Application of Stress Wave Analysis in Multi-Layer Coating Design W. Chen (Alex)¹, P. Jedrzejowski², and M. Medraj¹ - ¹ Concordia University (Canada) - ² Rolls-Royce Canada Ltd. **June 2012** #### **OUTLINE** 1 Theoretical Background & Simplifications 2 Calculated Results 3 Conclusions ## **Theoretical Background & Simplifications** ## 1 #### **Theoretical Background & Simplifications** ## **Background: Simplifications** #### **Interfaces:** $\sigma_r = \frac{\rho_2 c_2 - \rho_1 c_1}{\rho_2 c_2 + \rho_1 c_1} \cdot \sigma_i$ **Time** $$\sigma_t = \frac{2\rho_2 c_2}{\rho_2 c_2 + \rho_1 c_1} \cdot \sigma_i$$ σ_i – -incident stress $\dot{\sigma_t}$ – -transmitted stress σ_r – reflected stress ρ – medium density $c--wave_speed$ in medium $$c = \sqrt{\frac{E}{\rho}}$$ E-Young's modulus ## 1 #### **Theoretical Background & Simplifications** #### **Background: Simplifications** ## **Simplifications:** - **1. Single droplet** (Φ16.65 μm, 500m/s) - 2. Linear and rectangle wave - 3. Incident stress = 1 unit - **4. Incident time range = 100t_0** (t_0 =3.3E-10 s) - 5. 100 pulses - 6. No energy loss - 7. Thickness design (t_0 by integer) $1t_0$ -----3.5 μ m TiN / 1.6 μ m Ti layer #### **Theoretical Background & Simplifications** #### **Coating A** #### Time the wave travel through each layer Interface:1 2 3 4 5 6 ## Simplifications: 8. Base metal thickness: infinite #### Coating A: Incident Compress. → tensile @ 2, 4 interface ## Coating A Vs. Coating B Time the wave travel through each layer ## Coating A Vs. Coating B ## Coating A Vs. Coating C Time the wave travel through each layer #### Coating A Vs. Coating C Coating C → No tensile stress @ any interfaces ## From Rectangle to Triangle Wave ## 3 Conclusions #### **Conclusions** - 1. For the coating A, the stress at all the interfaces behaves either as maximum compressive stress or maximum tensile stress. Through changing the thickness combination and/or changing the stacking sequence of layers, the stress at all the interfaces behaves can be changed to moderate compressive stress, which indicates an optimized stress distribution. - 2. Potentially, the present work will be of help to better understand the droplet impingement on multilayer coatings, and give guidance in the design of multilayer coatings. #### **Conclusions** #### 3. Limitation #### **Assumption:** - * The impact occurs in one point. - * Single droplet. - * Same impact point. #### **Reality:** - * Round area. - * Different droplets. - * Different time. - * Different places. #### 4. Future Work Improvement of the current model, by taking into consideration: - * Diameter of the droplet. - * The time domain. # Thank You!