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Abstract: Four main types of binary fluid-phase diagrams and available experimental data on
binary systems are used as a starting point for derivation of the systematic classification of
binary complete phase diagrams by the method of continuous topological transformations.
This method and the classification of binary phase diagrams, containing the boundary ver-
sions of phase diagrams with ternary nonvariant points, are applied to derive the main types
of fluid and complete phase diagrams for ternary systems with one volatile component and
immiscibility phenomena in two constituent binary subsystems. The results gained from this
analysis of derived fluid and complete phase diagrams of ternary systems are represented.

INTRODUCTION

The pioneering work of van der Waals and his school on the equation of state and the thermodynamics
of mixtures at the end of the 19" and beginning of the 20™ centuries laid a basis for the modern theory
of heterogeneous equilibria and phase diagrams. Van der Waals and his coworkers developed the “clas-
sical approach” to phase diagram derivation, in which phase behavior of mixtures was established by
investigation of the behavior of thermodynamic functions (free energy) in P-V-T—X space, which could
be calculated from the equation of state. Originally, the theoretical derivation of phase diagrams was
made by a topological method after the main features of a geometry of thermodynamic surfaces were
obtained from limited calculations (available at that time) using the equation of state [1]. The follow-
ing continuous transformations and combinations of the geometrical features of the surfaces were made
topologically, as well as a derivation of topological schemes of phase diagrams from the interplay of the
thermodynamic surfaces. The topological approach and the knowledge of the regularities of behavior
and intersections of thermodynamic surfaces for various phases including the solid phase permitted the
derivation of not only the several types of fluid phase diagram, but also the schemes of phase diagrams
with participation of the solid phase [1-3].

Since the first publication of Scott and van Konynenburg in 1970 on global phase behavior of
binary fluid mixtures [4], the classical approach to the derivation of phase diagrams has changed from
the topological method to the analytical method. Analytical investigation of various liquid—gas equa-
tions of state [4—12] shows the same main types of fluid phase behavior for different kinds of molecu-
lar interactions and the same sequences of transformation of one type of binary phase diagram into
another. Such calculations do not permit study of phase equilibria with solid phases because a general
liquid—gas—solid equation of state is absent. The traditional classification of binary fluid based on the
available experimental data and results of investigation the liquid—gas equations of state contains seven
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types of fluid phase behavior [4,5]. This classification includes four different types (I, V, VI, and VII)
of fluid phase behavior, where the intersections of critical curves and immiscibility regions with a crys-
tallization surface are absent. Three other types (II, III, and IV) are the result of solid phase interference
in immiscibility and critical equilibria of types V, VI, and VIL

For rigorous derivation of the complete phase diagrams, which describe not only fluid equilibria
but also all the equilibria with solid phase, simultaneous investigation of two equations of state (for lig-
uid—gas and for solid phases) should be made.

Another possibility is to turn back to the topological method at the level of topological schemes
of phase diagram rather than on the level of thermodynamic surfaces. Modern knowledge of phase dia-
grams construction permits not only classification of the main types of diagrams but finding some reg-
ularities of transformation of one type of phase diagram into another.

The fundamental idea of continuous transitions between the various forms of heterogeneous fluid
equilibria and types of fluid phase diagrams was formulated by Schneider [13,14] and confirmed by
systematic investigations of “families” of binary systems when one component is the same, while the
other is altered in size, shape, and/or polarity. It has also been proven by the studies of ternary systems
where the quasi-binary cross-sections show a continuous transformation of fluid phase behavior.

Theoretical calculation of fluid phase diagrams also shows that each diagram transforms contin-
uously into another when the model parameters are changed. Special boundary versions of phase dia-
grams arise in the process of transformation. The curves in the global phase diagrams divide the dia-
gram field into domains of different phase behavior and correspond to so-called “boundary versions” of
the fluid phase diagram [4—12]. Such boundary versions have properties of both neighboring types but
cannot be realized since, in violation of the Phase Rule, they contain equilibria, which are possible only
in ternary or more complicated systems.

A similar approach, which considers the diagrams as stages in the continuous process of topo-
logical transformation, was applied to the complete phase diagram [15,16], which describes any equi-
libria with liquid, gas, and/or solid phases in a wide range of temperature and pressure.

The main objectives of this paper are to demonstrate the last version of systematic classification
for binary complete phase diagrams obtained by the method of continuous topological transformation
and to show how this method and the systematic classification of binary diagrams can be used for der-
ivation of complete phase diagrams of ternary systems containing one volatile component and immis-
cibility phenomena in two binary subsystems.

