The Modified Quasi-chemical Model: Part IV. Two-Sublattice

Quadruplet Approximation

ARTHUR D. PELTON, PATRICE CHARTRAND, and GUNNAR ERIKSSON

The modified quasi-chemical model is further extended, in the quadruplet approximation, to treat,
simultaneously, first-nearest-neighbor (FNN) and second-nearest-neighbor (SNN) short-range ordering
(SRO) in solutions with two sublattices. When one sublattice is occupied by only one species, or is
empty, the model reduces to the modified quasi-chemical model for one sublattice in the pair approxima-
tion. The coordination numbers and the ratio of the number of sites on the two sublattices are permitted
to vary with composition, thereby making the model ideally suited to the treatment of liquid solutions
such as molten salts. The model also applies to solid solutions if the number of sites and coordination
numbers are held constant and may be combined with the compound-energy formalism to treat SRO
in a wide variety of types of solutions. A significant computational simplification is achieved by
formally treating the quadruplets as the “components” of the solution.

I. INTRODUCTION

IN the first two articles in the present series, 2! the modi-
fied quasi-chemical model for short-range ordering (SRO)
in the pair approximation was developed for solutions in
which the species mix on only one lattice or sublattice. The
application of the model was illustrated in two accompa-
nying articles by the evaluation and optimization of all avail-
able thermodynamic and phase-equilibrium data for the
common-anion systems Li,Na,K,Rb,Cs,Mg,Ca/CI®! and
Li,Na,K,Mg,Ca//F.¥! The next article in the series’®! devel-
oped the model, in the pair approximation, for SRO involv-
ing first-nearest-neighbor (FNN) pairs in solutions with two
sublattices. The present article extends the treatment, in the
quadruplet approximation, to take account, simultaneously,
of FNN SRO between sublattices and of second-nearest-
neighbor (SNN) SRO within a sublattice.

In solid solutions, the existence of two sublattices is a
manifestation of long-range ordering. For example, in a solid
ionic solution, one can distinguish anionic and cationic sub-
lattices. In a liquid solution, on the other hand, there is no
long-range ordering and, strictly speaking, it is incorrect to
speak of sublattices. In molten NaCl, for example, the Na*
and CI™ ions should be treated as residing on one sublattice,
but with a very high degree of SRO, such that the nearest-
neighbors of Na* ions are almost exclusively C1™ ions, and
vice versa. Solutions of molten salts could, thus, in principle,
be treated with a single-sublattice model. However in such
solutions, in which the degree of SRO is very high, it is
conceptually and mathematically simpler to treat the liquid
solution as if it consisted of two distinct sublattices. This
does not preclude the possibility of a small number of cation-
cation or anion-anion nearest neighbors, since these can
be treated within the two-sublattice model as substitutional
defects (cations on anion sites and anions on cation sites).

In a solid solution, the ratio of the number of sites on the
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two sublattices is necessarily constant. However, in a liquid,
this ratio can vary with composition. For example, in molten
NaCl-CaCl, solutions, the ratio of cation to anion sites varies
from 1/1 to 1/2 as the composition varies from pure NaCl
to pure CaCl,.

It is an important feature of the present model that the
ratio of the number of sites on the two sublatticesis permitted
to vary with composition. Further flexibility is also provided
by permitting coordination numbers to vary with composi-
tion. The model is, thus, ideally suited to describing molten
ionic solutions.

In an accompanying article,'®’ the use of the model is
illustrated by application to the thermodynamic evaluation/
optimization of the Li,Na,K,Mg,Ca/F,C] system.

II. THE MODEL
A. Definitions and Coordination Numbers

The solution consists of two sublattices, I and II. Let
AB,C,...and X,Y,Z, . . . be the species that reside on sublat-
tices I and II, respectively. In a salt solution, for example,
A,B,C, . .. are the cations and X,Y,Z, . . . are the anions, and,
in the present article, we shall refer to them as “cations”
and “anions.” However, the model is also applicable to other
solutions. For example, in a solid spinel solution, sublattices
I and II would be associated with the tetrahedral and octahe-
dral cationic sublattices. Although there is a third anionic
sublattice, as long as this is occupied by only one species
(O*"), the present model can be applied. In other examples,
lattice vacancies could also be considered as “species,” or
the same chemical species could occupy both sublattices.
For instance, in an ordered Cu-Au alloy, Cu and Au reside
mainly on the I and II sublattices, respectively. However,
due to substitutional disordering, some Cu is found on the
II sublattice and some Au on the I sublattice. That is, in this
example, A and X would both be Cu, and B and Y would
both be Au.

When sublattice Il is occupied only by the X species, then
the model, as developed in the previous publications !~
considered the formation of SNN (A-[X]-B) pairs from SNN
(A-[X]-A) and (B-[X]-B) pairs, according to
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Fig. 1—Some quadruplets.

