0. There exists a so-
lution ¢(x,v) which satisfies Eq. (6-19) as a boundary condition along
the surface and decays to a constant value far from the interface. If
this is differentiated to get the flux normal to the surface the equation
is
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or

Ji = (Dc,/RT)yQ’ a sin(wx) (6-22)

This equation indicates that the net atom flux is out of the regions
where sin(wx) is positive and into the regions where it is negative."”
A similar equation holds for the gas phase, the only change being that
Dc, is replaced by D and ¢ for the gas phase. However, the vapor
pressure is usually so low that transport through the gas phase is neg-
ligible, and it can be neglected.

The local rate of change of height of the surface at any point is given
by the sum of the flux away from the surface into the solid and the
divergence of the surface flux

dy/dt = —(N3J,/ax) —J, (6-23)

This is a conservation equation like Fick’s Second Law, but the ac-
cumulation of the pure material appears as a shape change, not a change
in concentration. Substituting Eqs. (6-21) and (6-22) into this equation
and canceling sin wx gives

da/dt = —[Bo' + Cw’la (6-24)
with'®
B =DéyQ)/RT and C = D,y2/RT

Since a pure solid is being considered, c,{2 = 1 has been used in the
equation for C. Eq. (6-24) can be integrated to give a(?). This can be
used with Eq. (6-00). Since a pure solid is being considered, ¢ () =
I has been used in the equation for C. Eq. (6-24) can be integrated to
give a(?). This can be used with Eq. (6-17) to give the complete pro-
file, y(x,r), but experimental observations are made on the decay of
the amplitude with time. This equation is

dina/dt = —(Bw' + Cw’) = —Bw*(1 + D,\/27D.5) (6-25)

where the last equality comes from replacing w with the wave length
A using the equation 27/A = w. Thus at small values of A (large w)
the rate of decay in amplitude is controlled by surface diffusion and
it varies as D,6/A*, while at larger wavelengths volume diffusion is

"It is easier for some to visualize this flow of atoms through the solid by consider
the equal and opposite flow of vacancies.

""Mullins’ expression is B = D,uy(®*/RT. The difference is in his use of the term v
= &/42 where he calls v “the number of atoms per unit area” on the surface.



High Diffusivity Paths 211

rate controlling and the rate varies as D, /A’. Surface and volume dif-
fusion paths operate in parallel here. The thickness of the effective
diffusion cross section in the lattice increases with A while the thick-
ness of the surface layer transporting material, 8, is a constant inde-
pendent of wavelength.

Other Shape Change Techniques. The surface diffusion coeffi-
cient can be determined by following the rat of smoothing of a set of
parallel grooves of spacing u that have been etched into the surface.
D, has also been measured by following the development of other shape
changes." A more general equation for analyzing these changes is ob-
tained by combining the flux equation (6-21) and the conservation
equation to give the differential equation for pure surface diffusion

dy/dt = Ba'y/ax* (6-26)

As an example this equation can be used to describe the development
of a groove where a grain boundary meets an initially flat surface.
Local reduction of the surface free energy gives an equilibrium groove
angle which remains constant as the groove develops. Atoms move
away from the sharply curved region near the groove root to form
ridges on the relatively flat surface on either side. The largest and most
easily measured dimension of a groove is the width between the tops
of the ridges. The increase in this width w, with time is given by

w, = 4.6 (Bn)'/* (6-27)

Another example of a surface diffusion controlled process is the creep
of a pure polycrystalline solid with an applied stress which is too low
to move dislocations. The creep then occurs by the diffusion of atoms
from grain boundaries with no normal stress to boundaries with a nor-
mal stress acting on them. The diffusion can occur by lattice diffusion,
in which case it is called Nabarro-Herring creep. or by grain boundary
diffusion, in which case it is called Coble creep. To make the calcu-
lation easier, consider the solid to be made of cubic grains of length
L on a side as shown in Fig. 6-16. On boundaries normal to the applied
load the chemical potential of atoms is reduced by u = —s{2 due to
the work (stress times displacement) that the applied stress, s, does if
an atom is added to these boundaries, i.e. the sample is extended.
There is no strain in the direction of the applied stress if an atom is
added or removed from the vertical boundaries, i.e. the sample is not
extended. Thus there will be a chemical potential difference and a dif-
fusive flow through the lattice from one set of boundaries to the other.

“N. A. Gjostein, Techniques of Metals Research, vol. IV part 2, ed. R. Bunshah,
Interscience Publ., (1970) pp. 405-57.
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Fig. 6-16 — Diagram showing flux of atoms inside a square grain under the applied
stress 5. The flow of vacancies will be opposite that shown by the curved arrows.

There is an equal and opposite flow of vacancies. At steady-state, local
stresses will develop near the corners to make the flux into or out of
the boundary equal at each point along the boundary. The average flux
caused by the applied stress s is then

D, & D, sQ
J o= T (6-28)

where L/3 is taken to be the average diffusion distance between the
boundaries under tension and those with zero normal stress. Now the
rate at which a grain lengthens is dL/dt = 2J,(2, so the overall strain
rate caused by this shape change of the grains is

de dL 27,0 nD,s{}
dr Ldt L RTL?

(6-29)

where 7 is a number with a value between 10 and 40 depending on
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the grain shape, and stress state.”’ Note that the strain rate varies as
the first power of the stress, and the reciprocal of the grain size squared.
Both of these distinguish this type of creep from creep involving dis-
location glide, or grain boundary diffusion.

If the transport occurs not by lattice diffusion but along the grain
boundaries, the expression for the strain rate is n(D,8/LRT)(s02/L%).
Adding this to Eq. (6-29), gives an equation for the strain rate when
transport occurs by both paths

de nD,8s() [ D,L:I
— = 1+

dt  RTL’ 3D,8

(6-30)

Note that the grain boundary contribution to the strain rate varies as
1/L? so it will be more important at smaller grain sizes. Comparing
Egs. (6-30) and (6-26) one sees again the dimensionless variable (D,8/
D,L), which determines whether surface or lattice diffusion is con-
trolling. It always appears in equations where the two paths work in
parallel and indicates which process is dominant. It is an example of
a general scaling law developed by Herring.”!

Field Emission Spectroscopy. A quite different technique for
studying surfaces involves field emission microscopy. In these instru-
ments a very high electric field is applied to a sharply pointed metal
wire (radius of curvature roughly 10-60 nm). In a high vacuum, the
tip emits electrons in a pattern that reflects the atomic structure and
composition of the surface (field electron microscopy). If a slight pres-
sure of helium is admitted around the point, helium atoms are adsorbed
on the surface of the point, ionized. and emitted tfrom the surface.
These emitted ions image the atomic details of the surface (field ion
microscopy). The metal most commonly worked with is tungsten. pri-
marily because it is strong enough to resists the high stresses developed
in the tip by the electric field. but also because it can be easily cleaned
by heating in a high vacuum. Two types of experiments have been
performed using these techniques. one involving shape change and the
other the diffusion of adsorbed atoms.

If the clean tip is heated slightly, the atoms rearrange themselves so
the surface is bounded by flat, low index planes of the crystal. Using
the atomic resolution of field ion microscopy the motion of individual
atoms can be observed, and the diffusion coefficient of atoms across
different faces and along different directions can be measured. This
will be discussed in the next section.

A useful model for describing the structure of such surfaces is the

W. Nix. Metals Forum, 4 (1981) 38-43.
C. Herring, J. Appl. Phys.. 21 (1950) 301.
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Fig. 6-17— Terrace-ledge-kink model.

terrace-ledge-kink model shown in Fig. 6-17. If an imaginary plane is
passed through a crystal near the orientation of a closely packed plane
and all of the atoms above the plane removed, the surface of the crystal
remaining will consist mostly of these closely packed planes. The edge
of these planes will appear as steps, and have kinks in them. This is
referred to as a ledge-step-kink model. At any finite temperature a few
atoms will break away from the kinks and be mixed amongst the empty
sites on the ledge as adsorbed atoms.

If the tip is heated to a higher temperature, though still well below
half the melting point, atoms move from the very sharply curved tip
to the less curved shank of the needle. This shape change is yet another
example of surface curvature driven diffusion and D, over a range of
surface orientations is obtained from the rate of shrinking of the tip,
dz/dz, by the equation™

dz/dt = 1.25B/r3 (6-31)

where r is the radius of curvature of the tip, and B is defied in Eq.
(6-24).

The movement of individual atoms on the surface can also be stud-
ied. With the atomic resolution of field ion microscopy, successive
photos can be compared to indicate the motion of matrix atoms over
a flat, low index plane. Or, with field electron microscopy the spread-
ing of a solute layer can be followed. If a solute such as oxygen is
admitted and adsorbed on one side of the point, it changes the work
function locally, and the local intensity of the pattern of emitted elec-
trons reflects this. The rate of spreading of the solute over the metal
surface can then be followed by following the changing pattern. From
such studies the variation of D with surface orientation, surface con-
centration, and temperature can be measured.

2E . A. Nichols, W. W. Mullins, J. Appl. Phys., 36 (1965) 1826.
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6.6 SURFACE DIFFUSION DATA AND MECHANISMS

Surface diffusion coefficient measurements are less accurate than
those for lattice diffusion, the most prominent reason being the diffi-
culty of controlling or specifying the wide range of surface structures
sampled by different techniques. For example consider the three ways
of measuring the surface self diffusion coefficient D

* The blunting of a FIM tip removes hemispheres of atoms and the D,
measured is averaged over a wide range of orientations.

* The smoothing of a rippled surface measures D, in a single direction,
over a much narrower range of orientations, but again gives a value
of D, which is an average over many configurations, since entire
planes of atoms are removed.

* FIM may be used to study the diffusion of a single adsorbed matrix
atom on a surface. However, this is not D,, but D, for an adsorbed
atom.

In addition to these structural variables there is another set of more
chemical variables that arise from the adsorption of solute originally
dissolved in the crystal, or from the ambient gas present to protect the
surface. In closing the chapter, several examples of such measure-
ments will be given.

Self Diffusion. The motion of individual atoms on a single surface
can be followed with the FIM, and D, for the adsorbed atom calculated
from the mean displacement Ax seen after an anneal of time ¢ through
the equation D, = (4x)*/4t. The high resolution of this technique re-
quires that Ax = 1 nm and thus the temperature must be low.

