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The Levenberg-Marquardt method, the best algorithm to obtain the least-square solution of nonlinear equations, is
applied to calculate the stable phase equilibria. It can get the best combination between robustness and speed of
the calculations. Its application to ternary Al-Si-Mg system is executed in detail. The calculated phase equilibria
agree well with the experimental results. Furthermore, the Levenberg-Marquardt method is not sensitive to the initial

values.
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1. Introduction

Computer calculation of phase diagrams began nearly
40 years agol2. The history of CALPHAD is a chronol-
ogy of what can be achieved in the field of phase equi-
libria by combining basic thermodynamic principles with
mathematical formulations to describe the various ther-
modynamic properties of phases. Up to now, many pro-
cedures have been published to calculate the phase dia-
grams. But most of them are based on the two general
ways(®l: the local minimization methods and the global
optimizations methods.

If codes are based on local minimization methods,
such as steepest descent or Newton-Raphson, problems
will arise due to the existence of unknown local minima
in Gibbs energy space. So, more computer codes based
on global minimization methods, such as Thermo-Calc[¥,
FACTP!, MTDATA®, ete, were designed, but these must
sample a large portion of Gibbs energy space so that all
of the local minima are recognized. Unfortunately, com-
putational times can then be greatly increased.

Recently, a new method for the calculation of stable
phase diagram was presented by Li et al.l”), which can
obtain the phase equilibria by minimizing the total devia-
tion of the phase equilibrium equations. He still used the
Newton-Raphson method or the simplex method to solve
the nonlinear equations of n variables. In this paper,
the objective function of phase equilibrium is solved us-
ing the well- developed Levenberg-Marquardt method!®!,
which can get the best combination between robustness
and speed of the calculation.

2. Objective Function of the Calculation

For all solution phases, the Gibbs energy can be given
by the general formulal®!:

G=G"+Gni + G (1)

where GO is the contribution of the pure components of
the phase to the Gibbs energy, Gid¢2! is the ideal mixing
contribution and G, is the contribution due to non-

ideal interactions between the components, also known
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as the Gibbs excess energy of mixing.

At a given pressure and temperature, the maximum
number of coexisting phases in a system, formed by n
components, is equal to n+1 as deduced from the phase
rule. If a system is formed by m phases, with 1<m<n+1,
the chemical potential of each component is the same in
each phase when equilibrium is reached. This state is
expressed by a set of n nonlinear equations:

<1> <2> — ,<m>

it = i=lton (2

where p denotes the chemical potential, the superscripts
<1>, <2>, ---, <m> referring to the different phases
and the subscripts ¢ to the component. For a two-phase
equilibrium, Eq.(2) then becomes:

<1> <2> _
=0

weT = i=1ton (3)

There are 2n—2 dependent variables in Eq.(2) consider-
ing the mass balance in each phase. To reduce the degrees
of freedom to zero, n—2 variables must be fixed before
the calculation of phase equilibrium. So Eq.(2) contains
n variables. Now, let us define the objective function for
the phase equilibrium calculation:

F(z) = %if?(w) i 4
where )
fi@) =pf—pl =0 i=1ton (5)
o= (o1 mae e 2) ©
5T = (i for e o) @

The objective function, F(z), cannot be negative.
When F(z) is smaller than the reasonably small quan-
tity e, for example 0.0001, actually it reaches its global
minimum!™, The condition F(z)< e corresponding also
to the equilibrium condition that the chemical poten-
tials of the different species remain the same in different
phases. This can be deduced from the condition that the
Gibbs energy of the whole system gets its global mini-
mum. Thus, as soon as F'(z)< ¢, the global minimum of
the Gibbs energy in the whole system is reached.
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3. Levenberg-Marquardt Method