CLASSIFICATION OF COMPLETE PHASE DIAGRAMS OF BINARY SYSTEMS

The method of continuous topological transformation is based on the premise that each type (or topo-
logical scheme) of phase diagram can be continuously transformed into another type through the bound-
ary version of that phase diagram, which has the properties of both neighboring types and contains the
equilibria possible only in the systems with the higher numbers of components. In the case of transfor-
mation of binary fluid equilibria, the boundary versions can be borrowed from the global phase dia-
grams of binary fluid mixtures. Modifications of stable fluid phase equilibria in presence of a solid
phase do not change the type and topological scheme of fluid phase and originate in the boundary ver-
sions of phase diagram with nonvariant ternary critical points where the solid phase takes part in equi-
libria. As a result of such modification, a part of fluid equilibria (for instance, the parts of immiscibil-
ity regions and/or critical curves) is suppressed by solidification of the nonvolatile component and
transforms into the metastable equilibria.

Some types of binary complete phase diagrams can be found from available experimental data,
and these types were used as a starting point for derivation of systematic classification. A systematic
classification that includes both known and new types of complete phase diagrams, which fill the empty
places in the chain of continuous transformation and are separated by the boundary versions, are shown
in Fig. 1.
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Fig. 1 Systematic classification of binary complete phase diagrams (P-T projections).

Boundary versions of phase diagram are shown in frames. Solid circles are nonvariant points in one- and
two-component systems [T,, Tz and K,, Ky — triple (L-G-S) and critical (L = G) points of pure components A
and B, eutectic point E (L-G-S ,—Sp), L (L;-L,~G-Sy); critical end-points: N (N') (L; = L,-G), R (L, = G-L,),
p (L =G-5),Q(L =G-SorL;=L,-S), M (L; =L,-S)]; open dots are the nonvariant equilibria of ternary systems
[NL(N'L) (L; = L,-G-S), pR (L; = G-L,-S), double critical end-points N'N (L, = L,-G), pQ (L = G-S5), MQ (L,
= L,-S); tricritical point NR (L, = L, = G)] in the boundary versions of phase diagram (in frames). Thin lines are
the monovariant equilibria L-G and LS of pure components A and B; dashed lines are the critical curves L = G
and L; = L,; heavy lines are the monovariant curves (noncritical) of binary system; dotted lines are the metastable
parts of monovariant curves in binary systems.
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To facilitate a systematic and simplified approach to construction of complete phase diagrams and
simultaneously to bring the topological schemes as close as possible to the description of phase equi-
libria in high-temperature water—salt systems, the following limitations for the main types of binary
complete phase diagrams are necessary [15,16]:

1. The melting temperature of the pure nonvolatile (salt) component is higher than the critical tem-
perature of the volatile component (water).

2. Solid-phase transformations (polymorphism, formation of solid solutions and compounds, and
azeotropy in liquid—gas equilibria) are all absent, and solid—fluid equilibria have a eutectic nature.

3. Liquid immiscibility is terminated by the critical region (L; = L,) at high pressures and cannot be
represented by more than two separated immiscibility regions of different types.

4. All geometric elements of phase diagrams, their reactions, and shapes (but not the combinations

of these elements) can be illustrated by existing experimental examples.

Each diagram is labeled with a number (1 or 2) followed by a type (a, b, ¢, or d) of fluid phase
behavior. Titles of boundary versions of the complete phase diagram contain two letters (for examples,
ab, CD, 1bb’, 1dd") or two numbers (12a, 12d”) according to the neighboring types, which transform
one into another.

The numbers (1, 2), reflecting both the features of solid—fluid equilibria and the traditional divi-
sion of the complete phase diagram, fall into two types. The first type (type 1) has no intersection of
solubility (L-G-S) and critical (L = G) curves. Type p-Q (or type 2), the second type, has intersections
of solubility and critical curves at two critical end-points «p» and «Q» (L = G-S) [2,15-19]. The sys-
tems of type 1 have a positive temperature coefficient of solubility (t.c.s.) in the three-phase equilibrium
(L-G-S) and an uninterrupted solubility curve at supercritical temperatures. Type 2 is characterized by
a negative t.c.s. in the subcritical equilibrium region (L-G-S), critical phenomena in saturated solutions
(L = G-S) (critical end-points “p” and “Q”), and supercritical fluid equilibria in the temperature range
between the critical end-points “p” and “Q”. A distinguishing feature of supercritical fluid equilibria is
an occurrence of only one fluid phase (with or without equilibrium solid phase), regardless of pressure
variations. A transition from the gas-like state of fluid at low pressures/densities to the liquid-like fluid
at high pressures/densities takes place continuously without the two-phase fluid equilibrium and den-
sity jump at any compression.

Phase equilibria in types 1 and 2 may be complicated by the immiscibility of liquid phases tak-
ing place both in stable and metastable conditions.

The systematic classification in Fig. 1 consists of four rows (a, b, ¢, and d) of the diagrams, cor-
responding to four main types of fluid phase behavior.