Note that the surface diffusion coefficient of adsorbed atoms D, does
not equal D,, the diffusion coefficient that determines the rate of shape
change discussed above. A very small fraction of the surface atomns,
N,, are adatoms at any instant, while D, represents the average dif-
fusion coefficient of all of the atoms in the surface layer. Thus the
relation between the two can be represented by

D,=D,N, (6-32)

Representative data for D, are shown in Table 6-2. The values of
the preexponential constant D, are small but consistent with those found
for lattice diffusion with jumps to nearest neighbor sites and the en-
tropy of motion, S,, small but positive (see Chap. 2). Microscopic
observations also indicate that the mechanism of diffusion of single
atoms is by nearest neighbor jumps. The activation energy for diffu-
sion on the close-packed (111) plane of the fcc rhodium is particularly
low. (H, in Table 6-2) As one moves to surface orientations farther
away from close-packed planes, the density of steps increases to where
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Table 6-2. D, Parameters on Plane Surfacest

D, H,
Substrate Atom Plane (cm’/s) (kJ/mol)
Single Atoms
Rh(fcc) Rh (111) 2 x 1074 15
Rh Rh (110)* 3 x 107! 58
Rh Rh (331)® 1 x 1072 62
Rh Rh (100) 1 x 107? 85
W(bcc) W (110) 3 x 107° 87
w W (211 2 x 1074 72
w Re Q21 2 x 107 83
w W (111) — ~172
Atom Pairs
W w 11 7 % 107* 79
w Re 211 4.5 x 107* 75
w Ir (211)° 9 x 107° 65

“Motion along channels.
+G. Ehrlich, K. Stolt, in Ann. Rev. Phys. Chem., 31 (1980) 603-37.

the surface consists only of steps. In the fcc lattice the (110) plane is
such a surface, midway between two {111} planes, and the (331) is a
similar corrugated plane midway between the {100} and {111}. Dit-
fusion in such planes on Rh surfaces is observed only along the chan-
nels, cross-channel motion being much slower. However, on the (110)
plane of fcc Pt D, is more isotropic and it has been suggested that
motion occurs by the ad-atom in one channel taking the place of an
atom in the channel wall, and pushing that atom into an ad-atom po-
sition in the next channel; a model somewhat analogous to an inter-
stitialcy mechanism inside a crystal. Such a diffusion mechanism has
been observed for the motion of W and Ir on the (110) surfaces of fcc
Ir.

Bce tungsten is not close-packed and the activation energy for mo-
tion on the closest packed (110) is actually somewhat higher than that
along channels of the corrugated (211). Again motion in the channels
is much faster than cross-channel. One other mechanistic observation
is that ad-atoms tend to form pairs, called dimers, and these pairs mi-
grate without dissociation somewhat faster than single atoms. (Com-
pare the data in Table 6-2 for single atoms of Re on W(211) and for
pairs.)

Values of D, obtained by shape change techniques average over many
kinds of diffusive jumps and allow the measurement of D, at much
higher temperature. Fig. 6-18 gives results for nickel and tungsten.
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Fig. 6-18— D, from tip blunting for W and from ripple smoothing in two directions
on the (110) of Ni. [Vu Thien Binh, P. Melinon, Surf. Sci.. 161 (1985) 234-44 ]

Clearly there is a change in slope in two of the curves. Such a change
has been found for essentially all metals studied to date.
At low temperatures D has the following characteristics:

* D, is similar to that found for lattice diffusion.

« Q, is less than that for grain boundary diffusion (see Fig. 6-6), and
there is appreciable variation of D, with direction in a plane and
between planes.

+ Calculation of Q, and D, in the equation D, = D, exp(—Q,/RT) for
low index planes yields quite satisfactory agreement with experiment
if a nearest neighbor jump model is assumed.?

ZA. P. Voter, J. D. Doll, J. Chem. Phys., 82 (1985) 80-92.
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At high temperature, above 0.87,,, O, and D, increase markedly and
D, becomes essentially independent of the orientation of the surface
over which diffusion occurs. The details of the diffusion mechanism
here are not known. However, it appears that at high temperature some
process with a large activation energy gives rise to jumps which are
much longer than an interatomic distance. Inside the lattice if a fluc-
tuation is much larger than the minimum required for a jump to an
adjacent vacancy, the atom can still jump no farther than a nearest
neighbor distance, and the most that can happen is that the atom will
jump back and forth a few times until it loses its excess energy. How-
ever, an atom on the surface which absorbs an energy larger than the
minimum required for a jump may keep moving for some distance
before it loses this excess energy. Such an atom in a mobile state would
increase D, in two ways. First, the larger jump distance squared would
enter D, instead of a_. Second, the mobile activated atom will be less
well localized and thus the entropy increase in forming it from an ad-
sorbed atom, S, will be larger than that to form an atom which only
moves from one site to an adjacent one. Just how much the entropy
increases is harder to say. It depends partly on whether one assumes
the highly mobile atom moves in a straight line, or hits other atoms,
changing direction and acting more like a two-dimensional gas atom
on the surface. Such a model leads to a diffusion coefficient that is
the sum of the diffusion due to jumps to nearest neighbor positions
(subscript ‘a’) and that due to the highly mobile atoms (subscript ‘m’),
or

D: = Doa exp(—Qa/RT) + Dom exp(_Qm/RT) (6_33)

Here D,, <€D, and Q, < Q,, for the reasons given above. Experiments
on Cu indicate that the mobile atoms move with equal ease in any
direction, for example across or along channels, but they are still bound
to the surface since H,, is significantly less than the energy required
to vaporize an atom. The average value of H, that is measured could
increase in temperature, as the mobile atoms dominating D, become
more energetic and move farther between activation and re-incorpo-
ration into the surface. Thus the dominant contribution to surface dif-
fusion, as the melting point is approached, is by atoms which upon
activation continue to move over the surface for 10 to 100 times the
interatomic distance before they lose their exceptional kinetic energy
and again come to rest in the surface.

Solute Effects. Two different phenomena come under the heading
of solute effects, a study of the mobility of adsorbed solute atoms on
surfaces, and the effect of adsorbed layers on the surface self diffusion
of the substrate. The rate of spreading of adsorbed solute atoms across
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a surface has been studied for many years.* This work has often been
done on tungsten surfaces with solute that change the emissivity in
field emission spectroscopy. The technique does not allow atomic res-
olution, but can be done on clear surfaces as a function of surface
concentration. The following general conclusions have been drawn:

* Diffusion of the adsorbed layer occurs at temperatures far below that
required for desorption, thus the energy for motion is usually about
20% of the energy of desorption.

* D, is often concentration dependent. On surfaces with two or three

types of sites the first atoms diffusing onto a clean surface are trapped

at the lowest energy sites. This can give results similar to that for
hydrogen diffusion in steel with D(c) increasing with concentration.

In other systems adsorbed atoms interact to form dimers which have

a higher mobility than individual atoms and a maximum in D, occurs

at an intermediate fraction of surface coverage.

It is difficult to determine the value of D, that would correspond to

that for a tracer on a surface of constant composition since experi-

ments always have a concentration gradient present and the ther-
modynamic factor (dk/dlnc,) can make a substantial contribution to

the observed value of D,.

*G. Ehrlich, K. Stolt, Ann. Rev. Phys. Chem., 31 (1980) 603-37.
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Fig. 6-19— Adsorbed solute can markedly increase D, as shown by this comparison
between D, for pure Ag, Au, and Cu, and for surfaces with adsorbed layers. (F. De-
lamare G. E. Rhead)
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Finally, we turn to the affect of adsorbed layers on surface self dif-
fusion. For instance if initially clean surfaces of Cu or Ni samples
containing carbon as an impurity are heated in a high vacuum, carbon
diffuses from the interior of the sample, forms a carbon rich layer on
the surface and greatly reduces the rate of surface self-diffusion. On
the other hand sulfur on the surfaces of Cu or Ag can increase D, by
orders of magnitude. This effect is even more marked when vapors of
Pb, Tl or Bi are maintained over the surface of these noble metals.”
(see Fig. 6-19) Here D, rises with the vapor pressure of the solute,
and the effect is most marked at high temperature (7" > 0.87,,) where
Q, is large. Under these conditions the values of D; and D, are ex-
traordinarily large. No satisfactory theory exists for these values of D,
and Q.

PROBLEMS

6-1. As a diffusion expert you are to calculate the thickness of Ag
required to maintain at least a 99% Ag alloy on the surface for
5 years. The most accurate data you can find is a study of D for
Ag in Cu between 750 and 1050° C. Extrapolating these data to
150° C, you find that a 1 um layer of Ag will last for 100 years.
A laboratory test shows that the silver layer completely diffuses
into the sample over a weekend at 150° C.

Why was the calculation of the rate at 150° C invalid?

6-2. The amount of material in a grain boundary or a surface is very
small. In spite of this one can measure the diffusion coefficient
in these boundaries. Explain two ways in which it can be done.

6-3. Modeling the effect of dislocations on diffusion in a crystal by
replacing them with pipes in which the diffusivity D, is much
higher than that in the lattice D, has proven to be quite useful.
Explain how the model can be used to explain:

(a) The variation of D,é in low angle grain boundaries.
(b) The effect of dislocations on the apparent lattice diffusion
coefficient.

6-4. A diffusion couple is made up of alternate layers of Cu and Ni
each # = 4 nm thick and heated until interdiffusion occurs at
about 0.37,,. Ni & Cu are completely soluble in each other, and
the relaxation of the concentration differences is followed with
an x-ray technique. D, is obtained from the relaxation time ¢, =
hz/Dcffﬂ-Z'

“F. Delamare, G. E. Rhead, Surf. Sci., 28 (1971) 267.
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6-5.

6-6.

6-7.

6-8.

(a) If the dislocation density of the films is 10°/cm” and the grain
size is 50 nm, what is the ratio of D to the lattice diffusivity
D?

(b) Below what values of grain size would you expect D to
become much larger than D).