(A-[X]-A) + (B-[X]-B) = 2(A-[X]-B) Agupx (1]

The entropy expression was obtained!?! by distributing
the pairs over “pair positions.” The term Ag, gy is an empiri-
cal parameter of the model, which may be composition
dependent. If Ag,zx = 0, then ideal random mixing results.
If Agapx < 0, then reaction [1] is displaced to the right and
SRO results, with (A-[X]-B) pairs becoming predominant.
Similarly, when sublatticel is occupied only by the A species,
the model considered the formation of (X-[A]-Y) SNN pairs,
according to

(XHARX) + (HA]Y) = 2(X-[A]-Y) Agapy (2]

In the next article in the present series,”! the following
exchange reaction among FNN pairs was considered:

(A-X) + (B-Y) = (A-Y) + (B-X) Agihys (3]

and the FNN pairs were distributed over pair positions. If
AgSishanee < (), then there is SRO of FNN pairs, with (A-X)
and (B-Y) pairs predominating. As a result, the probability
of an (A-[X]-B) pair is less than that in a random mixture,
and so the contribution of the (A-[X]-B) SNN energy
(Agupx) to the total Gibbs energy of the solution is reduced.
It was shown!! that this effect becomes very important when
‘Ag”“ha“ge‘ is greater than about 50 kJ/mol.

Since the previous article™ considered the quasi-chemical
model only in the pair approximation, it was not possible
to treat both FNN and SNN SRO simultaneously. For sys-
tems such as K,Mg//CLF, a large degree of SNN SRO is
observed in the binary KCI-MgCl, and KF-MgF, subsys-
tems, and this cannot be neglected in a quantitative model.
In the present article, we consider the distribution, not of
pairs, but of “quadruplets:” A,X,, ABX,, A,XY, ABXY, etc.
As illustrated in Figure 1, each quadruplet consists of two
SNN cations and two SNN anions, the cations and anions
being mutual FNNs. Both FNN and SNN SRO can, thereby,
be treated simultaneously.

In a solid, all the various possible configurations of the
quadruplets on the sublattices could be considered, as is
done in the cluster variation method (CVM),""! and this is
necessary for the full quantitativemodeling of order-disorder
phenomena. However, this additional complexity is neither
necessary nor possible in the case of liquid solutions and
can also be neglected in the modeling of solid solutions with
a limited amount of SRO.

Letn; i = A,B, ... X,Y ...) be the number of moles of
species i; nyx the number of moles of FNN (A-X) pairs;
and 74x,, Map/x,> Mag/xy, €IC., the numbers of moles of A,X,
ABX,, ABXY, etc., quadruplets. (Note that n,p/, and ng,,y,
represent the same quantity and can be used interchange-
ably.) Let Z, be the SNN coordination number of A (i.e.,
the number of SNN pairs emanating from an A species).
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Since each quadruplet contains just one SNN pair, Z, is also
the number of quadruplets emanating from an A species.
The term Zy is defined similarly. Then,

Zyny, = 2”A2/x2 + 2”A2/y2 + 2nA2/XY + NABIx,

[4]

t Mapy, T Magxy t 0

Zyny = 2”A2/x2 + 2”32/)(2 + 2”A5/x2 t Nayxy (5]

t npyxy T Magxy T

Overall mole (or site) fractions (X;), FNN pair fractions
(X)), and quadruplet fractions (X;;) are defined as

Xy =nyl(ng +ng+-2) Xy=nyl(ng+ny+ ) [6]
Xax = maxl(nax + ngx + ngy =) [7]

Xapixy = nAB/XY/E jjik [8]

where (2 n;y) is the total number of moles of quadruplets.
From Egs. [4] and [5],

2(2 nij/kl) = (Zyny + Zgng + )
= (Zyny + Zyny + =)

[9]

The “coordination-equivalkent site fraction” (¥)) is defined as

Y, =Zn/(Zyny + Zgng + ) [10]
Yy = Zyny/(Zyny + Zyny + -++)

These are called coordination-equivalkent fractions to dis-
tinguish them from the more usual “charge-equivalent” frac-
tions, in which the n; values are multiplied by the ionic
charges rather than by the coordination numbers. It may be
noted that the Y; values, as defined in Eq. [10], are identical
to those defined in the previous publications !!* Substitution
into Eqs. [4] and [5] gives

Y, = XA2/X2 + XA2/Y2 + XAz/XY + %XAB/Xz + %XAB/XY t+ -
[11]

Yy = XAg/Xg + XBg/Xz + XAB/Xg + %XAg/XY + %XAB/XY + o
[12]

In a solid solution, it is clearly required that Z, = Z =
Zc = ...and thatZy = Z, = Z, = ... However, in a liquid,
this is not necessary and, furthermore, the coordination num-
bers can vary with composition. As shown previously!! !
the use of variable coordination numbers is an important
feature of the present model, which provides the necessary
flexibility to fix the compositions of maximum SRO in
each subsystem.

