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Computer Simulation of Stress Waves in Composite Rods
Li, Hongying
Student No. 4995945
(Li_Hongying@Hotmail.com)

Abstract

The theory of stress wave is introduced, recapitulating and illustrating the most important
formulas. The wave model for a uniform bar is derived on the basis of the former theory. An
algorithm and a computer code were developed to simulate the propagation of an elastic
compressive wave along a uniform bar, The stress history through the length of the bar is
depicmdwimMAlLAB.lheresmamexplainedmdithmndudedthmmepmgmmcmbe
used to predict the fracture due to the transmission of the stress wave or due to its reflection in
terms of compressive stress or tensile stress.

Keywords; Composite materials; Numerical analysis; Stress waves;

1. Introduction
Mamtwoimpmtaxﬂﬂneoﬂeswlﬁchhavcsomeﬂringtodowi&ﬂmesﬂus wave are
reviewed here first, On the one hand, in rigid dynamics, when a force is applied to any one point
on a body, it is assumed the resultant stresses set every other point in motion instantaneously,
and by Newton’s second law of motion, the force can be considered as creating a linear
acceleration of the whole body. On the other hand, in the theory of elasticity, the body is
considered as in equilibrium under the action of applied forces, and the stress-strain relation is
linear, i.e. the elastic deformations are sufficiently accurate for problems in which the time is

relatively long between the application of a force and the time in which the observations are
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made. However, when we are considering the forces which are applied for only very short
periods of time, or are changing fast, its effects must be considered in terms of the propagation of
stress waves!'.

There have been a lot of investigations on dynamical stress wave. The methods to study them
are usually experimentally and theoretically. However, due to the limitation in computing, it was
not possible to derive analytical solutions for many years. Fortunately, with the development of
computer science, it is possible to perform the time-consuming numerical calculation so that
more accurate results can be got easily now.

In this project, the theory of stress wave is reviewed first and then the wave equation for a

uniform rod is derived. Finally, some numerical calculation examples are given.

2. The Theory of Stress Wave
2.1 Wave Propagation
2.1.1. Basic Components of Stress and Strain;
It is necessary to review some most important concepts and equations in wave propagations in
order to derive the mathematical model for a bar.
A point P is assumed with its coordinates (x, y, z) and displacements (u, v, w) in the x,
Yy, z directions, respectively (Fig. 1).
If the increments in coordinates are ( dx,dy, & ) are sufficiently small, and the
increments in displacement ( &, &, v ) have the following relations with ( &, dy, & ):

g B 08
&-&&+ay&+az&

&:é'-d‘x+?1&+%v;&

dx  dy
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_ow ow ow
S ax&+ dy &+ 0z &
Now we define the following concepts, set normal strains:
_Ou v 9w
€T3 &7y EaT
and shear strains: ) ) z- w
i
Y Ou 0w
ExEx” oz b ox ";JET'_%
—p 2OV, Ou
€9 Exn gy dy %
G
8 =€ =ﬂ .é.v_. Lt ‘“”?..’
» “2 gy oz ‘——{ /l__ I W
< G ' &
and rotations:
W ~¥
_9w_ov
x ay az
du oJw .
y = -52- = E Fig.1 Illustration of Stress Components
_9v_du
foox oy

2.1.2. Generalized Form of Hooker’s Law

In an isotropic solid, the values of normal stresses are:
O o= A2 e U”=M+2ﬂg” ozz=AA2Ue,, (1)
shear stresses are:
O yz=HEyz Oo~Hex O xy=Héxy @
where A=gxx+gyy + £ 7 sthis represents the change in volume of a unit cube and is called the

dilatation. xis shear modulus or rigidity; # and A are known as Lame’s constants.
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2.1.3. Equations of Motion in an Elastic Medium

The resultant force acting in x-direction is:

a
(a' -l-a XX SV & — o 5y&+(a' +—2 5) bl — Oy Oz +

dy
(O +—a;g-&)&5y—axz&5y

) aa'xx aO'xy ao, &
ox dy dz

If body forces are neglected and the Newton’s second law of motion is applied, the above
resultant force should be balanced, that is:

[ xx adxy ¢ ao'g Syl = 0&5,&au

In the right side of above equation, (0dxdydz) represents the mass and g': means accelerate,

p 1is density, so that

ou ____aa do’ %, do,,
o ox dy 0z
aav do,, do,, aa},z
P o ay 2
o*w aa' g aa
s 2, TP

Substitutes Equation (3) from Equation(1) and Equation(2), we have:

Pu_ 9
p—aF———(mzmn)»fs;w )+—-u«s )

According to the above definitions, hence:
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@

where the operator V2is written for

?  9* 9
[axz U ayz ' azz]
similarly, —(A+/t)5y-+/ﬂ’v )
-(ﬂ-ha) + VW (6)

Equations (4), (5), (6) are the motion equations of an isotropic elastic solid, in which body
forces are absent, and they correspond to the propagation of two types of waves through the
medium.

2.1.4. Wave Equations
If we differentiate both sides of equation (4) with respect to x, both sides of (5) w.r.t.y, and
both sides of (6) w.r.t.z and add, we have:

p%é-wzu)vm 0

Equation (7) is the wave equation and shows that the dilatation Ais propagated through the

q
2

medium with velocity [(/1-1-2/4)/ p]

2.1.5. Rayligh Waves
When Rayligh waves are considered here, some equations can be drawn. Now take the

boundary to be the xy plane with z positive towards the interior of the solid, and take the plane
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wave as traveling in the x-direction. Since the displacements will be independent of y we may

define two potential functions ¢ and ¥ to find a solution of the motion equations (4),(5),(6),

such that:
g 0w 0 0w
T T L E S @
du aw
nA=2L, o
ax % =y*9

Thus the general motion equations can be written as:
dA
oL {um)(hra o 5 Jravi(en) ®
If two potential functions are applied here and substituted Equation (8) into the equation of
motion above Equation(9), two potential functions are solved as following:
¢=Aexp[-qz+i(pt—ﬁ)] (10)
w=Bexpl-sz+i{pt- fi)

where A and B are constants, fis frequency, p is angular frequency.

R R N ,ﬂm,m‘[-ﬁt

p

"o, =M+2,uﬂ O™ "‘?T:J'%) from equation (1) and equation (2), and then

oz
substitute equation (8), we have:

o _(A+2y)—ﬂ+z—ﬂ-2yig’; an
209 3y v
T az’] 12)

Where ¢,y are potential functions.
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2.2 Wave Propagation Model For an Isolate Element

If the incident pulse is applied in x direction, for an arbitrary z value, there is no force on
external surface (at z =Z), so the incident pulse 5/ would equal zero. Also, g/ is zero. That
z x
is:

a-zz=0 a'u=0

e =0=>A{(l+2ﬂ)q2—}l fz}e—qZ—B(Z,u ifs)g™52=0 (13)

0 =0=52Alfg 0% B{ £ 2452570 (14)
From Equation (14) we have,
20 —GZ

B=—a 22 ? (15)

( f2+ s2] e SZ
u= %£+%Z (Eq.8), substitute Equation (15) and potential functions equation (10) into
x Oz

equation (8), we have:

u= —% e—qZ(—i)ez(pt—ﬁr) (16)
foes?
The maximum amplitude occurs when | cos(pt-fx) | = 1, so the amplitude is:
e f% 92 (17)
fos?
. ¢ Jdy
Similarly, w=—~—-—
5 it dz Ox

Substitute equation (15) and potential functions equation (10) into equation (8), we have:

——A[q zquzJe_qze’(pt_ﬁ)

f2+s

The amplitude is:
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A 2af? | g 18
w= A[q f2+ sz}e (18)

From Equation(1), a-xx=/1A+2,ugxx=/1(exx+£yy+8ZZ)+2,wsxx, but Eyyis not considered

here, then
0 = At e 22 F2HE xx (19)

If potential functions applied and Equation(19) is simplified, thus the amplitude is:

2
; 2qu2]+ M[q 2f ]

e %% (20)
f2+s F24s2

o xx=A{(1+2.u)f

where A, i, f, q, s are all constants for a given puise. Therefore equation (20) can be written
as:
ox=Ae

Because z is arbitrary for a bar and not related to azimuth (i.e. independence of y direction), so
z can be replaced by another character r; and r means distance from axis in radial direction. That
is:

ox=Ae 1" 1)