If the work is carefully done, D; for Ag* can be measured in Ag
at 540° K. If there are 10° dislocations/cm’, what will be the ratio
D./D,? Use data given in Table 6-1 to estimate D, and list all
assumptions made. (Assume the radius of the pipe is 0.2 nm)
Below 2/3 to 1/2 of the melting point, diffusion along dislo-
cations makes a marked contribution to solute self-diffusion in
very dilute alloy single crystals. It is quite probably that inter-
stitials tend to segregate at dislocations, and also diffuse faster
along dislocations than in the lattice. What justification is there
for neglecting the effect of this enhanced diffusion along dislo-
cations in deriving values for D from internal friction studies?

The grains of a metal can be idealized as a set of hexagonal grains

all of the same diameter, L. If a small shear stress is placed on

such a solid sliding occurs easily along the g.b., but the irregular
shape of the grains dictates that the rate of shear is limited by
the diffusion of material from regions in compression to those in
tension, i.e. material must diffuse from one side of a grain to
another. This diffusion can occur by both lattice and g.b. dif-
fusion. Let R = ¢,/q, be the ratio of the relative flows through

the lattice and along the g.b.

(a) Will R increase or decrease with falling temperature? Why?
Will R increase or decrease with falling grain diameter? Why?

(b) Write an equation relating R to D, D,, L and g.b. thickness,
6. Assume that the stressed grain boundary can be approxi-
mated by a sine wave.

One of the ways used to study diffusion along isolated disloca-

tions is to study the rate of diffusion through a single crystal sheet

of thickness L which contains a regular array of parallel dislo-
cations normal to the sheet. A layer of tracer is placed on one
side and the rate of accumulation on the far side is observed.

Assuming that (D,1)"? < a, give equations for the following:

(a) The delay time between the start of diffusion into a solute
free sheet and the first appearance of solute on the far side.

(b) The initial rise with time of the total amount of solute on the
far side assuming that the rate of surface spreading is so fast
that the far surface is homogeneous and the rate limiting pro-
cess is diffusion along the pipes. (The density of dislocations
is d per unit area.)
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Answers to Selected Problems

6-5. (a) The tracer distribution in the pipes is initially given by an
error fcn. solution. Assuming detection when the far side
concentration at the end of the pipe reaches 1% that of the
source side, 7, = L*/3.3D,.

(b) Activity = (k*/d*)D,t.
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THERMO- AND ELECTRO-
TRANSPORT IN SOLIDS

If a current of electricity, or a flux of heat, is passed through an
initially homogeneous alloy an unmixing occurs, that is a concentration
gradient develops. These effects are called electro-transport and thermo-
transport, respectively. In electro-transport the atomic redistribution is
similar to that studied in ionic conductors. However, in metals elec-
trons carry essentially all of the electric current, and the ratio of elec-
tron to atomic currents is high. It appears that most of the atomic trans-
port results from the impact of the large flux of electrons on the solute
atoms making diffusive jumps. In thermo-transport, the redistribution
of solute which occurs is analogous to the more widely studied ther-
moelectric effects that arise from the redistribution of electrons in a
solid in a temperature gradient. The origin of the force driving the
atoms is not clear.

Since a current or heat flow leads to the unmixing of an initially
homogeneous single phase alloy, one must add terms to the flux equa-
tion that reflect these forces. Using the format of phenomenological
equations (Chap. 4) the flux equation for an interstitial solute in an
alloy would be

J, = —Lll(a/*"'l/ax)T - qu(aT/ax) - Lle(a¢/ax) (7-1)

In what follows we consider the physical models and experimental data
for the coefficients L,, and L,,. The treatment in each case will deal
first with the diffusion of interstitial solute and then go on to treat mass
transport in substitutional alloys.

223
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7-1. ELECTRO-TRANSPORT'”

The flux equation for an interstitial can be written

—D,N, (RT3 In N, 3
J, = + FZE (7-2)

' RT ox

where z¥is the effective charge on the interstitial, F is Faraday’s con-
stant, and E is the electric field (voltage gradient). This is the same
equation used to describe diffusion and electrical conductivity in an
ionic conductor, but here the processes that occur are different. For
example, if a direct current is passed through a dilute Cu-H alloy, it
is found that rather than hydrogen migrating as if it had a charge of
+1, it migrates as if it had a charge 2% of —15 to —20. Thus the sign
of z¥ is the opposite of what one would expect from chemical valence,
and the magnitude is much larger. In addition to an electrostatic force
tending to make the hydrogen migrate as if it had a charge of +1 in
the lattice (its true charge z,), there is clearly a much larger force driv-
ing the atoms in the same direction as the electrons carrying the current
in the Cu.

The generally accepted theory for this is that an atom in an activated
state disrupts the flow of electrons more than an atom on a lattice site.
The moving electrons which carry the electric current in a metal hit
the atoms in activated states and in bouncing off them transfer mo-
mentum that biases the diffusive jumps in the direction the conduction
electrons are moving. They would also inhibit jumps in the opposite
direction. This force is termed the ‘electron wind,” and calculations
indicate it can be much stronger than the electrostatic force exerted by
the field on the charged interstitial atom.

The force due to the electron wind can be calculated as follows. The
number of collisions per unit time between the electrons and a moving
atom is the product of the density of moving electrons n,, their average
velocity v,, and the atom’s cross section for collision with the electrons
o,. For each collision the electron transfers on average the momentum
that it has acquired during one relaxation time between collisions, eET,.
Thus the rate of momentum transfer is eE7.(v.n.0,). This equals the
force on the atom by Newton’s First Law of motion. Thus z} is the
sum of the true charge z;, and a ‘wind’ term of 7,v,n,0,. To simplify
the equation, note that /, = 7,v, is the mean-free-path of the electrons.
Also, in some metals the current is carried by the motion of holes as

'H. B. Huntington, in Diffusion in Solids, ed. A. S. Nowick, J. J. Burton, Academic
Press (1975), 303-52.

’For the most complete survey of the literature see Hans Wever, Elektro- u. Ther-
motransport in Metallen, J. A. Barth, Leipzig (1973). (in German)
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well as electrons, so a comparable term n,/,07 is added for holes
¥ =z, + nylyo, — nl.o. (7-3)

In the transition clements electron holes play a dominant role in clec-
trical conduction, and the sign of z; changes for these elements. Figure
7-1 summarizes the data available for part of the Periodic Table. In
the box for each element the position of the chemical symbol for the
solute elements indicates whether the element migrates toward the an-
ode (z* < 0) or cathode (z] > 0). The sign of the Hall Effect indicates
the sign of the dominant charge carrier. It is negative for predomi-
nantly electron transport of current and positive for transport by holes.
As an example, for Vanadium, which has a positive Hall Effect sign,
hydrogen, carbon, nitrogen, oxygen, and vanadium atoms all are driven
toward the cathode (+ electrode) by an electrical current.
Two generalizations can be made from the data in Fig. 7-1:

« For a given element most or all of the solutes, and the solvent itself,
move toward the same electrode.

« The direction of motion correlates well with the column in the Pe-
riodic Table, and thus with the nature of the carrier, while 1t does
not change with the nature of the impurity. Thus the electron wind
model is in general agreement with experimental results.

The most accurate way to determine z; for interstitial impurities is
to pass a current through an isothermal sample until a steady-state is
reached, and then determine the concentration gradient, din(c;)/dx, which
is equal to —zfE/RT (see Eq. 7-2). Much of the accuracy stems from
the fact that the determination of =) requires no knowledge of the dif-
fusion coefficient. The diffusivity only influences the time to achieve
steady-state. The work on electrotransport of interstitials has often been
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Fig. 7-1 — Direction of electrotransport of interstitials. Transport to A:anode, or

C:cathode. C.H.N,O: chemical symbol for interstitial, A:self transport. (n) negative,
and (p) positive Hall Effect. [H. Wever in, Electro- & Thermo-transport in Metals &
Alloy, ed. R. E. Hummel, H. B. Huntington, AIME, New York (1977) p. 37-52.]
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motivated by the desire to use it as a means to purify reactive metals
like transition metals, rare earths and actinides.® These metals have a
high affinity for C, N, and O, but electromigration sweeps all of the
interstitials in the same direction so all can be removed at once. Most
of these metals have been purified to a higher degree with electro-
migration than by any other technique. The effectiveness of the tech-
nique also stems from the exponential increase in concentration at the
end where the interstitials are swept.

For elements like hydrogen which exchange easily with the sur-
rounding atmosphere, another techniques is used to measure z;. Sen-
sitive means for measuring the direction and the steady-state flow rate
of the gas through a metal membrane are available, and these allow
quite accurate measurements of the flux, and from this the quantity
Dyt

Pure Metals. Electrotransport also occurs in pure metals. To mea-
sure z* one must measure the net drift of matrix atoms (or equivalently
vacancies) relative to the lattice. This has been done in two types of
experiments. Both require inert markers in the sample. In one the drift
of a tracer relative to the markers is measured, and in the other the
divergence of the flow in a temperature gradient.

In the first type of experiment the end of a metal rod is coated with
a thin layer of a radioactive isotope and inert (though possibly radio-
active) particles that serves as markers. This rod is then butt welded
to another rod of the metal so that the markers and tracer are in the
middle of the sample. A direct current is passed through the welded
rod, which is kept as close to isothermal as possible. Under these con-
ditions, two types of atomic motion occur. The tracer spreads out by
lattice diffusion down a concentration gradient, and all of the atoms
drift in the same direction with a velocity v relative to the inert mark-
ers, under the influence of the electric current. The diffusion equation

in this case is

dc d (D*oc,

— = — < Z - n3v> (7-3)
at ax ax

where v = (force)(mobility) = (FZTEXD/RT). If we substitute x — vr
for x then cy(x,?) is replaced by cp(x — vt,1) and the diffusion equation
becomes

dcg /ot = D*d’°ch/ox” (7-4)

‘D. T. Carlson, in Electro- & Thermo-transport in Metals & Alloys, eds. R. E.
Hummel, H. B. Huntington, AIME, New York, (1977) pp. 54-67.
“R. A. Oriani, O. D. Gonzales, Met. Trans., 1 (1967) 1041.
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with the solution

., . N (x — vt)*
cp(x,t) = (_7T-D_*51_/2 exp —W (7-5)

where N is the quantity of material initially placed at the interface.
Thus the tracer distribution is unchanged from the case without elec-
trotransport, but is shifted from its initial position by a distance vz.
Serial sectioning of the sample after an anneal allows the determination
of vt as the distance between the maximum in ¢, and the position of
the inert particles. The value of D* can be obtained from the distri-
bution of the tracer. Figure 7-2 shows this experiment schematically.
Note that D = D*/f appears in the equation for the velocity v while
the ‘correlated’ D* is obtained from the tracer distribution. It is always
the case that D not D* is the relevant diffusion coefficient to use when
all the atoms are moving, e.g. in diffusional creep as discussed in
Chap. 6.7

The other technique for determining the atomic flux relative to the
lattice (and thus z*) measures the dimensional changes of the sample
during electromigration in a temperature gradient. Fig. 7-3 shows a
sample heated by the direct current and cooled at both ends. The mark-
ers are scratches or indentations. The expansion or contraction of the
region between two markers is given by the difference between the
flux into and the flux out of the region. Consider the region between
the center and the cold end of the sample. The flux is zero at the cold
end, and if the cross sectional area of the sample stays uniform along

SH. B. Huntington, in Diffusion in Solids. ed. A. S. Nowick. J. J. Burton. Academic
Press (1975), 306—12.