Let Z4xy be the SNN coordination number of an A spe-
cies when (hypothetically) all A species exist in ABXY qua-
druplets. We then let
2”A2/y2 2nA2/XY NABIx,

2ny 2Xo NaBixy

A A A A A
1 ZA2/X2 ZA2/Y2 ZAz/XY ZAB/X2 ZAB/XY

Zy 2”A2/x2 + 2”A2/y2 + 2nA2/XY + nupix, t apxy T

[13]
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2”A2/x2 2”32/x2 2”A3/x2 Nayixy  RAypixy

X X X X X
1 ZA2/X2 ZBz/Xz ZAB/X2 ZAz/XY ZAB/XY

Zx 2”A2/x2 + 2”32/x2 + 2”A3/x2 t Mayxy T Ragixy T 00
[14]

This composition dependenceis chosen because substitution
of Egs. [13] and [14] into Egs. [4] and [5] yields the following
simple relations:

P Mpyxy  2Mpyy,  2Maxy Mgy, Nop/xy .
A Zﬁg/Xg Zﬁz/Yg Zﬁg/XY ZﬁB/Xz ZﬁB/XY
[15]
ne — pyxy  2Mpyxy  2Mapix,  Mayixy Mgy .
X Zi{g/Xz Z)ng/Xg Zil(B/Xg Zi{g/XY Zil(B/XY
[16]

Note that in the A, B, C, . . .//X subsystem, where sublattice
IT is occupied only by the X species, the Zj;x, values are
identical to the SNN coordination numbers Z;,y, defined in
the previous articles.!! !

As in the previous article,”! we may also define the FNN
coordination number z, as the number of FNN pairs emanat-
ing from an A species and similarly for zy. Let {/2 be the
ratio of SNN to FNN pairs:

Ziz = 42 [17]

In the general case, the ratios Z,/z,, Zp/zg, Zc/zc, etc.,
could all be different and could even depend upon composi-
tion. However, this would make the model unnecessarily
complex, particularly for the case of liquids. Hence, it is
assumed that the ratio Z;/z; is the same for all species i.

It follows that the coordination-equivalent fractions
defined in Eq. [10] are also given by

Yy = zany/(zang + zgng + ) [18]

and similarly for Yy; the total numbers of pairs and quadru-
plets are related by

E ny; = 4/0) E Nk [19]

Each quadruplet contains one SNN pair and two FNN
pairs emanating from a given ion. Hence, { is equal to the
number of quadruplets emanating from, or containing, a
FNN pair. Therefore,

{ngy = 4”A2/x2 + 2nAB/X2 + 2nA2/XY + Magxy Tt [20]

and so, from Eq. [19],

_ 1 1 1
Xux = XA2/X2 + 7XAB/x2 + 7XA2/xy + ZXAB/XY +

[21]

B. Formal Treatment of Quadruplets as “Complexes”
or “Molecules”

The quadruplet ABXY may be treated formally as the
complex or molecule A4, BiizBuxy XuzXsmy Y1/255xy-
Similarly, an A,X, quadruplet is formally treated as
A2/Zﬁz/XzX2/Z§z/Xz’ etc. For example, in molten KCI-MgCl,

solutions, if we were to choose Zgyvyc, = 3, Zigci, = 6,
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and Zg\gci, = 3, then the quadruplet KMgCl, is formally
treated as a K;;3Mg;,sCl,;; complex.

It must be stressed that this is only a formalism. The
entropy expression in the quasi-chemical model (Section
II-D) is not obtained by distributing the quadruplets as if
they were molecules (as is, in fact, done in various “associate
models”). It is not essential that this formalism be used.
However, it aids in the conceptualizationand in many deriva-
tions. For example, if n4,x,, Mayxy, efc., in Eq. [15] are

n n etc.
replaced by 1y,n  xo7X s Manzd X1z iy Y1z, > €1C-> then

the number of moles of A is the same on both sides of
the equation, which, thereby, becomes a “normal” mass-
balance equation.

Furthermore, it can be seen that all quadruplets such as
K,;3Mg;Cly3 in a molten salt solution must be electrically
neutral. This stoichiometry represents the composition of a
hypothetical solution formed exclusively of these quadru-
plets and containing one mole of quadruplets. That is, one
mole of KMgCl, quadruplets contains 1/3 mol K*, 1/6 mol
Mg?*, and 2/3 mol CI™.

In general, for a molten salt solution, if g4, gz, ... and
qx, gy, - .. are the absolute cationic and anionic charges,
then the charge-neutrality condition for ABXY (i.e.
A1z 5r B1ZB oy X175 ey Y 1121 pxy) Quadruplets is as follows:

g ;] qx qy

A
ZAB/XY

[22]

B = X Y
ZAB/XY ZAB/XY ZAB/XY

This equation also holds when A = B and/or when X =
Y. The previous example of Ki;Mg}Cl;; clearly satisfies
Eq. [22]. In the most general form of the model, it is not
essential for Eq. [22] to apply. However, in practice, for
liquid solutions, which can be described as consisting of two
“sublattices,” this equation will almost always be satisfied.

Figure 2 shows a traditional composition square of a
reciprocal ternary, A,B//X,Y system. One charge equivalent
of each pure component is shown at each corner. For exam-
ple, in the Na,Ca//F,SO, system, where the absolute ionic
charges are g4 = 1, g3 = 2, gy = 1, and gy = 2, the
components would be NaF, Ca;,F, Na(SO,);, and
Ca,;5(SO,4) .- The axes are the usual charge-equivalent frac-
tions Y4 and Yy (not to be confused with Y, and Yy in Eq.
[10]). The formal compositions of quadruplets such as
Az/zﬁ7,x7 Xyz%,x, are at the corners. (Note that, from Eq. [22],

the ratio Z4, x,/ZX, x,, is the same as the ratio (¢4/qx).) The
formal  compositions of quadruplets such as
Avzbx, Buzbpx, X217%p, are found on the sides of the square,

as shown in Figure 2.