However ** g = \’ f 2—h2 , and f >>h (because h = %1 <<1), so Equation (21) can be
simplified as following:
oA (22)

There are two aspects should be noticed for equation (22). Firstly, it shows the
stress amplitude decays with the increase of radius. If the radius are not change, the stress
amplitudes doesn’t decay in longitudinal wave propagation. Secondly, although it is derived
from a point of element stress analysis, it is the general expression and can be suitable for a

structure too.
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3. Longitudinal Waves in Rods
3.1. Equation of Motion

For consider a small element PQ of length & and let the cross sectional area of the rod be A

(see Fig.2). If the stress on the face passing through P is o the stress on the other face will be
given by oxx + (aa'%,x )é'x, and if the displacement of the element is given by u, we have from

Newton’s second law of motion:

ou ,00 ) A
pA&EtT = A—f& where pis the density of the rod.
x
do,,
(77 S L » O, +— =&
ox
«—& —»
Fig.2 Element of rod with loads
The equation of motion is:
ou _odu
—_—= E__
T

Using discrete Fourier series transform, the solution can be written as:
u=(x1y Ae" + ZBe"’"
Consequently, the solution can be written directly as :
u(x,t) = f(x—ct)+ F(x+cit) where ¢;= ‘[(E.S'_)/(_pgi ,S is the area. This, of course ,is the
D’ Alembert solution and says that the pulse keeps the same shape as it propagates.

Using the subscripts i and r to represent the forward and backward moving waves,

respectively, then the other mechanical quantities can be obtained as
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Displacement: u, = Ae™*™*" u, = B!+

strain: e, = —iky, e, =—iku,
stress: 0, = —ikEy, o, = —ikEu,
Force: F, =—ikESu, F, =—ikESu,

3.2 Reflections and Transmissions at an Interface Between Two Media
Any change in cross section or material properties will cause the generation of new waves.
While the actual situation is very complicated, in the present one-dimensional analysis only a
longitudinal transmitted wave and a longitudinal reflection wave are generated.
The incident wave generates a reflected wave in such a way that the two superpose at the
boundary to satisfy the boundary conditions. The only waves that can be present are the two

given by
u](x,t) = ZAle-I(knx-wl) i ZBle+i(k1x+m)
U (x,0)= ZAze""‘"‘“’"

Where A is associated with the known incident (transmitted) wave and B with the unknown

reflected wave.

The case of transmission of waves from one medium to another is handled as following
rules: balance of force at the interface and continuity of displacement. They give:
E;S (-A1+B1)(iki) =E;z S (-A2) (ikz)
Aj+Bi=A;

Where S is area, solving for the reflected and the transmitted coefficients then gives

1-4r,n, 2
HEB k)
+4r,1p 1+ r,n,

where the following notions are used

10
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P>
r,==%
2 P

o~
]
LI

Thus the response is independent of frequency. Because forces are in equilibrium, the

expressions for the stresses are:

rr, -1 1/rr
=X2 _g, 0, =222 g,
r,r, +1 r,r, +1

Because wavelength is greater than thickness of any media and % << f, so for multi-
1

layer media (along x direction), we have the following important equations:

(a). the equation of reflection pressure ratio:

_P27PC _O9r
PC2tpq  O;

=0, =7,

rp -0, (23)

(b). the equation of transmission pressure ration:

2p,c o
Tp=_£i=—l‘ =>O.I=Tp.a.i (24)
P Catpc O
(c) the total incident pressure is:

ai—total =0; +ar=a A (25)

where o; is incident wave pressure, o, is reflection wave pressure, and o; is
transmission wave pressure. Ri=pici  Re=p:xc:  p is medium density and c is propagation
velocity. The schematic illustration is shown in Fig.3.

So far we have got Equations (22), (23), (24), (25) and they are called the mathematical

model for a uniform bar.

11



Computer Simulation of Stress Waves in Composite Rods

L]
1 ’
Oincideny | 1
2 o,

A R

Fig.3 Schematic illnstration of stress wave propagation at one interface

4. Examples of Calculation
The model of proposed above is based on the following assumptions:
(1) Internal friction is not considered,
(2) Wavelength is much greater than the thickness of any media
(3) The period of stress wave is considered as 10-2 to 103 second order.