- Sp/ecimen +
L L) ]

Butt Weld
Both Isotopes

Fig. 7-2— Isothermal isotope method of determining z*, The inert marker activity is
A, and the matrix isotope is B. vt = 1 is the displacement. (after Huntington, 1975)
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its length, the velocity of the marker at the center equals the flux of
atoms across the marker times the atomic volume {2

v, = J 2= —(D,/RTYFz E) (7-6)

Here D, is D% /f or the uncorrelated D. It is found experimentally that
the cross section of the region changes as well as the length. The prod-
uct of J,£2 and the cross sectional area at the marker thus equals the
change of volume of the entire region, and the determination of z}
requires careful measurement of the variation of the cross section as
well as the motion of the central marker. Fig. 7-3 indicates schemat-
ically how v,, and dA/dr might vary with position along the heated
bar.

Table 7-1 summarizes data for many metals, clustered in groups that
fall in the same column of the Periodic Table. Again the magnitude
and sign of z* suggest that the electron wind is the dominant force.
The only elements which have positive values of z* are transition ele-
ments with complex band structures such as Fe, Co, Pt and Zr. In
these elements hole conduction plays an important role as indicated by
the positive Hall Effect (see Fig. 7-1).

Thin Films. One of the commercial problems that has driven work
on electrotransport stems from the failure of narrow thin-film conduc-
tors in printed circuits. These devices operate with direct current and
the micron sized conductors carry current densities of over 10° A /cm”.
Failure frequently arises from the development of pores in the metal,
followed by local heating and failure. A considerable effort has been
devoted to understanding, and climinating, this problem.

The first thing to note is that the conductors operate at below 0.47,,

— TENPERATURE
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p- ELECTROOE (wvatwr cooled]

Fig. 7-3 — Vacancy Flux method showing markers and temperature distribution caused
by heat generated by the current.
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Table 7-1. z*/f for Pure MetalsT

Metal 2% [f Metal z*/f

Au -8 Ni -3.5

Ag -9 o-Fe 2

Cu -5 Co 1.6
Pt 0.28

Li =2

Na -3 B-Zr 0.2
v-U -1.6

Zn -2.5

Zn ||a -55 Pb —47/f

Cd e -2.0 Sn —-18

Cd |a —4.1

Al —30to —12

In -11.4

Tl -4

tData from H. Huntington. Diffusion in Solids. ed. A. S. Nowick, J. J. Burton,
Academic press (1975), p. 329.

for aluminum. Thus essentially all of the transport is by grain boundary
diffusion, not through the lattice. This conclusion is also born out by
the fact that alloying to reduce the rate of diffusion through the lattice
does not result in reduced failure rates, while alloying to reduce bound-
ary diffusion leads to longer life.

If matter transport is predominantly along grain boundaries then any-
thing that leads to a local divergence in the boundary flow can lead to
the accumulation of vacancies (pores) or atoms (hillocks). Indeed pores
and hillocks are found on grain boundaries in failed elements examined
with the electron microscope. This flow divergence can arise from any
of several sources, for example D, may change due to a change in
temperature, boundary structure. or boundary composition. It may also
be caused by a change in boundary geometry. Figure 7-4 shows ex-
amples of two situations in which divergences can occur. In (a) the
divergence is due to a sudden increase in grain size. The change in
grain size leads to a grain boundary flux that has no place to go when
the grain boundary ends on a larger grain. In (b) the divergence is due
to a change in D, stemming from composition change formed by evap-
orating a thin film of copper on the aluminum, and homogenizing at
an elevated temperature to form a band of an Al-2%Cu alloy in the
Al conductor.

The reason Cu reduces the grain boundary flux is less clear. A plau-
sible model postulates that D in the grain boundary of any metal is
much greater than D in the lattice because the density of relatively
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Fig. 7-4— Illustration of formation of pores and hillocks due to flux divergence in the
grain boundaries of thin films carrying DC electricity. (a) Large change in grain size.
(b) Change in composition changes D, of boundary.

open sites (psuedovacancies) in the boundary is much greater than the
equilibrium vacancy concentration in the lattice. The copper is thought
to segregate to the boundary and fill many of these psuedovacancies,
making them unavailable to aid the diffusion of Al along the boundary.
Thus decorating the grain boundary with copper reduces D, and the
flux of aluminum relative to that in pure Al.

7-2. THERMO-TRANSPORT—Interstitial Alloys

The fact that a temperature gradient can lead to the unmixing of an
initially homogeneous alloy indicates a biasing of the jumps either up,
or down, the temperature gradient. For a situation in which only one
component is diffusing, e.g. an interstitial alloy, the flux equation can
be written

~D\N, [RTaInN,  QFéT
_ 14¥1 |: 1 _ Q__l _:| (7_7)

J, =
RT ax T ox

D,/RT is the mobility of component 1, (QF/T)dT/dx is the effective
force exerted by the temperature gradient, and RT(d/nN,/dx); is the
chemical potential gradient at constant temperature. Q¥ is the experi-
mentally determined parameter which describes the sign and magni-
tude of the thermo-transport effect. It is called the heat of transport of
component 1; the rest of our discussion of thermo-transport will be
devoted to its interpretation and measurement. Note that D, is the iso-
thermal diffusion coefficient. The temperature gradient changes neither
the jump mechanism, nor the mean jump frequency at any given tem-
perature; it does bias the direction of jumps.



Thermo- and Electro-Transport in Solids 231

°c
710 690 670
8.6 IP'; ' ‘
1.60 -
L.
140}
Ny
Ne B
.20}
1.00 L ‘ ‘
‘ 1.02 1.04 1.06
103/7, °K

Fig. 7-5—Plot of carbon content (logarithmic scale) vs. 1/7T for a-Fe annealed in a
temperature gradient until steady state is attained. [P. Shewmon Acta Mer., 8 (1960)
606.]

Q* can be measure either by letting the flux go to zero in a tem-
perature gradient and measuring the concentration gradient at J = 0.
or by measuring the flux through an open system under a known tem-
perature gradient. Figure 7-5 shows the concentration gradient ob-
tained when an initially single-phase iron-carbon alloy (0.01%C) was
held in a temperature gradient until a steady state was established. The
flux was then equal to zero and Eq. (7-7) gives

dinN,  —Qydr
dx RT? dx

(7-8)

During the anneal the carbon concentration became higher at the hot
end, indicating that Q¥ is negative.® The line drawn through the points
gives a value of Q¥(a) = —96 kJ/mol, and suggests it is independent

*The off-scale points on the left side of Fig. 7-5 result from the precipitation of iron
carbide in this region and in no way affects the determination of dinN,/dT in the single
phase portion of the specimen. The redistribution of a second phase during annealing
in a temperature gradient is discussed below.
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of temperature. Experiments made on the same low-carbon alloy in y-
iron temperature range gave Q¥*(y) = —8. Note that one does not have
to know the diffusion coefficient to obtain Q% in this way.

O* can also be obtained from measurements of the flux. Measure-
ment of the flux of atoms in a pure metal in a temperature gradient,
relative to the lattice, has been made by following the movement of
markers, as was described above for electrotransport (see Fig. 7-3).

Examples of data for Q* for interstitial alloys are given in Table 7-
2. Much of the data is for the rapidly diffusing hydrogen, H, and its
isotope of mass 2, deuterium. For hydrogen the magnitude of Q* clearly
rises with temperature, and rises in going from hydrogen (H) to deu-
terium (D). Note also that the sign of O* is often opposite to that of
z*, the effective charge on the ion in electrotransport.

Theory of Q*. The name ‘heat of transport’ for O* and its use in
Eq. (7-7) stems from the equations of irreversible thermodynamics.
For a system in which there is both a flux of matter and of heat, the
equations for the heat flux J,, and the solute flux J; can be written

Jy = —L(0p,/0x)r — (qu/T)(aT/c')x)Nl (7-9)
J

_qu(all/ax)T - (qu/T)(aT/ax)Nl (7-10)

q

where the gradients have been taken parallel to the x-axis. These equa-
tions express the flux as the sum of a force due to the chemical po-
tential gradient at constant temperature and a temperature gradient at
constant composition. The flux equation for J, can be rewritten

Ji = "Lll[(alvbl/ax)r - (qu/LllT)(aT/ax)]
Comparing this with Eq. (7-7), if L,, is set equal to D\N,/RT then Q7

Table 7-2. Q* for Interstitial Alloys

Solvent  Solute  (kJ)  Ref. | Solvent Solute  (kJ)  Ref.
bee y fee
a-Fe H —23.5 1 + Ni H —-0.84 1
«-Fe D =22 1 1 Ni D -3.4 1
a-Fe C —-59 2 1 Ni C —-12.2 4
\% H 7.5 3 1 Co C 6.3 2
\% D 20 3 ' Pd H 6.3 2
\" C —-20.5 2 3 Pd C 35 2
' 223 Q2OR ¥,
tin, M?:.& Pl\';rtz;)lz\'.zjlllj/\ (1982) 1713
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= L,q/L”. But if (9T /dx) = 0, the ratio of Egs. (7-10) and (7-9) gives
(Jq/Jl)T:qu/Ll] :qu/Lll = QT (7-11)

where the Onsager reciprocal relation, L,, = L,;, holds since we have
selected the forces in Eq. (7-9) and (7-10) appropriately.7 QT is thus
the heat flux per unit flux of component 1 in the absence of a tem-
perature gradient. If Q% > 0, a heat flux parallel to J, will be generated
by a solute flux; that is, to keep the region gaining solute atoms iso-
thermal, heat must be removed from it. If QF <0, J, and J, are in
opposite directions, and the region gaining solute atoms must receive
heat to keep it isothermal.

