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CVM calculation of the ternary system Co–Cu–Fe
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Abstract

The Co–Cu–Fe phase equilibria are calculated by means of the cluster variation method (CVM) in the temperature range 800–10008C.
For this purpose, the available experimental work on the ternary system Co–Cu–Fe, as well as on the three binary limiting systems, is
reviewed. The interaction parameters involved in the thermodynamic model are fitted with a selected set of experimental data. The binary
Fe–Cu, Cu–Co and Fe–Co diagrams are calculated and compared with the experimental ones. Several isothermal sections of the ternary
system Co–Cu–Fe are calculated and compared with the experimental information. The evolution of the compositions of the three-phase
equilibria with temperature is investigated in the ternary system.  2000 Elsevier Science B.V. All rights reserved.
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1. Introduction Williams [7] approximation. However this method presents
conceptual difficulties, in particular the short range order is

The only available experimental information concerning not considered in the configurational entropy. In the
the Co–Cu–Fe phase diagram is from Jellinghaus [1] and present work we have used a mixed CVM-Calphad tech-
Maddocks and Claussen [2] who proposed some vertical nique in which the configurational entropy is given by the
sections. Using these vertical sections and the limiting cluster variation method (CVM). The input parameters are
binary phase diagrams, approximate isothermal sections at fitted on the available experimental data. In a first step the
1000, 900 and 8008C have been constructed by Raghavan available experimental data found in literature for the
[3]. Concerning the Co–Cu–Fe phase diagram calculation, limiting binaries and for the ternary were used to calculate
Hari-Kumar and Raghavan [4] have presented partial isothermal sections at various temperatures. After this step,
isothermal sections at 650, 750, 850 and 9508C calculated the experimental data were supplemented by new results
using the Calphad method. More recently Hari-Kumar and from Durand-Charre and Mallet [8] in the ternary system
Wollants [5] performed thermodynamic calculations in the and also in the limiting binaries Fe–Cu and Co–Cu. These
quaternary Co–Cu–Fe–Ni which include the ternary Co– new experimental determinations have been used to get a
Cu–Fe. final set of values of the input parameters which has been

The purpose of the present work is to present results of used in the CVM calculation. The calculated isothermal
calculations in the Co–Cu–Fe system. The modelling of sections are presented in this work.
binary or multicomponent phase diagrams may be per- The outline of this paper is as follows. In Section 2, we
formed by using the Calphad method. The models used review some basic concepts of the CVM in fcc and bcc
involve phenomenological parameters which are fitted to solid solutions. In Section 3, a critical assessment of the
the experimental information on the phase diagram and the experimental phase diagrams data is presented. In Section
thermochemical properties. Generally the excess Gibbs 4 the values of the interaction parameters involved in our
energy of mixing is expressed in the form of a standard model, i.e. the interchange energies and the enhancement
Redlich Kister [6] polynomial, the ideal term being factors, obtained from the selected set of data, are pro-
obtained from the sublattice model in the Bragg and vided. We present the calculated phase diagrams of the

three binary subsystems and several calculated isothermal
sections in the temperature range 800–10008C. The results*Corresponding author.
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1perimental ternary phase diagram data. Finally, Section 5
]De 5 De 1 De 1 De 1 De 1 De 1 De (5)s dijkl ij ik il jk jl kl2summarises our conclusions.

If such expression of the internal energy with composition
independent effective pair interactions is used in a binary
system, the thermodynamic data will be symmetric with2. CVM in fcc and bcc solid solutions
respect to 0.5 composition. To break the symmetry, either
composition dependent interchange energies or many-body2.1. Tetrahedron approximation of the CVM in fcc solid
interactions must be introduced. This last scheme, sug-solutions
gested by van Baal [12] and used later by Kikuchi et al.
[10] for the calculation of ternary fcc systems, is carriedIn fcc solid solutions, the simplest cluster is a regular
out in the present work. The tetrahedron energy obtainedtetrahedron including first nearest neighbor interactions.
by the sum of the pair interactions is multiplied by theDescriptions of the tetrahedron approximation of the CVM
proper enhancement factor. In each binary system there arein fcc solid solutions have been given in numerous papers
two such factors whereas the total number of independentfor both binary and ternary solid solutions [9–11]. Hence,
enhancement factors in ternary systems is nine. A generalonly a brief review of the calculations will be given here.
definition of the tetrahedron four body parameters desig-The three species Fe, Co, Cu occupying the lattice
nated by a is given through the following relations forpoints are designated, respectively, by the index i51, 2, 3. ijkl

the tetrahedron energies:In the tetrahedron approximation, the configurational free
energy is written in terms of the probability of having