Fig.4p1esentsa]lsn'esscomponentsactonaninterfacej.

intarﬁlnej.,.,

Fig4 all stress components act on an interface j

Now we give the flow chart of computer numerical calculation of stresses in the interfaces

propagation (see Fig.5).

12
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i=i+1

Data input m,n,pl,cl, p2,c2,
and iniﬂl:]ianion c_deposite, f_deposite,
impedance[n+1)
+ DFC, DFT
Stress [ 0](j]=0
if i=odd? =
Yes
> y
if j=even?
if j=0dd?
no yes yes no
Stress[i][j] Stress|i)[jl=stress[i-1][j] Stress[i]{j]=stress[i-1][j] Stress[i][j]
=stress[i-1][j] +FIfIF1+BRA)(G] +FIl[j1+BRA][] =stress[i-1](j]
J=+1
H+
yes
yes
no yes
no yes
Stressfi)[n-1]= Stress[i)[n-1]=stress[i-1][n-1] Stress[i][n-1]}= Stress[i)[n-1)=stress{i-1][n-1]
stress[i-1][n-1] +Fl[])[n-1]+BR{i)[n-1) stress[i-1])[n-1] +FlI[i][a-1)+BRfi][n-1]
no
Stress[i}{j]
Fig.5 the flow chart of computer numerical calculation of stresses in the interfaces propagation
13
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Casel: total time moments m = 20 unit, total interfaces n=21, incident pulse =100*10°
pa, the tensile limit strength DFT= -100*10° pa, (minus means tensile), the compressive limit

strength DFC=200*10° pa, p1=2000kg/m’, c1=2738 m/s, p2=2200kg/m’, c2=3371 m/s.

= interface 3 ot propagation history

1 0 N | m=20,n=21

c | time unit=16

@D
3 m=20,n=21 s
o ' S
® ®
P30 |
[}
2 ; ; ; k! ] I.l 1“ '.l n o 0 ] |.D |’5 8;1
time unit interface
Fig. 6 Fig.7

The result shows the first compressive fracture occurs at interface 14 and the moment 16 when
stress pulse is 2.1e+008; the maximum stress is 2.2e-+008,it occurs at interface 16 and the

moment 18; the minimum stress is 0, it occurs at interface 1 and the moment 0.
Case 2: m=60, n=>50,incident pulse =100*10° pa, the tensile limit strength DFT= -100*10° pa, the

compressive limit strength DFC=200*10° pa, p1=2000kg/m®, c1=2738m/s, p2=2200kg/m’,

c2=3371 m/s.

14
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wd . interfaced «¢_____propagation history
! L
2" 2.
2 a, m=80, n=50
2 m=60, n=50 ? time unit = 59
i @
g § z 2
@ 3
4 4
® 6 E [ ® 5w # B B 8 % % & =
time unit interface
Eg.s Eg'g

The result shows that the first compressive fracture occurs at interface 14 and the moment 16

mesnesspuheisz.lmOO8;meﬁmmnsileﬁmnnewcmmmmdace48andthemoment

36,the stress pulse is -5.2e+008; the maximum stress is 7.5e+008,it occurs at interface 42 and the

moment 58; the minimum stress is -7.9e+008,it occurs at interface 48 and the moment 58;

Case3: total time moments m = 110 unit, total interfaces n=100, incident pulse =100%10° pa, the
tensile limit strength DFT= -100*10° pa, the compressive limit strength DFC=200+10° pa,
P1=2000kg/m’, c1=2738 m/s, p2=2200kg/m®, c2=337 m/s.

g mordced e Popagaton hisory
8 m=110,n=100 2 ‘
= & =
& 2,
g o 2
,"z:, £, m=110,n=100
o e time unit=100
5 o 6 0 lrﬂ 1w .n I;I 6 é 5 ﬂ.l 6 e 6 i w0
time unit interface
Fig.10 Fig.11
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The result shows the first compressive fracture occurs at interface 14 and the moment 16, the

stress plilSe is 2.1e+008; the first tensile fracture occurs at interface 98 and the moment 108, the
stress pulse is 2.7e+008; the maximum stress is 9¢+009,it occurs at interface 58 and the moment
108; the minimum stress is -1.5¢+009,it occurs at interface 99 and the moment 109;

Therefore, the first compressive fracture always occurs at interface 14 and the moment 16;
whereas the first tensile fracture occurs at the end of interface and the time moment;
the maximum stress increases with the number of layer and time but the minimum stress

decreases with the number of layer and time because too much interactions are occurred.