Choice of Z,

For asolid solution, itis required that all cationic coordina-
tion numbers (Z ,’-'j/k,) be equal and thatall anionic coordination
numbers (Zf-}/k,) be equal. For liquid solutions, on the other
hand, Z4yy, and Z%gy, are chosen to correspond to the
composition of maximum SNN SRO in the A,B//X binary
subsystem, as discussed previously.!~# For example, for
KCI-MgCl, solutions, SRO is at a maximum near the compo-
sition K,MgCl,. Hence, we set Zi§c1,/Zimgct, = 2.0.

Since the quasi-chemical expression for the entropy (Sec-
tion I[I-D) is, of necessity, only approximate, it is not neces-
sary that the values of Z},, used in the model correspond
exactly to the actual coordination numbers. In fact, it is
found that better representations are frequently obtained with
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Fig. 2—Composition square of the AB//XY reciprocal ternary system showing formal “compositions” of the various quadruplets.

intentionally nonphysical values of Zj,,, since one can
thereby partially compensate for the error caused by the
entropy approximation. However, it is important that the
ratios of Zj,, correspond to the compositions of maximum
SRO, as discussed previously.

The coordination numbers Z'igxy, for the “reciprocal”
ABXY quadruplets (A # B, X # Y) can be chosen to reflect
a tendency to SRO at some particular composition in the
reciprocal A,B//X,Y solutions. However, in many cases, there
will be no such tendency, and one can set the value of
Zi pxy as an “average” of the values in the A, XY, B,XY, ABX,,
and ABY, quadruplets. It is suggested that this be done by
defining the “composition” of the ABXY quadruplets as lying
at the average of the values of Yy of the quadruplets A,XY
and B,XY and at the average of the values of Y, of the
quadruplets ABX, and ABY), as illustrated in Figure 2. This
construction corresponds to the following “default” values:

| ( ZXsix, Z v, )

Zpixy %Zﬁs/xz q yZﬁB/YZ (23]
1 Zhyxy ZExy
ZXpixy ('IAZil(z/XY qsZ gz/xy

and similarly for Z5y, and Z)zxy, where

F=l< qx n qy n qda n ('IB) [24]

X Y A B
8 ZAB/Xg ZAB/Yg ZAg/XY Zsz/xy

C. Gibbs Energy Equation

We now define

° 2 qa ° 2('])( o
gAz/Xz = ( )gAI/qAXI/qX = (ZA x gAl/qAxlqu [25]
2/X.

ZA2/X

where g3, jaaXigx 18 the standard Gibbs energy of the pure
component per charge equivalent. For Al,Os, for example,
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o — 6 (o] — 4 o
8Al/0, Z 8A11301 Z 8A11301p
Aly/O0p Al /0o

[26]

That is, gai,0, is the standard Gibbs energy of Al,O; per
mole of Al,O, quadruplets.

Previously,®! g%,y was defined as the standard Gibbs
energy per mole of FNN pairs. Therefore,

g.f\z/Xz = (4/5)321/)( [27]
The Gibbs energy of the solution is given by the model as

— o o o
G = (nAz/ngAz/Xz + nBz/ngBz/Xz + nAz/ngAz/Yz + )

) (28]

+ (nAB/ngAB/Xz t Napiv,8asrvy T Nayxy8ayxy T

) _ TAsconfig

+ (Mapixv8apixy T

where g4p/x,, 8anixy» €tc., are the Gibbs energies of one mole
of the quadruplets.

Let us consider the following reaction for the formation
of quadruplets:

(A2X2)quad + (B2X2)quad

for which the Gibbs energy change is AgAB/Xz. If we do not
use the shorthand notation, the Eq. [29] is written:

A
(ZAg/Xz

ZAB/Xg

= 2(AB}(2)quad AgAB/Xz [29]

B
ZBg/Xg

A X B X
) IAZ/ZAZ/X2 Xz/ZAzD(z + ( ) BZ/ZBZ/X2 Xz/ZleXz

ZAB/X2
= 2Al/ZﬁB/X2 B I/ZEB/XZ X2/Z§B/X2 [30]

When Agapx, =
this case,

_ Zﬁz/Xz ° Zgz/Xz °
28A5/x2 = 8As1Xo + 8By1X> [31]

ZAB/Xg ZAB/Xg

0, the binary A,B//X system is ideal. In
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Now Agapyx, is an empirical parameter of the model. It
may be expressed as

Ag;s/xz) [32]

where Agjy,x, is a constant, independent of composition, and
(Agapx, — Agigix,) is expanded as an empirical polynomial
in the quadruplet fractions X .