Heat in a metal is carried by free electrons and elastic waves in the
lattice (called ‘phonons’). In the presence of a temperature gradient
the jumps of the moving atoms are biased by the interaction of the
atom with electrons, phonons, and/or gradient related assymetries in
the activation process. The interaction is difficult to treat with preci-
sion, but qualitatively there are two contributions. One force stems
from the interaction with flowing electrons, and the other from gra-
dient related assymetries in the activation process.

In a simple metal in a temperature gradient the kinetic energy of the
free electrons on the hot side of the sample are raised by adsorbing
heat from the heat source, while on the cold side the kinetic energy
of the free electrons is lowered by giving up heat to the heat sink. The
heat is carried in the solid by the flow of more energetic electrons from
the hot to the cold side, while less energetic electrons flow in the re-
verse direction to maintain charge neutrality. This gradient induced
flow of higher energy electrons biases the jumps of the atoms in the
same direction, that is it induces an electron “breeze’ in the same way
that a current flow does in electro-transport. Qualitatively this predicts
that if z* is negative then Q* will be positive, since the flow of neg-
atively charged electrons down the temperature gradient biases the mo-
tion of atoms in the same direction as that of the electrons. Such a
correlation between the sign of —z* and Q* is common, but not
universal.

A kinetic argument due to Wirtz treats the biasing of jumps without
any reference to the flux of energy through the solid. In an isothermal
system the probability that a given solute atom will be in the high-
energy configuration required for a jump is related to the temperature
of the region through the factor exp(—H,,/RT). In the presence of a

A useful, simple introduction to these relations is given by K. G. Denbigh, The
Thermodynamics of the Steady State, Methuen & Co., (1951). The forces have been
chosen so that the product of the flux J, and the force X, has the units (tempera-
ture)(entropy)/(time)(volume).
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temperature gradient, the average temperatures of the original, inter-
mediate, and final planes of the jumping solute will be different. As
a result, the frequency with which the required high-energy configu-
ration is established for a jump to the higher temperature side may
differ infinitesimally from that for a jump to the lower temperature
side. To obtain an equation for these two jump frequencies, assume
that H,, consists of three parts:

1. That given to the atoms on the original plane of the solute (H,),
2. That given to the atoms in the intermediate plane of the jump (H,),
3. That required to prepare the final plane for the jumping atom (#,).

The jump frequency for the atoms moving up the temperature gradient
will then be proportional to the product

() ool ) ol )
exp exp exp| —————
RT R(T + AT/2) R(T + AT)
where the average temperature difference between the original and the
final plane of the jumping solute is AT. The jump frequency for atoms

jumping in the reverse direction between the same two planes will be
proportional to:

(&) ool ) o)

expl — | exp| ———————— | exp| ———

RT R(T + AT/2) R(T + AT)

The middle term in both of these equation is the same so the ratio of
the jump frequencies is

(—HU + Hf> ( —-H, + H0>
expl ————Jexpl —————
RT R(T + AT)

If n, and n, are the number of atoms per unit area on the hotter and
colder planes, respectively, the condition for zero flux between the

planes is
n, (—Ho + Hf> ( —H, + Ho>
— =exp| —— | exp| ———
n, RT R(T + AT)

- ( —(H, — H)AT ) 712
~ P\ (1 ¥ At/ 12

But (n, — n.)/n., and AT /T are both much less than one, so this equa-
tion can be put in differential form as

d In(n) B —(H,— Hy)dr
dx RT? dx

(7-13)
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Comparing this with Eq. (7-8), the equation for Q7 for this model is
Q% =H, - H, (7-14)

Since H,, H;, and H; were defined such that H,, = H, + H; + H,, Eq.
(7-14) requires that |Q*| < H,, but allows any value of Q* in this range.

This model indicates that Q* is influenced by the spatial distribution
of the activation energy required for a jump. In Chap. 2 the atomic
mechanisms and atomic rearrangements required for an atomic jump
were discussed. The most common situation was one in which the
diffusing atom had to pass through a constriction on its way to a rel-
atively open, new site. If the primary barrier to diffusion were the
movement of constricting atoms out of the way so that the diffusing
atom could pass, then most of H,, would be located in the intermediate
plan, H,, would then be about equal to H;, and Eq. (7-14) indicates
that Q* would be almost zero. On the other hand, if the main part of
H,, were required to make the diffusing atom execute violent enough
oscillations to move it to the saddle point (the constriction always being
relatively open), the result would be H,, = H,, and Q* = H,. In this
latter case the solute would tend to concentrate at the cold end. This
result can be seen by noting that if H,, = H,, the jump frequency of
the solute atoms on the hotter of two adjacent planes will always be
greater than that of the solute on the colder plane. Thus if the number
of atoms jumping from the cold plane to the hot plane per unit time
is to equal the number making the reverse jump, there must be more
solute atoms on the colder plane.

A system to which the Wirtz model seems to apply is carbon in iron.
The data in Table 7-2 indicate that O* in bcc iron is negative and
roughly equal in magnitude to the H,,, while in fcc iron Q* is close
to zero even though H, is almost twice that in bcc iron. In an fec
lattice an interstitial atom must pass through a pronounced constriction
in a jump from one interstitial site to another (see Fig. 2-3). Thus it
is plausible to say that H; would be an appreciable part of H,,, and O*
would be expected to be small, as it is. The large negative value of
Q% in the bcc a-iron may at first seem anomalous since its interpre-
tation using Eq. (7-14) requires that most of H, goes into preparing
the plane of the final site for the jump. However, examination of the
bee lattice, e.g. Fig. 7-6, shows that the moving atom must pass through
no constriction midway along its jump. The major barrier to be over-
come in the movement of an interstitial atom from one site to an ad-
joining one appears to be the moving apart of two iron atoms in the
final plane so that the carbon atom can jump from its initial position
into a position between them.

Discussions of the theory of Q* usually involve some combination
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Fig. 7-6 —Model of interstitial atom moving in bce lattice. The dashed circles rep-
resent the new positions of matrix atoms after the interstitial atom makes the jump
shown by the arrow.

of these two effects, that is the ‘electron breeze’, and the Wirtz model.
The theory is qualitatively satisfactory, but quantitatively poor, since
there is no way to determine the exact contribution of each effect to
Q.

Precipitation and Phase Redistribution. Interstitials diffuse rap-
idly and also often form precipitates with a low solubility. This can
cause the precipitates in a two phase alloy to redistribute in a temper-
ature gradient. Or, it can lead to the formation of a precipitate at one
end of a sample in an alloy which was a solid solution when the alloy
was placed in a temperature gradient. As an example of the latter case,
consider the diffusion of hydrogen in zirconium. Q* is positive for this
system (6 kcal/mol), thus thermo-transport pushes the hydrogen to-
ward the cold end of a sample in a temperature gradient. The solubility
of zirconium hydride drops as the temperature decreases, so if the con-
centration of hydrogen in Zr was initially near the solubility limit at
the lower temperature, the flux due to thermo-transport will raise the
concentration at the cold end above the solubility limit and precipi-
tation at the cold end will result. Fig. 7-7 shows initial and final dis-
tribution of hydrogen in a dilute zirconium alloy after annealing in a
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Fig. 7-7— Hydrogen distribution in Zr after annealing an initially single phase alloy
in a temperature gradient. [After A. Sawatzky. Jnl. Nucl. Matl., 2 (1960) 450.]

temperature gradient., as well as the solubility of the hydride as a func-
tion of temperature. The initial H concentration was above the solu-
bility of H at the cold end of the sample, so a precipitate forms at the
cold end. as one would expect. However, the amount of hydrogen
found at the cold end after the anneal far exceeds the initial content.
This is because most of the hydrogen initially in the higher temperature
region has diffused down to form a precipitate at the cold end. In the
high temperature region where there is no precipitate, the concentration
of hydrogen in solution drops steadily from the solubility limit. This
is consistent with a positive Q*. The H concentration increases rapidly
where the solubility of the hydride is exceeded, since any hydrogen
swept into this region by the temperature gradient forms a precipitate.

In the core of water cooled nuclear power reactors zirconium alloy
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is often used as a structural material. The reaction Zr + H,0 — ZrO,
+ 2H, can inject hydrogen into the metal. The hydrogen moves toward
the cooler parts of the zirconium and a brittle hydride precipitate can
form there.

If a two phase alloy is annealed in a temperature gradient the pre-
cipitate will dissolve at one end and shift toward the other. The di-
rection of the shift depends on the difference between the heat of so-
lution of the precipitate in the matrix H,, and Q* of the solute. If the
solubility in equilibrium with the precipitate is given by N, = N,
exp(—H,/RT), the concentration gradient in the matrix is fixed by the
second phase. As a result the flux equation, Eq. (7-7), becomes?®

. -
= T = Ay At 1)
RT dox

Such redistribution has been studied for hydrides in zirconium (Fig.
7-7), and carbides in iron,* and various transition metal alloys.® Equa-
tions describing this redistribution can be obtained by assuming that
the second phase maintains its equilibrium solubility at each temperature.