5. Conclusion

From the above figures, it can be observed that stress discontinuities arise at the material
boundaries, with constant levels in between if the radii are the same. When stress concentrations
appear, they do so at the discontinuities, that demonstrates that these stress components cannot
be neglected in a strength or fatigue analysis. So, the calculation model can be used to predict the
damage induced by an impact pulse.

Real solids are neither perfectly elastic, that means when a pulse traveled through medium,
some of mechanical energy is converted to heat energy whose mechanisms are termed internal
frictions. The alternation of stress waves depend on frequency. Here, the propagation of stress
waves are treated in perfectly elastic solids and one of period of stress waves are taken as 10

2..10 3 50 that alternation of stress waves are neglected.

16
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Appendix C++ Program Codes

1/l

/I The following program is used to calculate the stress wave values
// at any moment in any one of the interfaces for a uniform bar.

1l
1/
n

FI[m][n] presents the forward incident on the nth interface at m
moment (left side of the interface and the wave direction is to the right)

BR[m][n] presents the backward reflection on the nth interface
at m moment produced by FI[m][n]

FT[m][n] presents the forward transmission on the nth interface
at m moment produced by FI[m][n];

BI[m][n] presents the backward incident on the nth interface
at m moment (right side of the interface and the wave direction is to the left)

BT[m]{n] presents the backward transmission on the nth
interface at m moment produced by BIlm][n]

FR[m][n] presents the forward reflection on the nth
interface at m moment produced by BI[m][n]

stress[m][n] presents the history stress on the interfaces

#include <iostream.h>
#include <math.h>
jtinclude <iomanip.h>
#include <fstream.h>
#include <time.h>
#tinclude <stdio.h>

void main ()

{

{/ofstream fcout ("c:\\mathlab6p1\\work\\hong.m")
/fifstream fcout("c:\\matlab6p5\\work\\hong.m");

int const m=20; // m presents the total number of time traveled
int const n=21;  // n presents the total number of interfaces

double FI{m][n];
double BR[m][n]};
double FT[m][n];
double BI[m][n);
double BT[m][n);
double FR[m][n];
double stress[m][n];

double pl,cl;
double p2,c2;
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cout<<"Please specify the density of medium_1 pl=";
cin>>pl;
cout<<endl;
cout<<"Please specify the velocity of medinm_1 c1=";
cin>>cl;
cout<<endl;
cout<<"Please specify the density of medium_2 p2=";
cin>>p2;
cout<<endl;
cout<<"Please specify the velocity of medium_2 c2=";
cin>>c2;
cout<<endl;

double c_deposit;
double f_deposit=0;

cout<<"Please specify the incident pulse = ";
cin>>c_deposit;
cout<<endl;

double DFC; //compressive strength
double DFT;  //tensile strength;

cout<<"Please specify the compressive strength DFC=";
cin>>DFC;
cout<<endl;

cout<<"Please specify the tensile strength DFT=";
cin>>DFT;
cout<<endl;

double impedance[n+1];// input impedance of each layer
for(int k=0;k<n+1;k++)
{
if (k%2==0)
impedance[k]=pl*cl; //3*3000
else

impedance[k]=p2*c2; //8.5%3500

int ij;

for (i=0;i<m;i++)
for (j=0;j<nzj++)
{

FI[i](j]=0;

BRUi][j]=0;
FTil[j]=0;
BI[1][j]=0;
BTIil{j]=0;
FR[i][j]=0;
stressfi][j]=0;

11i=0;

D T T —
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for(i=0;i<m;i++)
{

if(i%2==0) // when time moment is odd

/I time divided by even or odd and calculation of the Oth layer
FI[i](0]=c_deposit;
BI[i][0]=BRI[i-1][1];
BRI[i][0]}=F1[i][0)*(impedance[ 1]-impedance[0])/
(impedance[1]}+impedance[0]);
BT[i][0]=BI[i][0]*(2*impedance[0])/
(impedance[ 1]+impedance[0]);
FR[i][0]=BI[i][0]*(impedance[0]-impedance[ 1])/
(impedance][1]+impedance[0]);
FT[i)[0)=FI[i][0]*(2*impedance[1])/
(impedance[1]+impedance[0]);