De 5 0 (6a)iiiidifferent arrangements of the point, the pair and the
tetrahedron clusters. Such clusters probabilities will be 3

]De 5 De (1 1 a ) i ± j (6b)designated by x , y , and z for the point, the pair and the iiij ij iiiji ij ijkl 2
tetrahedron, respectively, where the subscripts indicate the
manner in which the clusters are populated by the three De 5 2De i ± j (6c)iijj ij

species (i, j,k,l each takes a value 1,2 or 3). In a system
1with N lattice points, the internal energy may be written as: ]S DDe 5 De 1 De 1 De 1 1 a i ± j ± k (6d)s diijk ij ik jk iijk2

3

U 5 2N O e z (1)fcc i, j,k,l51 ijkl ijkl

Eq. 6a–d are valid for all values 1, 2 and 3, and
where 2N is the total number of tetrahedra and e is theijkl permutations in e of the subscripts i, j,k,l.ijkl
energy per tetrahedron in the i, j, k, l configuration. In the In the case of the fcc lattice Kikuchi [13] gave the
present instance we assume that only pairwise interactions expression of the configurational entropy using the regular
e between first neighbours are predominant. Then theij tetrahedron as basic cluster. For a disordered fcc solid
tetrahedron energy e can be expressed in terms of theseijkl solution the configurational entropy is given by:
pairwise interactions according to:

3 3 3

1 S 5Nk 22 O L(z )16 O L( y )25 O L(x )F Gfcc B ijkl ij i]e 5 e 1 e 1 e 1 e 1 e 1 e (2)s d i, j,k,l51 i, j51 i51ijkl ij ik il jk jl kl2
(7)

The factor 1 /2 is due to the fact that each pair is shared by
two adjoining tetrahedra. It is common to take the energy with k the Boltzmann’s constant and with the functionB

of the pure components in the same structure as the alloy L(x) defined as: L(x) 5 x ln x. In the model the free energy
as the reference state. This reference energy is: of mixing is given by:

3 0
D F 5 U 2 U 2 TS (8)0 mix fcc fcc fcc fccU 5 N O 6e x (3)fcc ii i

i51 The reference state of the free energy of mixing is the pure
constituents in the same structure let say here the fcc pureWith this reference state the internal energy can be
elements. If the chemical potentials of species i is derivedrewritten in terms of the effective pair interactions De 5ij

e 1 eii jj from this equation, it will be referred to pure fcc i.
]]e 2 , the effective pair interactions are related toij 2 The equilibrium state of the system is derived by

the so-called interchange energies by W 5 2 2De . Theij ij minimizing the grand potential V defined as:
expression of the internal energy is:

3

3 V 5 U 2 TS 2 N O m x (9)i i0
i51U 2 U 5 2N O De z (4)fcc fcc ijkl ijkl

i, j,k,l51
where m are the chemical potentials of species i. Since wei

with: are not treating vacancies, the chemical potentials are not
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all independent and we may introduce a new set of nations of the z . For point variables one may write forijkl

*chemical potentials m which fulfill the relation: example:i

3 3

*O m 5 0 (10) x 5 O z (19)i i ijkl
i51 j,k,l51

It is easy to see that the new set of potentials, called the All the relations, which derive subcluster variables from
effective chemical potentials, is given by: the basic variables z, are called the reduction relations.