Complete phase diagrams in row a are characterized by a fluid phase behavior without liquid-lig-
uid immiscibility phenomena. A limited immiscibility region is a permanent element of complete phase
diagrams of the row b. Two three-phase immiscibility regions L.;—L,~G of different nature are the con-
stituents of complete phase diagrams in the row c¢. Fluid phase behavior of type d can be found in any
complete phase diagrams of row d.

Three horizontal rows (b, ¢, and d) consist of two lines of phase diagrams because there are the
experimental examples for phase diagrams of both lines in row d. Although the phase diagrams of lines
b” and ¢” (derived by the same manner as the diagrams in the line d”) were not encountered experi-
mentally, there is no reason to reject these topological schemes as the possible types of binary phase
behavior.

There are three columns (right, central, and left) of complete phase diagrams (P-T diagrams
without frames) separated by two vertical columns of boundary versions (P-T diagrams in frames) in
Fig. 1. The complete phase diagrams, which show four main types of fluid phase behavior (types a, b,
¢, and d in our classification or types I, V, VI, and VII according to traditional classification of binary
fluid phase behavior [4,5]) and lack critical phenomena in solid-saturated solutions, are found in the left
column (types 1a, 1b, 1c, 1d of complete phase diagram). The central and right columns contain dia-
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grams with nonvariant points where critical phenomena occur in equilibrium with a solid phase. So-
called “supercritical fluid—solid equilibria” are absent in the diagrams from central column (types 1b’,
1b”, 1c¢’, 1c¢”, 1d’, 1d”), but they appear in the systems of type 2 described by the diagrams of types 2a,
2b’, 2b", 2¢’, 2¢”, 2d’, and 2d” from the right column.

Supercritical fluid—solid equilibria, where a transition from gas-like fluids to liquid-like ones
occur continuously without the two-phase equilibrium and density jump, occur in systems where the
critical temperature of the volatile component is lower than the melting temperature of nonvolatile one.
Such phase behavior was observed in systems of gases (Ne-Ar, H,—CO,, H,—CH,, etc. [20]), organics
(CH,—cyclohexane, CH,—n-octane, ethylene—naphthalene, ethylene-anthracene, etc. [21], CH,—dia-
mondoids [22]), and aqueous electrolytes/inorganic compounds (H,0-SiO,, H,0-Na,COs;,
H,0-Li,SO,, H,0-K,SO,, H,0-BaCl,, etc. [15,19]). It is important to note that most of type 2 sys-
tems where high-temperature supercritical equilibria were studied in detail are complicated by
metastable immiscibility regions and belong to type 2d” or 2d”. Only CH —diamondoids systems show
type 2a phase behavior without immiscibility phenomena [22].

Diagrams from Fig. 1 included in boxes are the boundary versions of a binary phase diagram.
They contain the special points representing nonvariant equilibria in ternary systems and demonstrate
continuity of topological transformation of one binary type of a complete phase diagram into another.

There are two boundary versions between rows a and b and between rows ¢ and d. In the first
case, the boundary version ab appears at the transition of type 1a into type 1b. The boundary version
ab’ takes place in the transformation 1a-1ab’-1b’, 1a-1ab’-1b", 2a—2ab’-2b’, 2a-2ab’-2b". In the
second case, the boundary version ed may take part in a continuous topological transformation of any
phase diagrams in rows ¢ and d. However, the global phase diagrams of binary fluid mixtures [8,9] show
also another way of continuous transformation for phase diagrams of types 1c—1d (possible for 1¢"-1d”,
2¢"-2d") through the boundary version CD.

All seven types of fluid phase diagrams introduced by [4,5] can be easily found as a part of the
following complete phase diagrams of type 1 (placed in the left and central columns): type I (fluid phase
diagram) = type 1a (complete phase diagram), type II = type 1b’, type III = type 1d’, type IV = type
1c’, type V = type 1d, type VI = type 1b, type VII = type 1c.

Seven of ten types of complete phase diagram from the left and central columns (type 1) have
the experimental examples. Here are the few examples of each type: type la (CH,—propane,
CO,—cyclohexane, NH3—HZO, H,0-NaCl [13,14]); type 1b (2-butanol-H,O, 2-methylpyridine-D,0,
2-butanone-H,O [13,14]); type 1b" (CO,—octane [13,14], H,0-Hgl, [23,24]); type 1¢’ (CH,—1-hex-
ene, CH,—2-methyl-1-pentene, CH,-3.3-dimethylpentane, CH,-2.3-dimethyl-1-buten [13,14]); type
1d (CO,—nitrobenzene, CH,~hexane [13,14], H,0-UO,SO, [25,26], HZO—N212B407 [27]); type 1d’
(CH,—methylcyclopentane, CO,-hexadecane, CO,-H,O [13,14], H,O-PbBr,, H,0-Pbl, [23,24]);
type 1d” (? H,0-UO,F, [28]).

Some types of complete phase diagrams, shown in Fig. 1, have not been experimentally docu-
mented (1b”, 2b’, 2b”, 1¢, 1¢”, 2¢’, 2¢").