BR[i][0]=BRIi][0}+BT[i][0];
FT[i][0]=FT[i][0+FRIi][0};
c_deposit=-BR[i][0];

if (i==0)
stress[0][0]=stress[0][0]+FI[0][0}+BR[0][0];
else
stress[i][0]=stress[i-1][0)+FI[i][0}+BR[i][0];
}
for(j=1;j<n-1;j++) /note : j take n-1

J/ the number of interfaces divided by even or odd
if{(j%2==0) //calculation of other odd layers and the moment is odd too

FI[i][j]=FT[i-1]{j-11;
BI[i][j]=BR[i-11[j+1];
// note: j take n-1 layers
BRIil[j}=FI[i][j}*(impedance[j+1]-impedance[j])/
(impedance[j]+impedance(j+1]); /the relection ratio of the incident

BTI[i][j1=BI[i][j]*(2*impedance[j])/
(impedancefj}+impedance(j+1]); //the refraction raio of the incident

FRIi][j]=BIli] [j]*(impedance[j]-impedance[j+1])/
(impedance[j]+impedance[j+1]);

FT[i][j]=FI[i](j1*(2*impedance[j+1])/
(impedance[j]+impedance[j+11);

BR[i](jl=BRIG+BTIL][1:
FTIG)=FRIGHFTHEIGE
if (i=0)

stress[0][j]=0;
else

stress[i][jl=stress[i- ][+ FIL[]+BRIIl);
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}

else /fif other layers are even but moment is odd

if (i==0)
stress[0][j]=0;
else
stress[i][j)=stress[i-1][j];

}
}// end of for
if((n-1)%2=0)

/lassume : the times are odd
/I the last layer is odd
FI[i][n-1]=FT[i-1][n-2]);

BI[i][n-1]=f_deposit;

BR]i][n-1]=FI[i][n-1]*(impedance[n]-impedance[n-1])/
(impedance[n]+impedance[n-1]);

BT[i][n-1]=BI[i][n-1]*(2*impedance[n-1])/
(impedance[n]+impedance[n-1]);

FR[i][n-1)=BI[i][n-1]*(impedance[n-1]-impedance[n])/
(impedance[n-1]+impedance[n]);

FT[i][n-1)=FI[i][j]*(2*impedance[n])/
(impedance[n]+impedance[n-1]);

BR[i][n-1)=BR[i][n-1]+BT[i][n-1];
FT[i][n-1]=FT[i][n-1]+FR[i][n-1];
f_deposit=-FT[i][n-1];

if(i=0)
— stress[0][n-1]=0;
else
stress[i][n-1]=stress[i-1][n-1]+FI[i][n-1]+BR[i][n-1];

else

if(i==0)
stress[0][n-1]=0;
else
stress[i][n-1]=stress[i-1][n-1];
}//the last layer — evev
}

else //if moment is even

{
stress[i][0)=stress[i-1][0];
for(j=1;j<n-1;j++)

if(j%2!=0) //if layer is even



333333333333333333333333333003%3030%00000000Y

CompnterSimxﬂaﬁonofStmssWavesinComposiﬁeRods

PIG]GI=FTL-1]G-1):

BI[i][{}=BRIi-1](§+1];
/! —-note ; j take n-1 layers—

BRIi]{j]=FIfi](j]*(impedance[j+1]-impedance(j])/
(impedance[j}+impedance[j-+11]);

FT[i[j)=FIi][j1*(2*impedance[j+1])/
(impedance[j}+impedancefj+1]);

BT[i][j}=BIli][j]*(2*impedance[j])}/
(impedancefj]+impedance(j+1]);

FR[i][j]=BIHil[j]*(2*impedancelj])/
(impedance[j]+impedance[j+1]);

BRIi][1=BRIHBTHIG:
FTRIGI=FTHG+FRA]G):
- stress[i][j]=stress[i-11[F+FIHI BRI
else

{
;ﬂeﬁ[i]ﬁ]ﬂm[i-ll[ﬂ;

}
if((n-1)%2!=0) // the last layer is even

{
{/assume : the number of the layers are even
{/and : the times are also enen

BI[i][n-1]=F_deposit;
FI[i][n-11=FTT[i-1][n-2];