1
]*m 5 m 2 (m 1 m 1 m ) (11)i i 1 2 3 2.2. Tetrahedron approximation of the CVM in bcc solid3

solutions*The new grand potential, V , written as function of the
effective chemical potentials is:

Descriptions of the tetrahedron approximation of the
3 CVM in bcc solid solutions have been given in various

* *V 5 U 2 TS 2 N O x m (12)i i papers for both binary and ternary solid solutions [15–19].
i51

The basic cluster is an irregular tetrahedron which edges
Let us recall that the grand potential may also be expressed made of two different lengths. The edges a–b and g–d are
as function of the chemical potentials using: second neighbour bonds and the rest are first neighbour

3 bonds.N
]*V 5 O m (13) The internal energy is usually written in terms of clusteri3 i51 interactions of the basic cluster, here tetrahedron interac-

In the fcc solid solution we adopted as reference state of tions. Since in the bcc structure there are six tetrahedra per
the thermodynamic data of mixing the pure fcc elements. lattice point we may write:
The grand potential may also be referred to this reference

3

state and will be written as: U 5 6N O e z (20)bcc ijkl ijkl
i, j,k,l513

0* *V 5 U 2 U 2 TS 2 N O x m (14)fcc fcc fcc i i,fcc If we assume that only pairwise interactions between first
i51

and second neighbours are dominant, the tetrahedron
*where the m are the effective chemical potential ofi,fcc energy e can be expressed as:ijkl

species i referred to pure fcc constituents.
1 1Combining Eqs. (4), (7) and (14), we obtain the CVM (1) (1) (1) (1) (2) (2)] ]e 5 e 1 e 1 e 1 e 1 e 1 e (21)s d s dijkl ik il jk jl ij klgrand potential which must be minimized with respect to 6 4

the cluster probabilities in order to yield the equilibrium The fractions 1 /6 and 1/4 take care of the fact that first
state. Different minimization algorithms have been used and second neighbour bonds are shared with six and four
with success in binary and ternary systems: the Newton– tetrahedra, respectively. It is common use to take the
Raphson method and the natural iteration method (NIM) energy of the pure components in the same structure as the
developed by Kikuchi [14]. In this work we have chosen alloy as reference. This reference energy is:
the NIM to solve the minimisation equations which can be

3
written: 0 (1) (2)U 5 N O 4e 1 3e x (22)s dbcc ii ii i

i51l0 ]]z 5 z exp (15)S Dijkl ijkl 2Nk T With this reference state the internal energy can beB
(k)rewritten in terms of the effective pair interactions, De 5ijwith: (k) (k)

e 1 eii jj(k) ]]]e 2 , for k51 and 2. The expression of the1 5 2 De ijijkl 2] ]0 2
2 8 ]]]z 5 Y X expS Dijkl ijkl ijkl internal energy is:k TB

3* * * *m 1 m 1 m 1 m 0i,fcc j,fcc k,fcc l,fcc U 2 U 5 6N O De z (23)]]]]]]]]3 exp (16) bcc bcc ijkl ijklF G8Nk T i, j,k,l51B

with:Y 5 y y y y y y , X 5 x x x x (17)ijkl ij ik il jk jl kl ijkl i j k l

1 (1) (1) (1) (1)l is a Lagrange parameter introduced for the normalization ]De 5 De 1 De 1 De 1 Des dijkl ik il jk jl6of the tetrahedron probabilities:
1 (2) (2)3 ]1 De 1 De (24)s dij kl4O z 5 1 (18)ijkl

i, j,k,l51 As before for fcc solid solutions we have introduced
The variables for subclusters are derived as linear combi- tetrahedron four body interactions by multiplying the eijkl
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(2) (2)by the proper enhancement factor. In a binary system there T 5 t t t t , U 5 y y (30a)ijkl ijk ijl ikl jkl ijkl ij kl

are three enhancement factors and in a ternary there are
(1) (1) (1) (1)fifteen enhancement factors. A general definition of the Y 5 y y y y , X 5 x x x x (30b)ijkl ik il jk jl ijkl i j k l

four body tetrahedron interactions is given in the following
l is a Lagrange parameter introduced for the normalizationequations:
of the tetrahedron probabilities equation which is written

De 5 0 (25a) the same as Eq. (18). The subcluster probabilities areiiii

related to the tetrahedron probabilities by using the reduc-
1 1(1) (2) tion equations which could be written the same as Eq.] ]S DDe 5 De 1 De 1 1 a i ± j (25b)s diiij ij ij iiij3 4 (19).