As discussed in Section II-E, Ag,py, in the A,B,C, .. .//
X subsystem is identical to Ag,gy of reaction [1] in this
subsystem, and Ag;g/xz and the coefficients of the polyno-
mial expansion of (Agupx, — Agisx,) are all numerically
equal to the coefficients obtained from optimization of data
in this subsystem, as described previously.!*#

We now define the “standard molar Gibbs energy of the
ABX, quadruplets” as

° Zﬁl‘g/Xz ° Zgg/Xz ° °
28A3/x2 = 8arx, T 8Byx, T A8AB/x2

AgAB/Xg = Ag;s/)q + (AgAB/Xz -

ZAB/X ZAB/X
[33]
Similarly, for the quadruplet formation reaction,
(A2X2)quad + (A2Y2)quad = 2(A2XY)quad A8/42/xy [34]
we define
2832/xy = (;ﬁﬂxz) ggz/xz + (%) 8/32/1/2 + Aggz/xy
AyIX AyIXY
[35]

To now define gjg/xy for the reciprocal ABXY quadruplet,
consider that in an ideal solution, g,zxy (When normalized
per charge equivalent) would vary linearly with composition
in Figure 2 between points x and y and between points a
and b. To this linear variation is added the sum of
Aganix,, Aganryy Agayxy. and Agg vy (Which were included
in Egs. [33] and [35]) corrected to the same molar basis,
and finally we add the composition-independent term
Agagxy of the Gibbs energy change Agj z/xy of the quadruplet
formation reaction:

L(ABX, + ABY, + A,XY + B,XY) = 2(ABXY)

Agagixy = Agipixy T (Aganxy — Agimxy)

where Agupxy is an empirical parameter of the model,
obtained from optimization of data for the reciprocal A,B//
X.,Y system, as discussed in Section II-E. In the ideal case,
Agapxy = 0. The resultant definition of g5z/xy is

—1 A
go _ qx + qy ('IXZAz/Xz go
ABIXY — X Y A X * 8AyXy
Zasxy  Zasixy 2Z 8 sixvZasixy

B
('IXZBz/Xz quAg/Yg

: ng/Xz : gAz/Yz

B X
2ZAB/XYZAB/XY 2Z B/XYZAB/XY

ayZ3 1, o ) (37]

B Y " 8By1my
2Z ApixyZ asixy

A
ZAg/XY

1 ZAB/Xg ZAB/Yg
( AgAB/Yg t

4 AgAB/Xg t =

ZAB/XY ZAB/XY ZAB/XY

Zsz/xy
Agzz/xy t =5

7B Ang/XY) + Agipixy
ABIXY
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Note that Eq. [22] applies, and that the definition in Eq.
[37] holds, even if one does not choose to define Zizxy as
in Egs. [23] and [24].

Substitutionof Eqgs. [33], [35], and [37] into Eq. [28] gives
G= (nAz/ngflz/Xz + o F nAB/ngZB/Xz + nAz/xygzz/xy

+ o magxy@isxy )

1 ZﬁB/Xz Nap/xy Nupixz
+ = mag, + DA g B
2 2 Zapxy  Zipixz

o 1 Zﬁ IXY [ Mapy
(AgAB/Xz - AgAB/Xz) + 5 (”Az/xy + ; (ZZB — [38]
ABIXY
Nacy o 1
+ Z/; 4 (AgAz/XY - AgAg/XY) + 5
ACIXY

+ 5 (Magixy (Agagixy — Agasixy) + Nagvz

(Agaprvz — Agapyz) + ++0) — T ASeoe

D. The Configurational Entropy

In Eq. [38], ASc°"fi s given by distributing all the quadru-
plets randomly over “quadruplet positions.” Unfortunately,
an exact mathematical expression for this is unknown, and
so approximations must be made. Letting AS" equal
—R 2 (ny In X;,;) would clearly overcount the number of
possible configurations. The following expression is
proposed:

(_Asconfig /R) —
+nyInXy + nylnXy, + )

(nyInX, +nglnX; +

+(n lnX +n lnXB/X
AlIX YAYX BIX YBYX

Xary
+ In—+---
Ny nYAYY

XA2/X2
Tt

[39]

XAB/Xg

n In——— 2
S CIS I A AL

XAz/XY
2X2% /XX /y/YAYXYy

XAB/XY . )

+ nAz/Xy In

+n In
i I X oKX YAV oYYy

Consider the case when all Ag;;;, values for reactions [32],
[34], and [36] are zero and also when all Agf’/‘,f,h““ge values
(as in reaction [3]) are zero. In this case, the distributions
of A,B,C,...and X,Y,Z, . . . oneach sublattice are completely
random. There is neither FNN nor SNN SRO. Hence, the
probability of finding an A-X FNN pair is equal to (¥,Xx),
that is,

Xy =YY, [40]
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Furthermore, the probability of finding an ABXY quadruplet
is given, with reference to Figure 1, by the probability that
pair 1 is an A-X pair, times the conditional probabilities that
pairs 2, 3, and 4 are A-Y, Y-B, and B-X pairs, respectively,
times 4.0, which is the number of possible permutations of
this order of bonds. Hence,

Xasixy = 4Xax X/ Ya) Xpiy/Yy) Xpix/YpYx) [41]
Similarly, one can derive

2X /XXB/X/(YAYBY2) and XAg/Xz Xfx/x/Y/zaY?(

XAB/Xg
[42]

Substitution of Eqs. [40] through [42] into Eq. [39] gives
the correct ideal (Temkin) entropy: —R(ny In X, + ng In
Xg + o + nyIn Xy + nyIn Xy + --+). Also, for this ideal
case, substitution of Egs. [20], [27], [33], [35], and [37] into
Eq. [38] gives the correct expression for an ideal solution:

G = (naxgix + nagay + )
+RT(nyInX, + nglnXp + nyln Xy + )

[43]

Consider next the case, where the Agfj",fh““ge values of
reaction [3] are not all zero, so that there is FNN SRO. In
this case, Eq. [40] does not hold. Equations [41] and [42]
hold exactly in subsystems such as A,B,C, . . .//X or A//X,Y,Z,

., where one sublattice is occupied exclusively by one
species, but do not hold exactly in general, because they
were derived under the assumption of a random distribution
of FNN pairs. Nevertheless, calculations show that Eqgs. [41]
and [42] still hold approximately, and their use results in
errors of only a few percent for absolute values of
Ag?j},ffa“ge as large as 100 kJ/mol. The approximation, of
course, becomes exact as Ag®*'*&¢ approaches zero. Substi-
tution of Egs. [41] and [42] into Eq. [39] gives the expression

(—ASe"i/R) = (n, In X, + nyIn X + )

+ (nyIn Xy + nyIn Xy, + ) [44]
S P /A
AIX YAYX BlY YBYy

which is identical to that given previously®®! for the two-
sublattice quasi-chemical model with FNN, but no SNN,
SRO.

E. Second-Nearest-Neighbor Interaction Terms

The term AgAB/X2 is an empirical parameter of the model,
obtained by optimization of data in the A,B,C,. . .//X subsys-
tem, which is related to the Gibbs energy of formation of
SNN pairs according to reactions [29] or [1]. As in Eq. [30]

of the previous publication,? in the A,B,C.,. . .//X subsystem,
Agapix, is expanded as
AgAB/Xz = Ag;s/xz + E Xﬁs/szﬁA/nggs/xz

(i+j)=1

+ E Xfw/xz)(/m/xz (E g%(z)/xzy (1 = fAB/xz
1

i=0

20 [45]

k=1
k—1
, Y,
k B
! + E gXB(m)/Xz 1 -
m gB A/X) gBA/Xg
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= Eax)

k—1
Y, Y,
+ 3 &b 1=
E AB( e (gAB/)Q) ( fAB/xz) )

where the summations over [, m, and n are as described
previously”! Equation [45] may be compared to Eq. [32].
The empirical coefficients Agjizy, and g4z, are found by
optimization of data in the A,B//X binary system, the other
terms in Eq. [45] all be1ng equal to zero in this binary system.
For example, if all gizx, values are zero and if Agypy, is
small, then the model approaches regular-solution behavior,
with AgAB/X2 as the regular-solution parameter. The
coefficients gAB(C)/Xg are ternary parameters, which should
not be large and which give the influence of the presence
of a third cation, C, upon the energy of formation of SNN
(A-[X]-B) pairs. These are found by optimizationof available
data in the A,B,C//X ternary subsystem. In the absence of
such data, these coefficients can be set to zero. The variables,
Y., Xasixy Xsaxy &asixy and &gax, were defined pre-
viously!?! They are functions of the quadruplet fractions
Xijyx,» which are equal to the SNN bond fractions in the
A.B,C,...//X subsystem. _ )

The coefficients Agypx,, g_f{B/Xz, and _ngB(C)/Xz are identical
to the coefficients Aghs, g4z, and ngB(C) of the previous
articles,””>*! in which the quasi-chemical model was devel-
oped and applied for the case where sublattice II is occupied
solely by the X species.

Equation [45] holds for the A,B,C,...//X subsystem. The
composition variables Xupx, and Xpa/x, were defined in Eq.
[27] of the previous article!?! in terms of ratios of the quadru-
plets fractions X;;x,. For example, if the symmetric (Kohler)
model is used in all ternary subsystems (Reference 2), then
Xasix, = Xaoxo Xayx, T Xagix, T Xpyx,))- In the multicom-
ponent AB.C,.../[X,Y,Z,... system, we assume that
AgAB/X2 is constant along composition paths where these
ratios are constant. Hence, the factors xuzx, and Xpa/x, in
Eq. [45] remain unchanged in the multicomponent system.

In the A,B,C,. . .//X subsystem, from Eq. [11], the equiva-
lent fraction Y; is equal to (X; 2/x2 + 1 X, T Xigix, T 070)),
which, from Eq. [21], is equal to Xj/x in this subsystem. In the
multicomponent system, we assume that the ternary terms in
Eq. [45] are constant along lines of constant X;x/Yy values
(where Yy = 1 in the A,B,C,. . .//X subsystem). Therefore,
the Y; factors in Eq. [45] are replaced by X;x/Yy. The factors
&ipix, and &gy, were defined previously™ as sums of ¥,
Yy, Yo ... Hence, in Eq. [45], these are replaced by the
corresponding sums of X,,x/Yy,Xpx/Yx,Xcx/Yy, etc.

Finally, then, Ag,z/x, is given in the multicomponent sys-
tem by

Ag;s/xz + E

(i+)=1

_ i j ij
A8AB/x2 = X aBix;s XBArx,84B1x,

Xl/X

+ E XAB/XQXBA/Xg (E gAB(l)/Xg Yy a- fAB/xz

/>0
k=1

_ i Xm/
- fBA/xz)k b+ E g/iks(m)/xz (—X> [46]

m YXgBA/Xz

k7
XB/X Xn/X
l————] +2X gl
( Y xfBA/xz E AB( ey foB/xz
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X k—1
/. i _
(1 - ) + Y glhm Yyl — Yok ')
Y#X

Y foB/xz

where Xapx, and Xpax, are ratios of x;x,, as defined pre-
viously,” and where &,z/x, and &gax,, defined previously'?!
as sums of Y, ,Yp.Yc, .., are now the corresponding sums
of X, x/Yx, Xgix/Yx, etc.