BR[i][n-1]=FI[i][n-1]*(impedance[n]-impedance[n-11)/
(impedance[n]+impedance[n-1]);

FT[i][n-1)=FI[i][n-1]*(2*impedance[n])/
(impedance[n]+impedance[n-11);

BT[il[n-1]=BI[i][n-1]*(2*impedance[n-1])/
(impedance{n}+impedance([n-11);

FRIi][n-1]=BI[i][n-1]*(impedance[n-1]-impedance[n])/
(impedance[n-1]+impedance[n]);

BR[i][n-11=BR[i][n-1]+BT[il[e-1];
FT[i][n-1]1=FT[il[n-1]+FR[il[n-1];
f_deposit=-FTT[i][n-1];
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stress[i][n-1]=stress[i-1][n-1]+FI[i] [n-l]+BR[i][p-l];

}
else
{
stress[i][n-1]=stress[i-1][n-1];
//the last layer — odd
}
}
}
int h;
h=0;
for(i=0;i<m;i++)
ior(i=0;i<n;i4+)
cout.width(10);
cout.precision(2);
cout<<stress[i][jl<<" ":
h=h++;
if(h%5==0)
cout<<" ..."<<endl;
}
int layer_1,layer_2,moment_1 ,moment_2;
for(i=0si<m;i++)
for(j=0;j<n;j++)
if (stress[i][j]>DFC)
{
layer_1=j;
moment_1=i;

cout<<"The first compressive fracture occurs at interface "<<layer_1;
cout<<" and the moment "<<moment_1<<endl;

cout<<end];
cout<<"The stress pulse is "<<stress[i][j]<<endl;
cout<<end];
=5
if (stress[i][j]>DFC)
break;
}
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{if(stress[i]Li]<DFI')
layer_2=ij;
moment_2=i;

cout<<"The first tensile fracture occurs at interface "<<layer_2;
cout<<” and the moment "<<moment_2<<endl;

cout<<end]l;

cout<<"The stress pulse is "<<stress[i]{jl<<endl;

cout<<endl;

break;



J/Fwskrxrrsrn Calculation of the fracture position *

Jxsxxsrrrxrex end of above calculation
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}
if(stress[i][j]<DFT)
break;

}

int layer_1 1,layer_12,moment_1 1,moment_12;
int const g=m*n;
double max,min;

max=min=stress[0][0];
for(i=0;i<msi-++)
for(j=0j<nzj++)
if(max<stress[il[j])

max=stress[i][j];
layer_11=j;
moment_11=i;

else if (min>stress[i][j])

min=stress[i][j];

layer_12=j;

moment_12=i;

}
cout<<"the maximumn stress is "<<max<<endl;

cout<<endl;
cout<<"It occurs at interface "<<layer_11;
cout<<" and the moment "<<moment_11<<endl;
cout<<endl;
cout<<"the minimum stress is "<<min<<endl;
cout<<endl;
cout<<"It occurs at interface "<<layer_12;
cout<<" and the moment "<<moment_12<<endl;
cout<<endl;

int p;
cout<<"Which interface do you want to know ? *;
cin>>p;
cout<<endl;
while (p>=n)

{

cout<<"this interface is beyond the maximum interface, choose again!"<<endl;

cout<<"Which interface do you want to know ? ";
cin>>p;
cout<<endl;

h=0;
cout<<endl;
for(i=0;i<m;i++)
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cout.width(10);
cout.precision(2);
cout<<stress[i][pl<<" “;

if(h%5==0)
cout<<" ..."<<end]l;

cout<<endl;

intt;

cout<<"What time do you want to calculate ?";
cin>>t;

cout<<endl;

while (t>=m)

cout<<"this moment is beyond the maximum moment, choose again!"<<endl;
cout<<"Which moment do you want to know ? ";
cin>>t;
cout<<endl;
}
for(j=03j<n;j++)
cout<<" stress["<<t<<"]["<<j<<"] = "<<stress[t][jl<<end];

h=0;
cout<<end];
1;°r0=0;i<n;i++)

cout.width(10);
cout.precision(2);
cout<<stress[t][jl<<" ";
h=h++;
if(h%5==0)
cout<<” ..."<<endl;

cout<<endl;
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