2 (1)]De 5 De i ± j (25c)iijj ij 2.3. Phase diagram calculation3

1 1(1) (2) Let us denote by w and w two phases possessing the] ]S DDe 5 De 1 De 1 1 a i ± j (25d)s d 1 2ijij ij ij ijij3 2
same structure but having different compositions as it is

1 1 the case when a phase separation phenomenon occurs. If(1) (1) (2)] ]F GDe 5 De 1 De 1 De 1 1 as d s diijk ij ik jk iijk3 4 * *we take m and m as independent potential variables in a1 2

ternary system, the phase boundary is obtained from thei ± j ± k (25e)
condition (temperature and volume fixed):

1 (1) (1) (1)]FDe 5 De 1 De 1 Des d * * * * * *ijik ij jk ik V 5 V , m 5 m , m 5 m (31)w w 1,w 1,w 2,w 2,w6 1 2 1 2 1 2

1 (2) (2) In the procedure of the phase diagram calculation, initial] G1 De 1 De 1 1 a i ± j ± k (25f)s d s dij ik ijik4 values are given to the effective chemical potentials, the
grand potentials of the phases w and w are calculated,These equations are valid for all values 1, 2 and 3 and 1 2

then the values of the chemical potentials are modifiedpermutations in De of the subscripts i, j,k,l.ijkl

until the two grand potentials are equal.In the case of a bcc lattice, Kikuchi and Van Baal [15]
In this work we will also treat the equilibrium betweenwere the first authors to give the expression of the

two phases having different structures, let us say fcc andconfigurational entropy. This expression is:
bcc. In this case a common reference state of the chemical

3 3
potential must be chosen. This common reference stateS 5 Nk 2 6 O L z 1 12 O L ts d s dFbcc B ijkl ijk corresponds to each pure element in a same structure R.i, j,k,l51 i, j,k51

o
m are the chemical potentials of pure species i in this3 3 3 i,R

(2) (1) reference state. The equilibrium between the fcc and the2 3 O L y 2 4 O L y 1O L x (26)s d s ds d Gij ik i
i, j51 i,k51 i51 bcc phases is obtained when the grand potentials of the fcc

(2) and bcc phases each referred to R are equal for samein the case of a disordered solid solution. The z , t , y ,ijkl ijk ij
(1) values of the effective chemical potentials. These of coursey and x are, respectively, the tetrahedron, triangle,ik i

are also referred to R. The relation between the effectivesecond neighbour pair, first neighbour pair and point
chemical potentials and the effective chemical potentialsprobabilities.
are:The equilibrium state is obtained by minimizing the

3grand potential defined as: 1o o]*m 5 (m 2 m ) 2 O m 2 m (32)s di,R i i,R i i,R0 3 i51* *V 5 U 2 U 2 TS 2 N O x m (27)bcc bcc bcc bcc i i,bcc

To calculate the grand potential of either the fcc or the bccThe choice of the reference state of the pure bcc elements
phase using the relation (14) or (27), the effective chemi-implies that the grand potential and the effective chemical
cal potentials must be referred either to fcc or to bcc. Thepotentials are referred to the pure bcc elements. The
connecting relations are:minimization equations are:

31o o o ol ]* *m 5 m 2 (m 2 m ) 1 O m 2 m (33)0 s di,fcc i,R i,fcc i,R i,fcc i,R]] 3z 5 z exp (28)S D i51ijkl ijkl 6Nk TB
31o o o owith: ]* *m 5 m 2 (m 2 m ) 1 O m 2 m (34)s di,bcc i,R i,bcc i,R i,bcc i,R3 i51

1 1 1 1 2 Deijkl] ] ] ]0 2 2
2 4 6 24 ]]]z 5 T U Y X expS D *Let us call V the grand potential of the fcc phaseijkl ijkl ijkl ijkl ijkl fcck TB *referred to the pure elements in the fcc structure and Vbcc* * * *m 1 m 1 m 1 mi,bcc j,bcc k,bcc l,bcc the grand potential of the bcc phase referred to the pure]]]]]]]]]3 exp (29)F G24Nk T elements in the bcc structure. These grand potentials mustB
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be recalculated in a common reference state R, the and enhancement factors (see Section 2) relies only on
connecting relations are: phase diagram data. In the Cu–Fe system, three solid-

phases are identified: the fcc Cu-rich solid solution (gCu),31 o o the bcc Fe-rich solid solution a at low temperature and the]* *V 5 V 1 O x m 2 m (35)s dfcc / R fcc i i,fcc i,R3 i51 fcc Fe-rich solid solution g at high temperature. At 8508C
3 the Cu–Fe phase diagram presents an eutectoid equilib-1 o o]* *V 5 V 1 O x m 2 m (36) rium g↔a1(gCu). The solubility limits of both Cu in gs dbcc / R bcc i i,bcc i,R3 i51 and a and Fe in (gCu) have been extensively measured