The final term in Eq. [46] is zero 1n the A,B,C,.
subsystem. The empirical coefficients gA BiXy(v) 4T€ remprocal
ternary coefficients that give the effect of the presence of a
Y anion upon the energy of formation of ABX, quadruplets.
These coefficients, which should not be large, are found by
optimization of available data for the A,B//X,Y reciprocal
ternary subsystem. In the absence of such data, these coeffi-
cients may be set to zero.

A similar expansion of AgAz/Xy for the formation of A, XY
quadruplets may be written:

AgAz/XY + E

(i+)H=1

; . l..
Aga AXY = X 42Xy Xaovx84,/xy

: : iik All
+ E XAsxy Xan/vx (E ggg/XY(l) —a - §A2/XY
7

i=0 Y,
Jj=0
k=1
XA/m
- fAz/yx) + E gAg/XY(m) [47]
m Y, §A2/YX

k—1
XA/Y iik XA/n
l =¥ + gU Yy ¢
( YYgAg/YX % AdxYn YAgAg/XY

Xox | )
(1 - i) + E gX];(B)/nyB(I - YA)kl)
YAgAz/XY B#A

In Eq. [45], Agupx, in the A,B,C,...//X subsystem is
expanded as a polynomial in the quadruplet fractions
Xiyx,» which are equal to the SNN pair fractions in this
subsystem. In earlier versions of the quasichemical model,
AgAB/X2 was expanded in terms of the equivalent fractions

Y,,Ys,Yc . ... The general expression is!?
fAB/xz '
Agupix, = Aganx, T
> > (i+%21 Eanxy T Eparxy

gBA/X / . gAB/X '
T P

gAB/Xz + gBA/Xz l>0 gAB/Xz + gBA/Xz
Jj=
kzl

( fBA/xz

gAB/Xz + gBA/Xz

k—1
X, X [48]
+ E ('IAB(m)/Xg (fBA/x ) (1 -—= )
2

m gBA /X2

k—1
X, X,
+ Y gipm 1-
E AB( )/Xz(gAsz)( fAB/xz) )

This equation is clearly very similar to Eq. [45]. If the
A,B,C,. . .//X subsystem was optimized using this expansion,
then Eq. [48] can be substituted into Eq. [38] after first
replacing all Y; terms by X;x/Yy, replacing all &5/, and
Epaix, terms by the corresponding sums of X;x/Yy, and after
adding reciprocal ternary terms if required, just as was done
in Eq. [46].

j
)(El qglé(l)/)QYl(l = &y, — Epaxy)" !
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In order to provide more flexibility in optimizing data in
reciprocal systems, the parameter Ag,gxy for reaction [36]
can also be expanded as follows and substitutedinto Eq. [38]:

AgAB/xy = Ag;s/xy + E (gilB/XY(AX)Xilz/Xz
=1

+ gilB/XY(BX)X Ez/xz [49]

+ gilB/XY(AY)Xilz/Yz + g%s/xy(sy)Xﬁz/yz)

where Agipxys &imixrax, efc., are additional empirical
parameters obtainable by optimization of available data for
the reciprocal ternary A,B,//X,Y system. In the absence of
such data, these terms should be set to zero.

E. The Quasi-chemical Model in the “Complex”
Formalism

As discussed in Section II-B, if the quadruplets ABXY
are formally treated as complexes or molecules (Ay;z4,,,
B2y X112XsxvY 112)5xy)» then the mass balances of Eq. [15]
become ‘“normal” mass balances. Furthermore, all the
Ag;y parameters in Eq. [38] have been shown in Section
II-E to be expressible solely in terms of the quadruplet
fractions X;,. (The pair fractions X;,; and equivalentfractions
of Eqgs. [46] and [47] can be expanded in terms of X,
through the use of Eqgs. [11], [12], and [21].) Hence, apart
from the (—TAS*"2) term, Eq. [38] is of the same form as
an expression for the Gibbs energy of a mixture of molecules
(A28 5B 1178 ey X 117Xy Y 1123 ,xy) ON @ single lattice, with the
nonconfigurational “excess” terms expressed as polynomials
in the mole fractions X,z,xy of these molecules. Hence, the
same existing algorithms and computer subroutines that are
commonly used for simple polynomial-solution models can
be used directly for the quasi-chemical model merely by
including the additional configurational entropy terms.