7-3. THERMO-TRANSPORT—Vacancy Diffusion

Pure Metals. In pure a metal where diffusion occurs by the motion
of vacancies, the flux of atoms is influenced by the change in the
equilibrium vacancy concentration with temperature. In Sect. 4-3 it
was shown that the general equation for the flux in an isothermal sys-
tem involved the difference in the gradients of the concentrations of
vacancies and atoms. To include the effect of the variation of the con-
centration of vacancies we start with the equation

_ =D, _a(lJvA - M) n Q_jf)z
RT() ox T ox

Ja

In a dilute solution this can be rewritten
-D, [alnNA alnN, N oF BT}
02

JA = 2
ax ox RT~ ox

but if vacancy equilibrium is maintained at each temperature, (d/nN,/
dx)(dx/dT) = —H,/RT” so

-D, BlnNA+(QZ‘—HV)8T _ =D, (Qi—H,) T
0 ox RT*  ox 0 RT*>  ox

Jy= (7-16)

. G. Shewmon, Trans. AIME, 212 (1958) 642.
Mehmet Uz, D. K. Rehbein, O. N. Carlson, Mer. Trans.A 17A (1986) 1955-66.
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Where the last equality is obtained since in a pure metal the concen-
tration gradient of the matrix atoms is essentially zero. (Here D, =
D /f as in Eq. (7-6), but the experimental measurement of Q* is of
such low accuracy that we will not carry along the distinction between
Q* and Q*/f.) This equation could also have been obtained directly
from Eq. (7-15) by noting that the local equilibrium concentration of
vacancies corresponds to the assumption there of local equilibrium be-
tween precipitates and solute in solution.

The net flux of atoms in a pure metal is measured by the motion of
inert marker relative to the end of the sample. The net accumulation
or removal of atoms on any given plane is obtained by taking the di-
vergence of the flux, Eq. (7-16). This divergence arises from changes
in the temperature gradient, and changes in the diffusion coefficient
with temperature. Experiments have been done by heating one end a
pure metal and cooling the other, or by heating the center of a sample
by passing an electric current through it and keeping the ends cold.

Table 7-3 gives experimental values of Q7 for several pure metals.
Note that QF is invariably much less than H,. Thus the vacancy con-
centration gradient dominates and the net flux of vacancies in always
toward the cold end. There are always more vacant sites for an atom
to jump into on its higher temperature side than on its lower temper-
ature side. This results in a net flux of atoms up the temperature gra-
dient and an increase in the distance between markers in the hottest
parts of the sample.

Since the effect of Q7 is small relative to the vacancy gradient effect,
Q% cannot be measure with much accuracy. It is not uncommon to
have different authors report different signs for 0, for the same metal.

If one now adds a solute to form an alloy, the process becomes more
complex. In this case whether the solute becomes enriched at the hot
or cold end of the sample is determined by the competition between
the flow of the solvent and solute atoms relative to the lattice.

Table 7-3. Q% in Pure Metals

Metal H,, (k) H, (kJ) Q% (kJ)
Ag 81 97 0
Au 86 84 -25
Al 60 63 7
Pb 60 49 9
Pt 132 153 65

Hans Wever, Elektro- u. Thermo-transport in Metallen, J. A. Barth, Leipzig (1973),
p. 216.




240

7-1.

7-2.

7-3.

7-4.

7-5.

Diffusion in Solids

PROBLEMS

(a) The effective charge for carbon in a-Fe is —12. An electric
field of 0.01 V/mm is maintained in a 1 mm long sample of
an Fe-C alloy at a temperature of 700° C. What will be the
concentration ratio between the two ends at steady-state? (F
is 96,500 Coulomb/mole and a Volt-Coulomb = 1 Joule)

(b) If the initial atom fraction of carbon in the alloy was 0.00035,
what fraction of the length of the sample is at a concentration
lower than 0.0005 at steady-state, if no carbide forms?

(c) A carbide forms on the end of the sample where the concen-
tration of carbon is highest whose solubility in the metal is
0.001. For this case what fraction of the length of the sample
will be at a concentration lower than 0.0005 at steady-state?

Referring to Fig. 7-3, if a voltage drop of 0.1 V /cm is maintained

in a piece of gold, will the distance between markers at the center

(1000° C) and cold end of a sample Fig. 7-4 increase or decrease,

and by how much, in 10,000 s? [Take z* = —9 and D%, = 0.04

cm’/s exp(—170,000/RT)]

Thermo-diffusion arises from the fact that in a temperature gra-

dient atoms jumping from one plane to an adjaceat hotter plane

do so with a slightly different frequency that that of atoms making
the reverse jump. Estimate the ratio of these two jump frequen-

cies using Eq. (7-12) and (7-14), and taking 4T/dx = 500° C/

cm, Q* = 80 kJ/mol and 7 = 1000° K.

If a temperature gradient of 100° C/cm is maintained in a piece

of pure gold, will the distance between markers at 900 and 1000° C

increase or decrease, and by how much, in 10,000 s? [Take ox

= =25 kJ/mol, H, = 84 kJ/mol, and D,, = 0.04 cm’/s
exp(—170,000/RT)]

Consider the ‘thermocouple’ shown in Fig. 7-8 with one end at

temperature 7, and the open end at 7,. An interstitial solute is

introduced for which O0* = —84 J/mol in one leg and Q* = 0 in
the other leg.

(a) Assuming that the solute concentration is the same in both
phases at the interface at temperature T, give the equation
for the steady-state concentration difference Ac between the
two phases at 7, as a function of 7|, — T,.

(b) Using this equation calculate Ac if 7, = 700° C,

T,=800°C and c¢=1 at T,.
(The analogy between this system and a normal thermocouple is

complete. For example, if solute flows through the junction at
T,, the heat adsorbed or evolved per mole of solute would be just
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g 7

Fig. 7-8—

7-1.

7-4.

the difference in the molar heats of solution for the solute in the
two phases. The analogous heat in a thermocouple is called the
Peltier heat. It is not common to talk about Q* for the electrons
in a metal, but an equation for the voltage A¢ produced at the
open end of a thermocouple can be derived which corresponds
to the equation for Ac¢ derived above. The equation tor A¢ can
be expressed in terms of Q* for the electrons but is more com-
monly expressed in terms of $*, the entropy of transport for the
electrons where Q* = TS5*. See for example, R. Heikes, R. Ure
(eds.), “Thermoelectricity: Science and Engineering,” Chap. I,
Interscience Publ. Inc., New York, 1961.)

Answers to Selected Problems

(a) J = 0 so from Eq. (7-2). In(N,/N) = —Fz'E/RT. Thus N,/
N, =42. (b) 0.77. (¢) 1.0.

The distance decreases since (QF — H,) < 0. The difference in

J.,£ at the two markers is the velocity. The shift is 8.4 um
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should be given by an equation of the form
w' =y’ 4Di (1-65)
where 7y is a constant to be determined. Thus at x = w
C, — Cy, = Herf(y) (1-66)

The derivative of Eq. (1-65) give an equation for the gradient in the
beta phase as x approaches w. Eq. (1-62) and (1-64) then give'

Cpo — C, = H/(YW/m) exp(=7)
Eliminating H between these last two equations
(C, = Cp)/[(Cpo = C) = YWrexp(y)erf(y)  (1-67)

This equation is valid for a wide range of values of y. If (C, — Cp,)
< (Cyy — C,) then y is small. In such cases exp(yz) = 1 and erf(y)
= 2y/\/;. Or, substituting into Eq. 1-64 /

w? = |(C, = Cpa)/2ACyo — C)| 4Dt (1-68)

which is identical to the result of the linear approximation, Eq. (1-63).
However, for y larger than 0.1 its value must be obtained from Eq.
(1-67).

Using Eq. (1-64), y can be obtained for any ratio of concentrations,
and the value of D in the growing phase determined from measure-
ments of the rate of growth of that phase. This same procedure can be
extended to the case of a diffusion couple made by joining pure A to
pure B with concentration gradients on both sides of the advancing
interface.'®

Variable D. When D changes significantly with composition there
is no closed solution to the diffusion equation. However. returning to
the diffusion couple shown in Fig. 1-9. note that this system fulfilis
the conditions required for the application ot the Matano-Boltzmann
solution, namely the initial conditions can be expressed in terms of the
function u = x/\ﬁ. The Matano-Boltzmann formulation can be used
to obtain some simple, useful equations. For example the thickness of
intermetallic phases (in binary systems) increase as V/1."” The relation
between the rate constant for diffusion couples developing only one
phase and those developing several has been developed by Shatynski
et al."”

"See Problem 1-3 for the differentiation of an error function.

"W . Jost, Diffusion in Solids, Liquids, Gases, Academic Press, 1952, pp. 69-75.
"G. V. Kidson, J. Nucl. Matl.. 3 (1961) 21.

"S. R. Shatynski, J. P. Hirth, R. A. Rapp, Acta Met., 24 (1975) 1071.
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to another in the same fcc phase. The reason that iron diffuses so much
more slowly than carbon is that while each carbon atom always has
many vacant nearest-neighbor interstitial sites, the fraction of vacant
iron sites is very small, and each iron atom must wait an appreciable
period before a vacancy becomes available.

In a bee lattice the barrier for the jump of an atom into a vacant
nearest neighbor site is more complex. Fig. 2-5 represents the extended
barrier of two sets of triangular barriers. The vacancy mechanism is
thought to be the mechanism of self diffusion for all pure metals and
for essentially all substitutional solutes in alloys. It also is found in
ionic compounds and oxides.

Interstitialcy and Crowdion Mechanisms. Solute atoms which go
into solution in metals as interstitials are appreciably smaller than the
matrix atoms and, as discussed above, diffuse by the interstitial mech-
anism. If a relatively large atom such as a solvent atom gets into an
interstitial position, how will it move? It will produce a very large
distortion if it jumps from one interstitial site to a neighboring inter-
stitial site. Jumps which produce very large distortions occur infre-
quently, so another diffusion mechanism which produces less distor-
tion could predominate.

One jump process which gives less distortion is the interstitialcy
mechanism. Consider the interstitial atom shown in Fig. 2-6. It is said
to diffuse by an interstitialcy mechanism if it pushes one of its nearest-

Fig. 2-5— Saddle point barrier for the darkened atom jumping to the vacancy indicated
in a bee lattice. Note double maxima in energy vs. distance for the jump.
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Fig. 2-8—(111) plane of fcc lattice showing a crowdion. (Note extra ator in middle
row.)

thus displacing several atoms from their equilibrium position (see Fig.
2-8). This configuration resembles an edge dislocation in that its dis-
tor- tion is spread out along a line, it can glide in only one direction,
and the energy to move it is quite small.

With this multiplicity of configurations for an interstitial atom it is
well to point out that an interstitial atom means only that there is one
more atom than there are sites in a given small region. Similarly, that
a vacancy need not mean that a particular site is vacant but that the
region contains one fewer atom than sites.