As before the use of these relations needs the knowledge and many references can be found in the literature. A
of the differences between the reference chemical po- complete review of the Cu–Fe system has been recently

o o o otentials of the elements m 2 m and m 2 m . published by Swartzendruber [21]. Some of the mosti,fcc i,R i,bcc i,R

These terms are the so-called lattice stabilities. The values reliable values are reported in Fig. 1 [22–25]. The solu-
of these thermodynamic data are found in the literature and bility limits reported from Durand Charre and Mallet [8]
also in compilations for example the SGTE compilation are close to the other experimental values. However, it
[20]. seems that those latter values lead to an slightly higher

solubility of iron in copper. In this last work the purity of
the alloys was carefully checked because as it can be seen

3. Selection of experimental and thermodynamic data in the Fe–Co–O phase diagram [26] a very small amount
of oxygen can drastically reduce the solubility of Cu in g

Since we have limited our calculations of isothermal or a because of the formation of the FeO component.
sections of ternary diagram to the range 800–10008C, the The Co–Cu system has been reviewed by Nishizawa
solubility limits determined by various authors are com- and Ishida [27]. The Co–Cu diagram presents in the
pared and discussed only in this temperature range. solid-state, a large miscibility gap between the fcc Cu-rich

As quoted above, in the course of the present study solid solution (Cu) and the fcc Co-rich solid solution
experimental data concerning the ternary Fe–Co–Cu as (gCo). The solubility limits were established by many
well as the two limiting binaries Fe–Cu and Co–Cu were authors [23,28–30]; they are displayed in Fig. 2. The
performed by Durand-Charre and Mallet [8]. In this study recent measurements carried out by Durand-Charre and
the alloys were prepared from electrolytically pure iron Mallet [8] using the same experimental procedure as for
and copper either by solid-state sintering (S) or by vacuum the Fe–Cu system provide values which are in very good
induction melting and casting (C). The samples were agreement with the assessed ones. Let us quote that values
annealed for 40 days at 8008C, 10 days at 9008C and 5 of the cobalt activity have been provided by Dench and
days at 10008C. The compositions were determined by Kubaschewski [31] for compositions corresponding to the
microprobe analysis. fcc miscibility gap.

In the Cu–Fe, no mixing thermodynamic data were The Fe–Co diagram has been recently reviewed by
found in the solid state so the fit of interchange energies Nishizawa and Ishida [32], three phases are identified in

Fig. 1. Fe–Cu phase diagram.
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Fig. 2. Co–Cu phase diagram.

the solid state: the A2 bcc solid solution a, the A1 fcc assessed one [33]. Durand-Charre and Mallet [8] per-
solid solution g and the ordered B2 bcc solid solution a9. formed experiments in ternary Co–Cu–Fe alloys con-
The order /disorder transition is found at about 7208C and taining a very small amount of copper and obtained the
48% of Co. Since the temperature range investigated in a /g phase boundary in the cobalt rich domain. Their
this paper is 800–10008C, we will not consider the order / results confirm the phase boundary proposed by Ellis and
disorder transformation in the present work. Above 9008C Greiner [33]
and 50% iron, the a /g boundary is well established since Experimental information concerning the ternary Fe–
the measurements of several authors are in relatively good Co–Cu is very scarce in the literature. In the works of
agreement [33–35] (Fig. 3). Below 9008C and for less than Jellinghaus [1] and Maddocks and Claussen [2], vertical
30% iron, the assessed a /g phase boundary [32] is based sections were established for various compositions.
on the work of Ellis and Greiner [33] who took into Raghavan [3] constructed isothermal sections (which he
account many previous papers (Fig. 3). However the a /g qualified approximate) at 1000, 900, and 8008 using the
phase boundary determined by Masumoto and Watanabe experimental vertical sections and the limiting binary
[35] is in disagreement with the later results [33]. Indeed, phase diagrams. The experimental data obtained by
the two-phase a1g region obtained by Masumoto and Durand-Charre and Mallet [8] are plotted in Fig. 4a,e,g. In
Watanabe [35] seems to be very narrow compared to the the 10008C isothermal section, a miscibility gap is ob-