TERNARY SYSTEMS

As well as in the case of binary systems, a diversity of complete phase diagrams of ternary systems
depends both on the variety of the main types of ternary fluid phase behavior and on the possible ver-
sions of solid—fluid equilibria, which appear as a result of intersection of fluid phase equilibria with the
crystallization surfaces. However, the abundance of ternary types is much greater than the binary. There
are 39 main types (classes) of fluid phase diagrams for ternary systems, where one of the binary sub-
systems belongs to type 1a and another two binary subsystems with volatile component are complicated
by immiscibility phenomena [29] and more than 130 distinct classes of complete ternary phase dia-
grams of such ternary systems. Therefore, only a general observation of our approach to the theoretical
derivation of ternary phase diagrams and some examples of ternary complete phase diagrams will be
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given after a brief discussion of graphical representation of ternary phase diagrams in the following sec-
tions.

Graphical representation of ternary phase diagrams

The most correct and complete representations of four-dimensional ternary phase diagrams are given
by the isothermal or isobaric triangle prisms (isothermal or isobaric cross-sections of ternary phase dia-
grams) where the vertical axis is either the pressure or temperature, and the triangle prism base repre-
sents the ternary concentrations. All types of phase behavior can be described by the sets of such
isothermal or isobaric prisms, although these phase diagrams become very difficult to interpret due to
enrichment of points, curves, and surfaces.

Two-dimensional P-T projection or triangle prism of T-X and P-X projections can be used for cor-
rect representations of mono- and nonvariant equilibria over wide ranges of temperature and pressure.
Sometimes, the three-dimensional T-X or P-X projection can be represented as a triangle of ternary con-
centrations with a set of isotherms or isobars that describe the phase behavior in a range of temperature
or pressure.

Figure 2 is an example of three-dimensional T-X projection for ternary system with one volatile
component (A) and two nonvolatile components (B and C) forming continuous solid solutions. Binary
subsystems A-C and C-B belong to the type 1a, whereas the system A-B belongs to the type 1b’. The
ternary phase diagram shows the surfaces of liquid phase compositions in equilibria L-G-S (shady
surface TyE,gL-NL-L-T5T-E,-T, in Fig. 2) and L;-L,-G (N-L-NL-L-N) and the critical sur-
faces L = G (shady surface K, KgK) and L = L, (N-M-NL-M). The cross-sections at constant ratios
of nonvolatile components (B/C) are shown on the surfaces. These sections depict the continuously
transforming T-X diagrams of quasi-binary subsystems with permanent volatile component A and non-
volatile component represented by a continuously changed mixture of B and C. The stable and
metastable parts of three-phase immiscibility region L;~L,~G shrink with increasing of C concentra-
tion in the mixture and end in the nonvariant critical point NL (L; = L,—G-S).

The P-T projections do not carry information on the composition of the equilibrium phases. An
attempt has been made to use a four-angle prism with P, T, and X* as axes for a representation of divari-
ant critical surfaces and monovariant critical curves in the ternary systems as a continuous set of quasi-
binary P-T sections at constant X* [30,31]. The X* axis denotes relative amounts of the nonvolatile
components X* = X,/(X, + X5) in ternary solutions. However, in such diagrams, the representation of
the critical point of a volatile component and equilibria in the vicinity is not absolutely correct, because
the critical point of volatile component is displayed as a straight line. To avoid this uncertainty and to
circumvent an application of three-dimensional figures, which are usually complicated for perception,
the two-dimensional T-X* projections can be used for presentation of the ternary equilibria between
phases enriched with nonvolatile components. As one can see from Fig. 2, the T-X* projection (heavy
curves on the T-X* plane CBKgK ) is obtained from the three-dimensional T-X diagram and contains
only binary and ternary nonvariant points and ternary monovariant curves. Nonvariant points of pure
components can be omitted on the T-X* projection because they are placed on the ordinates and do not
take part in a formation of ternary monovariant curves.

It is assumed that the vapor (gas) phase of the equilibria L; = L,—G and L,-L,~G-S as well as
the critical phase of the equilibrium L, = G-L, is almost pure volatile component and does not plot on
the T-X* projection. Therefore, the composition (X*) of the critical phase (L| = L,) in the first case,
one of the liquid phases (or both equilibrium liquids if they have the same B/C ratio) in the equilibrium
L,-L,~G-S and the noncritical phase (L,) in the critical equilibrium L; = G-L, shows the position of
the monovariant equilibria on the T-X* diagram.
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Fig. 2 Prismatic representation of T-X projection for complete phase diagram of ternary system A-B-C (A is
volatile component) and T-X* projection of ternary monovariant curves on the plane CBKzK.