2.3 RANDOM-WALK PROBLEM

After cataloguing the possible diffusion mechanisms, we turn next
to the problem of relating these atomic jumps to the observed mac-
roscopic diffusion phenomena. It has already been shown that near the
melting point of many metals each atom changes sites roughly 10°
times per second. Over the period of hours or days, the number of
jumps becomes astronomical. These jumps are made in all directions
and follow no particular pattern. Our problem is to take this welter of
jumps and calculate the mean distance an atom will move from its
initial site in 7 jumps. A first impression might be that the problem is
insoluble, owing to the randomness of the atoms’s jumps, and indeed
the exact distance cannot be calculated tor a particular atom. However.
precisely because of the random nature of the process and the large
number of jumps, it is relatively easy to calculate the average distance
that a group of atoms will have migrated from their initial sites. This
kind of problem is called a «random-walk” problem, and diffusion in
crystalline solids is only one application of a broad group which in-
cludes the flipping of coins, the structure of polymers, and the theory
of galaxies.”

*For further reading on the random walk problem, G. Gamov. One, Two, Three . . .
Infinitv, Viking Press (1947), Chap. 8, gives a very readable introduction. J. Manning,
Diffusion Kinetics for Atoms in Crystals, Van Nostrand, 1968. gives a more detailed
discussion of its use in diffusion problems.
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where N is Avogadro’s number. H,/N is the increase in the enthalpy
of the crystal per vacancy added and stems from the local changes in
the atomic and electronic configurations of the crystal when a vacancy
is introduced. The increase in the entropy of the lattice per vacancy
added, (3S/8N,)(1/N), arises from the ideal entropy of mixing as given
by Eq. (2-20) and a second part which stems primarily from the change
in the vibrations of the atoms when a vacancy is introduced. This sec-
ond contribution is designated S,/N per vacancy.® Substituting these
terms in Eq. (2-21) gives the equation

8G = [H, — TS, + RT InN,/(1 — N)|(én,/N) (2-22)

Both H, and S, will be independent of N, in very dilute solutions where
the vacancies do not interact with one another. (Experiments indicate
that in pure metals N, < 107*, so the solution is indeed very dilute.)
Since N, < 1, Eq. (2-22) can be written

8G = [H,— TS, + RT In N,1(6n,/N) (2-23)

But, at equilibrium 8G = O for any small én,. Thus at equilibrium, N,
must have the value given by the equation

N¢ = exp(S./R) exp(—H./RT) (2-24)

where the superscript e is added to N, to emphasize that N} is a par-
ticular value of N, instead of a variable. This equation can also be
written

N¢ = exp(—G,/RT) (2-25)

where G, = H, — TS, is the free-energy change of an infinite crystal,
per mole of vacancies added, over and above the entropy of mixing.
An equation identical in form to Eqgs. (2-24) or (2- 25) could be ob-
tained for the concentration of self-interstitial metal atoms, N;. In it,
G, = H, — TS, would replace G,.

A physical feeling for the meaning of, and basis for, Eq. (2-25) can
be obtained by studying Fig. 2-12. Here the molar decrease in the free
energy per mole of vacancies added is given by the line —RT In N,.
The horizontal line represents the tree-energy increase per mole of va-
cancies added (G,). The system will adjust N, until Eq. (2-24) is sat-
isfied, that is, until G, = —RTIn(N,). If the temperature is suddenly
increased to T,, RT In N, will increase while G, will be essentially
unchanged. In order to reestablish equilibrium, N, will increase until

*Strictly speaking, S, is a parameter which when added to the ideal entropy of mixing
gives the observed entropy effect. In solution chemistry S, would be called an excess
entropy of mixing.
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Fig. 2-12—N(T), the equilibrium concentration of vacancies at temperature T, is at-
tained when 7(dS,../dN,) = —G,. The variation of both of these quantities with N, is
shown, at two temperatures.

—RTIn(N,) again equals G,. For vacancies in gold, H, = 191 kJ/mol
(=1.0 eV per vacancy). Thus in the temperature range of 900-1000° C,
N, in gold will roughly double with a 90° C increase in temperature.
Often authors write N, = exp (—H,/RT), omitting the term including S,.
This is not correct, but the few data available indicate that exp (S,/R)
< 10. The omission of this term often gives an adequate approximation
and avoids the problems of discussing S,. Taking S, = 0 and H, =
23.0 kcal/mol, we get N, = 10™* at 980° C.

Calculation of the Jump Frequency w. The second unknown
quantity which enters into D is w, the frequency with which an atom
will jump into an adjacent, vacant site. The calculation of w, or even
its temperature dependence, from our fundamental knowledge of the
forces between atoms and reaction kinetics is very difficult. Actually,
our present knowledge is such that any calculation from fundamentals
cannot give a real check on experimental results. The main purpose in
such a theoretical study is to develop greater insight into the factors
which determine w and thereby D.

The atom movements required for an atom to jump are shown sche-
matically in Fig. 2-13; (a) and (c) show the initial and final states,
while (b) shows the midway configuration referred to as the activated
state. There are two separate requirements to be met before the group
of atoms can go from (a) to (c). First, the diffusing atom must be
moving to the right far enough to carry it into the adjacent site; and
second, the two restraining atoms must simultaneously move apart a
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great enough distance to let the diffusing atom through. Whenever these
two steps occur at the same time, the diffusing atom will change sites.

The most common method of calculating w ignores the detailed atomic
movements involved and uses statistical mechanics to calculate the
concentration of “activated complexes,” or regions containing an atom
midway between two equilibrium sites. The number of atoms diffusing
per second is then obtained by multiplying the number of activated
complexes (n,,) by the average velocity of the atoms moving through
this midpoint 7, divided by the width of the barrier or midpoint 6. From
this number jumping per second, it is shown that the average jump
frequency per atom is w = N,,.v/8, where N,, is the mole fraction of
activated complexes. The treatment of this problem in a rigorous man-
ner is very difficult since it is a many body problem, and the vibrations
leading to a site change are no longer harmonic.” The simplified treat-
ment given here is chosen to make the basic assumptions apparent.

The diffusing atom shown schematically in Fig. 2-13b is said to be
at the saddle point. Throughout the crystal there will always be atoms
entering this configuration as well as leaving it. To calculate the num-
ber of atoms at the saddle point at any instant, it is necessary to know
the increase in the Gibbs free energy of a region when an atom in it
moves from a normal site to the saddle-point position, G,,. Zener"
suggested that this free-energy change could be visualized in the fol-
lowing thought experiment. If the diffusion direction is defined as the
x axis, we constrain the atom so that it can execute its normal vibration
only in the yz plane. The atom is then slowly (reversibly) moved from
its initial site to the saddle point, allowing the surrounding atoms to
continuously readjust their positions. The work done in this reversible,
isothermal process, at constant pressure, is just equal to the change in
Gibbs free energy for the region (G,,). This can be written

Gm = Hm - TSm (2“26)

It is assumed that G,, has all the properties possessed by G, of Eq. (2-
25). Given G,,, the equilibrium mole fraction of atoms in the region
of the saddle point N,, can be calculated using a treatment essentially
the same as was used in obtaining the equation for Ni, that is, Eq (2-
25). Instead of mixing into the lattice vacancies which increase the
free energy by G, per mole of vacancies, we mix in activated com-
plexes which increase the free energy by G,, per mole of complexes.

For a more detailed discussion of the problem see Chap. 7 of C. P. Flynn, Point
Defects & Diffusion, Clarendon-Oxford Press, (1972).

100 Zener, in W. Schockley (ed.), Imperfections in Nearly Perfect Crystals, p. 289,
John Wiley & Sons, Inc., New York, 1952, or C. P. Flynn, Point Defects & Diffusion,
Clarendon-Oxford Press, (1972), pp. 335-7.
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The ideal entropy of mixing is the same for vacancies and complexes
s0, at equilibrium, n,, out of N atoms will be in the neighborhood of
a saddle point at any instant and

n,/N = N,, = expl(—=H,, + TS,)/RT] = exp(=G,./RT) (2-27)

In the equation w = N,v/8, simple dimensional analysis shows that
v/8 is a frequency. This is the frequency » with which the atoms at
the saddle point go to the new site. A more complete treatment shows
that v is of the order of the mean vibrational frequency of an atom
about its equilibrium site. Thus, of N atoms n,,v will jump from one
site to a given vacant neighbor site per second. If this is true, the
average jump frequency for any given atom will be

vn, /N = w = vexp(—G,/RT) (2-28)

A particularly simple interpretation of Eq. (2-28) is to think of it as
the frequency with which an atom vibrates in a given diffusion dire:-
tion v times the probability that any given oscillation will move the
atom to an adjacent site in that direction, exp(—G,,/RT). The precise
definition of v is one of the more difficult aspects of a rigorous theory.
However, it is usually taken equal to the Debye frequency.

Equations for D. Empirically it is found that D can be described
by the equation

D = D, exp(—Q/RT) (2-29)

where D, and Q will vary with composition but are independent of
temperature. Experimentally D, and the activation energy Q are ob-
tained by plotting /n D versus 1/T. The slope of this plot gives

dinD  Q

d1/T R

while In D, is given by the intercept at 1 /T = 0.
An alternate equation for D in the case of interstitial diffusion can
be obtained by substituting Eq. (2-28) for w in Eq. (2-18). This gives

D = [yadlvexp(S,./R) exp[—H,/RT] (2-30)

Comparing this with Eq. (2-29) shows that the first term in parentheses
is equal to D, and that Q equals the quantity H,,.

For diffusion by a vacancy mechanism in a pure metal, Egs. (2-28),
(2-24), and (2-17) give

X S, + S, -H,—H,
D =j{a,vexp 7 exp T (2-3D)
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The term in square brackets is again D,, while O is the sum of H,, and
H,. Since Q is seen to be made up of enthalpy terms in both cases.