Fig. 3. Fe–Co phase diagram.
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Fig. 4. Isothermal sections in the ternary Fe–Co–Cu. (a) T510008C, (b) T59778C, (c) T59378C, (d) T59708C, (e) T59008C, (f) T58558C, (g)
T58008C. (—) Calculated phase boundaries, d and s are experimental determinations from Durand-Charre and Mallet [8]. The full circles correspond to
the compositions of the phases in equilibrium in the two-phase region. The open circles define the compositions of the phases in equilibrium in the
three-phase region.

served between (gCu) and g. In the 9008C isothermal bcc form does not exist in nature, so the Gibbs energy
section, three two phase regions (full circles) and two difference between the bcc and fcc structures must be
three-phases regions were detected by X-ray diffraction estimated. For Cu, the expression given by Jansson [36]
analysis. The three-phase regions are delimited by the open and assessed in the review of Hari-Kumar and Raghavan
circles in Fig. 4. In the 8008C isothermal section one of the [4] has been accepted in the present study. Concerning the
two-phase region has disappeared, and only one three- lattice stability of bcc cobalt, large discrepancies are found
phase region between (gCu), g, and a is detected. in the literature (see the review of Fernandez-Guillermet

As quoted before the phase diagram calculation between [37]). The expressions of the free energy of the pure
phases possessing different structures needs the knowledge component assessed by Fernandez-Guillermet [37,38],
of the lattice stability. For the Cu and Co components, the have been adopted in SGTE data [20] and are used in the
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Fig. 4. (continued)

present work. The Fe Gibbs energy differences between 4. Results and discussions
the bcc and the fcc structures (both chemical and magnetic
contributions) have been provided by Fernandez-Guiller- The selected experimental data available on the three
met [39]. The overall expression is in excellent agreement limiting binary systems were used to fit the interchange
with the curve displayed by Nishizawa [40]. For cobalt and energies and the enhancement factors in the binaries. All
for iron, the expressions of lattice stabilities used in this the ternary enhancement factors were taken equal to zero
study include both chemical and magnetic terms. The except the ternary enhancement factor a whichCuCuFeCo

magnetic interactions are not considered explicitly in the value was adjusted from the ternary phase diagram ex-
CVM calculation of the thermodynamic data for each perimental data and more precisely on the shape of the
phase because we just consider a three-component system, phase boundary in the Cu corner. The fitted parameters are
however they are taken into account in the lattice stability displayed in Table 1.
expressions and thus in the calculation of the phase In the Cu–Fe system, the calculated phase boundaries
equilibria. are in good agreement with the experimental ones. The
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Table 1
21Interchange energies (J mol ) and enhancement factors

fcc phase

Binary coefficients
21W 525850 J mol a 50.08 a 50.00Cu,Fe Cu,Cu,Cu,Fe Fe,Fe,Fe,Cu
21W 525400 J mol a 50.10 a 520.02Cu,Co Cu,Cu,Cu,Co Co,Co,Co,Cu

21W 52485 J mol a 520.02 a 520.41Fe,Co Fe,Fe,Fe,Co Co,Co,Co,Fe

Ternary coefficients
a 520.40 a 50.00 a 50.00Cu,Cu,Fe,Co Cu,Fe,Fe,Co Cu,Fe,Co,Co

bcc phase

Binary coefficients
(1) 21 (2) 21W 528812 J mol W 50 J molCu,Fe Cu Fe
(1) 21 (2) 21W 526050 J mol W 50 J molCu,Co Cu Co
(1) 21 (2) 21W 54157 J mol W 50 J molFe,Co Fe Co