Points T, T, T and K, Ky, K¢ are the triple and critical points of pure components; points E,p, Excs
L, M, N are the compositions of liquid and critical phases in binary nonvariant equilibria L-G-S,-Sg,
L-G-S,-Sc, L1-L,-G-S, L = L,-S, L; = L,~G; point NL is the composition of critical phase in ternary
nonvariant equilibrium L; = L,~G-S. Solid lines are the composition of liquid and critical phases in binary
monovariant equilibria L-G-S, L;-L,-G, L;-L,-S, and L = G; thin lines are the compositions of liquid and
critical phases at constant ratio B/C in ternary equilibria L-G-S, L;-L,-G, L;-L,-S and L = G; dashed lines are
the composition of critical phase in binary monovariant equilibrium L; = L, and ternary monovariant equilibrium
L, = L,~G; dot-dashed line is the composition of critical phase in ternary monovariant equilibrium L; = L,-S;
dotted lines are the metastable parts of monovariant curves in binary equilibria L;-L,~G, L; = L, and in ternary
equilibrium L; = L,~G; heavy lines are the compositions of liquid and critical phases in ternary monovariant
equilibria L|-L,-G-S, L-G-S ,~Sp(, L| = L,~G and L| = L,-S. Shaded surfaces are the compositions of liquid
phase in ternary equilibrium L-G-S (T,E,pL-NL-L-TgT-E,-) and the compositions of critical phases in
ternary equilibria L = G (K,KgK¢) and Ly = L, (N-M-NL). X* is the relative amounts of the nonvolatile
components (B, C) in ternary solutions [X* = Xp/(Xg + X))

Derivation of ternary phase diagrams with the use of systematic classification of
binary phase diagrams

If the phase behavior of the constituent binary subsystems is known, the task of constructing a topo-
logical scheme for a ternary system translates into the finding of new nonvariant equilibria. These equi-
libria result from the intersection of monovariant curves originated at nonvariant points of the con-
stituent binary subsystems. While passing from one binary subsystem to another, the phase diagrams of
the binary subsystems must undergo continuous topological transformations in the three-component
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region of composition. This process may be imagined as a continuous phase diagram transformation of
quasi-binary sections of the ternary system with a constant volatile component (water in the case of
water—salt systems) and a continuously changing nonvolatile component (salt component in the case of
water—salt systems) from one nonvolatile component to another. This constitutes so-called “quasi-
binary approach” to the ternary phase equilibria.

Representation of three-component systems as a set of quasi-binary cross-sections is not quite
rigorous for most real ternary mixtures. However, if we intend to study the phase behavior on the level
of topological schemes, the sequence of binary phase diagrams of quasi-binary sections (including the
sections through the ternary nonvariant points) gives an exhaustive description of possible phase equi-
libria and phase transformations in ternary systems.

If the phase diagrams of the binary subsystems are present in Fig. 1, then all the steps of the
topological transformation between these diagrams are also shown on the same figure as a set of com-
plete phase diagrams corresponding to the quasi-binary sections. Such sets include the boundary ver-
sions of phase diagrams, which show ternary nonvariant points that should appear in the studied
three-component systems. For example, the sequence of quasi-binary sections of ternary phase dia-
gram for the systems with binary subsystems of types 1b’ and 1d’ could be the following:
1b'«1b’aslaslad<ld<1dd’«<1d’, according to Fig. 1. Such phase behavior was found experimen-
tally in the system Hgl,—Pbl,—H,O [24]. However, as shown by [32] and from Fig. 1, the same class of
ternary system (1b’—1d’-1a) can have another type of phase behavior 1b’<1b’c’<1c’<1c'd'«1d’ if
both immiscibility regions are joined. Another example of various versions of ternary phase diagrams
for one class of ternary system was found for ternary systems SiO,-Na,Si,Os—H,O and
Na,Si,05-Na,Si05;-H,0 [33] and is evident from Fig. 1. The binary water-salt subsystems belong to
type 2d’ in both cases, but the ternary phase behavior is different and corresponds to the following
sequences of binary and quasi-binary sections 2d’«12d'<1d'<1dd'«<1d<1dd’'«<1d’'«12d'<2d’ and
2d’'«2d’, respectively.

Harnessing the contents of Fig. 1 opens an ample opportunity for derivation of possible versions
of complete phase diagram for ternary systems when the phase diagrams of binary subsystems are
known. However, all the limitations accepted for the systematic classification of binary complete phase
diagrams are extended to the ternary phase diagrams, which may have negative consequences. For
instance, careful analysis of fluid multiphase equilibria in ternary mixture [32] shows that the phase dia-
grams of some quasi-binary sections can have three separated three-phase immiscibility regions of dif-
ferent types and two separated three-phase equilibrium L;—L.,—G of the same type. The topological
schemes of such phase diagrams are absent in the systematic classification (Fig. 1) due to the accepted
limitations, hence, ternary phase diagrams with such quasi-binary sections can not be derived by this
method.