The entropy terms S, + S,, from either Eq. (2-30) or Eq. (2-31) can
be evaluated from the known value of D,,, a’, y. and an assumed value
of v. As was pointed out above, v is usually taken to be the Debye
frequency for a pure metal. In the case of interstitial atoms, v can be
estimated by assuming that the potential-energy curve of the atom var-
ies sinusoidally along the diffusion path and its maximum value is
H,." In either case, the value of the entropy term obtained depends
on the value of v assumed. In view of the vagueness as to what v is
to be used, the S, cannot be determined with precision. However, as
will be seen in the next section, the evaluation of even an approximate
value can be quite helpful in checking experimental results.

2.5 CALCULATION OF H AND § FROM FIRST
PRINCIPLES

There has been a fruitful interaction between the theoretical calcu-
lations and experiment in this area. Historically one of the first ques-
tions was whether diffusion in fcc noble metals like copper occurs by
the exchange of two adjacent atoms Or by a vacancy mechanism. Later
with the advent of big computers and studies of radiation damage, the
theoretical models provided insights into the formation and motion
energies of self-interstitials, as well as small defect clusters. Most re-
cently the models have been used to study possible mechanisms of
diffusion in grain boundaries.

The models used on the large computers to calculate defect energies
starts with an assumed energy function. In this function the energy of
the lattice is described as a function of the relative position of all of
the atoms in the lattice. This is done with terms arising from the two-
body forces between the atoms plus a contribution from changes in
electronic structure and volume changes of the crystal.'”

We shall outline the calculations which have been made using the
models of solid-state physics. The actual calculations are beyond the
scope of this book. Nevertheless, by reviewing the models and the
results, the student will obtain a feeling for the physical effects which
contribute to H and S.

Calculation of H,,. The short range interactions between atoms in
noble metals and transition metals is determined largely by the repul-
sion of the filled electron shells, or ion cores, of the atoms. To cal-

e, Wert, C. Zener, Phys. Rev., 76, (1949) 1169.
2R A. Johnson, in Diffusion, ASM, Metals Park, OH, 1973, pp. 25-46.
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culate the energy of activation for an atom jumping into a vacancy, a
geometry similar to Fig. 2-13b is used for the activated state. Thus an
atom is placed at the saddle point, and the surrounding ions and elec-
trons are allowed to relax to this new configuration. Consideration of
the geometry shows that the vacancy has been divided into two equal
halves. Thus to a first approximation there is no change in the energy
of the electrons, and the electronic contribution to H,, is zero. How-
ever, the diffusing atom has moved appreciably closer to its neighbors
in the saddle-point configuration, and the ion-core interaction energy
is appreciable. The calculation of this interaction for the atoms which
are nearest and next nearest neighbors of the activated atom and va-
cancy is obtained by allowing the atoms to relax until the sum of all
of the energy terms is a minimum.

Calculation of H,. While the migration energy stemmed primarily
from ion core repulsion, the energy to form a vacancy stems primarily
from the change in energy of the free electrons in the metal. The dis-
cussion given here will deal with the metals copper, silver and gold,
though it should be similar for transition metals.

To establish a model for calculating H,, we take advantage of the
fact that the enthalpy of the crystal depends only on the number of
vacancies present and not on the mechanism by which they were pro-
duced. For this reason the conceptual procedure used here to form a
vacancy need bear no resemblance to how the vacancies are actually
formed in the real crystal. We consider the metal, e. g. copper, to con-
sist of ions with a charge of +1, arranged in a gas of electrons. If a
neutral atom is removed from the center of the crystal and placed on
a rough area of the surface, there is no change in surface area, but
there is an increase in the volume. This volume increase decreases the
average energy of all of the electrons and gives an energy change of
—2.8 eV per vacancy.'>!4

The removal of an atom from the center of the specimen to the sur-
face leaves one atomic volume devoid of charge. The free electrons
in the region around this vacant volume will tend to flow into the va-
cancy, but since there is no positive charge in the vacant site this will
increase the electrostatic energy. This can be seen with the aid of Fig.
2-14 where it is assumed that the positive charge density drops sharply
at the edge of the vacant site, while the time average of the electron
density tails off into the vacant site. The greater the electron penetra-
tion of the vacancy, the greater the electrostatic energy of the separated

“The energy unit eV (electron volt) is convenient for expressing the energy changes
in atomic processes. | eV per atom = 96.46 kJ /mol.
“The energy changes given here are those of F. Fumi, Phil. Mag., 46 (1955) 1007.
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Fig. 2-14—Model for positive and negative charge density distribution (p. and p.)
around a vacancy.

positive and negative charge. However, if this electrostatic energy is
minimized by forming a very sharp change in the electron density,
shorter wavelengths are required for the electrons and thus higher ener-
gies. At equilibrium, the increase in energy is primarily due to the
shorter wavelength (higher kinetic energy) of these electrons and is
+4.0 eV per vacancy.

Although most of the energy change accompanying the formation
of a vacancy is electronic, there is a small contribution from the change
in the positions of the ions surrounding the vacancy. These ion cores
can be thought of as close-packed spheres which are slightly com-
pressed. If an atom is removed, the surrounding ions will relax into
the vacancy, thereby decreasing their energy. This relaxation is small
in a close-packed lattice, and the energy decrease from this source is
only —0.3 eV per vacancy.

If these three contributions are added together, one obtains a value
of 0.9 eV per vacancy = E, = H, for copper. The experimentally
obtained value of H, is 1.29 eV (Table 2-1). The values of the energies
depend critically on the volume changes assumed, however, the results
obtained are of the correct magnitude, and the dominant contribution
of electronic terms is clearly indicated.

Calculation of S, & S,,." It is shown in most texts on statistical
mechanics that the Helmholtz free energy of a crystal relative to that
at absolute zero can be represented by the equation

F=—kT D In|1 — exp(—hv,/kT)]"" (2-32)

where i is summed over the frequencies of the crystal. The entropy
change for some process can then be obtained from Eq. (2-32) by using
the thermodynamic equation

S = —(dF /3T), (2-33)

For temperatures well above the Debye temperature, hy, < kT, and

*The discussion given here follows that of H. Huntington, G. Shirn, E. Wajda,
Phys. Rev., 99 (1955) 1085.
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tude larger than the initial concentration, so that Eq. (2-40) can be
written

ApJa = AN, = N, = A exp(—H,(qu)/RT) (2-41)

This technique has been used by several groups, and consistent results
have been obtained for many metals. Representative values are given
in Table 2-1.

The temperature dependence of the rate of annealing out of vacan-

cies from quenched samples allows one to measure H,,. However, it
now is generally agreed that the most accurate values of H, can be
obtained by subtracting H, from the activation energy for self diffusion
in the temperature range where monovacancy diffusion is dominant,
Q.
Positron Annihilation. When certain radioactive isotopes decay they
emit particles called positrons. These have the mass of an electron but
their charge is equal and opposite to that of the electron. They could
also be called ‘anti-electrons’ since when a positron combines with an
electron the mass of the two particles is converted into energy in the
form of two gamma rays.

A schematic representation of positron annihilation is shown in Fig.
2-16. A source containing Na?, often in the form of NaCl, is placed
near the sample that is to be studied. When a Na** atom decays it emits
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Fig. 2-16— Schematic representation of positron annihilation indicating the basis for
the three experimental techniques: lifetime, Doppler broadening and angular correla-
tion. [R. W. Siegel, J. Nucl. Matl. 69 (1978) 117.]
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Table 2-2. Activation Volumes for Self-Diffusion

Metal Vsp/2 Ref.

Solid self-diffusion

Ag 0.9 b

Au 0.72 b

Cu 0.9 b

Li 0.28 b

Na 0.32, 0.59 a

Pb 0.73 b
Liquid diffusion

Hg 0.04 ¢

Ga 0.048 ¢
Interstitial

C in Fe (250° K) 0.003 d

N in V (433° K) 0.01 d

Cu in Pb (600° K) 0.004 d

*J. N. Mundy, Phys. Rev. B3 (1971) 2431.

"N. L. Peterson, J. Nucl. Matl., 69 (1978) 3.

°N. Nachtrieb, Liquid Metals and Solidification, ASM, Metals Park, OH, (1938), p.
49,

‘D. Beshers in Diffusion, ASM, Metals Park OH, (1973) p. 209.

It has been proposed that diffusion in a liquid occurs when a hole
opens up in the nearest-neighbor shell of atoms, and the diffusing atom
jumps into it. Some people conceive of these holes as having a volume
comparable to that of a vacancy in a crystal. The effect of pressure on
D is an ideal way to measure the mean size of these holes. The mea-
sured values of Vg, indicate that, at least in mercury and gallium, these
holes are such a small fraction of {2 that the concept of vacancies in
liquids is not appropriate.

Note that the activation volumes for interstitial diffusion are an order
of magnitude lower than those for self diffusion by a vacancy mech-
anism. This stems largely from the fact that no vacancy need be formed
for interstitial diffusion. Copper dissolves substitutionally in lead, but
is believed to move by an interstitial mechanism. This will be dis-
cussed further in Chap. 3.

2.8 EMPIRICAL RULES FOR OBTAINING Q AND D,

Just as there are systematic variations of physical properties with
position in the periodic table, e.g. melting point, elastic constants, etc.,
there is a systematic variation of diffusion data. This provides a way
to check new data for consistency, and can be used for making in-
formed guesses about the value of D for self diffusion where no mea-
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Fig. 6-9 — Diffusivity vs. reduced reciprocal temperature for various diffusion paths
in metals. [N. Gjostein, in Diffusion, ASM, Metals Park, OH, (1973) p. 241-74.]

Mechanism. Calculations using molecular dynamics models have
been made on models of dislocations, and a few on segments of grain
boundaries. Fig. 6-10 shows several consecutive planes normal to the
plane of a § = 36.9° [100] tilt boundary (X = 5) in a bcc lattice. This
boundary is ‘high angle’, but also has a relatively small repeat distance
along the boundary in the planes shown. Thus the size of the model
needed for calculations is reasonable. The results for diffusion in such
a grain boundary indicate that both the motion energy and the for-
mation energy of a vacancy are less than in the lattice, with the re-
duction in the energy of motion being about twice the reduction in the
formation energy.'® Other conclusions are:

* Vacancy jumps along the grain boundary core, of the sort B — D
— B or B — C — B are the most frequent.

““R. W. Balluffi, in Diffusion in Crystalline Solids, ed. G. E. Murch, A. S. Nowick.
Academic Press, 1984, p. 320-78.