All a are equal to zero

Ternary coefficients: all a are equal to zero

eutectoid transformation g↔a1(Cu) is correctly fitted experimental g/a1g and a /a1g phase boundaries, tenta-
considering the selected lattice stability of Fe [39]. The tive calculations were performed with different expression
calculated eutectoid temperature 8508C is the same as the of lattice stabilities. Most of the lattice stability values of
experimental one [21] while the compositions of the Co proposed in the literature [42–44,4] (here, the lattice
phases in at%Cu: 3.1% (g), 2.2% (a) and 97.7% (gCu) are stability is the Gibbs energy difference between the bcc
slightly higher than the assessed ones: 2.7% (g), 1.9% (a) and the fcc structure) are higher than the assessed one and
and 98.7% (gCu) but they agree with the selected set of decrease with increasing temperature in the temperature
experimental data [8]. range where the a /g transformation occurs. This might

In the Cu–Co system, the solubilities in (gCu)- and lead to a wrong diagram since no maximum temperature of
g-phase are a little higher than in the Cu–Fe system, thus the a /g equilibrium was obtained with the expression of
the interchange energy is a little lower (25400 instead of [4]. In addition, the lattice stability values of Fe are very

21
25850 J). This value, as well as the values of enhance- small (less than 200 J mol ) between the two transition
ment factors, is derived from the experimental results of temperatures of Fe and a little change in these values
Durand-Charre and Mallet [8]. The calculated phase induces drastic changes in the positions of phase
boundaries fall within the selected experimental ones. boundaries. Slightly higher values would fairly improve
Moreover the calculated values of the cobalt activity are in the accordance with experimental results. This strong
good agreement with the experimental values obtained by dependence of the a /g boundaries positions with respect
Dench [31] to the lattice stabilities of Fe and Co is related to the very

The interchange energy value of the bcc Fe–Co solid similar plots of the free energies of bcc and fcc Fe–Co
(1) (2)solution W 54157 J, W 50 assessed by Inden alloy versus composition [40].Fe Co Fe Co

[41] has been taken in the present paper. Moreover, with Being aware of the difference between the calculated
the same value and by taking into account the magnetic and the experimental Fe–Co a /g boundaries (Fig. 3),
interactions, Colinet et al. [19] determined the correct isothermal sections of the ternary Fe–Co–Cu system have
B2→A2 order–disorder transformation temperatures of the been calculated at 1000, 977, 937, 907, 900, 855, 8008C
Fe–Co system. With the selected lattice stabilities of Fe and are reported in Figs. 4a–g. Experimental information
and Co, the optimization of the interchange energy and the about the Fe–Co–Cu system is available at 1000, 900, and
dissymmetry coefficients of the fcc Fe–Co solid solution 8008C [8]. These experimental values are marked by open
leads to the calculated phase boundaries displayed in Fig. and full circles on isothermal sections presented in Fig. 4.
3. The agreement is quite good for less than 60% Co and Thus, the comparison can be drawn at these temperatures
above 9008C. The temperature of the maximum of the between experimental and calculated results. In addition,
a1g phase boundary is found at 9888C and 52% at Fe several other isothermal sections were calculated in order
whereas the experimental temperature is 9858C at 54%. to study the effect of temperature on the position of phase
However in the Co-rich region of the phase diagram, the boundaries and critical tie-lines.
calculated a1g field is narrower than the experimental At 10008C, the calculated phase diagram (Fig. 4a) shows
assessed one [32], and the Co concentration at the phase a miscibility gap between the fcc Cu-rich solid solution
boundary is too low compared to the measurements. In (gCu) and the fcc Fe–Co rich solid-solution (g). The
order to improve the agreement between calculated and calculated phase boundaries are in agreement with limiting
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binary values and with the experimental value on ternary measured solubilities are too high. Indeed, the Cu-inter-
alloy. The phase boundary located in the Cu-rich corner of dendritic regions are often too narrow to avoid completely
the isothermal section exhibits a pronounced curvature the presence of the Fe and Co rich a- or g-phase in
even if the ternary enhancement factors are equal to zero. microprobe analysis volume. Moreover, since the analysed
This should be related to the ordering tendency of the (Cu)-phase is nearly pure at this temperature, a very small
equiatomic Fe–Co which would enhance the phase sepa- amount of the Fe and Co rich phase could induce drastic
ration between the Cu-rich solid solution on one hand and discrepancies in the measured composition.
the Fe–Co rich solid solution on the other one. Calculations of additive isothermal sections at lower