Derivation of fluid and complete ternary phase diagrams

A more systematic approach to the global phase behavior of ternary systems should start from a deri-
vation of the main types of ternary fluid phase diagrams and following consideration of how these phase
diagrams are modified by the presence of the solid phase of the nonvolatile components. All possible
versions of fluid and complete phase diagrams for ternary systems, as well as their classifications, is too
complex a topic for discussion here. Therefore, this section contains only a brief description of the gen-
eral approach to derivation of ternary phase diagrams, and an outline of some results that were gained
from the analysis of fluid and complete phase diagrams for the ternary systems with one volatile and
two nonvolatile components where two binary subsystems with volatile component are complicated by
immiscibility phenomena and the third binary subsystem belongs to type 1a.
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Six classes of ternary fluid mixtures

As in binary systems, the main types of fluid phase diagram of ternary mixtures should not have an
intersection of critical curves and immiscibility regions with a crystallization surface. Therefore, a
combination of four main types (a—d) of fluid phase diagrams or types 1a, 1b, 1c, and 1d of complete
phase diagrams constituting binary subsystems can result in all major classes of ternary fluid systems.

There are six major classes of ternary fluid mixtures with one volatile component and immis-
cibility phenomena in binary subsystems that can be referred to as ternary class I with the following
combination of constituting binary subsystems (la—1b-1b); ternary class II: (la—lc-1c¢); ternary
class III: (1a—1d-1d); ternary class I'V: (1a—1b-1d); ternary class V: (1a—1b-1c); and ternary class
VI: (1a-1c-1d) [29].

Several types of fluid phase behavior and various versions of fluid phase diagrams can character-
ize each class of ternary mixtures. Therefore, a designation of each version of a fluid phase diagram
[29] contains a Greek letter [a B, v, 8, € with or without superscripts (' and ”, °)] besides a Roman
numeral (I-VI). The Greek letter indicates the version of an interaction of the monovariant curves in
the given class of ternary system.

It was assumed in the derivation of phase diagrams by the method of continuous topological trans-
formation that the immiscibility regions, which are spreading from two binary subsystems, can either
merge in the three-component range of composition or be separated by a miscibility region. The later
case is especially important since it illustrates the phase transformations in another classes of ternary
systems, where only one of the constituent binary subsystems with volatile component is complicated
by liquid-liquid immiscibility: (1a—1b—1a), (1a-1c-1a), (1a—1d-1a).

The following are general regularities of fluid phase behavior in ternary mixtures summarized
after analyzing the main types of fluid phase diagrams:

1. The immiscibility region of type b or d spreading from the binary subsystems can be termi-
nated by one nonvariant point in ternary systems, whereas disappearance of the immiscibility
region of type c takes place only after transformation into immiscibility region of types b or d.
The end-point of the immiscibility region of type b is the double critical end-point (DCEP) N'N
(L, = L,~G). The spreading immiscibility region of type d ends in the tricritical point (TCP)
RN (L; = L, = G). Transformation of the immiscibility region of type ¢ into types b or d occurs
through the TCP NR (L; = L, = G) or the DCEP N'N (L 1 = L,—G), respectively.

2. The occurrence of two-phase holes L-G (completely bounded by a closed-loop critical curve
L, = L,~G) in the three-phase immiscibility region L;~L,~G bounded by a critical curve L; =
G-L, from the high-temperature side was established experimentally for ternary systems with
binary subsystems of type d [32]. It was assumed [29] that the occurrence of two-phase holes in
the immiscibility region of such nature is a usual phenomenon for ternary mixtures with binary
subsystems of type c. It is also possible that the two-phase hole L-G may appear in ternary
three-phase immiscibility region that spreads from the binary subsystems of type b and
bounded by two critical curves L; = L,—G. However, the last versions of ternary fluid phase
diagrams were not included in 39 main types described in [29].

3. Quasi-binary cross-sections of ternary systems with binary subsystems of type ¢ (in the case of
two-phase hole, in particular) can contain two separated immiscibility regions of type b or two
immiscibility regions of type b and the third immiscibility region of type d. These types of binary
fluid phase diagrams cannot be found on Fig. 1 due to the accepted limitations. However, they
were obtained by calculation [5] and can be derived by the method of topological transformation
if the mentioned limitation is omitted.

4. Ternary critical curves L; = L,~G joining the binary critical end-points N pass through the dou-
ble critical end-point (DCEP) N'N (L, = L,—G) if the points N belong to one binary subsystem.
In fact, two critical curves L = L,~G starting in binary critical end-points N of the same binary
subsystems meet in DCEP. Ternary critical curve L; = L,~G joining the critical end-points N of
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various binary subsystems does not have the DCEP as well as the critical curve L; = G-L, con-
nected the critical end-points R of various binary subsystems also does not have any ternary non-
variant point.

