Experimental Investigation of the Ce-Mg-Mn Isothermal Section at 450°C via Diffusion Couples and Key Alloys Techniques

Ahmad Mostafa^{*} and Mamoun Medraj^{*}

^{*}Department of Mechanical and Industrial Engineering, 1455 de Maisonneuve Blvd West, EV13.161, Montreal, Quebec, H3G 1M8 CITATION: Metallurgical and Materials Transactions A, Article DOI: 10.1007/s11661-014-2251-z, March 2014

Brief Introduction

The importance of the Ce-Mg-Mn alloys system falls in developing Mgbased alloys that have excellent creep resistance, comparing to pure Mg, at elevated temperature [1]. Thus, addition of Ce enhances the mechanical properties at elevated temperatures, and addition of Mn improves the corrosion resistance. The only available data contain information about two vertical sections [1] and a theoretical liquidus projection predicted by thermodynamic modeling [2].

Objectives

In this work, an experimental investigation of the Ce-Mg-Mn isothermal section at 450°C was performed using diffusion couples and key alloys techniques to provide better understanding on the phase relationships of the system.

Experimental Procedure

- The alloys were prepared initially from pure metals (99.95% Ce, 99.98% Mg, and 99.90% Mn).
- The samples were prepared in an electrical arc/induction-melting furnace with water-cooled copper crucible under argon.
- ICP was used for the global chemical composition determination.
- XRD was used to identify the phases, and to find the relative amount of each phase.
- EDS to identify the phases composition.
- Samples were encapsulated under vacuum inside quartz tubes for annealing

Figure 1: Induction-melting furnace

For

Figure 2: Samples inside a sealed quartz tube

Figure 4 Clamped and Mounted diffusion couples