When the temperature decreases from 10008C, an a- temperature show that the ternary diagram keeps the same
field emerges from the Fe–Co edge at the calculated shape with diminishing solubilities.
temperature (9888C) of the maximum of a-phase stability The eutectoid invariant equilibrium g↔a1(gCu) in the
in the Fe–Co binary diagram and at the corresponding Fe–Cu system becomes a curve in the ternary system. This
composition (about 52% Fe). It develops into the ternary curve originates from the Fe–Cu edge at the eutectoid
diagram at lower temperatures in half-cone shape, sur- temperature 8558C and raises to a limit point at 9378C in
rounded by a thin a1g field (see Fig. 4b at 9778C). At the the ternary diagram. Because of the g/a transformation in
same time, the miscibility gap between (Cu) and g-phase the Fe–Co system, a second g/g1a boundary originates
increases its extent with decreasing temperature. Therefore, from the Fe–Co edge. The curve defined, like the eutectoid
at 9378C (Fig. 4c), the g/a1g phase boundary intersects curve, by the intersection between this phase boundary and
the g/(gCu)1g phase boundary at 4.75% at Cu and 48.1% the g/g1(Cu) boundary meets the eutectoid curve at the
at Fe. At this intersection point, the three phases a1g1 limit point.
(gCu) are in equilibrium. When the temperature decreases,
this critical tie-line gives rise to two three-phase fields
equilibria and two distinct thin a1g fields. At the same

5. Conclusiontime, the a /(gCu)1a boundary extends. The intersection
of both these a1g two-phase regions with the Fe–Co edge

The thermodynamic calculation of the ternary diagrammove from each other and at 9078C (the calculated a /g
Fe–Co–Cu was achieved in the temperature range 800–transition temperature of Fe), one of them reaches the
10008C. A phase separation is always observed in theFe-corner as seen in Fig. 4d. Then, between 907 and
ternary system between the Cu-rich phase and the Fe and8508C, the corresponding a1g field intersects the Fe–Cu
Co-rich ones. The Fe and Co-rich phase is fcc at highedge since an a1g region is found in the binary Fe–Cu in
temperature (g). Below 9888C, a bcc Fe and Co-richthis temperature range.
solution (a) becomes also stable near the equiatomicAt 9008C (Fig. 4e), the positions of the two three-phase
composition. The corresponding bcc field expands in theequilibria are consistent with the experimental results [8].
ternary diagram giving rise to two narrow three-phaseThe calculated solubility limits of Cu are lower in the
fields. At 8558C, one of them is identical to the Fe–Cua-phase than in the g-phase and are in good agreement
edge: this corresponds to the eutectoid equilibrium. Belowwith the measurements [8].
8558C, only one three-phase field remains: the Fe-richAt 8558C, one of the two three-phase triangles is
phase is bcc (a) whereas the Co-rich phase is fcc (g).identical to the Fe–Cu edge (Fig. 4). Then, this flat

The calculated binary diagrams and the calculatedtriangle represents the eutectoid equilibrium g↔a1(gCu)
isothermal sections are, for the major part, in goodin the Fe–Cu system. The eutectoid composition of the
agreement with the experimental phase diagrams data. Theg-phase is marked by an open circle on the 8558C
Fe–Co–Cu phase diagram has been deeply revisited andisothermal section. Below 8558C, this three-phase equilib-
modified compared to the one published by Raghavan [3].rium disappears whereas the other three-phase region
However, the calculation of the g/a phase boundaries inremains. Therefore, the isothermal section is divided into
the binary Fe–Co diagram as well as in the ternarytwo main parts: an a1(gCu) two phase-field for higher Fe
diagram has to be improved in order to fit better thecontent and a g1(gCu) two phase-field for higher Co
experimental data. For this purpose, in further studies, thecontent.

1 2 1 2magnetic components Fe Fe Co Co will be treatedIn the 8008C isothermal section (Fig. 4f), the position of
separately in the CVM.the three-phase equilibria: a, g, and (gCu) is not correctly

represented, this is certainly due to the inability of our
model to fit accurately the experimental a /g phase bound-
ary in the Co rich part of the Fe–Co diagram. The References
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