DCEP N'N appears on the critical curve L; = L,—G which intersects with another critical
curve L = G-L, in the tricritical point (TCP) NR (L, = L, = G) when these critical curves orig-
inate in different binary subsystems. If both critical curves of different nature start from the same
binary subsystem and are intersected in TCP, the critical curve L.; = L,—G does not have DCEP.

Two DCEP are located on the closed-loop critical curve L; = L,—~G bounded a two-phase
hole L-G in three-phase immiscibility region at extreme contents of nonvolatile components. Two
TCPs appear in ternary system as a result of intersection of closed-loop critical curve L = L,~G
with the critical curve L, = G-L,.

5. A continuous topological transformation of one topological type of ternary fluid phase diagram
into another in the frame of one ternary class is carried out by merging together the ternary non-
variant points and by tangency of one monovariant curve to another in accordance with the rules
formulated in [29].

Complete phase diagrams
Until the equilibrium L-G-S intersects the three-phase immiscibility region L,-L,—~G, the stable fluid
phase equilibria are not changed and correspond to the main types of fluid phase diagram. An appear-
ance of equilibrium L ;-I.,—G-S (the nonvariant point L in binary systems and the monovariant curve
in ternary system) leads to transition of a part of immiscibility region into metastable conditions. An
increase in temperature of solid phase interference in immiscibility and critical equilibria increases the
metastable part of immiscibility region and initiates an appearance of supercritical fluid equilibria and
a transition of binary or quasi-binary phase diagrams from type 1 to type 2.

Figure 3 shows several examples of ternary complete phase diagrams represented as five T-X*
projections of ternary phase diagrams for each of six ternary classes I-VL

In order to simplify the T-X* projections of complete phase diagrams the following additional
assumptions and limitations are accepted.

1. Solid phases of nonvolatile components form a continuous solid solution in binary and ternary
systems. In addition, the polymorphism and formation of new compounds are absent. The
assumptions do not change the limitations concerning the binary systems with volatile and non-
volatile components. However, they help to avoid the monovariant and nonvariant equilibria with
two solid phases of nonvolatile components (L-G-Sg—S) in Figs. 2 and 3.

2. Equilibria with solid phases of volatile and nonvolatile components [eutectic points
(L-G-S ,—Sp; L-G-S,-S() and eutonic curves (L-G-S ,—Sp )], which take place at low tem-
peratures and do not interact with critical or immiscibility equilibria, are not plotted on T-X* pro-
jections of complete phase diagram (Fig. 3). However these equilibria (points E 5, E ¢, curve
E,gE () are shown both on triangle prism of T-X projection and on the plane of T-X* projection
in Fig. 2.

3. If temperatures of binary nonvariant points L. (L;-L,~G-S) and M (L = L,-S) are the same
(Fig. 1), therefore, they are shown as one point (eight-pointed star) on T-X* schemes in Fig. 3.
Ternary monovariant curves L;—L,~G-S and L.; = L.,—S starting in these points and ending in the
ternary nonvariant point LN (L; = L,—~G-S) coincide and are shown as a double line in Fig. 3.
These assumptions are irrelevant to Fig. 2 where the temperature of point M is higher than that of
point L and corresponding ternary monovariant curves are intersected only in nonvariant point
LN.

A designation of each scheme of T-X* projection in Fig. 3 contains an indication of the main type
of ternary fluid phase behavior (Roman numeral with Greek letter) and the Arabic numeral correspon-
ding to the place in the row of the figure. As mentioned above, the equilibria with solid phase do not
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W-R(Li=G-Ly) © -Nm/s(Li=L,G) 0 -NN@L~LyG) _— - (L-L-G-S)
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Fig. 3 T-X* projections (schemes) of some ternary complete phase diagrams for ternary systems with one volatile
component and immiscibility phenomena in two binary subsystems.

Solid triangles, circles, diamonds, eight-pointed stars and squares are the binary nonvariant points Q (L; =
L,-S),N (L, =L,-G), p (L =G-S), L (L;-L,-G-S) + M (L; =L,-S) and R (L; = G-L,). Nonvariant binary point
M (L, = L,-S) coincides with point L (L-L,~G-S) on T-X* graph. Open triangles, eight-pointed stars, circles,
five-pointed stars, squares, and diamonds are the ternary nonvariant points MQ (L; = L,-S), NL (L; = L,-G-S),
N'N (L, =L,-G), NR (L, =L, = G), pQ (L = G-S) and pR (L; = G-L,-S). Shaded circles and squares in binary
systems are the metastable points N (L; = L,~G) and R (L; = G-L,); shaded circles and stars in ternary systems
are the metastable points N'N (L, = L,—G) and NR (L = L, = G). Dashed lines are the monovariant critical curves
L, =L,-G and L, = G-L,; dot-dashed lines are the monovariant critical curves L; = L,—S and L = G-S; solid lines
are the monovariant curves L,-L,~G-S; double lines are the coincided monovariant curves L,~L,~G-S and
L, =L,-S; dotted lines are the metastable parts of critical curves L; = L,—G and L; = G-L, in ternary systems. X*
is the relative amounts of the nonvolatile components (B, C) in ternary solutions [X* = X5/(Xp + X)].
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change the main type of fluid phase behavior in ternary mixture but only transform a part of fluid phase
equilibria into metastable conditions. The metastable parts of such monovariant curves are shown by
the dotted lines, and the metastable nonvariant points are designated by shaded marks of the same form
as the stable ones. So the T-X* schemes in Fig. 3 show not only the projections of complete phase dia-
grams, but also the main types of ternary fluid phase diagrams that were used for derivation.