Levenberg-Marquardt method is an approximation to
Newton’s method. The algorithm uses the second-order
derivatives of the objective function so that a better con-
vergence behavior is observed. In the ordinary gradient
descent search, only the first-order derivatives are eval-
uated and the parameter change information contains
solely the direction along which the objective is mini-
mized, whereas the Levenberg-Marquardt technique ex-
tracts a better parameter change vector. It is motivated
by this problem that, on the objective surface, there may
be many solutions leading to the convergence, raising the
possibility of an excessively long time to reach the solu-
tion. Using the phase equilibrium equations, the algo-
rithm can be stated as follows:

Suppose J(z) is the Jacobian matrix of f(z), i.e.:

9fH ... Bf
Oz, 0T,
J = (8)
Ofn ... Ofu
oz 0xn

The gradient matrix of f(z) is:

n

gl@) =Y fil@)Vfilx) =

i=1

J(2)" f(x) (9)

And the Hessian matrix of f(z) is:

n

G(z) =Y [Vfi@)Vfi(x)" + fi(z)V? fi(x)] =

i=1

J(x) T J(z) + S(x) (10)

So the Newton algorithm to minimize the objective func-
tion can be described as:

Tepr = xp — [T ()" T (we) + S ()] 7 T (w) T fae) (11)

The Gauss-Newton algorithm can be obtained by neglect-
ing the high order term S(z):

whpr = xp — [J(@p) T T (@p)] ™ T (@) f (k) (12)

The Levenberg-Marquardt method is a useful alter-
native when the Gauss-Newton algorithm yields an ill-
conditioned problem and its final form of the parameter
update algorithm is described by Eq.(13) and the details
are presented in literature [10,11].

Trpr = 2 — (J (@) T (@) + M) T ()T F () (13)

4. Robustness and Speed of the L-M Method

For large Ag, the update formula given by Eq.(13)
becomes the standard gradient descent with step size

Contour line
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Fig.1 Descent directions of three algorithms

1/Ar; conversely for small A, the behavior is as that of
Newton’s method. Therefore, by the introduction of such
a term, a smooth transition between Newton's method
and steepest descent is achieved. The descent direction
of L-M method is shown in Fig.1. Furthermore, this
term introduces the elimination of invertibility problem
in Eq.(13).

There must be the flat region and the extremum re-
gion in the objective function surface. In the flat region,
A should be large in order to get the fastest descent
speed. But in extremum region, Ay should be small in
order to eliminate concussive results obtained by gradi-
ent descent method and to keep the descent direction.
The calculation process is executed in MATLAB and )\,
is determined automatically.

5. Calculation Results

When the chemical potentials are deduced, the ob-
jective function F'(z) can be written immediately. This
method can be used to calculate any two-phase equilibria
if we put the corresponding equilibrium condition into the
objective function. As an example, the isothermal sec-
tion containing the liquid and fcc_ Al phase in Al rich Al-
Mg-Si alloys is calculated in detail using the Levenberg-
Marquardt method.

Using the Redlich-Kister-Muggianu modell'>'3], the
Gibbs energy of the liquid or the fcc_ A1l phase can be
written as:

G=> a22G" +RTY winz; +G¥  (14)

i=1 =1
2 3 m
GP =" @iy Y [Lija(es — )"+
i—1 j—it1 1=0

3

T1T2T3 [Z(Lter,ixi)] n=3 (15)

i=1

Then, the objective function F(z) can be deduced. The
thermodynamic parameters of Al-Mg-Si alloy are selected
according to literature [14].
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Fig.2 Isothermal sections of Al-Si-Mg alloys, (a) solidus, (b)
liquidus

Figure 2 shows a comparison between the calculated
values with the experimental results. It can be seen that
the calculated values agree well with the experimental
results['?,

6. Conclusion

The Levenberg-Marquardt method, the best algo-
rithm to obtain the least-square solution of nonlinear

equations, is applied to calculate the stable phase dia-
gram. The algorithm uses the second-order derivatives of
the objective function so that it can get the best combi-
nation between robustness and speed of the calculations.
As shown in literature [7], the Meijering’s principle!*f]
should be applied before the calculation of ternary sys-
tems when the miscibility gap exists. This method is
suitable for the calculation of the stable equilibria in bi-
nary or even higher order alloys.
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