Furthermore, the fact that Eq. [38] can be written solely
in terms of the fractions X ;;, of the quadruplet “components”
permits the chemical potentials to be calculated easily in
closed explicit form. By the same argument as that leading
to Eq. [36] of Reference 1, the chemical potential of the
actual component A, , X, is given in terms of the “chemi-
cal potential (W4,x,) of the quadruplet A,X,” by

/'LAllqAxl/qx = /'LAg/Xz (Zﬁg/)Q/ZQA) = /-LAg/Xz (Zil(g/)Q/Z('IX) [50]
where
Marix, = (GG/GnAz/xz)n,-j,k, [51]
Substitution of Eq. [38] into Eq. [51] then gives
o 2InX, 2InXy
/‘LAg/Xz = gAg/Xg + RT Z ZX
AalXo AalXo [52]
1 XA2/X2 4 2

J’_
g YAYX) gAg/Xg

where g/’fz/XZ is calculated from the nonconfigurational “g=”
polynomial terms of Eq. [38] in the usual way:

giz/xz =gf+ (GSE/GXAZ/XZ) - E Xijm (0g" 10X, kD)
ijlkl#Ap1Xo

X (Y3 Y%))

[53]

III. DISCUSSION

Many binary and ternary common-ion systems A,B,C,
. //IX have already been evaluated and optimized, by using
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a random-mixing (Bragg—Williams) expression for ASeonfig
and by expanding the excess Gibbs energy as a simple poly-
nomial in the mole fractions. For example, in a binary A,B//
X system, this is equivalent to writing:

G = (naxguix + npx&px) + RT (ny In X, + ng In Xp) (541

+ NABIx, AgAB/Xg

with 7,5/, now equal to (2 n,,)X,xXpx and with Ag,zyx,
expanded as

AgAB/x2 = Ag;s/xz + E

(i+)=1

CIZB/XZYQYJE [55]

For example, if all qZB/Xz coefficients are zero, then this
is a simple regular solution. Ideally, of course, all these
systems should be reoptimized with the quasi-chemical
model. However, this entails a great deal of work. For sys-
tems in which Ag, Bix, 18 relatively small, the neglect of SRO
involving SNN (A-[X]-B) pairs will give rise only to small
errors. Hence, it would be very useful to be able to combine
the large existing databases of evaluated simple polynomial
coefficients for such subsystems with the quasi-chemical
coefficients obtained by optimization of other subsystems
where SRO is more important, in order to produce one large
database for the multicomponentsolution. It has been shown
previously!'*! how this combination of coefficients can eas-
ily be achieved for A,B,C, .. .//[X systems. In the present
case, if a binary A,B//X system has been optimized using a
simple Bragg—Williams entropy and a polynomial expansion
as in Eq. [55], then the coefficients of Eq. [55] can be
substituted directly into Eq. [48]. (This is also true for simple
polynomial ternary coefficients, as described previously!?')
It is required that Z4yy, = Z4,x, and that Z3yy, = Z} x,.

1
The term E(”As/xz + (L2 Mapixy 1 Zigixy  + )

(AgAB/Xz - Ag;s/xz) in Eq. [38] is replaced by (2 )
(XaxXpix!Yx) Agapix,» and the term Agj gy, must be removed
from Eqgs. [33] and [37]. It is also recommended that if any
binary subsystem of the A,B,//X,Y system has been optimized
with a simple polynomial expansion, then all coefficients in
the expansion for Ag,gxy in Eq. [49] should be set to zero.

IV. CONCLUSIONS

A quasi-chemical model for treating SRO in the quadru-
plet approximation has been proposed for solutions with two
sublattices. Both SRO of FNN pairs and SRO of SNN pairs
are taken into account. If one sublattice is occupied by only
one species, or is empty, then the present model reduces
exactly to the quasi-chemical model for SRO on one sublat-
tice in the pair approximation, as developed previously!!~*
Also, by means of a minor alteration to the entropy expres-
sion, the Gibbs energy expression can be made identical to
that of a randomly mixed (Bragg—Williams) solution with
a simple polynomial expansion for the excess Gibbs energy.
This is of much practical importance, because the large
existing databases of evaluated simple polynomial coeffi-
cients of certain subsystems can, thereby, be combined in
one database with the quasi-chemical coefficients of other
subsystems, in order to produce one large database for a
multicomponent solution.
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The model is well suited to liquid solutions where the
ratio of the number of sites on the two sublattices can vary
with composition. Further flexibility is provided by permit-
ting coordination numbers to vary with composition. Never-
theless, the model also applies to solid solutions if the
number of lattice sites and coordination numbers are held
constant. The model can, thus, be combined with the com-
pound-energy formalism!®*! to treat a wide range of types
of solutions (slags, mattes, ceramics, salts, and alloys), point
defects, order-disorder phenomena, nonstoichiometric
phases, etc. For a discussion of applications of the com-
pound-energy formalism, refer to References 10 and 11. If
SRO is not included (by assuming Bragg—Williams random-
mixing entropy, as just mentioned), the model reduces
exactly to the compound-energy formalism for two (or
one) sublattices.

That is, several different models are limiting cases of the
present model. These models can, thus, all be treated with
the same algorithms; the coefficients can all be stored in the
same multicomponent databases; and different models for
different subsystems can be combined, in many cases.

By formally treating the quadruplets as the components
of the solution, a significant computational simplification is
realized. The model can then be treated with currently avail-
able and relatively simple software.

The model has been applied to the molten salt phase
in an evaluation/optimization of the Li,Na,K,Mg,Ca//F,Cl
system using the F¥*A*C*T!2 thermodynamic computing
system. This work is presented in an accompanying article.*’
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