The following regularities of phase behavior in ternary systems can be formulated from the analy-
sis of derived ternary complete phase diagrams:

1. If the immiscibility region originates in the binary subsystem of type 1b’, 1¢’, or 1d’ (the sub-
systems with immiscibility phenomena in solid saturated solutions) and ends in ternary solu-
tions, the monovariant curve L.;—L.,—G-S, starting in binary nonvariant point L, is located at tem-
perature range below the temperature of point L and terminated by ternary nonvariant point LN
(L; = L,~G-S) as a result of intersection with ternary monovariant critical curves L., = L,—G and
L, = L,-S, originating in binary critical end-points N and M, respectively. The low-temperature
part of immiscibility region located on the T-X* projections below the monovariant curve L-LN
(L;-L,~G-S) is metastable (Fig. 3).

The monovariant curve L,-L,-G-S originated in binary subsystem of types 1b”, 1¢”, or 1d”
is terminated by ternary critical point LN (in the case of type 1b”) or by ternary critical point pR
(L; = G-L,=S) (in the cases of types 1¢” or 1d"). However, in this case, the temperature of points
LN or pR is higher than that in binary point L and the high-temperature part of three-phase immis-
cibility region is metastable in the range of composition (X*) from binary subsystem to ternary
critical point LN or pR.

Theoretical analysis of ternary complete phase diagrams shows that the immiscibility
region originated in the binary subsystem of types 1b" or 1b” can disappear not only in ternary
solid saturated solutions (in nonvariant point LN) (see T-X* schemes la-2, Ia-3, IVa-1 in Fig. 3),
but also in unsaturated solutions in DCEP N'N (L; = L,-G) (see T-X* schemes la-1, Ila-1,
Vo-1 in Fig. 3).

2. In ternary systems, where a binary subsystem belong to type 2 complicated by a metastable
immiscibility region, the three-phase immiscibility region can either remain metastable at any
ratio B/C (see T-X* scheme VIP’-4 in Fig. 3), end in metastable conditions in the TCP (see T-X*
schemes IVa-2, IVB-3 in Fig. 3), or transform into stable equilibria (see T-X* schemes ITIf-3,
I11g-4, IIIB-5, IVB-5, Ve-5, VIB-2, VIe-3 in Fig. 3).

If the immiscibility region ends in metastable conditions of the ternary system, the following
transformation of quasi-binary sections from type 2a into type 1a takes place through the boundary ver-
sion 12a with the double critical end-point pQ (L = G-S) (see T-X* schemes IVa-2, IVB-3 in Fig. 3).

Transition of a three-phase immiscibility region of types 2d’ or 2¢’ from metastable into stable
equilibria takes place in a range of concentration of the second nonvolatile component that is added to
the binary mixture of type 2d’ or 2¢’. The transition starts from high-temperature equilibria [point pR
(L; = G-L,-S)] at the lowest concentration of the second nonvolatile component and terminates in the
low-temperature point NL (L; = L,~G-S) at the highest concentration of the second nonvolatile com-
ponent (see T-X* schemes ITIf-3, IIIB-4, VIe-3 in Fig. 3). Such phase behavior was observed in the
systems K,SO,-KLiSO,~H,0 [34], Si0,-Na,Si,0s-H,0 [33], and Na,;PO,~Na,HPO,-H,0 [35].

Another phase behavior occurs in the case of binary subsystems of types 2d” or 2¢” where the
low-temperature part of immiscibility region is stable already in the binary subsystems and the high-
temperature part of immiscibility region undergoes transition from metastable into stable conditions in
the ternary system (see T-X* schemes IVa-2, IIIB-5, IVB-5, VIB-2 in Fig. 3). Transition of three-phase
immiscibility region into stable equilibria with an increasing concentration of the second nonvolatile
component is terminated by an appearance of the ternary nonvariant points pR (L; = G-L,-S).
Simultaneously, the high-pressure critical curves L.; = L,—S, originated in the binary critical end-points
Q and M, are coming close together as the concentration of the second nonvolatile component is
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increasing and coincide in a DCEP MQ (L, = L,-S). It can be shown that a DCEP MQ appears at a
lower concentration of the second nonvolatile component in ternary mixture than in the case of an
appearance of nonvariant critical point pR.
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